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Abstract
We design differentially private regret-minimizing
algorithms in the online convex optimization
(OCO) framework. Unlike recent results, our al-
gorithms and analyses do not require smoothness,
thus yielding the first private regret bounds with
an optimal leading-order term for non-smooth loss
functions. Additionally, even for smooth losses,
the resulting regret guarantees improve upon pre-
vious results in terms their dependence of dimen-
sion. Our results provide the best known rates for
DP-OCO in all practical regimes of the privacy
parameter, barring when it is exceptionally small.
The principal innovation in our algorithm design
is the use of sampling from strongly log-concave
densities which satisfy the Log-Sobolev Inequal-
ity. The resulting concentration of measure allows
us to obtain a better trade-off for the dimension
factors than prior work, leading to improved re-
sults. Following previous works on DP-OCO, the
proposed algorithm explicitly limits the number
of switches via rejection sampling. Thus, inde-
pendently of privacy constraints, the algorithm
also provides improved results for online convex
optimization with a switching budget.

1. Introduction
The framework of online convex optimization (OCO) pro-
vides a unified treatment of computational and statistical
aspects of decision-making and learning under uncertainty.
In it, in each round t = 1, 2, . . . , T , a learner chooses
an element xt from a compact convex set K ∈ Rd, af-
ter which an adversarially chosen Lipschitz convex loss
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function lt : K → R in revealed. Thus the learner suffers
loss lt(xt) in round t. The learner’s regret is defined as∑T

t=1 lt(xt) − minx∈K
∑T

t=1 lt(x). The learner’s perfor-
mance may be assessed via her expected regret, averaging
over the randomness in her and the adversary’s choices. In
this paper, we restrict our discussion to obliviously chosen
loss functions, i.e., they are independent of the iterates xt.

Differentially Private OCO (DP-OCO). Online learning
algorithms often operate over sensitive data, e.g. user-level
data for personalization-oriented services. Hence, in addi-
tion to minimizing regret, limiting privacy leakage is desir-
able, and has been pursued in Jain et al. (2012); Smith &
Thakurta (2013); Agarwal & Singh (2017); Kairouz et al.
(2021); Asi et al. (2023); Agarwal et al. (2023). The promise
of privacy in DP-OCO dictates that if a loss function lt in
any round t were changed to a different function l′t, then
distribution over the entire iterate sequence produced by
the algorithm is not altered in a quantitative (ε-dependent)
distributional sense. Kairouz et al. (2021) established a re-
gret upper bound of Õ

(
d1/4

√
T√

ε

)
1. This was improved in

a series of works (Asi et al., 2023; Agarwal et al., 2023),
for moderate ranges of ε, with Agarwal et al. (2023) pro-
viding the known best bound of Õ

(√
T + dT 1/3

ε

)
; notably,

the first term here matches the optimal non-private regret.
There are two shortcomings of the result in Agarwal et al.
(2023). Firstly, it only applies to smooth loss functions.
Moreover, application of artificial smoothing techniques,
e.g., Moreau-Yoshida smoothing, to arrive at a result for
non-smooth losses yields bounds that are uniformly worse
than in Kairouz et al. (2021), and is therefore fruitless. Sec-
ondly, the dependence on the dimension in the second term
is suboptimal; while specifically for the class of generalized
linear model (GLM) functions, the authors proved an im-
proved bound of Õ

(√
T +

√
dT 1/3

ε

)
, improving the second

term by a factor of
√
d, obtaining the above bound for the

general class of Lipschitz convex functions was left open.
In this paper, we resolve both these problems, and offer
an unconditional improvement. Concretely, we provide a
DP-OCO algorithm for potentially non-smooth convex Lip-

1Õ (·) hides polylog factors in 1/δ and T .
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schitz losses with Õ
(√

T +
√
dT 1/3

ε

)
regret.2 This now

provides the known best regret bound for DP-OCO, for all
practical regimes of the privacy parameters. We provide a
detailed comparison in Table 1.

Lazy OCO. Regret bounds for online leaners subject to
limited switching has seen thorough investigation for predic-
tion with expert advice (Merhav et al., 2002; Kalai & Vem-
pala, 2005; Geulen et al., 2010; Altschuler & Talwar, 2021)
and more generally for OCO (Anava et al., 2015; Sherman
& Koren, 2021). For smooth losses, the best results known
so far for OCO appear in Agarwal et al. (2023); Sherman
& Koren (2023) who show a regret bound of Õ(

√
T + dT

S )
while switching at most S times in expectation. Addition-
ally, Agarwal et al. (2023) gave an improved Õ(

√
T +

√
dT
S )

bound under additional restriction to smooth GLM losses.
We improve these results by giving an OCO algorithm that
has regret at most Õ(

√
T +

√
dT
S ) for Lipschitz losses, in

absence of any smoothness or GLM restrictions. This also
improves the known best switching-limited regret bounds
for non-smooth losses in Anava et al. (2015); Chen et al.
(2020) which scale as Õ(

√
dT + dT

S ) and O( T√
S
), respec-

tively. In contrast to our result, neither attains an optimal√
T leading-order term for a sub-linear switching budget.

Overview of our techniques. The starting point of our
algorithm is the Private Shrinking Dartboard algorithm of
Asi et al. (2023) which proposes to play a point sampled per
step from the distribution with density at x proportional to
exp

(
−β
(∑t

τ=1 lτ (x)
))

. In this case the regret as well as
the differential privacy of the algorithm is governed by the
parameter β. As can be easily seen from the regret analyses
for such continuous multiplicative weights algorithms, the
choice of β scales with the dimension (corresponding to the
volume of the domain) leading to an overall regret of

√
dT .

In contrast we propose to sample the played point every
round from the distribution with density at x proportional to
exp

(
−β
(∑t

τ=1 lτ (x) +
λ
2 ∥x∥

2
))

. The primary advan-
tage of adding the ℓ2-norm term is that the stability of the
algorithm which affects the regret as well as the differential
privacy can now be governed directly by the λ parameter.
This is a consequence of that fact that the above density
satisfies the Log-Sobolev inequality and thus we are able to
leverage the geometry of the underlying domain using the
resulting concentration of measure, as opposed to a crude
bound on its volume. In particular as we show in Lemma 3.5,
the stability of the algorithm which can be measured via the

2For a small regime of ε ∈ [T−1/6, d2/3T−1/6] we get an
additional

√
dT3/8

ε3/4
term; this also arises in Agarwal et al. (2023) for

GLM losses. Even with this included, the bound unconditionally
improves Agarwal et al. (2023) as shown in Table 1 on page 3.

ratio between the densities of distributions at two consec-
utive timesteps scales as O

(√
β/λ

)
as opposed to O(β)

in the Private Shrinking Dartboard algorithm. Tuning the λ
parameter appropriately now allows for a significantly better
trade-off with respect to the dimension. The idea of using a
strongly log-concave distribution has been used previously
in the context differentially-private stochastic optimization
in the work of Gopi et al. (2022) and Ganesh et al. (2023).

This paper builds upon an earlier paper by the same authors
(Agarwal et al., 2023). To maintain continuity and ease
understanding for readers who wish to read both papers,
the present paper is structured very similarly to Agarwal
et al. (2023). In particular, several lemmas are adaptations
of analogs in Agarwal et al. (2023); we chose to include
them for completeness. Given the similarity between the
two papers, we highlight a few key differences and points
of technical novelty in Section 5.

2. Preliminaries
Notation. We use ∥ · ∥ to denote the standard ℓ2 norm on
Rd. For distributions p and q on the same outcome space, we
use ∥p− q∥TV to denote their total variation distance. For a
distribution µ on Rd, we use µ(A) to denote the measure of
a measurable set A ⊆ Rd. With some abuse of notation, we
also µ(x) to denote the density of µ at x ∈ Rd, if it exists.

Problem Setting. We have a convex compact set K ⊂ Rd

with diameter D ≜ maxx,y∈K ∥x−y∥. At each step t ∈ [T ],
the learner A chooses a point xt ∈ K, after which she sees
a loss function lt : K → R, and suffers a loss of lt(xt). For
any t-indexed sequence of objects, e.g. the loss function
lt, let l1:T = (l1, . . . lT ) be the concatenated sequence. We
consider oblivious adversaries in that we assume the loss
function sequence l1:T is chosen independently of the iter-
ates xt picked by the learner.3 A function l : K → R is said
to be G-Lipschitz if |l(x)− l(y)| ≤ G∥x− y∥ for any pair
x, y ∈ K. Without loss of generality, we assume that K is
full-dimensional and contains the origin.

Assumption 2.1. The loss functions l1:T ∈ LT are chosen
obliviously from the class L of G-Lipschitz convex functions.

The expected regret assigned to the learner is the expected
excess aggregate loss of the learner in comparison to the
best fixed point in K chosen with the benefit of hindsight.

RT (A, l1:T ) ≜ E
A

[
T∑

t=1

lt(xt)− min
x∗∈K

T∑
t=1

lt(x
∗)

]
3As noted in Asi et al. (2023), the privacy guarantee is not

reliant on obliviousness, but the regret bounds are. The necessity
of obliviousness is due to our use of the Shrinking Dartboard
algorithm. For adaptive adversaries, Asi et al. (2023) show that no
algorithm can achieve sublinear regret when ε ≤ 1/

√
T .
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Privacy Parameter ε
Previous Best Theorem 4.4

With Smoothness No Smoothness (No Smoothness)

ε ≥ dT−1/6
√
T (Agarwal et al., 2023) √

dT
(Asi et al., 2023)

√
T

ε ∈ [d2/3T−1/6, dT−1/6]

d · T 1/3 · ε−1

(Agarwal et al., 2023)

√
T

ε ∈ [
√
dT−1/6, d2/3T−1/6] √

d · T 3/8 · ε−3/4

ε ∈ [T−1/6,
√
dT−1/6] d · T 1/3 · ε−1

(Asi et al., 2023)ε ∈ [d3/2T−1/3, T−1/6] √
d · T 1/3 · ε−1

ε ∈ [dT−1/3, d3/2T−1/3] d1/4 · T 1/2 · ε−1/2 (Kairouz et al., 2021)

ε ≤ dT−1/3 d1/4 · T 1/2 · ε−1/2 (Kairouz et al., 2021)
(Current Best)

√
d · T 1/3 · ε−1

Table 1. Landscape of the best known results for DP-OCO across different regimes of the privacy parameter. In red, we highlight our
results where they are strictly better than the known best result for both smooth and non-smooth losses, and in blue are highlighted
improved results for non-smooth losses alone. Notice that our algorithm strictly improves the best known results without assuming
smoothness for all ε ≥ dT−1/3. While we focus on factors of d, for the asymptotics we assume T ≫ d.

Number of Switches S
Previous Best Theorem 4.5

With Smoothness No Smoothness (No Smoothness)

d
√
T ≤ S ≪ T

√
T (Agarwal et al., 2023)

(Sherman & Koren, 2023)
√
dT

(Anava et al., 2015)

√
T

√
dT ≤ S ≤ d

√
T

d · T/S (Agarwal et al., 2023)
(Sherman & Koren, 2023)

√
T

d2 ≤ S ≤
√
d · T d · T/S (Anava et al., 2015) √

d · T/S
d ≤ S ≤ d2 T/

√
S (Chen et al., 2020)

S ≤ d T/
√
S (Chen et al., 2020) (Current Best)

√
d · T/S

Table 2. Comparison between our results and the known best results for Lazy OCO in different regimes for the switching budget S. In red,
we highlight our results where they are strictly better than the known best result for both smooth and non-smooth losses, and in blue are
highlighted improved results for non-smooth losses alone. While we focus on factors of d, for asymptotics we assume T ≫ d.

Without making any distributional assumptions,
we will bound the worst-case regret, RT (A) ≜
maxl1:T∈LT RT (A, l1:T ), taken over all loss sequences.

The expected number of discrete switches for a given learner
can be calculated as

ST (A, l1:T ) ≜ EA

[
T∑

t=2

Ixt ̸=xt−1

]
.

For brevity, henceforth we will simply use RT and ST to
refer to RT (A, l1:T ) and ST (A, l1:T ) respectively.

Finally, an online learning algorithm A is said to (ε, δ)-
differentially private if for any loss function sequence pair
l1:T , l

′
1:T ∈ LT such that lt = l′t for all but possibly one

t ∈ [T ], we have for any Lebesgue measurable O ⊂ KT :

Pr
A
(x1:T ∈ O|l1:T ) ≤ eε Pr

A
(x1:T ∈ O|l′1:T ) + δ.

To finish up, we recall the adaptive strong composition
lemma for differentially-private mechanisms.
Lemma 2.2 (Whitehouse et al. (2022)). Let At : Lt−1 ×
Kt−1 → K be a t-indexed family of (εt, δt)-differentially
private algorithms, i.e. for every t, for any pair of sequences
of loss functions l1:t−1, l

′
1:t−1 ∈ Lt−1 differing in at most

one index in [t− 1], and any x1:t−1 ∈ Kt−1:

PAt
(xt|l1:t−1, x1:t−1) ≤ eεPAt

(xt|l′1:t−1, x1:t−1) + δ.

Define a new t-indexed family Bt : Lt−1 → Kt recursively
starting with B1 = A1 as

Bt(l1:t−1) = Bt−1(l1:t−2) ◦ At(l1:t−1,Bt−1(l1:t−2)).

Then for any δ′′ > 0, BT is (ε′, δ′)-differentially private,
where

ε′ =
3

2

T∑
t=1

ε2t +

√√√√6

T∑
t=1

ε2t log
1

δ′′
, δ′ = δ′′ +

T∑
t=1

δt.
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Lastly, we state a lemma routinely used in online learning
to decompose regret into incremental stability terms.

Lemma 2.3 (FTL-BTL (Hazan, 2016)). For any loss func-
tion sequence l0:T over any set B, define

yt = argmin
x∈B

{
t−1∑
i=0

li(x)

}
.

Then, for any x ∈ B, we have

T∑
t=0

lt(yt+1) ≤
T∑

t=0

lt(x).

3. Preliminary results for Gibbs measures
In this paper we consider a class of Gibbs distributions over
the set K. Given any function f : K ∈ R, a temperature
constant β ≥ 0 and a regularization parameter λ ≥ 0 we
define µ(f, β, λ) : K → R+ to be a measure function
defined as

µ(f, β, λ)(x) = exp

(
−β ·

(
f(x) +

λ

2
∥x∥2

))
. (3.1)

We further define Z(f, β, λ) to be normalization constant
of the above function defined as

Z(f, β, λ) =

∫
x∈K

exp

(
−β ·

(
f(x) +

λ

2
∥x∥2

))
dx.

(3.2)
Using the above we can define a probability density
µ̄(f, β, λ)(x) over K as follows

µ̄(f, β, λ)(x) ≜
µ(f, β, λ)(x)

Z(f, β, λ)
. (3.3)

We will interchangeably use the notation µ̄ for the proba-
bility density function as well as the distribution itself. We
will suppress β, λ from the above definitions when they will
be clear from the context. In the following we collect some
useful definitions and results pertaining to concentration of
measure resulting from the Log-Sobolev Inequality.

Definition 3.1. A distribution P satisfies the Log-Sobolev
Inequality (LSI) with constant c if for all smooth functions
g : Rd → R with Ex∼P [g(x)

2] < ∞:

Ex∼P [g(x)
2 log(g(x)2)]−Ex∼P [g(x)

2]Ex∼P [log(g(x)
2)]

≤ 2

c
Ex∼P [∥∇g(x)∥2]

Lemma 3.2 (Proposition 3 and Corollaire 2 in Bakry &
Émery (2006)). Given a Λ-strongly convex function l, let
Q be the distribution supported over K with density µ(x)
proportional to exp (−β · l(x)). Then Q satisfies LSI (Defi-
nition 3.1) with constant c = βΛ.

Lemma 3.3 (Concentration of Measure; follows from
Herbst’s argument presented in Section 2.3 of Ledoux
(1999)). Let F be a L-Lipschitz function and let Q be a
distribution satisfying LSI with a constant c then

Pr
X∼Q

(|F (X)− E[F (X)]| ≥ r) ≤ 2 exp

(
−c · r2

2L2

)

The following definition defines a notion of closeness for
two Gibbs-measures:

Definition 3.4. Two Gibbs distributions µ̄, µ̄′ on K are said
to be (Φ, δ)-close if the following inequalities hold:

Pr
X∼µ̄

[
1

Φ
≤ µ̄(X)

µ̄′(X)
≤ Φ

]
≥ 1− δ

Pr
X∼µ̄′

[
1

Φ
≤ µ̄(X)

µ̄′(X)
≤ Φ

]
≥ 1− δ

One of the core components of our analysis is to show
that the Gibbs-measures are smooth under changes of the
underlying functions. A similar result was also proved by
Gopi et al. (2022, Theorem 4) and a slightly looser bound
by Ganesh et al. (2023). Missing proofs in this section can
be found in Appendix A.

Lemma 3.5 (Density ratio). Let l, l′ : K → R be convex
functions such that l − l′ is G-Lipschitz. Further let β, λ ≥
0 be parameters and define the Gibbs-distributions µ̄ =
µ̄(l, β, λ) and µ̄′ = µ̄(l′, β, λ) (as defined in (3.1)). Then
for any δ ∈ (0, 1], we have that µ̄ and µ̄′ are (Φ, δ) close
where

Φ = exp

(
2βG2

λ
+

√
8βG2 log(2/δ)

λ

)

The proof of the lemma crucially uses the following bound
on the Wasserstein-distance of the Gibbs-distributions and
other machinery developed by Ganesh et al. (2023).

Lemma 3.6 (Wasserstein Distance). Let l, l′ : K → R be
convex functions such that l − l′ is G-Lipschitz. Further let
β, λ ≥ 0 be parameters and define the Gibbs-distributions
µ̄ = µ̄(l, β, λ) and µ̄′ = µ(l′, β, λ) (as defined in (3.3)).
Then we have that ∞-Wasserstein distance between µ̄ and
µ̄′ over the ℓ2 metric is bounded as

W∞(µ̄, µ̄′) ≤ G

λ
.

4. Algorithm and main result
Our proposed algorithm Private Continuous Online Multi-
plicative Weights with Euclidean Regularization (POMER)
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Algorithm 1: Private Online Continuous Multiplicative
Weights with Euclidean Regularization (POMER)
Inputs: A temperature parameter β, a regularization

parameter λ > 0, switching rate parameter p ∈ [0, 1],
switching budget B ≥ 0, a scale parameter Φ > 0.

Let x1 be a random variable sampled uniformly from K.
for t = 1 to T do

Play xt ∈ K.
Observe lt : K → R and suffer a loss of lt(xt).
Define the measure function
µt+1(x) ≜ µ(f, β, λ)(x) ≜

exp
(
−β
(∑t

τ=1 lτ (x) + λ∥x∥2

2

))
Accordingly denote µ̄t+1(x) the probability density

resulting from the measure µt+1. (cf. (3.3))
Sample
St ∼ Ber

(
min

{
1,max

{
1
Φ2 ,

µ̄t+1(xt)
Φ·µ̄t(xt)

}})
and

S′
t ∼ Ber(1− p).

if bt < B and (S′
t = 0 or St = 0) then

Update bt+1 = bt + 1 and draw an independent
sample xt+1 ∼ µ̄t+1.

end
else

Set bt+1 = bt and xt+1 = xt.
end

end

(Algorithm 1) builds upon the Private Shrinking Dartboard
algorithm proposed by Asi et al. (2023) (also see Agarwal
et al. (2023)). At a high level at every step the algorithm
ensures that at every iteration it samples xt from the dis-
tribution µ̄t over K corresponding to the measure function
µt(x) defined as

µt(x) = µ

(
t∑

τ=1

lτ , β, λ

)

= exp

(
−β

(
t−1∑
τ=1

lτ (x) + λ
∥x∥2

2

))
.

The distribution µ̄t is the same distribution as Online Con-
tinuous Multiplicative Weights (as used in Asi et al. (2023))
with an added strong-convexity term governed by λ. This
additional strong-convexity term is key to the improvements
provided in this paper as it provides a better trade-off be-
tween switching and regret.

The above scheme was first analyzed by Gopi et al. (2022)
and was recently shown to be able to obtain optimal results
in the case of stochastic convex optimization (Ganesh et al.,
2023). In the online case however a direct application of the
above scheme can leak a lot of private information since the
algorithm can potentially alter its decisions in each round.
To guard against this, as in the work of Asi et al. (2023);

Agarwal et al. (2023), we use a rejection sampling proce-
dure which draws inspiration from Geulen et al. (2010).
Specifically, for any t, the point xt+1 is chosen to be equal
to xt with probability µ̄t+1(xt)

Φµ̄t(xt)
, where Φ is a scaling factor.4

With the remaining probability, we sample xt+1 indepen-
dently from µ̄t+1 (we call this a “switch”). This rejection
sampling technique ensures that the distribution of xt+1

remains very close to µ̄t+1. We rescale the density ratio
µ̄t+1(xt)
Φµ̄t(xt)

appropriately to make sure it is at most unit sized
with high probability.

We now turn to the regret analysis for Algorithm 1. The
following theorem is proved in Section 4.2:

Theorem 4.1 (Regret bound for POMER). In Algorithm 1,
fix any β, λ > 0, any δ ∈ [0, 1/2], any p ∈ [0, 1], and
choose Φ such that for all t the distributions µ̄t, µ̄t+1 are
(Φ, δ)-close. For any sequence of obliviously chosen G-
Lipschitz, convex loss functions l1:T , the following hold:

• If B = ∞,

RT ≤ λD2

2
+

G2T

λ
+

d log(T )

β
+GD + 6GDδT 2.

• Let p̃ = p+ 1− Φ−2. If B = 3p̃T ,

RT ≤ λD2

2
+

G2T

λ
+

d log(T )

β

+ 2GDT (e−p̃T + 3δT ) +GD.

The following lemma (originally proved in (Agarwal et al.,
2023)), gives a bound on the number of switches made by
the Algorithm 1 and immediately follows by observing that
the probability of switching in any round is at most p̃ via
a simple Chernoff bound. For completeness we provide a
proof in Appendix B.

Lemma 4.2 (Switching bound). For any p ∈ [0, 1] and any
Φ ≥ 0, setting p̃ = p+ 1− Φ−2, we have that the number
of switches is bounded in the following manner,

E [ST ] ≤ p̃T, Pr [ST ≥ 3p̃T ] ≤ e−p̃T .

Finally, we turn to the privacy guarantee for Algorithm 1,
proved in Appendix C, with a sketch in Section 4.3:

4Note one key difference in the definition of the acceptance
probability from Asi et al. (2023): we use the ratio of normalized
instead of unnormalized densities. This is crucial since the ratio of
unnormalized densities may introduce unnecessarily high switch-
ing probability: consider the case where the two loss sequences
which differ only at one time step t0, with the constant 0 loss
function in one sequence, and the constant 1 loss function in the
other.
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Theorem 4.3 (Privacy). Given β, λ > 0 and δ ∈ (0, 1/2],
for any T ≥ 12 log(1/δ), let δ′ = δT−2

60 , G′ = 3G.
Suppose there exists Φ′ > 0 such that for all convex
functions l, l′ where l − l′ is G′-Lipschitz, we have that,
the distributions µ̄(l, β, λ) and µ̄(l′, β, λ) respectively are
(Φ′, δ′)-close. Then for any sequence of G-Lipschitz con-
vex functions, Algorithm 1 when run with Φ = Φ′2, p =

max

(
T−1/3,

(
G4β2

λ2·log2(Φ)

)1/3)
, p̃ = p + 1 − Φ−2 and

B = 3p̃T is (ε, δ + 3Te−(1−Φ−2)T )-differentially private
where

ε = 3ε′/2 +
√
6ε′
√

log(2/δ),

with

ε′ = 7T 2/3 log2(Φ) + 12 log3(Φ)T

+ 11

(
G4β2

λ2

)1/3

log4/3(Φ)T.

4.1. Bounds for Lipschitz loss functions

In order to apply the above results for OCO with convex
G-Lipschitz loss functions, all we need to do is compute
Φ. This bound was established by Lemma 3.5. Using
Lemma 3.5 and combining Theorem 4.3 and Theorem 4.1,
we get the following result via straightforward calculations:

Theorem 4.4 (DP OCO). For any given ε ≤ 1, δ ∈ (0, 1/2]
and any T ≥ 12 log(1/δ), set

λ =
G

D
max

{
2
√
T ,

103T 1/3
√
d log(T/δ)

ε
,

103T 3/8
√
d log(T/δ)

ε3/4

}
,

β =
λ

105 ·G2 log2(T/δ)
min

{
ε2

T 2/3
,
ε3/2

T 3/4

}
and other parameters as in Theorem 4.3. Then we get that
Algorithm 1 is (ε, δ) differentially private and additionally
satisfies

RT ≤ Õ
(
GD

√
T +GD ·

√
d

(
T 1/3

ε
+

T 3/8

ε3/4

))
.

Similarly, for Lazy OCO, using Theorem 4.1, Lemma 4.2
and Lemma 3.5, we get the following result:

Theorem 4.5 (Lazy OCO). For any T ≥ 3 and any given
bound S ≤ T on the number of switches, set δ = 2/T 2, λ =

max
{

G
√
2T

D ,
√
512dG log(T )

D · T
S

}
, β = λ

256G2 log(T ) · S2

T 2 ,

Φ = exp

(
2βG2

λ +
√

8βG2 log(2/δ)
λ

)
, p = 0 and B = ∞

in Algorithm 1. Then for any sequence of obliviously chosen
G-Lipschitz convex loss functions l1:T , where E[ST ] ≤ S,
Algorithm 1 satisfies the following:

RT ≤ GD
√
2T + 16GD log(T ) ·

√
d · T
S

+ 13GD.

Proof. We begin by first bounding the number of switches
using Lemma 4.2. We get that

E[ST ] ≤ p̃T ≤ (1− Φ−2)T ≤ 2 log(Φ)T

≤ 2T

 2βG2

λ︸ ︷︷ ︸
= S2

128T2 log(T )
≤ S

128T

+

√
8βG2 log(2/δ)

λ︸ ︷︷ ︸
≤ S

4T

 ≤ S

To bound the regret note that Lemma 3.5 implies that the
distributions µt, µt+1 are (Φ, δ)-close and therefore Theo-
rem 4.1 implies

RT ≤ λD2

2
+

G2T

λ
+

d log(T )

β
+GD + 6GDδT 2

=
λD2

2
+

G2T

λ
+

256 · d ·G2 log2(T )

λ
· T

2

S2
+ 13GD

≤ GD
√
2T + 16GD log(T ) ·

√
d · T
S

+ 13GD.

4.2. Regret analysis of Algorithm 1

Here we provide our analysis for the regret of Algorithm 1
given by Theorem 4.1. For notational convenience, define
Π : R → [ 1

Φ2 , 1] as Π(x) = min{1,max{ 1
Φ2 , x)}}. Also

define ζt ≜ I(St = 0 or S′
t = 0). The following lemma

adapted from Agarwal et al. (2023) obtains bounds on the
actual distribution that xt is sampled from in terms of µ̄t:
Lemma 4.6 (Distribution drift). Given δ ∈ [0, 1

2 ] and Φ ≥
1, suppose that for all t ∈ [T ], the Gibbs-measures µt, µt+1

are (Φ, δ)-close. If qt is the marginal distribution induced
by Algorithm 1 on its iterates xt, then we have that

• If B = ∞, then for all t, ∥qt − µ̄t∥TV ≤ 3δ(t− 1).

• If B = 3p̃T , then we have

∥qt − µ̄t∥TV ≤ e−p̃T + 3δ(t− 1).

We prove this lemma in the Appendix B. Next we prove
the main theorem bounding the regret of Algorithm 1, i.e.
Theorem 4.1 here:

Proof of Theorem 4.1. Recall that we defined µt to be the
distribution with density proportional as

µt(x) ∝ exp

(
−β

(
t−1∑
τ=1

lτ (x) + λ · ∥x∥
2

2

))
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Let qt be the distribution induced by Algorithm 1 on its
iterates xt. Lemma 4.6 establishes that the sequence of
iterates xt played by Algorithm 1 follows µt approximately.
We define a sequence of random variables {yt} wherein
each yt is sampled from µt independently. In the following
we only prove the case when B = 3p̃T , the B = ∞ can
easily be derived by using the bounds from Lemma 4.6
appropriately. We leverage the following lemma,

Lemma 4.7. (Levin & Peres, 2017) For a pair of probabil-
ity distributions µ, ν, each supported on K, we have for any
function f : K → R that

|Ex∼µf(x)− Ex∼νf(x)| ≤ 2∥µ− ν∥TV max
x∈K

|f(x)|.

We can now apply Lemma 4.7 to pair xt ∼ qt and yt ∼ µt,
using Lemma 4.6, and functions l̄t(x) = lt(x) − lt(x̄),
where x̄ ∈ K is chosen arbitrarily, to arrive at∣∣∣∣∣E

[
T∑

t=1

(lt(xt)− lt(yt))

]∣∣∣∣∣ ≤
T∑

t=1

|E [lt(xt)− lt(yt)]|

≤
T∑

t=1

∣∣E [l̄t(xt)− l̄t(yt)
]∣∣

≤ 2GDT
(
e−p̃T + 3δT

)
,

(4.1)

where we use that maxt maxx∈K |lt(x) − lt(x̄)| ≤
Gmaxx∈K ∥x− x̄∥ ≤ GD. Therefore hereafter we only fo-
cus on showing the expected regret bound for the sequence
yt.

We take a distributional approach to the regret bound by
defining the function l∆t : ∆(K) → R as l∆t (µ) ≜
Ex∼µlt(x). We can now redefine the regret in terms of
the distributions as follows

Regret(µ) =

T∑
t=1

l∆t (µt)−
T∑

t=1

l∆t (µ).

Let x∗ ≜ argminx∈K
∑T

t=1 lt(x). Note that
argminµ∈∆(K)

∑T
t=1 l

∆
t (µ) is the Dirac-delta distribution

at x∗, and that minµ∈∆(K)

∑T
t=1 l

∆
t (µ) =

∑T
t=1 lt(x

∗).
For a given value ε ∈ [0, 1] define the set Kε : {εx +
(1 − ε)x∗|x ∈ K}. Let µ∗

ε to be uniform distribution over
the set Kε. It is now easy to see using the Lipschitzness of
lt,

T∑
t=1

l∆t (µ∗
ε)− min

µ∈∆(K)

T∑
t=1

l∆t (µ) ≤ GDTε. (4.2)

Further we define a proxy loss function l0(x) = λ
2 ∥x∥

2

and correspondingly, l∆0 . Finally define µ0 as the uniform

distribution over the set K. The following lemma establishes
an equivalence between sampling from µt and a Follow-the-
regularized-leader strategy in the space of distributions.

Lemma 4.8. Consider an arbitrary distribution µ0 on K
(referred to as the prior) and f be an arbitrary bounded
function on K. Define the distribution µ over K with density
µ(x) ∝ µ0(x)e

−(x). Then we have that

µ = arg min
µ′∈∆(K)

(Ex∼µ′ [f(x)] + KL(µ′∥µ0)) .

The lemma follows from the Gibbs variational principle and
a proof is included in Appendix B. Using the above lemma,
we have that at every step t ≥ 1,

µt = arg min
µ∈∆(K)

(
t−1∑
τ=0

β · l∆τ (µ) + KL(µ∥µ0)

)
.

Using the above and the FTL-BTL Lemma (Lemma 2.3) we
get the following

β ·

(
T∑

t=1

(
l∆t (µt)− l∆t (µ∗

ε)
))

≤ β ·

(
T∑

t=1

(
l∆t (µt)− l∆t (µt+1)

))
+ β · (l∆0 (µ∗

ε)− l∆0 (µ1)) + KL(µ∗
ε∥µ0)−KL(µ0∥µ0)

≤ β ·

(
T∑

t=1

(
Ex∼µt

[β · lt(x)]− Ex∼µt+1
[β · lt(x)]

))
+ β · l∆0 (µ∗

ε) + KL(µ∗
ε∥µ0)

Now using Lemma 3.6, there is a coupling γ between µt

and µt+1 such that sup(x,x′)∼γ ∥x − x′∥ ≤ G
λ . Using this

coupling we get that,

T∑
t=1

(
Ex∼µt [lt(x)]− Ex∼µt+1 [lt(x)]

)
=

T∑
t=1

E(x,x′)∼γ [lt(x)− lt(x
′)]

≤
T∑

t=1

E(x,x′)∼γG∥x− x′∥ ≤
T∑

t=1

G2/λ ≤ G2T

λ

Combining the above two displays one gets the following

Regret(µ∗
ε) =

T∑
t=1

l∆t (µt)−
T∑

t=1

l∆t (µ∗
ε)

≤ l∆0 (µ∗
ε) +

G2T

λ
+

KL(µ∗
ε∥µ0)

β

≤ λD2

2
+

G2T

λ
+

d

β
log(1/ε)
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where we use that KL(µ∗
ε∥µ0) = d log(1/ε), since µ∗

ε is
the uniform distribution over Kε ⊆ K and Vol(Kε)

Vol(K) = εd.
Setting ε = 1/T and using (4.2) we get that for any µ,

Regret(µ) ≤ λD2

2
+

G2T

λ
+

d log(T )

β
+GD.

Combining the above with (4.1) finishes the proof.

4.3. Sketch of the privacy analysis of Algorithm 1

In this section we provide a sketch of the proof of privacy for
Algorithm 1, i.e. Theorem 4.3. The full proof is provided in
the appendix. Note that while our algorithm is quite similar
to the one proposed by Asi et al. (2023), the privacy analysis
is complicated by the fact that the switching probabilities
depend on the entire sequence of loss functions and not
just the latest one due to our use of the ratio of normalized
densities to define the switching probabilities, unlike Asi
et al. (2023). The analysis sketch presented below leverages
techniques from Agarwal et al. (2023), to together with new
ideas, to match this challenge.

For brevity of notation, we say two random variables X,Y
supported on some set Ω are (ε, δ)-indistinguishable if for
any outcome set O ⊆ Ω, we have that

Pr(X ∈ O) ≤ eε Pr(Y ∈ O) + δ.

Consider any two t-indexed loss sequences l1:T , l′1:T ∈ LT

that differ at not more than one index t0 ∈ [T ], i.e. it is the
case that lt(x) = l′t(x) holds for all x ∈ K and t ∈ T−{t0}.
For ease of argumentation we will show differential privacy
for the outputs xt of the algorithm along with the internal
variables ζt which constitutes the decision to switch, defined
for any t in the algorithm as

ζt ≜ I{S′
t = 0 or St = 0}.

We now provide the claim that is the core of the privacy
proof. The claim analyses the privacy loss at three types
of timesteps, viz. before the switch of the loss function
happened, at the switch and after the switch. To estab-
lish definitions, let {(xt, ζt)}Tt=1 and {(x′

t, ζ
′
t)}Tt=1 be the

instantiations of the random variables determined by Algo-
rithm 1 upon execution on l1:T and l′1:T , respectively. For
brevity of notation, we will denote by Σt the random vari-
able {xτ , ζτ}tτ=1. We denote by Σt all possible values Σt

can take. We make the following claim,

Claim 4.9. Let δ′ ≥ 0 and Φ be as defined in Theorem 4.3.
Then for any t ∈ [T ] the random variable pairs (xt, ζt) and
(x′

t, ζ
′
t) are (εt, δt)-indistinguishable when conditioned on

Σt−1, i.e. when conditioned on identical values of random
choices made by the algorithm before (but not including)

round t, where δt = 4δ′ + 9δ′T + 3e−p̃T and

εt =


0, t < t0

I∑t−1
s=1 ζs<B · 2 log(Φ)/p, t = t0

I∑t−1
s=1 ζs<B

(
ζt−1 log(Φ) +

2G2β/λ
p

)
t > t0

(4.3)

Next, we sketch the proof of the claim and Theorem 4.3
follows from applying the strong composition Lemma 2.2
to the above claim. In particular note that the privacy loss
for all time steps t > t0 depends on whether the switch
was made at the step or not via the ζt−1. Therefore the
total privacy loss depends on the number of overall switches
which is why the algorithm needs a bounded switching
mechanism. The above claim divides the privacy loss into
three cases depending upon the time step t.

Case 1: t < t0 At any such time the privacy loss is naturally
0 as the algorithm has seen the same sequence thus far.

Case 2: t = t0 Since xt0 depends only on the past there is
no privacy loss for xt0 . Now consider the random variable
ζt0 which depends on the random variables St0 , S

′
t0 . If we

use only St to decide on switching it can be seen that the
privacy loss at this step can be infinite (essentially a single
loss function change can cause a determinisitic non-switch
decision to a deterministic switch). As a result following
the idea introduced in Asi et al. (2023) we add a small
probability p of forced switching at every step. Via a sim-
ple calculation it can be seen that the privacy loss is now
bounded by the density ratio between two consecutive time
steps is bounded by log(Φ)/p.

Case 3: t > t0: As remarked before at any such step we see
that conditioned on the history thus far being equal privacy
loss occurs only if a switch is performed, i.e. ζt−1 = 0. If
a switch is indeed performed the privacy loss through xt is
bounded by the ratio of the densities which is at most log(Φ).
We now consider the privacy loss through the variables ζt
which depends on the log ratio of consecutive probabili-
ties of success in the Bernoulli trials. Via an argument
that utilizes convexity of a certain log-partition function,
and the Wasserstein distance bound for Gibbs measures
(Lemma 3.6), we can show that the log ratio of probabilities
scales like O( β

λp ) (see Appendix C for details). Accounting
for these two privacy losses if a switch happens gives the
overall privacy loss in this case.

Overall putting these arguments together finishes the proof
of the claim and an application of strong composition
(Lemma 2.2) implies Theorem 4.3.

5. Comparisons to Agarwal et al. (2023)
Algorithm. The algorithm in this paper differs signifi-
cantly from Agarwal et al. (2023) in our use of correlated
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sampling on top of continuous multiplicative weights, in-
stead of Follow the Perturbed Leader (FTPL). The FTPL
approach crucially uses smoothness in bounding the number
of switches and it is unclear how this might extend to non-
smooth settings. In this regard, our algorithm is similar to
Asi et al. (2023) with the vital difference being the addition
of a ℓ2 regularization term in the sampling log-density.

Regret analysis. While prima facie adding a regulariza-
tion term to the sampling density might appear to be a minor
change it is a vital idea towards obtaining our results. A key
observation is that upon adding the regularization term the
stability term in the regret analysis becomes independent
of the temperature β in exponential density. To gain intu-
ition, consider the two extremes: if β = 0 we sample from
uniform distribution and are stable by definition; if β → ∞
our algorithm algorithm essentially reduces to Follow The
Regularized Leader for which the stability comes from the
regularization term.

Note that without the regularization term in the log-density,
β cannot be very large without degrading stability, and over-
all that leads to a bias which adds a square root of dimension
factor to regret. To the best of our knowledge even in the
non-private case this simple modification to the sampling
density leading to optimal regret is not known in the litera-
ture. The main lemma that proves the stability is Lemma 3.6
which is a Wasserstein bound on the successive densities.
We believe this observation is useful more broadly.

Privacy analysis. The significant deviation in the privacy
analysis from the one in Agarwal et al. (2023) is in the case
t > t0; t0 is the point of change in the loss function se-
quence. Herein we need to explicitly account for the privacy
loss incurred due to the switching decisions St which de-
pends on the logarithm of the ratio of consecutive probabili-
ties of success in the Bernoulli trials. Since the distribution
used by us is entirely different from the FTPL-based one in
Agarwal et al. (2023), we develop a new, substantially dif-
ferent, argument which applies to our case. This argument
that utilizes the convexity of a certain log-partition function
and the Wasserstein distance bound for Gibbs measures. In
particular, we develop and prove Lemma C.4 and the anal-
ysis following this lemma in the appendix, which marks a
complete departure from the analysis presented in Agarwal
et al. (2023).

6. Conclusion
We studied the task of differentially private online convex
optimization, and presented an algorithm Private Continu-
ous Online Multiplicative Weights with Euclidean Regular-
ization (POMER) that is (ε, δ)-differentially private and has
a regret of at most Õ

(√
T +

√
dT 1/3

ε

)
for Lipschitz loss

functions. This improves the known best bound for smooth
loss functions by a factor of

√
d. Furthermore, for non-

smooth loss functions, it gives the first regret bound with
an optimal leading-order regret term. While the addition of
strongly-convex terms in general does not yield improved re-
gret bounds for the unregularized objective in OCO, our im-
provement leverages LSI properties of log-strongly-convex
measures induced by additional regularization. To the best
of our knowledge this is the best rate known for DP-OCO.

A central open question that remains is whether this rate
can be further improved. In particular for linear functions
a rate of Õ

(√
T +

√
d
ε

)
was shown by Agarwal & Singh

(2017) and it remains an open question to show such a rate
of convex functions. This rate would close the existing gap
between the online and the one-pass stochastic setting. An
intermediate goal would be to show a slightly improved
bound of Õ

(√
T +

√
dT 1/3

ε2/3

)
which has a more appropriate

scaling of T, ε than our result. On the other hand showing
any separation between the online and the stochastic setting
in terms of regret is also open.

A second open question concerns lazy OCO in the strongly-
convex setting. A straightforward application of the tech-
niques in this paper unfortunately do not seem to yield
improvements in this setting, and new ideas may be needed.

Impact statement
This paper presents work that advances the state of the art
for differentially private learning in the OCO framework.
By lowering the cost of privacy to data-efficient learning,
we hope such a foundational advances leads to greater adop-
tion of privacy preserving measures in digital interactions
by platforms, and greater willingness for data sharing by
participants to enable social goods.
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A. Proofs of smoothness of Gibbs measures
In this section we prove the Lemmas concerning the smoothness of Gibbs measures, i.e. Lemmas 3.6 and 3.5. We begin by
restating and proving Lemma 3.6.

Lemma A.1 (Wasserstein Distance). Let l, l′ : K → R be convex functions such that l − l′ is G-Lipschitz. Further let
β, λ ≥ 0 be parameters and define the Gibbs-distributions µ̄ = µ̄(l, β, λ) and µ̄′ = µ(l′, β, λ) (as defined in (3.3)). Then
we have that ∞-Wasserstein distance between µ̄ and µ̄′ over the ℓ2 metric is bounded as

W∞(µ̄, µ̄′) ≤ G

λ
.

Proof of Lemma 3.6. By definition W∞(µ̄, µ̄′) = infγ∈Γ(µ̄,µ̄′) sup(X,X′)∼γ ∥X −X ′∥, where the notation sup(X,X′)∼γ is
shorthand for all (X,X ′) in the support of γ. To bound W∞ we consider the following coupling between µ̄, µ̄′. Define the
functions L(x) = l(x) + λ

2 ∥x∥
2, L′(x) = l′(x) + λ

2 ∥x∥
2 and consider the following ”Projected” Langevin diffusions given

by the following SDEs (see (Ganesh et al., 2023) for details):

dXt+1 = −β∇L(Xt) +
√
2dWt − νtζ(dt)

dX ′
t+1 = −β∇L′(Xt) +

√
2dWt − ν′tζ

′(dt)

where ζ and ζ ′ are measures supported on {t : Xt ∈ ∂K} and {t : X ′
t ∈ ∂K} respectively, and νt and ν′t are outer

unit normal vectors at Xt and X ′
t respectively. It is known that limt→∞ Xt converges in distribution to µ̄ and similarly

limt→∞ X ′
t converges in distribution to µ̄′. Our desired coupling γ is defined by sampling a Brownian motion sequence

{Wt}∞t=1 and the output sample is set to limt→∞ Xt and limt→∞ X ′
t with the same {Wt}∞t=1 sequence. For a fixed

Brownian motion sequence {Wt}∞t=1, we get the following calculations (by defining ∆t = ∥Xt −X ′
t∥):

1

2

d∆2
t

dt
=

1

2

d∥Xt −X ′
t∥2

dt
=

〈
dXt

dt
− dX ′

t

dt
,Xt −X ′

t

〉
= −β⟨∇l(Xt)−∇l′(X ′

t), Xt −X ′
t⟩ − ⟨νt, Xt −X ′

t⟩
ζ(dt)

dt
+ ⟨ν′t, Xt −X ′

t⟩
ζ ′(dt)

dt
≤ −β⟨∇l(Xt)−∇l′(X ′

t), Xt −X ′
t⟩

(∵ ⟨νt, X ′
t −Xt⟩ ≤ 0 and ⟨ν′t, Xt −X ′

t⟩ ≤ 0 since K is convex)
= −β⟨∇l(Xt)−∇l(X ′

t), Xt −X ′
t⟩+ β⟨∇l′(X ′

t)−∇l(X ′
t), Xt −X ′

t⟩
≤ β

(
−λ∥Xt −X ′

t∥2 +G∥Xt −X ′
t∥
)
= β

(
−λ∆2

t +G∆t

)
≤ β

(
−λ∆2

t +
λ

2
∆2

t +
G2

2λ

)
≤ β

(
−λ

2
∆2

t +
G2

2λ

)

Defining Ft = ∆2
t − G2

λ2 , the above implies that dFt

dt ≤ −βλFt which implies, via Grönwall’s inequality, that Ft ≤
F0 exp(−βλt). Therefore we have that limt→∞ Ft → 0 which implies that limt→∞ ∆t → G

λ .

Therefore we get that under the above coupling γ we have that sup(x,y)∼γ ∥x− y∥ ≤ G
λ which finishes the proof.

Using the above we restate and prove Lemma 3.5 below.

Lemma A.2 (Density ratio). Let l, l′ : K → R be convex functions such that l − l′ is G-Lipschitz. Further let β, λ ≥ 0
be parameters and define the Gibbs-distributions µ̄ = µ̄(l, β, λ) and µ̄′ = µ̄(l′, β, λ) (as defined in (3.1)). Then for any
δ ∈ (0, 1], we have that µ̄ and µ̄′ are (Φ, δ) close where

Φ = exp

(
2βG2

λ
+

√
8βG2 log(2/δ)

λ

)

11
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Proof of Lemma 3.5. We begin first by proving the direction

Pr
X∼µ̄

[
1

Φ
≤ µ̄(X)

µ̄′(X)
≤ Φ

]
≥ 1− δ

and reverse direction follows easily by switching the roles of µ̄, µ̄′ through the analysis. To this end define the function
g(X) = log

(
µ̄(X)
µ̄′(X)

)
. Therefore we are required to show that

Pr
X∼µ̄

(|g(X)| > log(Φ)) ≤ δ.

We will show this by first bounding EX∼µ̄[g(X)] and then showing that it concentrates around its expectation. We first
show that g is a 2βG-Lipschitz function. To see this consider the following

|g(X)− g(X ′)| =
∣∣ log( µ̄(X)

µ̄(X ′)

)
+ log

(
µ̄′(X ′)

µ̄′(X)

) ∣∣ = | − β (l(X)− l(X ′) + l′(X ′)− l′(X)) | ≤ 2βG∥X −X ′∥.

Using the proof of Lemma 3.6 we get that there is a coupling γ between µ̄, µ̄′ such that sup(X,X′)∼γ ∥X − X ′∥ ≤ G
Λ ,

therefore sampling from the coupling and using the Lipschitzness of g, we get that

E(X,X′)∼µ̄[|g(X)− g(X ′)|] ≤ 2βG · E(X,X′)∼µ̄[∥X −X ′∥] ≤ 2βG · G
Λ
,

which implies that

EX∼µ̄[g(X)] ≤ EX′∼µ̄′ [g(X ′)] + 2βG · G
Λ

Now noticing that EX∼µ̄′ [g(X)] = −KL(µ̄′∥µ̄) ≤ 0, we get that

EX∼µ̄[g(X)] ≤ 2βG2

Λ
.

Furthermore, note that EX∼µ̄[g(X)] = KL(µ̄∥µ̄′) ≥ 0. Thus, we have

0 ≤ EX∼µ̄[g(X)] ≤ 2βG2

Λ
.

Next we give a high probability bound on g. Lemma 3.2 implies that the distribution corresponding to µ̄ satisfies LSI
(Definition 3.1) with constant βΛ. Now by Lemma 3.3, plugging in the LSI constant and Lipschitzness bound for g, we
have that

Pr
X∼µ̄

[|g(X)− E[g(X)]| ≥ r] ≤ 2 exp

(
− Λr2

8βG2

)
Thereby setting r =

√
8βG2 log(2/δ)

Λ we have that

Pr
X∼µ̄

(
|g(X)| > 2βG2

Λ
+

√
8βG2 log(2/δ)

Λ

)
≤ δ.

B. Analysis of Algorithm 1
As a reminder for the notation, Π : R → [ 1

Φ2 , 1] as Π(x) = min{1,max{ 1
Φ2 , x)}}. Also, ζt ≜ I(St = 0 or S′

t = 0). We
restate and prove Lemma 4.2 first:

Lemma B.1 (Switching bound). For any p ∈ [0, 1] and any Φ ≥ 0, setting p̃ = p+ 1− Φ−2, we have that the number of
switches is bounded in the following manner,

E [ST ] ≤ p̃T, Pr [ST ≥ 3p̃T ] ≤ e−p̃T .

12
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Proof of Lemma 4.2. Since St ∼ Ber
(
Π
(

µt+1(xt)
Φµt(xt)

))
, we have Pr[St = 0] ≤ 1−Φ−2. From the definition of ζt, we have

E[ζt] = Pr(S′
t = 0) + (1− Pr(S′

t = 0)) · Pr(St = 0) ≤ p+ (1− p) · (1− Φ−2) ≤ p̃. (B.1)

Thus, the random variable ST =
∑T

t=1 ζt is stochastically dominated by the sum of T Bernoulli random variables with
parameter p̃. Hence, E[ST ] ≤ p̃T and the Chernoff bound5 implies

Pr [ST ≥ 3p̃T ] ≤ e−p̃T .

Next we restate and prove Lemma 4.6.

Lemma B.2 (Distribution drift). Given δ ∈ [0, 1
2 ] and Φ ≥ 1, suppose that for all t ∈ [T ], the Gibbs-measures µt, µt+1 are

(Φ, δ)-close. If qt is the marginal distribution induced by Algorithm 1 on its iterates xt, then we have that

• If B = ∞, then for all t, ∥qt − µ̄t∥TV ≤ 3δ(t− 1).

• If B = 3p̃T , then we have
∥qt − µ̄t∥TV ≤ e−p̃T + 3δ(t− 1).

Proof of Lemma 4.6. We first consider the B = ∞ case. We prove that ∥qt − µ̄t∥TV ≤ 3δ(t− 1) by induction on t. For
t = 1, the claim is trivially true. So assume it is true for some t and now we prove it for t+ 1. Let M = {x ∈ K | Φ−1 ≤
µ̄t+1(x)
µ̄t(x)

≤ Φ}. Then by Definition 3.4, we have µ̄t(M) ≥ 1− δ and µ̄t+1(M) ≥ 1− δ. Next, let µ̃t be the distribution of
X ∼ µ̄t conditioned on the event X ∈ M . Since µ̄t(M) ≥ 1− δ, it is easy to see that ∥µ̄t − µ̃t∥TV ≤ δ. Let q̃t+1 be the
distribution of xt+1 if xt were sampled from µ̃t instead of qt. Let E be any measurable subset of K. Using the facts that for
any x ∈ M , we have Π( µ̄t+1(x)

Φµ̄t(x)
) = µ̄t+1(x)

Φµ̄t(x)
, and that µ̃t(x) =

µ̄t(x)
µ̄t(M) , we have

q̃t+1(E) =

∫
x∈E

(
Pr(S′

t = 0|xt = x) Pr(xt+1 ∈ E|xt = x, S′
t = 0)

+ Pr((S′
t = 1 ∧ St = 0)|xt = x) Pr(xt+1 ∈ E|xt = x, (S′

t = 1 ∧ St = 0))

+ Pr((S′
t = 1 ∧ St = 1)|xt = x) Pr(xt+1 ∈ E|xt = x, (S′

t = 1 ∧ St = 1))

)
µ̃t(x)dx

= pµ̄t+1(E) + (1− p)µ̄t+1(E)

∫
M

(
1− µ̄t+1(x)

Φµ̄t(x)

)(
µ̄t(x)

µ̄t(M)

)
dx

+ (1− p)

∫
E∩M

(
µ̄t+1(x)

Φµ̄t(x)

)(
µ̄t(x)

µ̄t(M)

)
dx

= pµ̄t+1(E) + (1− p)µ̄t+1(E)

(
1− µ̄t+1(M)

Φµ̄t(M)

)
+ (1− p)

µ̄t+1(E ∩M)

Φµ̄t(M)
.

Thus,

|q̃t+1(E)− µ̄t+1(E)| = 1− p

Φµ̄t(M)
|µ̄t+1(E)µ̄t+1(M)− µ̄t+1(E ∩M)|

=
1− p

Φµ̄t(M)
|µ̄t+1(E \M)− µ̄t+1(E ∩M)µ̄t+1(M

c)|

≤ δ

1− δ
,

since µ̄t(M) ≥ 1− δ and µ̄t+1(M) ≥ 1− δ. Since δ ≤ 1
2 , we conclude that

∥q̃t+1 − µ̄t+1∥TV ≤ 2δ.

5The specific bound used is that for independent Bernoulli random variables X1, X2, . . . , XT , if µ = E[
∑T

t=1 Xt], then for any
δ > 0, we have Pr[

∑T
t=1 Xt ≥ (1 + δ)µ] ≤ e−δ2µ/(2+δ).

13
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Furthermore, we have

∥qt+1 − q̃t+1∥TV ≤ ∥qt − µ̃t∥TV ≤ ∥qt − µ̄t∥TV + ∥µ̄t − µ̃t∥TV ≤ 3δ(t− 1) + δ,

where the first inequality follows by the data-processing inequality for f-divergences like TV-distance (note that qt+1 and
q̃t+1 are obtained from qt and µ̃t respectively via the same data-processing channel), and the second inequality is due to the
induction hypothesis. Thus, we conclude that

∥qt+1 − µ̄t+1∥TV ≤ ∥qt+1 − q̃t+1∥TV + ∥q̃t+1 − µ̄t+1∥TV ≤ 3δ(t− 1) + δ + 2δ = 3δt,

completing the induction.

We now turn to the B = 3p̃T case. Let q′t be the distribution of xt if B = ∞. We now relate q′t and qt. We start by defining
qall as the probability distributions over all possible random variables, i.e. S1:T , S

′
1:T , Z1:T , x1:T , sampled by Algorithm 1.

Similarly, let q′all be the analogue for the infinite switching budget variant. Let E be the event that
∑T

t=1 ζt ≥ 3p̃T . Note that
Lemma 4.2 implies that both qall(E), q′all(E) ≤ e−p̃T . Therefore we have that,

∥qall − q′all∥TV = sup
measurable A

(qall(A)− q′all(A))

= sup
measurable A

qall(A ∩ E)− q′all(A ∩ E) + qall(A ∩ ¬E)− q′all(A ∩ ¬E)︸ ︷︷ ︸
=0


= sup

measurable A
(qall(A ∩ E)− q′all(A ∩ E))

≤ e−p̃T

Now, for any t, since qt, q
′
t are marginals of qall, q

′
all respectively, we have

∥qt − q′t∥TV ≤ ∥qall − q′all∥TV ≤ e−p̃T .

Since we have ∥µt − q′t∥TV ≤ 3δ(t− 1) by the B = ∞ analysis, the proof is complete by the triangle inequality.

We finish this section by repeating and proving Lemma 4.8.

Lemma B.3. Consider an arbitrary distribution µ0 on K (referred to as the prior) and f be an arbitrary bounded function
on K. Define the distribution µ over K with density µ(x) ∝ µ0(x)e

−(x). Then we have that

µ = arg min
µ′∈∆(K)

(Ex∼µ′ [f(x)] + KL(µ′∥µ0)) .

Proof of Lemma 4.8. The proof follows from the following lemma appearing as in (Donsker & Varadhan, 1975)

Lemma B.4 (Lemma 2.1 in (Donsker & Varadhan, 1975), rephrased). Let U be the set of continuous functions on K
satisfying u(x) ∈ [c1, c2] for all u ∈ U , x ∈ K, for some constants c1, c2 > 0. Let ν1 and ν2 be any distributions on K, then
we have that

KL(ν1∥ν2) = sup
u∈U

(Ex∼ν1
[log(u(x))]− log(Ex∼ν2

[u(x)]))

Using the above lemma, setting ν1 = µ, ν2 = µ0, u(x) = e−f(x), we get that

− log(Ex∼µ0
[e−f(x)]) ≤ Ex∼µ[f(x)] + KL(µ∥µ0).

Let Z =
∫
K
e−f(x)µ0(x)dx, then we have that

Ex∼µ[f(x)] + KL(µ∥µ0) = Ex∼µ[f(x)] +

∫
K

µ(x) log(e−f(x)/Z)dx = − log(Z) = − log(Ex∼µ0 [e
−f(x)]).

Combining the above two displays finishes the proof.
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C. Privacy Analysis
For brevity of notation, we say two random variables X,Y supported on some set Ω are (ε, δ)-indistinguishable if for any
outcome set O ⊆ Ω, we have that

Pr(X ∈ O) ≤ eε Pr(Y ∈ O) + δ.

We restate and prove Theorem 4.3:

Theorem 4.3 (Privacy). Given β, λ > 0 and δ ∈ (0, 1/2], for any T ≥ 12 log(1/δ), let δ′ = δT−2

60 , G′ = 3G. Suppose there
exists Φ′ > 0 such that for all convex functions l, l′ where l− l′ is G′-Lipschitz, we have that, the distributions µ̄(l, β, λ) and
µ̄(l′, β, λ) respectively are (Φ′, δ′)-close. Then for any sequence of G-Lipschitz convex functions, Algorithm 1 when run with

Φ = Φ′2, p = max

(
T−1/3,

(
G4β2

λ2·log2(Φ)

)1/3)
, p̃ = p+ 1− Φ−2 and B = 3p̃T is (ε, δ + 3Te−(1−Φ−2)T )-differentially

private where

ε = 3ε′/2 +
√
6ε′
√

log(2/δ),

with

ε′ = 7T 2/3 log2(Φ) + 12 log3(Φ)T

+ 11

(
G4β2

λ2

)1/3

log4/3(Φ)T.

Proof. Consider any two loss sequences l1:T , l′1:T ∈ LT that possibly differ at some index t0 ∈ [T ], i.e. lt(x) = l′t(x) holds
for all x ∈ K and t ∈ T − {t0}. For ease of argumentation we will show differential privacy for the outputs xt of the
algorithm along with the internal variables ζt which are defined for any t in the algorithm as

ζt ≜ I{S′
t = 0 or St = 0}.

To establish privacy, let {(xt, ζt)}Tt=1 and {(x′
t, ζ

′
t)}Tt=1 be the instantiations of the random variables determined by

Algorithm 1 upon execution on l1:T and l′1:T , respectively. For brevity of notation, we will denote by Σt the random
variable {xτ , ζτ}tτ=1. We denote by Σt all possible values Σt can take. We now prove Claim 4.9, which we restate here for
convenience:

Claim C.2. Let δ′ ≥ 0 and Φ be as defined in Theorem 4.3. Then for any t ∈ [T ] the random variable pairs (xt, ζt)
and (x′

t, ζ
′
t) are (εt, δt)-indistinguishable when conditioned on Σt−1, i.e. when conditioned on identical values of random

choices made by the algorithm before (but not including) round t, where δt = 4δ′ + 9δ′T + 3e−p̃T and

εt =


0, t < t0

I∑t−1
s=1 ζs<B · 2 log(Φ)/p, t = t0

I∑t−1
s=1 ζs<B

(
ζt−1 log(Φ) +

2G2β/λ
p

)
t > t0

(C.1)

The proof of the above claim appears after the present proof.

We intend to use adaptive strong composition for differential privacy (Lemma 2.2) with Claim 4.9 and to that end consider
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the following calculations

T∑
t=1

ε2t ≤ 4 log2(Φ)

p2
+ 2B log2(Φ) +

8G4β2/λ2

p2
T

≤ 4 log2(Φ)

p2
+ 6pT log2(Φ) + 12 log3(Φ)T +

8G4β2/λ2

p2
T

(Using B = 3pT + 3(1− Φ−2)T ≤ 3pT + 6 log(Φ)T )

=
4 log2(Φ)

p2
+ 3pT log2(Φ) + 12 log3(Φ)T + 3pT log2(Φ) +

8G4β2/λ2

p2
T

≤ 7T 2/3 log2(Φ) + 12 log3(Φ)T + 11

(
G4β2

λ2

)1/3

log4/3(ϕ) · T

and
T∑

t=1

δt = 4δ′T + 9T 2δ′ + 3Te−p̃T ≤ δ

6
+ 3Te−pT + 3Te−(1−Φ−2)T ≤ δ

3
+ 3Te−(1−Φ−2)T .

Using the above calculations and applying Lemma 2.2 with δ′ = δ/2 (in Lemma 2.2) concludes the proof.

Proof Of Claim 4.9. We begin by defining a subset Et ∈ K for all t as

Et =
{
x ∈ K

∣∣∣∣ ( µ̄t+1(x)

Φµ̄t(x)
∈
[
1

Φ2
, 1

])
∧
(
µ̄′
t+1(x)

Φµ̄′
t(x)

∈
[
1

Φ2
, 1

])}
.

The following claim whose proof is presented after the present proof shows that Et occurs with high probability conditioned
on Σt−1 taking any value Σ in its domain.

Claim C.3. Let Φ be as defined in Theorem 4.3, then we have that for all Σ ∈ Σt,

Pr(xt ∈ Et|Σt−1 = Σ) ≥ 1− 3δ′ − 9Tδ′ − 3e−p̃T .

The general recipe we will follow in the proof is to show that xt, x
′
t are (εx, δx)-indistinguishable conditioned on Σt−1 and

the event that xt ∈ Et, for some (εx, δx). We will then show that ζt, ζ ′t are (εζ , δζ)−indistinguishable after conditioning on
Σt−1, xt = x (and x′

t = x respectively) for an arbitrary Et. Then, by standard composition of differential privacy (Dwork
& Roth, 2014), it is implied that (xt, ζt), (x′

t, ζ
′
t) are (εx + εζ , δx + δζ) indistinguishable when conditioned on Σt−1 and

the event that xt ∈ Et. It then follows that the same pair is (εx + εζ , δx + δζ + Pr(xt /∈ Et|Σt−1)) indistinguishable when
conditioned on Σt−1.

To execute the above strategy, we will examine the three cases – ante t < t0, at t = t0, and post t > t0 – separately. Recall
that l1:T and l′1:T are loss function sequences that differ only at the index t0.

Case 1: t ≤ t0 : Observe that since l1:t0−1 = l′1:t0−1, having not yet encountered a change (at t = t0) in loss, the
algorithm produces identically distributed outputs for the first t0 rounds upon being fed either loss sequence. Therefore we
have that

∀t < t0, (xt, ζt) and (x′
t, ζ

′
t) are (0, 0)− indistinguishable (C.2)

For the remaining two cases, we first assume that number of switches so far have not exceeded B, i.e.
∑t−1

s=1 ζs =∑t−1
s=1 ζs < B (conditioned on the same history). If not then both algorithms become deterministic from this point onwards

and are (0, 0)-indistinguishable.

Case 2: t = t0: The last display in the previous case also means that xt0 and x′
t0 are identically distributed random

variables. Therefore, to conclude the claim for t0, we need to demonstrate that ζt0 and ζ ′t0 are indistinguishable when also

16



Improved Differentially Private and Lazy Online Convex Optimization

additionally conditioned on xt0 = x′
t0 . We now observe that for any x ∈ Et0 and any Σ ∈ Σt0−1,

Pr(ζ ′t0 = 1|Σt0−1 = Σ, x′
t0 = x)

Pr(ζt0 = 1|Σt0−1 = Σ, xt0 = x)
=

p+ (1− p)
(
1− µ̄′

t0+1(x)

Φµ̄′
t0

(x)

)
p+ (1− p)

(
1− µ̄t0+1(x)

Φµ̄t0(x)

)
︸ ︷︷ ︸

≥0

≤

p+ (1− p)

1−
µ̄′
t0+1(x)

Φµ̄′
t0(x)︸ ︷︷ ︸

≥0


p

≤ 1 +
1

p

(
1−

µ̄′
t0+1(x)

Φµ̄′
t0(x)

)
≤ 1 +

1

p

(
1− Φ−2

)
≤ 1 +

1

p
(1− e−2 log Φ) ≤ 1 +

2 log(Φ)

p
≤ e2 log Φ/p,

using the definition of the set Et0 and that for any real x 1 + x ≤ ex. Similarly, we have for any x ∈ Et0 ,

Pr(ζ ′t0 = 0|Σt0−1 = Σ, x′
t0 = x)

Pr(ζt0 = 0|Σt0−1 = Σ, xt0 = x)
=

(1− p)
µ̄′
t0+1(x)

Φµ̄′
t0

(x)

(1− p)
µ̄t0+1(x)

Φµ̄t0 (x)

=
µ̄′
t0+1(x)

µ̄′
t0(x)

µ̄t0(x)

µ̄t0+1(x)
≤ e2 log Φ.

The above displays thereby imply that conditioned on Σt0−1 and the event xt ∈ Et0 , we have that (xt0 , ζt0) and (x′
t0 , ζ

′
t0)

are (2 log(Φ)/p, 0)-indistinguishable. Thereby combining with Claim C.3 we get that conditioned on Σt−1

(xt0 , ζt0) and (x′
t0 , ζ

′
t0) are (2 log(Φ)/p, 3δ′ + 9Tδ′ + 3e−p̃T )− indistinguishable (C.3)

Case 3: t > t0: Recall that while claiming indistinguishability of appropriate pair of random variables, we condition
on a shared past of Σt−1. In particular, this means that x′

t−1 = xt−1 and that ζt−1 = ζ ′t−1. Now, if ζt−1 = 0, then
x′
t = x′

t−1 = xt−1 = xt. If ζt−1 = 1, the iterates are sampled as xt ∼ µ̄t and x′
t ∼ µ̄′

t in round t. Once again by applying
the condition on Φ as stated in Theorem 4.3 we have that xt, x

′
t are (ζt−1 log Φ, δ

′)-indistinguishable.

To conclude the claim and hence the proof, we need to establish the indistinguishability of ζt and ζ ′t conditioned additionally
on the event xt = x′

t. Unlike for t = t0, the analysis here for ζ’s is more involved. To proceed, we first obtain a second-order
perturbation result. We have

µ̄t+1(x)

µ̄t(x)
=

exp
(
−β
(
l1:t(x) +

λ
2 ∥x∥

2
))

exp
(
−β
(
l1:t−1(x) +

λ
2 ∥x∥2

)) · ∫
x∈K exp

(
−β
(
l1:t(x) +

λ
2 ∥x∥

2
))

dx∫
x∈K exp

(
−β
(
l1:t−1(x) +

λ
2 ∥x∥2

))
dx

≜ exp(−β · lt(x)) ·
Z(l1:t−1)

Z(l1:t)

where we have defined Z(l) =
∫
x∈K exp

(
−β
(
l(x) + λ

2 ∥x∥
2
))

dx. Define Bt =
Z(l1:t−1)
Z(l1:t)

. To bound Bt we define the
following scalar function p(t) : [0, 1] → R as p(t) = log(Z(l1:t−1 + t · lt), β, λ). The following lemma shows that p(t) is a
convex function and characterizes the derivative of p.

Lemma C.4. Given two differentiable loss functions f, g, and any number t ∈ R define the measure µ(t)(x) over
a convex set K as µ(t) = exp(−(f(x) + tg(x))). Further define the log partition function of µ(t), p(t) ≜
log
(∫

x∈K
exp(−(f(x) + tg(x))dx

)
. Define the probability disitrbution µ̄(t)(x) = µ(t)(x)

exp(p(t)) . We have that p(t) is a
convex function of t. Furthermore p′(t) = Ex∼µ̄(t)[−g(x)].

Proof of Lemma C.4. We first derive the expression for the derivative. Consider the following calculation

p′(t) =

∫
x∈K

−g(x) · exp(−(f(x) + tg(x))dx∫
x∈K

exp(−(f(x) + tg(x))dx
= Ex∼µ̄(t)[−g(x)]

17
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To prove convexity we consider p′′(t). Once again, we can calculate as follows:

p′′(t) =

∫
x∈K

g2(x) · exp(−(f(x) + tg(x))dx∫
x∈K

exp(−(f(x) + tg(x))dx
−

(∫
x∈K

g(x) · exp(−(f(x) + tg(x))dx∫
x∈K

exp(−(f(x) + tg(x))dx

)2

= Varµ̄(t)(g(x)) ≥ 0.

Since p′′(t) ≥ 0 this proves that the function is convex.

In particular using the above lemma we get that

log(Bt) = p(0)− p(1) ≤ −∂p(0)

∂t
= Ey∼µ̄t [β · lt(y)]

log(Bt) = p(0)− p(1) ≥ −∂p(1)

∂t
= Ey∼µ̄t+1

[β · lt(y)]

It now follows that

log
µ̄t+1(x)

µ̄t(x)
≤ −β · lt(x) + Ey∼µ̄t [β · lt(y)]

log
µ̄t+1(x)

µ̄t(x)
≥ −β · lt(x) + Ey∼µ̄t+1

[β · lt(y)].

Similarly for µ̄′, one can establish

log
µ̄′
t+1(x)

µ̄′
t(x)

≤ −β · l′t(x) + Ey∼µ̄′
t
[β · l′t(y)]

log
µ̄′
t+1(x)

µ̄′
t(x)

≥ −β · l′t(x) + Ey∼µ̄′
t+1

[β · l′t(y)].

At this point, note that since t > t0, l′t = lt, and that l1:t−1 − l′1:t−1 = lt0 − l′t0 , we can now bound the term of interest for
privacy for all x.

log

µ̄′
t+1(x)

Φµ̄′
t(x)

µ̄t+1(x)
Φµ̄t(x)

≤ Ey∼µ̄′
t
[β · lt(y)]− Ey∼µ̄t+1

[β · lt(y)].

Now using Lemma 3.6 twice we get that W∞(µ̄′
t, µ̄t+1) ≤ 2G

λ which implies that there is a coupling γ between µ̄′
t and

µ̄′
t+1 such that sup(y,y′)∼γ∥y − y′∥ ≤ 2G

λ . Therefore we have that

Ey∼µ̄′
t
[β · lt(y)]− Ey∼µ̄t+1

[β · lt(y)] = β · E(y,y′)∼γ [lt(y)− lt(y
′)] ≤ β ·G · E(y,y′)∼γ [|y − y′|] ≤ β · 2G2

λ
.

The above display immediately gives that for all Σ ∈ Σt−1 and for all x ∈ Et,

Pr(ζ ′t = 0|Σ′
t−1 = Σ, x′

t = x)

Pr(ζt = 0|Σt−1 = Σ, xt = x)
=

(1− p)
µ̄′
t+1(x)

Φµ̄′
t(x)

(1− p) µ̄t+1(x)
Φµ̄t(x)

≤ e
2G2β

λ .
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Now, for the remaining possibility, we have

Pr(ζ ′t = 1|Σ′
t−1 = Σ, x′

t = x)

Pr(ζt = 1|Σt−1 = Σ, xt = x)
=

p+ (1− p)
(
1− µ̄′

t+1(x)

Φµ̄′
t(x)

)
p+ (1− p)

(
1− µ̄t+1(x)

Φµ̄t(x)

)
≤

p+ (1− p)
(
1− µ̄t+1(x)

Φµ̄t(x)
e−

2G2β
λ

)
p+ (1− p)

(
1− µ̄t+1(x)

Φµ̄t(x)

)

≤ 1 +

µ̄t+1(x)

Φµ̄t(x)︸ ︷︷ ︸
≤1

(
1− e−

2G2β
λ

)
p

≤ e
1
p ·

2G2β
λ .

The above displays thereby imply that conditioned on Σt−1 and xt ∈ Et we have that ζt and ζ ′t are ( 2G
2β/λ
p , 0)-

indistinguishable. Thereby we get that conditioned on Σt−1

(xt, ζt) and (x′
t, ζ

′
t) are

(
ζt−1 log Φ +

2G2β/λ

p
, 4δ′ − 9Tδ′ − 3e−p̃T

)
− indistinguishable (C.4)

Combining the statements in Equations (C.2), (C.3) and (C.4) finishes the proof.

Proof Of Claim C.3. Let qt be the probability distribution induced on the iterates chosen by Algorithm 1 when run on a loss
sequence l1:T . Using the conditions in the theorem and by Lemma 4.6, we have that ∥µ̄t − qt∥ ≤ e−p̃T + 3Tδ′ for any
t ∈ [T ]. From this, noting that l1:t − l1:t−1 is G-Lipschitz and β-smooth, we have that for all t,

Pr
X∼qt

[
1√
Φ

≤ µ̄t+1(X)

µ̄t(X)
≤

√
Φ

]
≥ 1− δ′ − 3Tδ′ − e−p̃T

Furthermore noting that l1:t−1 − l′1:t−1 is 2G-Lipschitz and 2β-smooth we have that for all t,

Pr
X∼qt

[
1√
Φ

≤ µ̄t(X)

µ̄′
t(X)

≤
√
Φ

]
≥ 1− δ′ − 3Tδ′ − e−p̃T

Similarly noting that l′1:t − l1:t−1 is 3G-Lipschitz and 2β-smooth we can apply the same argument to obtain

Pr
X∼qt

[
1√
Φ

≤
µ̄′
t+1(X)

µ̄t(X)
≤

√
Φ

]
≥ 1− δ′ − 3Tδ′ − e−p̃T

The above statements imply the claim.
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