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Abstract
Despite their simplicity, linear models perform
well at time series forecasting, even when pit-
ted against deeper and more expensive models. A
number of variations to the linear model have been
proposed, often including some form of feature
normalisation that improves model generalisation.
In this paper we analyse the sets of functions ex-
pressible using these linear model architectures.
In so doing we show that several popular vari-
ants of linear models for time series forecasting
are equivalent and functionally indistinguishable
from standard, unconstrained linear regression.
We characterise the model classes for each linear
variant. We demonstrate that each model can be
reinterpreted as unconstrained linear regression
over a suitably augmented feature set, and there-
fore admit closed-form solutions when using a
mean-squared loss function. We provide experi-
mental evidence that the models under inspection
learn nearly identical solutions, and finally demon-
strate that the simpler closed form solutions are
superior forecasters across 72% of test settings. 3

1. Introduction
Time series forecasting is a crucial challenge across a wide
array of domains, where accurate predictions of the future
are essential. Key areas such as finance, meteorology, health-
care, cloud infrastructure, and traffic flow management rely
heavily on forecasting for decision-making and strategic
planning (Wu et al., 2021; Lai et al., 2018; Sloss et al., 2019;
Taylor & Letham, 2018; Darlow et al., 2023; Joosen et al.,
2023). This has led to significant research efforts to develop
effective forecasting models. Deep learning has transformed
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many fields, most notably in computer vision and language
processing, superseding simpler classical models. Follow-
ing these successes, deep learning has seen increasing usage
in time series forecasting. In particular transformer models
have been adapted for broader time series forecasting appli-
cations (Nie et al., 2022; Zhou et al., 2021; Liu et al., 2021;
Wu et al., 2021; Liu et al., 2023; Darlow et al., 2024).

Linear models for forecasting Despite the advantages
offered by deep learning, its application to time series fore-
casting has encountered unique challenges. Recent studies
have shown that the performance benefits of deep models for
forecasting are often marginal when compared to simpler lin-
ear models (Zeng et al., 2023; Li et al., 2023). Linear models
are also appealing due to their simplicity, explainability, and
efficiency. This is particularly relevant in industries where
forecasting models are queried frequently and/or involve
high-resolution data, such as in cloud resource allocation
(Joosen et al., 2023; Darlow et al., 2023). This has spurred
a growing interest in refining linear models: several variants
of linear time series forecasting models have emerged, each
purporting superiority owing to some architectural differ-
ence (summary in Section 2). We show in this research that
many of these popular, and often high-performing, linear
models are essentially equivalent. By this we mean that the
parametric families of functions which they describe, are
equal (up to choice of data normalisation). The convexity of
least-squares linear regression makes this a significant find-
ing since it implies that all these models should converge to
the same optima, given a suitable optimiser.

Outline and Contributions In this paper, we delve into
the mathematics of several well-known linear time series
forecasting models. We fully characterise the set of func-
tions which are expressible using each architecture. We
show, somewhat remarkably, that they are all essentially
equivalent: corresponding either to unconstrained or weakly
constrained (via feature augmentation) linear regression.
The convexity of least-squares linear regression suggests
that the behaviour of these models should therefore be virtu-
ally indistinguishable. We provide experimental evidence
which supports this hypothesis, showing that, in practice, all
models tend to the same optima. Furthermore, we show that
the closed form solution to least-squares linear regression
performs either comparably or better than those trained by
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gradient descent. Our contributions are:

1. Mathematical proofs that several popular linear models
for time series forecasting are essentially identical.

2. Experimental evidence that each model indeed tend
to the same solution when trained on the same data,
differing only in the bias parameter.

3. Quantitative evidence that closed form ordinary least
squares (OLS) solutions are typically superior to exist-
ing models trained using stochastic gradient descent.

The goal of this paper is to provide a, much-needed, in-depth
mathematical analysis of several popular linear time-series
forecasting models. We aim to demonstrate that, from a
functional and performance point of view, these models
are not substantially different to each other and amount to
weakly constrained linear regression.

2. Related Work
Zeng et al. (2023) asked the important question of whether
the transformer architecture (Vaswani et al., 2017) had util-
ity for time series forecasting. Their work introduced two
models, namely DLinear (Section 3.1.1) and NLinear (Sec-
tion 3.5.1), that have become widely used baselines for other
research in time series forecasting (Darlow et al., 2024; Nie
et al., 2022; Liu et al., 2023). Their work served to show
that linear models are comparable, and sometimes better,
than complex transformer architectures.

Reversible instance normalisation (Kim et al., 2021) (RevIn)
is a feature normalisation technique that typically improves
time series forecasting. It operates by standardising input
features (zero mean, unit standard deviation) before passing
these through a given model, and reversing this standardisa-
tion process as a final step (with an optional learnable affine
transformation). We unpack the mathematics of how various
modes of instance normalisation constrain the underlying
model class in Section 3.2.

Li et al. (2023) revisited long-term time series forecasting
by exploring the impact of RevIn and channel independence
(CI). CI for linear models implies learning distinct models
for each variate in a given dataset. They proposed RLinear
– a linear mapping that uses RevIn – and tested the impact
of CI, showing how for some datasets (usually with a higher
number of channels and/or complexity) CI improves gener-
alisation. We define RLinear in Section 3.4.1.

Xu et al. (2023) recently proposed FITS, a linear time se-
ries model that operates in frequency space and includes
an optional high-frequency filtering component to reduce
the model footprint. FITS first computes the real discrete
Fourier transform (RFT), applies a complex linear map, and

inverts the result back into the time domain. We define FITS
in Section 3.1.2. The performance of FITS is impressive,
obtaining at or near state of the art (SoTA) under its optimal
hyperparameter settings.

3. Analysis of Linear Time Series Forecasting
Models

For the purpose of this paper we refer to a ‘model class’ as
the parametric set of functions induced by a model architec-
ture. For example, a single layer linear neural network with
no hidden layer has the model class x⃗ 7→ Ax⃗ + b⃗, where
the dimensions of A and b⃗ are as appropriate. We call this
‘Linear’ for the remainder of this paper. In this section we
define the task of forecasting with a linear model. We then
analyse the widely used DLinear (Section 3.1.1) and the
recent SoTA FITS architectures (Section 3.1.2). We prove
mathematically that these models are equivalent to linear
regression in that they have the same model class.

We then define and discuss several invertible data normalisa-
tion strategies employed for time series forecasting in Sec-
tion 3.2. These normalisation strategies yield additional lin-
ear model variants, namely RLinear, NLinear, and FITS+IN
(i.e., FITS with instance normalisation, as per Xu et al.
(2023)). We show how each choice of feature normalisation
restricts the model class. This allows us to categorise all
linear model variants into only 3 similar but distinct classes.

3.1. Notation

The following notations are used throughout this paper:

• L: Context length (time steps in the input sequence).

• c: Number of channels (distinct time series).

• T : Forecast horizon (future time steps predicted).

• x⃗: Context vector (historical data), x⃗ ∈ RL×c.

• y⃗: Target vector (values to be predicted), y⃗ ∈ RT×c.

The models we look at in Section 3 do not explicitly use
cross-channel information in their predictions. By this we
mean that the ith channel of the target is predicted only
using the ith channel of the context. Therefore, for improved
clarity, we consider the case of c = 1 (univariate), with
x⃗ ∈ RL.

A Forecast Model is a function f : RL → RT that gener-
ates a forecast vector y⃗ from a given context vector x⃗. A
Parametric Model is a family of forecast models; f(x; θ)
indexed by a parameter θ ∈ Θ. 4 The set of functions ob-
tainable by different parameter settings, {f(x; θ)|θ ∈ Θ},
is called the Model Class which we denote with an M(·).

4Θ is some set, typically RM .
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For example, the model class for unconstrained Linear
Regression, denoted as M(Linear), includes all functions
of the form x⃗ 7→ Wx⃗ + b⃗, where W is any weight matrix
from RT×L and b⃗ is any bias vector from RT . If specific
conditions are imposed on W and b⃗, the resulting set is
termed constrained Linear Regression.

3.1.1. DLINEAR

DLinear Model Definition: Let x⃗ ∈ RL be a context
vector. DLinear works by decomposing x⃗ into a ‘trend’ and
‘seasonal’ components. The trend component is defined
by taking a moving average of the components of x⃗. The
seasonal component is given by the residual x⃗seasonal :=
x⃗− x⃗trend. The moving average is padded so that it preserves
the dimensionality of x. One then takes x⃗trend and x⃗seasonal
and passes these though separate learnable linear layers.

Lemma 3.1 (DLinear Model Class). Let M(DLinear) de-
note the DLinear model class, i.e. the set of functions
f : RL → RT which can be represented as a DLinear
model. M(DLinear) is precisely equal to the space of affine
linear functions. That is, all functions of the form Ax⃗+ b⃗
may be expressed as a DLinear model and vice versa.

Proof. Following our definition, any DLinear model can be
written as Bx⃗seasonal +Cx⃗trend + c⃗+ d⃗ where B,C ∈ RT×L,
c⃗, d⃗ ∈ R are the weight matrices and biases of DLinear’s
two linear layers. This can be expressed as B(x⃗− x⃗trend) +

C(x⃗trend) + c⃗ + d⃗ = B(x⃗ − Dx⃗) + C(Dx⃗) + c⃗ + d⃗ =

(B − BD + CD)x⃗ + c⃗ + d⃗ where D is the (square) ma-
trix corresponding to a padded moving average (See Ap-
pendix D for an explanation). Thus we have shown that any
DLinear model may be expressed in the form Ax⃗ + b⃗. It
remains to show the converse, that is, any affine linear map
is expressible in the form of a DLinear model.

Let Ax⃗+ b⃗ be some arbitrary affine linear map. We claim
that Ax⃗+b⃗ can be expressed in the form (B−BD+CD)x⃗+

c⃗+ d⃗. By setting e.g. c⃗ = b⃗, d⃗ = 0 we match the bias terms.
By setting B = C = A we match the weight matrices

M(DLinear) = M(Linear)

3.1.2. FITS

FITS Model Definition: Let x⃗ ∈ RL be a context vector.
FITS applies the Real (discrete) Fourier Transform (RFT)
to x⃗. This maps x⃗ to a complex vector of length ⌊L/2⌋+ 1.
Next one applies a learnable complex linear map with output
dimension ⌊(L + T )/2⌋ + 1. After this one applies the
inverse RFT to map to RL+T .

Remark: As proposed by Xu et al. (2023), FITS optionally
includes a low-pass filter (LPF) to discard high frequencies
components. Our initial experiments showed that utilising
a LPF results in a degradation in performance – this is

confirmed by analysing the settings of FITS that yield high-
performance. Thus, we analyse FITS without the LPF.

Remark: Unlike other models, FITS outputs both a forecast
and a reconstruction of the context vector. The forecast may
be obtained by discarding the first L components output by
the model.

Theorem 3.2 (FITS Model Class). Let M(FITS) denote
the FITS model class, i.e. the set of functions f : RL → RT

which can be represented as a FITS model. When L ≥ T−2,
M(FITS) is precisely equal to the space of affine linear
functions Ax⃗+ b⃗.

Proving Theorem 3.2 is somewhat involved. Importantly,
as a combination of a Fourier transform, a complex linear
map, an inverse Fourier transform, FITS is a composition of
linear maps and is therefore expressible in the form Ax⃗+ b⃗.
The proof in Appendix A.1 shows when L ≥ T − 2 that
both A and b⃗ are entirely unconstrained. This is significant
since all the settings in Xu et al. (2023) utilise a context
larger or equal to the prediction horizon T .

M(DLinear) = M(Linear) = M(FITS)
(when L ≥ T − 2 and without a low-pass filter)

3.2. Invertible Data Normalisations

Invertible instance-wise feature normalisation has been re-
cently adopted for time-series forecasting. ‘Instance nor-
malisation’ (in the context of time series) was proposed by
Kim et al. (2021). In this section we cover three such mech-
anisms: Instance Norm (IN), Reversible Instance Norm
(RevIN), and NowNorm (NN) which is the name we give
to the normalisation scheme implemented by NLinear. For
clarity, RevIN and IN are identical except for the learn-
able affine mapping of RevIN – we mark this distinction
because the optional learnable affine map is often not used
(e.g., FITS). We look at how each normalisation restricts the
model class when used in conjunction with linear models.

3.3. Instance Norm

Definition 3.3 (Instance normalisation). Given a context
vector x⃗ and a target vector y⃗, instance normalisation (IN)
for each data instance involves normalizing x⃗ by its mean
µ(x⃗) and standard deviation σ(x⃗), applying a model f on
the normalized x⃗′, and inversely transforming the prediction
ŷ back to the original scale. Formally, this is expressed as:

x⃗′ =
x⃗− µ(x⃗)

σ(x⃗) + ε
,

ŷ = f(x⃗′),

ŷout = ŷ · (σ(x⃗) + ϵ) + µ(x⃗),

where ε is a small constant for numerical stability.
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Lemma 3.4 (Linear+IN). Let M(ILinear) represent the
set of forecast models that can be expressed as a linear
layer combined with instance normalization (Definition 3.3).
M(ILinear) is equal to the set of functions f : RL → RT

expressible in the form Ãx⃗+ b⃗σ(x⃗). Ã is a matrix with each
row summing to 1, and σ(x⃗) is the standard deviation of x⃗.

Proof. Let x⃗ ∈ RL be a context vector. Let f be a forecast
model obtained by applying a linear layer after IN. If A, b⃗
are the weight matrix and bias of the linear layer then we
have f(x⃗) = µ⃗(x⃗) + σ(x⃗)(A( x⃗−µ⃗(x⃗)

σ(x⃗) ) + b⃗). Here x⃗− µ⃗(x⃗)

denotes the subtraction of the mean µ(x⃗) from every com-
ponent of x⃗. We can expand this expression out to obtain
simply µ⃗(x⃗) +A(x⃗− µ⃗(x⃗)) + σ(x⃗)⃗b. The T−dimensional
vector µ⃗(x⃗) of means can be written as a matrix multipli-
cation BT x⃗ where Bm denotes a matrix of shape m × L
populated exclusively by 1

L ’s. Using this notation we have:

f(x⃗) =µ⃗(x⃗) +A(x⃗− µ⃗(x⃗)) + σ(x⃗)⃗b

=(BT +A−ABL)x⃗+ σ(x⃗)⃗b

Thus f can be written in the form Ãx⃗+ bσ(x⃗), it remains
only to demonstrate that BT +A−ABL satisfies the con-
dition that the rows sum to one. And, conversely that any
matrix of shape T×L whose rows sum to one can be written
in this form. Begin by noting that ABL can be written as:

ABL =


A11 A12 . . . A1L

A21 A22 . . . A2L

. . . . . . . . .
AL1 AL2 . . . ATL



1/L 1/L . . . 1/L
1/L 1/L . . . 1/L

. . . . . . . .
1/L 1/L . . . 1/L



=


1
L

∑L
i=1 A1i

1
L

∑L
i=1 A1i . . . 1

L

∑L
i=1 A1i

1
L

∑L
i=1 A2i

1
L

∑L
i=1 A2i . . . 1

L

∑L
i=1 A2i

. . . . . . . . . . . . . . . . . . . .
1
L

∑L
i=1 ALi

1
L

∑L
i=1 ALi . . . 1

L

∑L
i=1 ALi


Therefore the ijth element of (BT +A−ABL) may be writ-
ten as 1

L+Aij− 1
L

∑L
k=1 Aik. It follows that the sum of

row i of (BT +A−ABL)

=
∑
j=1

( 1
L
+Aij−

1

L

L∑
k=1

Aik

)
=1+

L∑
j=1

Aij−
L

L

L∑
k=1

Aik

=1.

Conversely we wish to show that any T by L matrix C
whose rows sum to one can be written in the form (BT +
A−ABL). Let C be such a matrix. One may easily show
that in fact C may be expressed as C = BT + C − CBL,
thus we may let A = C.

3.4. Reversible Instance Normalisation

A second more general form of data normalisation is known
as Reversible Instance Norm (RevIN) (Kim et al., 2021).
This normalisation is designed to allow a forecasting model
to handle shifts in the temporal distribution over time. Li
et al. (2023) showed that a simple linear model using RevIN
is able to outperform most deep models on standard datasets.
Definition 3.5 (Reversible Instance Normalisation). Given a
context vector x⃗ and a target vector y⃗, Reversible Instance
Normalisation (RevIN) for each data instance involves a
two-step normalization process. First, x⃗ is normalized by
its mean µ(x⃗) and standard deviation σ(x⃗). Subsequently,
an affine transformation with parameters α and β is applied,
followed by the application of a forecasting model f on the
transformed x⃗′. The process is then reversed to retrieve the
prediction in the original scale. Formally, this is expressed:

x⃗′ =
x⃗− µ(x⃗)

σ(x⃗) + ε
,

x⃗′′ =
x⃗′ − β

α
,

ŷ = f(x⃗′′),

ŷ′ = αŷ + β,

ŷout = ŷ′ · (σ(x⃗) + ε) + µ(x⃗).

3.4.1. RLINEAR

RLinear is a linear model using RevIN (Li et al., 2023).
Lemma 3.6 (RLinear). Let M(RLinear) denote the RLin-
ear model class, i.e. the set of functions f : RL →
RT which can be represented as an RLinear model.
M(RLinear) is precisely equal to the space of functions
Ãx⃗+ b⃗σ(x⃗) where the rows of Ã each sum to 1 and where
σ(x⃗) denotes the standard deviation of the context vector x⃗.

Proof. Let f be arbitrary RLinear model (i.e., a forecast
model obtainable by the composition of a linear layer and
reversible instance norm). If A, c⃗ are the weight matrix and
bias of the linear layer then

f(x⃗) = µ(x⃗) + σ(x⃗) (β + α(AR(x⃗) + c))

where R(x⃗) :=
1

α

(
x⃗− µ(x⃗)

σ(x⃗)
− β

)
We can expand this out to obtain the following

f(x⃗) = (µ(x⃗)+Ax⃗−Aµ(x⃗))+βσ(x⃗)+αcσ(x⃗)−Aβσ(x⃗).

As per the proof on Lemma 3.4 we can write the vector of
means µ(x⃗) as BT x⃗ where BT is a T ×L matrix populated
by 1

L ’s. Therefore f(x⃗) can be expressed as

f(x⃗) =Ãx⃗+ σ(x⃗)⃗b

where Ã =BT +A−ABL

and b⃗ =β + αc−Aβ
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As in the proof of Lemma 3.4, BT +A−ABL are precisely
the set of matrices where each row sums to one. It is left
therefore to demonstrate that b⃗ can be any vector in RT .
Since we are free in our choice of β, α, c then we can let
β = 0, α = 1 and c⃗ be any desired arbitrary vector in RT .
This concludes the proof.

IN and RevIN impose the constraints: (1) the rows
of the weight matrix must sum to 1; (2) the bias

is scaled by the standard deviation of the instance.

3.5. NowNorm

Definition 3.7 (Now-Normalisation). Given a context vec-
tor x⃗ and a target vector y⃗, NowNorm (NN) involves nor-
malising the context so that xL, the most-recent value of x⃗,
is zero. Explicitly; x⃗norm := x⃗ − (xL, xL, . . . , xL). Next
we apply a forecasting model f on the normalized x⃗norm,
before adding xL back on to each component of the output.
Formally, this is expressed as:

x⃗norm = x⃗− xL,

ŷ = f(x⃗norm),

ˆ⃗yout = ŷ + xL.

3.5.1. NLINEAR

Nlinear is a linear model using NN (Zeng et al., 2023).
Lemma 3.8 (NLinear). Let M(NLinear) denote the NLin-
ear model class, i.e. the set of functions f : RL → RT

which can be represented as a NLinear model. M(NLinear)
is precisely equal to the space of linear functions Ãx⃗ + b⃗
where the rows of Ã each sum to 1.

Proof. By Definition 3.7, an NLinear model can be written

(xL, xL, . . . , xL) +Ax⃗norm + b⃗ (1)

Where A, b⃗ are the weight matrix and bias terms of NLin-
ear’s linear layer and x⃗norm is the normalised context vec-
tor. If we let Bm denote an m by m matrix with 1’s in
the final column and zeros elsewhere. Then we can write
Equation 1 equivalently as BT x⃗ + A(x⃗ − BLx⃗) + b⃗ =

(BT + A − ABL)x⃗ + b⃗. We claim that the rows of the
matrix BT + A − ABL sum to one. Begin by noting that
ABL has the following form:

ABL =


A11 A12 . . . A1L

A21 A22 . . . A2L

. . . . . . . . .
AL1 AL2 . . . ATL



0 0 . . . 1
0 0 . . . 1

. . . .
0 0 . . . 1



=


0 0 . . .

∑L
i=1 A1i

0 0 . . .
∑L

i=1 A2i

. . . . . . . . .

0 0 . . .
∑L

i=1 ALi



Therefore BT +A−ABL may be expressed as follows:
A11 A12 . . . 1−

∑L−1
i=1 A1i

A21 A22 . . . 1−
∑L−1

i=1 A2i

. . . . . . . . . . . . .

AL1 AL2 . . . 1−
∑L−1

i=1 ALi

 (2)

It is clear to see that the rows of this matrix sum to one as
claimed. Moreover, any matrix whose rows sum to 1 may
be written as Equation 2. Since the bias b⃗ is unconstrained
then we conclude our proof.

NowNorm imposes the same weight matrix constraint as IN
and RevIN, but does not constrain the bias.

Integrating the insights from Lemma 3.1 and Theorem 3.2
with the analyses presented in this subsection, we establish
the following equivalences among the model classes:

M(DLinear+IN) = M(Linear+IN) =
M(FITS+IN) = M(RLinear) ≈ M(NLinear)

4. Discussion

Model Class Variants Normalisation Constraints
Ax⃗ + b⃗ Linear, DLinear, FITS None None

Ãx⃗ + b⃗ NLinear NowNorm Rows sum to one

Ãx⃗ + b⃗σ(x⃗)

RLinear RevIn
Rows sum to one

FITS+IN Instance
Bias coupled with σ

Table 1. A summary of the model classes for the DLinear, FITS,
RLinear, NLinear and Linear models. Here Ã denotes a matrix
whose rows must each sum to one and σ(x⃗) denotes the standard
deviation of the components of the context vector.

Our analysis is summarised in Table 1. When L ≥ T − 2
FITS and DLinear are functionally equivalent to uncon-
strained linear regression. In Section 3.2 we looked at the
model classes for linear models which use one of the stan-
dard normalisation procedures for time series analysis. We
saw how using normalisation slightly alters the model class.
For example, NLinear is equivalent to restricted linear re-
gression wherein the rows of the weight matrix must sum
to 1. We showed that Linear+IN, Linear+RevIN (RLinear
(Li et al., 2023)), and FITS+IN (i.e., the setting in (Xu et al.,
2023)) are equivalent to each other, and differ from NLinear
in that the bias is parameterised as b⃗σ(x⃗). Perhaps most
importantly, each model class can be reformulated as uncon-
strained linear regression on an augmented feature set, and
are solvable in closed form.
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Convexity Each of the models we have discussed train
using a mean-squared error (MSE) loss function (Xu et al.,
2023; Zeng et al., 2023). Linear regression with a mean-
squared loss function is a convex optimisation problem. By
this we mean that the training loss is a convex function of
the parameters. A consequence of convexity is that there
exists a unique global optima which minimises the training
loss (uniqueness requires that the training data is full rank).
Significantly, this means that given the same training data,
these models should converge to the same solution, via a
suitable optimisation procedure.

Closed Form An important property of least-squares lin-
ear regression is that it admits a closed-form solution. A
recap of how one computes a closed-form solution for linear
regression and closed form solutions for the three model
classes in Table 1 may be found in Appendix D.2. In Sec-
tion 5 we refer to the closed form solutions as the ordinary
least-squares (OLS) models, and we will determine how
each model fairs against this closed form approach.

Remark: FITS has two separate training modes. In mode 1
the model is trained by mean-squared error (MSE) between
the forecast and the target. In mode 2 an additional term
is added to the loss which is the MSE between the context
vector and FITS reconstruction. Empirically both settings
have similar performance (Xu et al., 2023). In our analysis
and experiments we consider mode 1 only.

For each model class in Table 1, the least-
squares optima may be found in closed form.

We have hypothesised that the convexity of least-squares lin-
ear regression means that each model should converge to the
same solution given the same data. Nevertheless, given that
each model architecture yields a different parameterisation
and initialisation, this still leaves open the possibility that
early stopping may impact generalisation. Next, we explore
how the parameterisation of FITS has the effect of inducing
a much lower learning rate on the bias term compared to
that of the weight matrix.

4.1. The FITS Bias-Term

In Theorem 3.2 we showed that any FITS model can be
written in the form Ax⃗ + b⃗. Moreover, we showed how
one may obtain A, b⃗ given the weight matrix and the bias
of the complex linear layer (Appendix A.7). Specifically,
if c⃗ denotes the complex bias of the complex linear layer
then b⃗ = iRFT (c⃗) where iRFT denotes the inverse dis-
crete Fourier transform (Definition A.2). It is important to
consider what the implications are of parameterising the
bias term in this way, rather than simply parameterising b⃗
directly.

Consider representing the complex vector c⃗, of dimen-

sion L+T
2 , as a (T + L)-dimensional real vector. This is

achieved by separating the real and imaginary components
of c⃗. Given that the iRFT is a linear mapping, it follows that
b⃗ and c⃗ are interconnected through the equation b⃗ = Mc⃗,
where M is a specific matrix derived from the iRFT. Criti-
cally, the matrix M plays a pivotal role in determining the
effective learning rate for the bias in our linear model. For
instance, small values within M imply that adjustments in c⃗
induce only minor changes in b⃗. Due the choice of normali-
sation used for the RFT, the entries of the matrix M are of
the order ∼ 1√

L
and FITS manifests this exact phenomena.

A detailed breakdown of this may be found in Appendix C.

5. Experiments
In Section 5.1 we demonstrate that the models discussed
in this paper tend toward their corresponding closed form
solutions. In Section 5.2 we test and compare each model
across 8 benchmarking datasets, and show how the closed
form solution is usually superior.

5.1. Convergence

Comparison of Learned Weight Matrices Figure 1 visu-
alises the internal weight matrices for 4 trained linear model
variants plus the closed-form solution (denoted OLS+IN).
The models shown are RLinear, NLinear, DLinear+IN,
FITS+IN (the SoTA variant of FITS from (Xu et al., 2023)),
and OLS+IN. Each model is trained for 50 epochs5 on the
ETTh1 dataset with a context of 720 and a prediction hori-
zon length of 336. The weight matrices are then extracted
and visualised using the same colour scale. In all cases
the learned matrices are near identical. The similarity of
the weight matrices for Linear+IN, RLinear, FITS+IN and
OLS+IN is precisely in line with our hypothesis and matches
the theory and discussion from previous sections. Note that
while NLinear lies is a slightly different model class (See
Table 1), the learned matrix is still near identical.

Plotting the learned matrices as in Figure 1 requires us
to first convert each trained model into the form f(x⃗) =

Ax⃗+ b⃗. To do this we note that f (⃗0) = A0⃗ + b⃗ = b⃗. Thus,
the bias can be found by passing the zero vector into the
trained model. We can determine A in a similar manner.
Let e⃗i denote the ith coordinate vector, that is e⃗i is the
vector which is 1 at position i and zero elsewhere. Then
f(e⃗i) = Ae⃗i+b⃗ = A·,i+b⃗ where A·,i is the ith column of A.
Hence, given that we have already computed the bias term,
we may derive A simply by passing through each coordinate
vector e⃗i and subtracting b⃗. The procedure for extracting
the weight matrices for models of the form Ax⃗+ b⃗σ(x) is
similar and is discussed in Appendix G.1.

5except for OLS which is solved using an SVD solver in Scikit-
learn (Pedregosa et al., 2011).
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Figure 1. This figure displays the cropped weight matrices after 50 epochs of training for all four models with instance normalization,
juxtaposed with their corresponding closed-form solution (extreme left). These show how similar the underlying models are. There are
slight differences that affect forecasts to a marginal degree (see Figure 3).

Figure 2. A demonstration of how the model’s weight matrices
tend to the OLS solution during training. This is a visualised as
the cosine similarity between a given model’s weight matrix and
that determined by the closed form solution.

Cosine similarity during training Figure 2 tracks the
cosine similarity (Defined d(x, y) := x·y

||x||2·||y||2 ) between
the above-mentioned 4 models’ weight matrices and their
OLS counterpart during training. A cosine similarity of one,
corresponds to exact equality between the matrices. In line
with our hypothesis, all model’s weight converge toward
the OLS solution. The rapidity of this behaviour differs per
model, thus demonstrating that SGD optimisation coupled
with each unique parameterisation impacts the particularly
route taken and rate of convergence.

Forecasts Figure 3 shows the forecasts from these models
after 50 epochs of training. While subtle differences in the
models do indeed result in subtle differences in forecasts,
there is clear and pervasive similarity between forecasts.

Bias Terms The bias terms for each trained model are vi-
sualised in Figure 4. As expected, the models DLinear+IN,
RLinear and OLS+IN learn the same bias terms as each
other. Notably however, the bias for FITS+IN differs con-
siderably from the other models. Moreover the magnitude
of this bias is much smaller. This difference is despite the

Figure 3. Forecast comparison on ETTh1 with T = 336, compar-
ing the 5 models that use instance normalisation.

fact that all these models’ classes are equivalent (Table 1).
This confirms our analysis from Section 4.1.

Figure 4. The components of the learned bias vectors (⃗b ∈ R720)
plotted for several linear models implementing feature normalisa-
tion technique. FITS results clearly in a different bias term.

5.2. Performance

Table 2 presents the Mean Squared Error (MSE) values,
accompanied by error bars, for the models evaluated in
this study, both with and without instance normalization.6

In the table, green highlighting signifies instances where
the corresponding sOrdinary Least Squares (OLS) solution
achieves a lower MSE compared to the model being evalu-

6We included NLinear in the grouping ‘with’ instance normali-
sation, even though the model classes is slightly different.
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Table 2. Long-term multivariate forecasting results, showing MSE values for all models investigated in this work. The green and blue
highlighting indicate when the OLS is superior and within 1 standard deviation of a given model, respectively. Bolding indicates the best
performing model for a given dataset-horizon combination.

Methods without instance normalisation Methods with instance normalisation
T OLS FITS DLinear Linear OLS+IN FITS+IN DLinear+IN RLinear NLinear

E
T

T
m

1 96 0.306 0.310 ±0.0005 0.311 ±0.0008 0.314 ±0.0037 0.307 0.309 ±0.0002 0.312 ±0.0008 0.312 ±0.0024 0.319 ±0.0021

192 0.335 0.338 ±0.0008 0.342 ±0.0014 0.343 ±0.0012 0.336 0.338 ±0.0005 0.341 ±0.0014 0.343 ±0.0010 0.346 ±0.0009

336 0.364 0.367 ±0.0003 0.372 ±0.0006 0.374 ±0.0008 0.365 0.367 ±0.0001 0.372 ±0.0006 0.372 ±0.0016 0.378 ±0.0003

720 0.413 0.435 ±0.0010 0.422 ±0.0016 0.426 ±0.0058 0.415 0.417 ±0.0006 0.422 ±0.0016 0.421 ±0.0018 0.424 ±0.0029

E
T

T
m

2 96 0.166 0.165 ±0.0003 0.164 ±0.0017 0.163 ±0.0010 0.162 0.162 ±0.0001 0.163 ±0.0011 0.164 ±0.0009 0.164 ±0.0009

192 0.228 0.225 ±0.0001 0.222 ±0.0023 0.218 ±0.0013 0.216 0.217 ±0.0001 0.217 ±0.0004 0.217 ±0.0007 0.217 ±0.0007

336 0.295 0.291 ±0.0008 0.267 ±0.0029 0.272 ±0.0021 0.268 0.269 ±0.0000 0.269 ±0.0007 0.270 ±0.0011 0.270 ±0.0011

720 0.415 0.409 ±0.0004 0.356 ±0.0056 0.362 ±0.0073 0.349 0.350 ±0.0002 0.354 ±0.0016 0.354 ±0.0010 0.355 ±0.0010

E
T

T
h1

96 0.376 0.378 ±0.0002 0.380 ±0.0027 0.390 ±0.0016 0.375 0.377 ±0.0002 0.379 ±0.0010 0.387 ±0.0006 0.383 ±0.0027

192 0.413 0.413 ±0.0002 0.424 ±0.0045 0.426 ±0.0029 0.413 0.413 ±0.0002 0.419 ±0.0018 0.415 ±0.0015 0.418 ±0.0016

336 0.448 0.500 ±0.0014 0.458±0.0104 0.465 ±0.0044 0.445 0.432 ±0.0008 0.451 ±0.0020 0.450 ±0.0007 0.446 ±0.0006

720 0.491 0.506 ±0.0062 0.522 ±0.0051 0.512 ±0.0017 0.460 0.428 ±0.0002 0.470 ±0.0013 0.460 ±0.0074 0.464 ±0.0006

E
T

T
h2

96 0.309 0.307 ±0.0008 0.276 ±0.0013 0.277 ±0.0119 0.270 0.270 ±0.0001 0.275 ±0.0002 0.272 ±0.0015 0.279 ±0.0020

192 0.423 0.447 ±0.0019 0.351 ±0.0140 0.351 ±0.0123 0.331 0.331 ±0.0000 0.342 ±0.0025 0.335 ±0.0010 0.343 ±0.0026

336 0.540 0.566 ±0.0014 0.424 ±0.0139 0.455 ±0.0053 0.353 0.354 ±0.0001 0.359 ±0.0062 0.357 ±0.0011 0.383 ±0.0028

720 0.900 0.971 ±0.0018 0.664 ±0.0400 0.619 ±0.0185 0.380 0.377 ±0.0001 0.384 ±0.0001 0.384 ±0.0012 0.406 ±0.0054

E
C

L

96 0.133 0.134 ±0.0002 0.134 ±0.0001 0.133 ±0.0002 0.133 0.133 ±0.0001 0.134 ±0.0001 0.134 ±0.0001 0.134 ±0.0002

192 0.147 0.148 ±0.0001 0.148 ±0.0005 0.148 ±0.0001 0.148 0.148 ±0.0000 0.149 ±0.0000 0.148 ±0.0000 0.149 ±0.0002

336 0.162 0.164 ±0.0002 0.164 ±0.0009 0.163 ±0.0001 0.164 0.164 ±0.0001 0.165 ±0.0001 0.165 ±0.0001 0.165 ±0.0001

720 0.197 0.200 ±0.0001 0.197 ±0.0034 0.198 ±0.0002 0.203 0.203 ±0.0000 0.205 ±0.0003 0.204 ±0.0001 0.205 ±0.0002

Tr
af

fic

96 0.385 0.386 ±0.0003 0.387 ±0.0003 0.386 ±0.0005 0.385 0.386 ±0.0002 0.387 ±0.0002 0.386 ±0.0004 0.387 ±0.0003

192 0.396 0.397 ±0.0001 0.398 ±0.0001 0.398 ±0.0003 0.397 0.398 ±0.0001 0.399 ±0.0003 0.397 ±0.0004 0.398 ±0.0000

336 0.410 0.411 ±0.0001 0.412 ±0.0001 0.412 ±0.0002 0.410 0.411 ±0.0001 0.412 ±0.0005 0.412 ±0.0000 0.412 ±0.0000

720 0.450 0.450 ±0.0002 0.450 ±0.0006 0.451 ±0.0003 0.448 0.449 ±0.0001 0.450 ±0.0002 0.449 ±0.0002 0.451 ±0.0000

W
ea

th
er 96 0.142 0.144 ±0.0002 0.145 ±0.0017 0.145 ±0.0011 0.141 0.142 ±0.0000 0.142 ±0.0006 0.143 ±0.0005 0.144 ±0.0004

192 0.185 0.188 ±0.0013 0.188 ±0.0029 0.189 ±0.0028 0.184 0.185 ±0.0001 0.185 ±0.0008 0.185 ±0.0007 0.187 ±0.0010

336 0.235 0.238 ±0.0003 0.235 ±0.0004 0.238 ±0.0019 0.234 0.236 ±0.0001 0.235 ±0.0003 0.235 ±0.0005 0.235 ±0.0002

720 0.304 0.304 ±0.0004 0.308 ±0.0005 0.310 ±0.0018 0.307 0.307 ±0.0001 0.310 ±0.0004 0.309 ±0.0006 0.311 ±0.0003

E
xc

ha
ng

e 96 0.091 0.099 ±0.0009 0.084 ±0.0003 0.100 ±0.0097 0.086 0.087 ±0.0001 0.085 ±0.0003 0.086 ±0.0006 0.090 ±0.0008

192 0.217 0.243 ±0.0032 0.160 ±0.0088 0.161 ±0.0012 0.180 0.183 ±0.0005 0.178 ±0.0028 0.179 ±0.0024 0.187 ±0.0034

336 0.450 0.498 ±0.0026 0.315 ±0.0070 0.323 ±0.0126 0.343 0.344 ±0.0011 0.335 ±0.0031 0.334 ±0.0040 0.347 ±0.0024

720 1.392 1.256 ±0.0083 0.929 ±0.0218 0.717 ±0.1699 0.992 0.965 ±0.0010 0.920 ±0.0219 0.948 ±0.0082 1.035 ±0.0130

ated. Conversely, blue highlighting denotes cases where the
differences are within one standard deviation.

Table 2 shows that the linear models are generally out-
performed by their corresponding OLS solution (72% of
settings). It is interesting that the OLS solution usually
outperforms those trained with SGD and early stopping,
particularly given that the OLS solutions are purely linear
regression (not ridge or lasso regression), meaning that there
is no regularisation. The comparably strong performance
of the closed-form solution on larger datasets (ECL, Traffic,
and Weather) suggests that a linear model may not have
sufficient representational capacity in this setting. 7

Conversely, FITS performs particularly well on the hourly
ETT dataset (ETTh1 and h2). We believe that the reason for
this is owed to the fact that these datasets are small, such
that overfitting can occur rapidly. Since FITS inadvertently

7Further discussion and comparisons may be found in Appen-
dices G.3, G.2 and Appendix F respectively.

imposes a restriction on the bias parameter (see Section 4.1
and Figure 4), it is less prone to this overfitting restriction.

OLS solutions were superior across 23 of 32 (72%) settings.

6. Conclusion
Simple linear models are often on par, or better, than com-
plex or deep models for time series forecasting. Thus, much
energy has thus been spent on ‘modernising’ linear regres-
sion for time series forecasting: modelling separately trends
and residuals (DLinear), applying some form of instance nor-
malisation (RLinear, NLinear), or by processing in Fourier
space (FITS). We have shown in this paper that, from a
functional standpoint, these alterations barely deviate these
models from standard linear regression. We demonstrated
empirically that these model behave and perform similarly
to each other and generally worse than their closed-form
solutions. A full discussion of the limitations and future of
this work may be found in Appendix G.4.
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Impact Statement
This paper presents work whose goal is to advance the
field of time series forecasting. The scope of the pa-
per is narrow, focusing on analysing the structures of
various popular linear forecasting models. While there
are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
A list of limitations of our work can be found in Sec-
tion G.4. To ensure reproducibility, the code to fit and
evaluate OLS solutions in this paper can be found here:
github.com/sir-lab/linear-forecasting.
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A. Appendix
A.1. FITS

This section is dedicated to fully unpacking the FITS model and proving Theorem 3.2.

FITS Model Definition: Let x⃗ ∈ RL be a context vector. FITS applies the Real (discrete) Fourier Transform (RFT) to x⃗.
This maps x⃗ to a complex vector of length ⌊L/2⌋+ 1. After this one applies a Low-Pass Filter (LPF), zeroing out the high
frequency components. Next one applies a learnable complex linear layer. The output is padded with zeros and the result is
passed though the inverse RFT, mapping to RL+T . The result is then scaled by L+T

L .

Throughout this section we will assume both the prediction horizon length T and the context length L are even. This will
avoid over-cluttered expressions involving the floor functions. Moreover this condition holds for every experiment setting in
the original paper (Xu et al., 2023).

Remark: FITS is a state-of-art model. One of the goals of this paper is to understand the superior performance of this
model given that it is simply a composition of linear operations. For this reason we restrict our analysis to those settings
which give SoTA performance. To this end we ignore the LPF entirely in our subsequent analysis. While the LPF is an
effective tool for compressing FITS, it comes with a performance degradation.

In order to fully analyse FITS it is critical to introduce definitions for the Discrete and Real Fourier transforms.

Definition A.1 (Discrete Fourier Transform). Let x⃗ ∈ RL, we define the Discrete Fourier Transform (DFT) of x⃗ as
DFTL : CL → CL so that for j ∈ {0, 1, . . . ⌊L⌋}

DFTL(x⃗)j :=

L−1∑
k=0

e
−2πikj

L xk (3)

The DFT can be written in matrix form DFTL(x⃗) = DLx⃗ where, if ω denotes the Lth root of unity (ω := e
−2πi

L ), then DL

is the matrix:

DL :=


1 1 1 . . . 1
1 ω ω2 . . . ωL−1

. . . . . . . . . . . . . . . .
1 ωL−1 ω2(L−1) . . . ωL(L−1)

 (4)

The DFT is an invertible map and we define the inverse DFT (iDFT) by iDFT (x⃗) := D−1
L x⃗ where D−1

L = 1
LD

⋆
L.

FITS does not directly employ the DFT. Rather, it employs a closely related transform called the Real Fourier Transform,
which we now define.

Definition A.2 (Real Discrete Fourier Transform). Let x⃗ ∈ RL, we define the Real Discrete Fourier Transform (RFT) of
x⃗ as RFTL : RL → C⌊L/2⌋+1 so that for j ∈ {0, 1, . . . ⌊L/2⌋}

RFTL(x⃗)j :=

L−1∑
k=0

e
−2πikj

L xk (5)

In other words, the RFT and DFT are identical other than the RFT is a truncated version that discards the last ⌊L/2⌋ − 1
components. The motivation for this comes from the fact that when x⃗ is real, then the kth and (L− k)th components of the
DFT are complex conjugates (DFT (x⃗)j = DFT (x⃗)⋆L−j). For this reason these components contain the same information
in that the original signal may be entirely reconstructed from the first ⌊L/2⌋+ 1 components via (Y0, Y1, . . . , Y⌊L/2⌋+1) 7→
iDFT (Re(Y0), Y1, Y2, . . . , Re(Y⌊L/2⌋), Y

⋆
⌊L/2⌋−1, . . . , Y

⋆
1 ). We call this map the inverse-RFT (iRFT).

When Y⃗ has been obtained by taking the RFT of some real vector then Y0, Y⌊L/2⌋ ∈ R thus, taking the real part of these
components, Re(Y0), Re(Y⌊L/2⌋), does nothing. However writing the inverse like this allows us to also take the inverse
RFT of complex vectors Y⃗ ∈ C⌊L/2⌋ which do not lie in the image RFT (RL).

We can make the relationship between the DFT and RFT more explicit by defining the following linear map.
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Definition A.3. Define the projection ΠL : CL → CL
2 +1

ΠL(Y0, Y1, . . . , YL−1) := (Y0, Y1, . . . , YL
2
)

Let Y⃗ = (Y0, Y1, . . . , YL
2
). Then, the inverse map Π−1

L : CL
2 +1 → CL is defined as

Π−1
L (Y⃗ ) = (Re(Y0), Y1, . . . , Re(YL

2
), Y ⋆

L
2 −1

, . . . , Y ⋆
1 )

Example: Π−1
L+T (Y0, Y1, Y2, Y3) = (

Y0+Y ⋆
0

2 , Y1, Y2,
Y3+Y ⋆

3

2 , Y ⋆
2 , Y

⋆
1 )

Remark A.4. Using this transformation one may express RFTL = ΠL ◦DL and iRFTL = D−1
L ◦Π−1

L

Remark A.5. For any Y⃗ ∈ DFTL(RL) one may confirm that Π−1
L ◦ ΠL = idL. Likewise, for any Y⃗ ∈ RFTL(RL) one

may confirm that ΠL ◦Π−1
L = idL

2 +1

Having explicitly defined the discrete and discrete real Fourier transforms we are ready to begin the process of proving
Theorem 3.2 which we restate below.

Theorem A.6 (FITS). Let M(FITS) denote the FITS model class, i.e. the set of functions f : RL → RT which can be
represented as a FITS model. When L ≥ T − 2, M(FITS) is precisely equal to the space of affine linear functions Ax⃗+ b⃗.

As a composition of affine linear operation, FITS is itself an affine linear model. As a result any FITS model may be
expressed in the form Ax⃗+ b⃗. The remainder of this section is dedicated to showing that when L ≥ T − 2 that A and b⃗ are
unconstrained meaning that FITS model class is equivalent to unconstrained linear regression. Before this we present a
prescription, showing how one may obtain A, b⃗, given the complex bias and weight matrix from FITS’s linear layer.

Lemma A.7. Let f : RL → RL+T be some FITS model. Let W, c⃗ be the weight matrix and bias of the complex linear layer
in this model. Then we can express f as a real affine linear map f(x) = Ax⃗+ b⃗ where A = D−1

L+T ◦Π−1
L+TW ◦ΠL ◦DL

and b⃗ = iRFT (c⃗)

Proof. As discussed before, as a composition of affine linear operation, FITS is itself an affine linear model. As a result any
FITS model may be expressed in the form Ax⃗+ b⃗. One may recover the bias by applying f to the zero vector by noting that
f (⃗0) = A0⃗ + b⃗ = b⃗. f is a composition of the RFT, the complex affine map x⃗ 7→ Wx⃗ + c⃗ and an iRFT. Since the RFT
maps zero to zero then f (⃗0) = iRFT (W 0⃗ + c⃗) = iRFT (c⃗) as desired.

We know therefore that Ax⃗ = Ax⃗+ b⃗− b⃗ = iRFT (Wz⃗ + c⃗)− iRFT (c⃗) where z⃗ := RFT (x⃗). Using the linearity of the
iRFT we have Ax⃗ = iRFT (Wz⃗ + c⃗− c⃗) = iRFT (Wz⃗) = iRFT ◦W ◦RFTx⃗. By writing the RFT and iRFT in terms
of the DFT and the operator Π as in Remark A.4 concludes our proof of Lemma A.7.

Proof Structure for Theorem 3.2: Our goal is to demonstrate that for L ≥ T − 2, any affine map x⃗ 7→ Ax⃗+ b⃗ can be
represented using a FITS architecture. We achieve this by characterizing the set of matrices representable within a
FITS framework. The detailed characterization is presented in Lemma A.8 and Lemma A.9, which will be introduced
subsequently. In Lemma A.8, we introduce a specific set of linear maps, illustrating their formulation as complex
matrix multiplications and detailing the process for deriving the corresponding matrix from the linear map. Lemma A.9
then ties these concepts directly to the FITS architecture, demonstrating how the linear map type discussed is integral
to FITS. This establishes a comprehensive characterization of matrices expressible via FITS. Following these lemmas,
we will prove that for L ≥ T − 2, this characterization includes all affine transformations x⃗ 7→ Ax⃗+ b⃗.

In order to prove Theorem 3.2 we must introduce the following set of complex matrices.

Lemma A.8. Let A denote the set of linear maps T : DFT (RL) → iDFT (RL+T ) which can be expressed as a composition
T = Π−1

L+T ◦W ◦ΠL where W is some
(
L+T
2 + 1

)
by

(
L
2 + 1

)
complex matrix. We claim that each T can be expressed as

12
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a complex matrix multiplication T (W ) : DFT (RL) → iDFT (RL+T ) where T (W ) is derived from W as follows:

(T (W ))ij =



Re(Wij), i ∈ {0, L+T
2 }, j = 0, L

2
1
2 (Wij), i ∈ {0, L+T

2 }, 0 < j < L/2
1
2 (W

⋆
i,L−j), i ∈ {0, L+T

2 }, j > L/2

Wij , 0 < i < L+T
2 , j ≤ L

2

0, 0 < i < L+T
2 , j > L

2

W ⋆
L+T−i,j , i /∈ {0, L+T

2 }, j = 0

W ⋆
L+T−i,L−j , otherwise


(6)

For example let T = 2 and L = 4 and let W be an arbitrary complex 4× 2 matrix. Then one has:

T (W ) = (Π−1
L+T (WΠL)) =


Re(W00)

W01

2 Re(W02)
W⋆

01

2
W10 W11 W12 0
W20 W21 W22 0

Re(W30)
W31

2 Re(W32)
W⋆

31

2
W ⋆

20 0 W ⋆
22 W ⋆

21

W ⋆
10 0 W ⋆

12 W ⋆
11

 (7)

Remark: In the statement of Lemma A.8, Π−1
L+T ◦W ◦ ΠL denotes the application of Π−1

L+T to each column of W and
applying ΠL to each row. The order of these operations makes no difference since ΠL is a projection.

Proof. Let W be some arbitrary complex matrix of dimension
(
L+T
2 + 1

)
by

(
L
2 + 1

)
. Let T be the linear map defined on

the domain DFT (RL) formed from the composition Π−1
L+T ◦W ◦ΠL. We begin by assuming that there exists a complex

T + L by L matrix T (W ) which is equivalent to this linear map and derive it’s structure. At the end we then show that it is
indeed equivalent to the linear map T .

As a projection onto the first 1+ L
2 components, ΠL can be written as an (L2 +1)×L matrix where the iith entry of ΠL is 1

and all other entries are zero. Right composing W by ΠL yields a single matrix equivalent to appending L
2 − 1 columns of

zeros to the right of W . That is:

(ΠW )ij =

{
Wij , for j ≤ L

2 + 1
0, otherwise

}
(8)

For example, in the case L = 4, T = 2;

W ◦ΠL =


W11 W12 W13

W21 W22 W23

W31 W32 W33

W41 W42 W43


1 0 0 0
0 1 0 0
0 0 1 0



=


W11 W12 W13 0
W21 W22 W23 0
W31 W32 W33 0
W41 W42 W43 0


Now, let B = (W ◦ ΠL) be some complex (T+L

2 × L) matrix. One may similarly write Π−1
L+T ◦ B, as a single matrix

D ∈ C((T+L)×L). Using the definition of Π−1
T+L (Definition A.3) we can derive the entries of the matrix D. We do

this by noting that the matrix D must satisfy DY⃗ = Π−1
L+T ◦ B for any Y⃗ ∈ DFT (RL). By equating the components

(DY⃗ )i = (Π−1
L+T ◦B)i, one may deduce the matrix D in terms of B.

Case 1: Let i = 0, L+T
2 .

13
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(DY⃗ )i = (Π−1
L+TBY⃗ )i := Re((BY⃗ )i) =

(BY⃗ )i+(BY⃗ )⋆i
2 . Therefore,

(DY⃗ )i =

L−1∑
j=0

DijYj =
1

2

( L−1∑
j=0

BijYj +B⋆
ijY

⋆
j

)

=

(
Bi0 +B⋆

i0

2

)
Y0 +

L−1∑
j=1

(
Bij +B⋆

i,L−j

2

)
Yj

As this holds for all Y⃗ ∈ DFT (RL), we may conclude; Di0 = Re(Bi0), Di,L/2 = Re(Bi,L/2) and otherwise; Dij =(
Bij+B⋆

i,L−j

2

)
.

Case 2: Let 0 < i < L+T
2 .

By the definition of Π−1
L+T we have (DY⃗ )i = (Π−1

L+TBY⃗ )i = (BY⃗ )i. Since this holds for all Y⃗ we must have Dij = Bij

for all j.

Case 3: Let i > L+T
2 .

Using Def. A.3 we may derive the following which holds for all Y⃗ ∈ DFT (RL):

(DY⃗ )i = (Π−1
L+TBY⃗ )i = (BY⃗ )⋆L+T−i

=⇒ (

L−1∑
j=0

DijYj) =

L−1∑
j=0

B⋆
L+T−i,jY

⋆
j

= (

L−1∑
j=1

B⋆
L+T−i,jYL−j) +B⋆

L+T−i,0Y0

Since Y⃗ ∈ DFT (RL) we know that Y0, YL/2 ∈ R and otherwise Yj = Y ⋆
L−j . It follows therefore that Di0 = B⋆

L+T−i,0

and Dij = B⋆
L+T−i,L−j for j > 0.

Below we summarise our findings, writing a general expression for the ijth component of D = Π−1
L+TB

(Π−1
L+TB)ij =


Re(Bij), i ∈ {0, L+T

2 }, j = 0
1
2 (Bij +B⋆

i,L−j), i ∈ {0, L+T
2 }, j ̸= 0

Bij , 0 < i < L+T
2

B⋆
L+T−i,j , i /∈ {0, L+T

2 }, j = 0

B⋆
L+T−i,L−j , otherwise

 (9)

We may combine Equation 9 with the earlier Equation 8 to establish a general form for the ijth element of Π−1
L+TWΠL:

T (W )ij := (Π−1
L+TWΠL)ij =



Re(Wij), i ∈ {0, L+T
2 }, j = 0, L

2
1
2 (Wij), i ∈ {0, L+T

2 }, 0 < j < L/2
1
2 (W

⋆
i,L−j), i ∈ {0, L+T

2 }, j > L/2

Wij , 0 < i < L+T
2 , j ≤ L

2

0, 0 < i < L+T
2 , j > L

2

W ⋆
L+T−i,j , i /∈ {0, L+T

2 }, j = 0

W ⋆
L+T−i,L−j , otherwise


(10)

This is precisely the characterisation given in Equation 10.

14
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Existence Proof: We have demonstrated the necessary structure for a complex matrix T (W ) that is equivalent to the linear
map Π−1

L+T ◦W ◦ΠL. The task now is to prove that such a complex matrix representation, T (W ), indeed exists.

The map Π−1
L+T ◦W ◦ΠL, being real-linear, can be represented by a real matrix M when considering its domain, DFT (RL),

as a real vector space of dimension 2L. The domain DFT (RL) consists of complex vectors (z0, z1, . . . , zL/2, . . . , zL−1),
with z0 and zL/2 real, and zi = z∗L−i for other indices, indicating complex conjugate pairs.

To transition from a real to a complex matrix representation, we exploit the structure of these complex vectors by expressing
the real and imaginary parts of zi as Re(zi) =

zi+z∗
i

2 and Im(zi) =
zi−z∗

i

2 , respectively. This approach allows for the real
matrix M , defined in terms of the real and imaginary components, to be reformulated as a complex matrix, thus confirming
the existence and formulation of T (W ) as a complex matrix multiplication.

Lemma A.9. Any FITS model can be expressed in the form x⃗ 7→ Ax⃗ + b⃗ where A ∈ D−1
L+T ◦ A ◦ DL and b⃗ ∈ RL+T .

Here A denotes the set of matrices introduced in Lemma A.8. Conversely, if x⃗ 7→ Ax⃗ + b⃗ is affine linear map such that
A ∈ D−1

L+T ◦ A ◦DL, then there exists a functionally equivalent FITS model.

Proof. We reiterate, that as a sequence of affine linear operations, FITS is a real affine linear model RL → RL+T . It follows
that any FITS model can be expressed in the form Ax⃗+ b⃗ for some choice of A ∈ R(L+T )×L and b⃗ ∈ RL. It remains to
show that for any FITs model, A can be selected from the family D−1

L+T ◦ A ◦DL.

We showed in Lemma A.7 that, if W, c⃗ are the weights matrix and bias of the complex linear layer in the FITS model then
b⃗ = iRFT (c⃗) and A = D−1

L+T ◦Π−1
L+TW ◦ΠL ◦DL.

Putting this together, we have

FITS(x⃗;W, c⃗) = D−1
L+T (Π

−1
L+TWΠL)DLx⃗+ iRFT (c⃗)

which can be compactly expressed as
FITS(x⃗;W, c⃗) = D−1

L+TBDL

where B = Π−1
L+TWΠL : DFT (RL) → iDFT (RL+T ) belongs to A as desired.

Since W can be any complex matrix then the converse also holds in that any linear map x⃗ 7→ Ax⃗ where A ∈ D−1
L+TADL

must be equivalent to a FITS model.

It remains to show that any bias b⃗ ∈ RL+T can be expressed in the form iRFT (c⃗) where c⃗ ∈ C
L+T

2 +1. This follows
from the bijectivity of the DFT. Specifically, we can obtain any b⃗ by letting c⃗ := RFT (⃗b). Then iRFT (RFT (⃗b)) =

iDFT ◦Π−1
L+T ◦ΠL+T ◦DFT (⃗b) = b⃗ by Remark A.5.

Having proved Lemma A.9 and the more technical Lemma A.8 we are now ready to prove Theorem 3.2.

Proof of Lemma 3.2

Proof. We showed in Lemma A.9 that every FITS model x⃗ 7→ FITS(x⃗;W, c⃗) can be written in the form x 7→ Ax⃗+ b⃗ where
A ∈ R(L+T )×L, b⃗ ∈ RL+T . Moreover we showed how one may obtain A, b⃗ from W, c⃗ via A = D−1

L+TΠ
−1
L+TWΠLDL and

b⃗ = iRFT c⃗. FITS outputs both a forecast and a reconstruction of the context. Consequently we may decompose A =

[
AL

AT

]
where AT ∈ RT×L is the matrix which produces a forecast from the context vector. We have already seen in Lemma A.9
that FITS imposes no restriction on our bias term b⃗. Our claim is that additionally, when L ≥ T − 2, any real T × L matrix

AT by be attained an appropriate selection of W . If we define the operator P : R(T+L)×L → RT×L by P

([
AL

AT

])
= AT

then we can formulate this claim as

L ≥ T − 2 =⇒ RT×L ⊆ P ◦D−1
L+T ◦ A ◦DL

15
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Since DL is bijective this may be equivalently be written as

RT×L ◦D−1
L ⊆ P ◦D−1

L+T ◦ A

Note that we already have the reverse inclusion P ◦D−1
L+T ◦ A ◦DL ⊆ RT×L by Lemma A.9.

We begin by characterising the space of matrices RT×L ◦ D−1
L . This is the space of matrices one gets when you apply

an inverse DFT to the rows of all real T × L matrices. That is, RT×L ◦ D−1
L is the subset of complex T × L matrices

where each row is in the set D−1
L (RL). These are precisely the complex vectors of length L where v0, vL/2 ∈ R and where

otherwise vi = v⋆L−i. For example, for T = 6, L = 4 the general form of RT×L ◦D−1
L can be written as follows where

lowercase denotes a real entry. 
b00 B01 b02 B⋆

01

b01 B11 b12 B⋆
11

b02 B21 b22 B⋆
21

b03 B31 b32 B⋆
31

b04 B41 b42 B⋆
41

b05 B51 b52 B⋆
51

 (11)

Using this fact, RT×L ◦D−1
L may be alternatively be characterised as the set of complex T × L matrices where the zeroth

and L/2th columns, c0, cL/2, are arbitrary real vectors and where otherwise all other columns are arbitrary complex vectors
subject to the condition ci = c⋆L−i. Written as a vector space isomorphism this is:

RT×L ◦D−1
L

∼= RT ⊕ CT ⊕ . . .⊕ CT︸ ︷︷ ︸
(L

2 −1) times

⊕RT ⊕ CT . . .⊕ CT︸ ︷︷ ︸
(L

2 −1) times

Using Lemma A.8 one may characterise A similarly in terms of its columns. The zeroth and L/2th columns are arbitrary
vectors in DL+T (RL+T ). For 0 < i < L/2 the ith column, ci, is an arbitrary complex vector of length T + L, subject
to the condition cij = 0 for j > (T + L)/2. For i > L/2 column ci satisfies the condition ci0 = cL−i,0 and otherwise
cij = c⋆L−i,L+T−j . In the case T = 2, L = 4 the general form for a matrix in A can be written as follows where lowercase
once again denotes a real entry: 

a00 A01 A02 a03 A⋆
02 A⋆

01

A10 A11 A12 A13 0 0
A20 A21 A22 A23 0 0
a30 A31 A32 a33 A⋆

32 A⋆
31

A⋆
20 0 0 A⋆

23 A⋆
22 A⋆

21

A⋆
20 0 0 A⋆

13 A⋆
12 A⋆

11


We will use the notation S to represent the space of complex vectors v⃗ ∈ C(L+T ) where vi = 0 for i > (T + L)/2.

S := {v⃗ ∈ C(L+T )|vi = 0, i > (T + L)/2}

Using this, one may write A as a vector isomorphism.

A ∼= DL+T (RL+T )⊕ S ⊕ . . .⊕ S︸ ︷︷ ︸
(L

2 −1) times

⊕DL+T (RL+T )⊕ S ⊕ . . .⊕ S︸ ︷︷ ︸
(L

2 −1) times

Remark: Note that in both cases A and RT×L ◦D−1
L are completely specified by their first (L/2)+1 columns since the for

i > L/2 column ci can be determined completely by cL−i

If AT is some arbitrary matrix in RT×L ◦ D−1
L we want to show that, when L ≥ T − 2, we can find W ∈ A where

P ◦D−1
L+T (W ) = A.
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We observe that the linear map P ◦D−1
L+T : CL+T → CT operates independently on each column of A. Thus, using the

decompositions given above for A and DL+T (RL+T ), we only need to show that:

RT ⊆ P ◦D−1
L+T (DL+T (RL+T ))

and

CT ⊆ P ◦D−1
L+T (S)

The former of these is trivial since DL+T is a bijection; hence P ◦D−1
L+T (DL+T (RL+T )) = P (RL+T ) = RT . To show the

second inclusion, we recollect that we already have P ◦D−1
L+T (S) ⊆ CT . Hence, we need only to show that the dimension

of the space P ◦D−1
L+T (S) is greater than T (the dimension of CT ).

We claim that dim(P ◦D−1
L+T (S)) = min(T, T+L

2 + 1). Hence, we have dim(P ◦D−1
L+T (S)) ≥ T ⇐⇒ T+L

2 + 1 ≥
T ⇐⇒ L ≥ T − 2 as required.

In order to demonstrate this claim, note that P ◦ D−1L+ T can be written as a T × (L + T ) matrix formed by taking
the bottom T rows of the matrix DL+ T−1. Then, due to the structure of S (namely, that vi = 0 for all i > T+L

2 ),
dim(P ◦ D−1L+ T (S)) is equal to the rank of the T ×

(
T+L
2 + 1

)
submatrix extracted from the bottom left of the

(L+ T )× (L+ T ) matrix DL+ T−1. If we can show that this submatrix has full row and column rank, then we are done.
Let a := min

(
T+L
2 + 1, T

)
and form the squared a× a matrix by discarding the excess rows or columns. We claim this

square matrix has rank a. This follows from the fact that this submatrix is a Vandermonde matrix generated from a root of
unity, thus it has a non-zero Vandermonde determinant and is therefore full rank.

B. Further Results and Experiments

Figure 5. The biases learned by the FITS, Linear, DLinear after being trained on ETTh1 for 50 epochs. We also include the bias learned
by the closed-form OLS linear regression. We note that, in line with theory from Section 3, we get the same bias for the DLinear, OLS and
Linear models. Notably the bias for FITS is substantially different. This is explained by the choice of normalisation used in the Fourier
transform in FITS.

C. FITS Bias Term - Detailed Breakdown
In this section we explain and breakdown Section 4.1 explaining how FITS operates as an almost bias-free model early in
training.

In Def A.1 we defined the DFT and its inverse. The definition we use is standard and in line the implementation used in
FITS 8. An alternative definition of the DFT instead defines it as follows:

DFTL(x⃗)j :=
1√
N

L−1∑
k=0

e
−2πikj

L xk (12)

8https://github.com/VEWOXIC/FITS/
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The inverse DFT is then defined as 1√
N
D∗

L where DL is as defined in Eqn. 4.

This second definition is identical, differing only in the choice of normalisation. This alternative definition is referred to as
the Normalised or Orthonormallly Normalised DFT. A key property of the normalised DFT is that it is distance-preserving.
By this we mean that ||DFT (x⃗)||2 = ||x⃗||2. On the contrary, the DFT as it is defined in Def. A.1 satisfies ||DFT (x⃗)||2 =√
N ||x⃗||2 where N is the number of components of the vector x⃗. In other words, the DFT as defined in Section 3.1.2

stretches distances by a factor of
√
N . The opposite of this is true for the inverse DFT so that ||iDFT (x⃗)||2 = 1√

N
||x⃗||2.

We saw in Lemma A.7 that any FITS model may be expressed in the form Ax⃗ + b⃗. Moreover if c⃗ denotes the bias in
FITS’s complex linear layer then we may obtain b⃗ via b⃗ = iRFT (c⃗). Since the iRFT is real-linear this means that b⃗ and
c⃗ are related via a matrix equation b⃗ = MC⃗ where C⃗ is the real vector obtained by splitting c⃗ into its real and imaginary

components C⃗ :=

[
⃗Re(c)
⃗Im(c)

]
Let us now consider what the ramifications are of learning b⃗ by stochastic gradient descent (SGD) using the parameterisation
b⃗ = MC⃗ rather than learning b⃗ directly. If v̄ denotes the derivative of the loss with respect to the variable v⃗: that is v̄ := ∂L

∂v⃗

and η denotes our learning rate then the gradient update using a naive parameterisation of b⃗ is:

b⃗ 7→ b⃗− ηb̄

Conversely, if we let b⃗ = MC⃗ and we instead learn C⃗ by gradient descent. One may show by the chain rule that C̄ := MT b̄.
Thus, using the same learning rate as before, this induces an update

C⃗ 7→ C⃗ − ηC̄ = C⃗ − ηMT b̄

=⇒ b⃗ 7→ b⃗− ηMMT b̄

Thus, this choice of parameterisation means that we get an update of MMT b̄ where naively we would have an update of b̄.

It should be immediately clear, that unless MMT is approximately distance preserving that we are effectively scaling the
learning rate of our bias b⃗. As we have discussed, because we are using a non-orthonormal normalisation M scales c⃗ in the
order of 1√

L+T
. Put together, this means that MMT is scaling c⃗ in the order of 1

L+T . FITS applies a scaling of L+T
L before

outputting the forecast which partially mitigates this. However in conclusion, b⃗ still has a learning rate approximately 1
L

times smaller than one would obtain through a naive parameterisation of b⃗.

As we saw, any FITS model can be expressed in the form Ax⃗+ b⃗. It is natural to ask whether this phenomena also impacts
the weight matrix A. In fact it does not. As a result the issue with the bias cannot simply be resolved by increasing the
learning rate as this would result in a learning rate which is too high for learning A. Let briefly sketch the reason why the
weight matrix doesn’t also have these issues. Crudely speaking the weight matrix W in FITS’s complex linear layer and A
are related via an expression of the A = M1WM2 where M1,M2 are real matrices corresponding to the iRFT and RFT
respectively. If one chooses to normalise the iRFT by 1

N this is then offset by the fact that the right multiplication M2 is
unnormalised. In terms of backpropagation rules we have:

W̄ = MT
1 ĀMT

2

Therefore, whereas under a naive parameterisation we would have an update of Ā, FITS gives us an update of
M1M

T
1 ĀMT

2 M2. Thus, whatever normalisation standard we use for the RFT; whether we normalise the RFT (M2)
by 1

N but not the iRFT (M1) or whether we normalise them both equally, leads the same update.

D. Further Proofs
D.1. DLinear

In Lemma 3.1 we write the padded moving average, utilised in DLinear to obtain the trend of x⃗, as a matrix multiplication
Dx⃗. In this part we explain the structure of D. We do this by means of an example: Consider the simple case where we have
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a context vector x⃗ of length 6 and we take a moving average with a kernel size of 3. In order to preserve dimension of x⃗ on
must pad either side of x⃗. We do this by repeating the first and last values twice before applying the moving average. That is:

(x1, x2, x3, x4, x5, x6) 7→ (x1, x1, x2, x3, x4, x5, x6, x6)

In general if we have a kernel size of K where K is odd then we must pad each side with K−1
2 repeated entries. (In DLinear

they use a kernel size of 25 (Zeng et al., 2023)).

This padding operation can be expressed in matrix form. For this example

x1

x1

x2

x3

x4

x5

x6

x6


=



1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1




x1

x2

x3

x4

x5

x6



The moving average of the expanded x⃗ is calculated by taking the arithmetic mean of each successive run of K = 3 values.
This may be written as a matrix multiplication:

1

3


1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1





x1

x1

x2

x3

x4

x5

x6

x6


(13)

We can combine these two operations into a single matrix multiplication to obtain

Dx⃗ :=
1

3


2 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 2




x1

x2

x3

x4

x5

x6


D.2. Closed Form Solution to Linear Regression

A well-known property of least-squares linear regression is that it admits a closed-form solution (Hastie et al., 2009). There
are a number of ways in which one may compute this solution numerically. Below we define one of the more common
approaches:

Definition D.1 (Closed-Form Solution). Let X denote the N × L design matrix containing our training data, and let Y
denote the N × T matrix of training targets. The L× T weight matrix W that minimises the training loss ∥XW − Y ∥22 is
given in closed form as follows:

W ⋆ = (XTX)−1XTY (14)

If the rank of X is less than L, indicating that X is rank-deficient, a unique solution may not exist. In such cases, a solution
can be obtained using the Moore-Penrose pseudo-inverse, denoted as (XTX)+, instead of the regular inverse.

In practice the solution given in Def. D.1 may be numerically unstable if XTX is ill-conditioned. In Section 5 we use the
more stable but more expensive SVD approach. Details of this may be found in Silva (2024).
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D.2.1. CLOSED FORM SOLUTIONS FOR LINEAR REGRESSION PLUS DATA NORMALISATION

Standard least-squares linear regression admits a closed-form solution. We claimed in Section 4 that the other model families
in Table 1, corresponding to RLinear and NLinear also admit a closed form solution under a least-squares loss. The reason
for this is that one can formulate each of these models as linear regression on a suitable feature set of x⃗.

In the following we will let X,Y be N × L and N × T denote matrices containing N training samples and their targets
respectively.

NLinear: Suppose that we wish to find the matrix Ã ∈ RT×L and bias b⃗ ∈ RT which minimises ||AXT + b⃗ − Y T ||2
subject to the condition that the rows of A must sum to one. Augment X and Y by computing the row-mean of X and
subtracting this off each of the rows of both X and Y . We denote the augmented matrices as X̃ and Ỹ . Specifically, for row
i; X̃i := Xi − µ(Xi) and Ỹi := Yi − µ(Xi). We now solve the unconstrained least-squares regression on these augmented
matrices. This yields a matrix A∗ and a bias b⃗ which minimises ||AX̃T + b⃗− Ỹ T ||2. This matrix is not uniquely defined
since one may add any multiple of the vector (1, 1, 1, . . . , 1) to each row and obtain the same train loss since 1⃗X̃ = 0⃗.
Thus, we can choose to project A so that each of it’s rows do sum to 1. We claim that this matrix minimises our original
constrained objective ||AXT + b⃗− Y T ||2.

Let x⃗, y⃗ be an arbitrary context-target pair. Let µ(x⃗)k be notation for a k-dimensional vector formed by taking the mean of
x⃗ and repeating this k-times. Since the rows of of A sum to one then Aµ(X)L = µ(X)T . Therefore:

||(Ax⃗+ b⃗− y⃗)||2 = ||(Ax⃗+ b⃗− y⃗) + µ(x⃗)TT − µ(x⃗)TT ||2
= ||(Ax⃗+ b⃗− y⃗) + µ(x⃗)TT − (Aµ(x⃗)L)

T ||2
= ||(A(x⃗− µ(x⃗)L) + b⃗− (y⃗ − µ(x⃗)T )||2

Therefore, any matrix A will get the same MSE on any pair x⃗, y⃗ as it will on the augmented versions x⃗−µ(x⃗)L, y⃗−µ(x⃗)T ).
It follows that A∗ obtains the same MSE on X̃, Ỹ as X,Y and vice versa. In particular if A∗ is also optimal for X̃, Ỹ then
it is too for X,Y . Thus, the matrix which we obtained by closed-form OLS on X̃, Ỹ satisfies the properties claimed.

RLinear: We showed that one can find a global optima for the NLinear models class in closed form when using a mean-
squares loss function. The same is true for RLinear and the constuction is much the same. We wish to find a matrix A
and bias b⃗ which minimise ||AXT + b⃗σ(X) − Y T ||2 subject to the condition that the rows of A must sum to one. Here
σ(X) denotes an N -dimensional vector formed of the standard deviation of the rows of X . AXT + b⃗σ(X) is equivalent
to augmenting X by appending σ(X) to X as an additional column and then fitting a (T + 1) × L matrix and no bias.
Having appended this columns we then proceed along the same lines as before; subtracting the row means from X and Y
and solving the resulting regression problem in closed form. One should be careful not to change the final column in this
process and not include σ(x) in the computation of the mean.

E. Experiment Details
Datasets: For our experiments in Section 5.2 we use 8 standard time series benchmarking datasets: ETTh1 and ETTh2:
7-channel hourly datasets (Train-Val-Test Splits [8545,2881,2881]). Their per-minute equivalents; ETTm1, ETTm2 (also
7-channel) (Train-Val-Test Splits [34465,11521,11521]). ECL, an hourly 321-channel Electricity dataset (Train-Val-
Test Splits [18317,2633,5261]), Weather, a per-10-minute resolution 21-channel weather dataset (Train-Val-Test Splits
[36792,5271,10540]), Traffic; an 862-channel traffic dataset (Train-Val-Test Splits [12185,1757,3509]) and Exchange: a
small 8-channel finance dataset (Train-Val-Test Splits [5120,665,1422]).

In each case we use the well-established dataset divisions and normalisation protocols. We refer the reader to (Wu et al.,
2021) for further details.

Models: The models we compare are DLinear, NLinear, RLinear, FITS and Linear (a single linear layer neural network).
We also run FITS+IN and DLinear+IN. FITS+IN corresponds to the implementation of FITS used in Xu et al. (2023).
Alongside these we run the closed-form solutions (OLS and OLS+IN). The mathematics behind these solutions are explained
in Sec D.2. These are implemented using the LinearRegression model from scikit-learn using an SVD solver.

Hyperparameters: For each model, dataset, and horizon combination we train for 50 epochs using a learning rate of 0.0005
and the Adam optimizer with the default hyperparameter settings. We use a batch size of 128 in all experiments. We track
the validation loss during training. At test time we load the model with minimal validation loss to evaluate on the training
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set, which is equivalent to early stopping. Each experiment is run (at least) 3 times using different random seeds and the
standard deviation of the MSEs is computed and given in Table 2. We test on prediction horizons of 96, 192, 336 and 720
which are the standard in the literature (Nie et al., 2022). In all cases we use a context length of 720, as per the setting used
by Xu et al. (2023). Our implementation of the DLinear model is taken from Zeng (2023). Our implementation of FITS is
taken from Zhijian (2023). We re-implemented the RLinear and NLinear models using the detailed descriptions of these
models in their respective papers (Zeng et al., 2023; Li et al., 2023).

Weight Comparison Experiments: In Section 5 we compare the weight matrices, biases and forecasts of the different
models. The hyperparameter settings are largely identical to those used to populate Table 2. One difference is that we
compare our weights/biases/forecasts at the end of 50 epochs of training rather than using early stopping. A second difference
is that the Figure 2 shows the cosine similarity over 350 training epochs and uses a learning rate of 0.0002 rather than 0.0005.
The purpose of this change was to demonstrate clearly the convergence behaviour of these models, which inevitably requires
a longer training run. All figures are obtained after training on the ETTh1 dataset. For the weight, forecast and cosine
similarity figures (Figures 1, 3, 2) we use a prediction horizon of 336, The bias figure (Figure 4) uses a horizon of 720.

F. Further Experiments
In Table 3, we analyse the performance of several recent state-of-the-art (SoTA) deep learning models on the datasets
referenced in Table 2, comparing them to the OLS+IN column in Table 2 and an additional setting that uses L2 regularisation:
OLS+IN+Reg. OLS+IN+Reg stands for Ordinary Least Squares with instance normalisation and L2 regularization
(commonly known as Ridge Regression). This method is implemented using the Ridge Regression function from the
SciKit-Learn library. The regularisation coefficient λ was set to 25000 for ETTh datasets and 500 otherwise (owing to the
small size of ETTh, more regularisation may be required). Future work should entail performing dataset-specific hyper
parameter searches with the validation splits.

Comparative analysis in Table 2 reveals that OLS+IN+Reg generally outperforms the standard OLS approach, particularly
in smaller datasets where overfitting is a concern for simple linear models. In contrast, for larger datasets, the performance
difference between Ridge Regression and standard OLS becomes negligible.

Table 3 further indicates that the performance of the OLS model is competitive with state-of-the-art models across various
dataset and horizon configurations. This suggests that despite significant advances in machine learning over the past decade,
the Linear Regression method implemented in SciKit-Learn remains highly effective. This observation supports the findings
of (Zeng et al., 2023), highlighting the enduring relevance of traditional regression techniques in contemporary predictive
modeling.

G. Further Discussion
G.1. Extracting the Weight Matrices

Suppose that we have a trained model of the form f(x⃗) = Ax⃗+ b⃗σ(x) and we wish to determine A and b⃗. The vector of
all ones has standard deviation equal to zero. Therefore passing in this vector we obtain f (⃗1) = A1⃗ =

∑L
i=1 Aji, i.e the

sum of the columns of A. Let L√
L−1

e⃗i be a multiple of the ith coordinate vector e⃗i, where the multiple is chosen so that the
vector has standard deviation equal to one. Passing in this vector for f we get:

f(e⃗i) =
L√
L− 1

Ae⃗i + b⃗σ

(
L√
L− 1

e⃗i

)
=

L√
L− 1

Ae⃗i + b⃗ =
L√
L− 1

A·,i + b⃗ (15)

One may solve this system of equations to derive A and b⃗. In particular,
∑L

i=1 f(e⃗i) = L⃗b+ L√
L−1

∑L
i=1 A·,i. So:

(√
L− 1

L

L∑
i=1

f(e⃗i)

)
− f (⃗1) = (

√
L− 1)⃗b

Having obtained b⃗ one can then use Eqn. 15 to derive the columns of A.
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Table 3. Long-term multivariate forecasting results, showing MSE values for 3 SoTA deep models.
T OLS+IN OLS+IN+reg PatchTST iTransformer DAM

E
T

T
m

1 96 0.307 0.307 0.303 0.342 0.308
192 0.336 0.336 0.334 0.381 0.343
336 0.365 0.365 0.364 0.418 0.351
720 0.415 0.415 0.416 0.489 0.407

E
T

T
m

2 96 0.162 0.161 0.166 0.183 0.170
192 0.216 0.216 0.222 0.253 0.220
336 0.268 0.268 0.274 0.315 0.232
720 0.349 0.349 0.361 0.412 0.325

E
T

T
h1

96 0.375 0.366 0.372 0.393 0.367
192 0.413 0.401 0.416 0.448 0.391
336 0.445 0.428 0.432 0.491 0.396
720 0.460 0.436 0.458 0.523 0.421

E
T

T
h2

96 0.270 0.268 0.276 0.300 0.280
192 0.331 0.329 0.339 0.381 0.338
336 0.353 0.351 0.364 0.424 0.346
720 0.380 0.378 0.391 0.431 0.392

E
C

L

96 0.133 0.133 0.129 0.149 0.154
192 0.148 0.148 0.148 0.165 0.171
336 0.164 0.164 0.164 0.178 0.176
720 0.203 0.203 0.200 0.215 0.237

Tr
af

fic

96 0.385 0.385 0.360 0.393 0.460
192 0.397 0.397 0.380 0.413 0.474
336 0.410 0.410 0.392 0.425 0.479
720 0.448 0.448 0.447 0.458 0.538

W
ea

th
er 96 0.141 0.142 0.148 0.176 0.154

192 0.184 0.185 0.193 0.225 0.191
336 0.234 0.235 0.244 0.282 0.203
720 0.307 0.307 0.315 0.361 0.280

E
xc

ha
ng

e 96 0.086 0.085 0.093 0.087 0.090
192 0.180 0.180 0.231 0.180 0.178
336 0.343 0.343 0.352 0.335 0.208
720 0.992 0.968 0.992 0.854 0.893

G.2. Performance Differences Between Approaches in Table 2

Difference in Performance: Referencing Table 2, models within the same class (i.e. with or without instance norm)
generally exhibit comparable performance across various datasets and forecast horizons. This is consistent with our
expectations since they define identical convex optimisation problems. For example, FITS, DLinear and Linear obtain
0.165, 0.164, 0.163 respectively on ETTm2 when T = 96. Typically, the DLinear and Linear models often differ only in
the third decimal. FITS occasionally diverges slightly from the other models (e.g. ETTh2 for T = 192). This is because,
as mentioned in Section 4.1 and Section C, its parameterization makes it act like a bias-free linear model. Variability in
performance is more pronounced on the Exchange dataset, which is noted for its randomness and lack of predictable signals,
thus providing a context where early stopping can be advantageous.

Constrained vs. Unconstrained: As shown in Table 2, OLS+IN generally outperforms the standard OLS solution.
Performance is better on the ETTh1, ETTh2, ETTm2, Weather and Exchange datasets and equivalent on the remainder.
Roughly speaking we observe that OLS+IN grants a modest gain on the smaller datasets 9. This is to be expected. The
weight matrix for OLS+IN is constrained whereas OLS is entirely unconstrained. This constraint can be a benefit on the
smaller datasets where one risks overfitting.

9For the Weather dataset, unlike the others, we train a separate model for each channel, aligning with the approach suggested by (Zeng
et al., 2023). This methodology effectively reduces the dataset size per model parameter, making it one of the smaller datasets in terms of
sample availability per parameter.
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G.3. Closed-Form versus SGD

OLS vs. SGD: Despite all models within a given class (e.g. without IN: DLinear, Linear, and FITS) theoretically
converging to the same optimum under an MSE loss, practical differences can emerge based on the training approach. This
subsection discusses SGD versus the closed-form OLS solution along four dimensions: early-stopping benefits, memory
constraints, stability, and computational costs.

Early-Stopping: Using SGD for training provides an opportunity to perform early stopping, since one is able to monitor
validation error during training, and, using this information, prevent a model from overfitting to the training data. However,
our analysis indicates negligible benefits from this strategy within the examined datasets. For instance, models employing
instance normalization such as OLS+IN, achieved comparable or better results than their SGD counterparts, underscoring
the limited advantage of early stopping under these conditions.

Stability, Memory, and Cost: The conventional closed-form OLS solution, reliant on the inversion of XTX , often
faces numerical stability challenges in cases of near-singularity or poor conditioning of the matrix. We address this by
incorporating a small L2 regularization term (λ = 0.00001) and opting for an SVD-based solver. Given that our datasets
typically have more observations than features, the SVD solver incurs a memory cost of O(N ×L) and a computational cost
of O(N × L2). Conversely an SGD approach will typically have the same computational complexity but with a reduced
memory complexity due to the need to store only a single batch in memory at each iteration. The O(N × L2) memory
cost of the SVD approach can be substantial for extensive datasets, such as those spanning several years on a per-second
basis. That said, one can easily sub-sample the training data (e.g., by randomly selecting 1M data points) to mitigate against
this: we ran experiments on the traffic and electricity datasets to validate this and observed only a negligible change in
performance. Furthermore, for very large datasets, online SVD techniques may also mitigate these costs.

Speed Comparison Empirical tests reveal that the OLS solution is generally faster than training comparable models via
SGD, though the exact speed differential will depend on specific hardware setups. Detailed timings for the OLS+IN solution
across various datasets and horizon lengths are presented in Table G.3 compared against DLinear and FITS trained with
early-stopping over 50 epochs with a batch-size of 12810. Results are reported as the mean and (unbiased) standard deviation
across four runs, each with a different seed, on an NVIDIA GeForce RTX 2080 Ti GPU. Notably, while the OLS solution is
executed on a CPU, the DLinear/FITS models are trained on a GPU. Despite this hardware disadvantage, the OLS solution
consistently proves to be an order of magnitude faster. We reiterate though that the differential will be highly contingent on
the hardware.

We used a batch size of 128 when training DLinear/FITS; for smaller batch sizes (as used in (Zeng et al., 2023)) the training
time will typically be longer. In order to do early stopping one needs to evaluate the model on the validation set after each
training epoch. We opt not to include the time taken to compute validation error in our computation of training time for
DLinear and FITS.

Conclusion In most scenarios, the OLS solution is obtained more quickly and either matches or surpasses the performance
of equivalent models (e.g., FITS) trained via SGD. The benefits of early stopping are generally minimal to nonexistent, and
the higher memory demands of the SVD solver are not prohibitive using the datasets on which we have tested.

In cases involving very large datasets where memory constraints are significant, training a linear model using SGD could
potentially offer advantages over a closed-form approach. Nonetheless, in such settings, we recommend employing a single
linear layer network over complex alternatives, as it converges to the same optima.

G.4. Limitations and Future Work

In Section 3 we show how Linear+IN and Linear+RevIN have the same model classes. While Linear+RevIN and Linear+IN
are identical in the single channel setting, they can differ subtly in the multi-channel setting. Specifically, in the setting
where one shares weights of the linear layer across channels, but allows RevIN separate affine parameters per channel, then
RevIN can have marginally different biases for each channel.

We wish to reiterate that our findings for FITS hold when the low-pass filter is not applied. As we have said, we are
motivated to understand each model under their optimal settings, as such we have ignored the LPF which typically hinders

10Other hyperparameters are sourced from (Zeng et al., 2023)
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Table 4. Mean Fitting Times with Unbiased Standard Deviations for OLS (SVD solver), DLinear, and FITS taken over four runs. Across
all datasets OLS-SVD is substantially faster than DLinear and FITS. The high variance in training time for DLinear and FITS is a
consequence of early stopping.

Model Horizon Mean Speed (s)±Std

OLS-SVD DLinear FITS

ETTh1

96 3.98±0.67 18.86±5.75 149.01±23.90

192 3.89±0.63 19.56±5.05 116.24±88.80

336 3.68±0.21 18.20±4.92 14.23±2.04

720 4.31±0.53 27.64±6.36 34.82±9.77

ETTh2

96 3.70±0.61 32.22±6.59 150.46±30.94

192 3.66±0.41 21.76±12.45 155.97±36.64

336 3.81±0.48 27.43±14.72 179.89±11.63

720 4.01±0.60 23.57±9.03 202.73±11.70

ETTm1

96 14.29±1.02 144.78±17.45 427.42±213.52

192 15.05±1.92 120.14±32.60 315.82±186.93

336 15.24±1.46 47.69±15.11 425.83±137.68

720 16.66±0.95 90.54±24.68 13.69±7.59

ETTm2

96 13.98±0.74 131.11±22.51 147.45±45.43

192 14.10±0.36 127.11±22.87 196.34±48.95

336 14.78±0.44 141.68±17.00 235.09±12.54

720 16.49±1.19 94.63±15.19 209.55±25.68

Weather

96 48.60±4.44 1081.91±786.08 579.84±4.75

192 49.12±3.72 1563.82±1120.49 550.85±26.82

336 51.18±4.16 1120.99±880.48 639.76±55.51

720 59.67±6.77 1574.74±870.11 708.11±52.76

performance. When one uses an LPF there will typically be restrictions on the model class meaning it is not equivalent to
unconstrained linear regression. A further analysis of this is required in future work.

One of the key contributions of FITS (Xu et al., 2023) is that it allows one to compress models by disregarding higher
frequencies during training. Having established how to map between FITS models and their underlying affine representations,
this opens the possibility of using the FITS technique to compress OLS solutions post hoc. This is something which should
be looked at in future work.
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