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Abstract

Zero-shot cross-lingual transfer learning has001
been shown to be highly challenging for tasks002
involving a lot of linguistic specificities or003
when a cultural gap is present between lan-004
guages, such as in hate speech detection. In005
this paper, we highlight this limitation on sev-006
eral datasets and investigate how training on007
multilingual auxiliary tasks – sentiment anal-008
ysis, named entity recognition, and tasks re-009
lying on syntactic information – impacts the010
zero-shot transfer of hate speech detection011
models across languages. We show the posi-012
tive impact of these tasks, particularly named013
entity recognition, for bridging the gap be-014
tween languages. Then, we present cases015
where the language model training data pre-016
vents hate speech detection models from bene-017
fiting from a knowledge proxy brought by aux-018
iliary tasks fine-tuning. Our results warrant019
further investigation on how to best address020
cultural gap issues in resource-scarce scenario.021

1 Introduction022

Given the impact social media hate speech can023

have on our society as a whole – leading to many024

small-scale “Overton window” effects – the NLP025

community has devoted considerable efforts to026

automatic hate speech detection using machine027

learning-based approaches, and proposed differ-028

ent benchmarks and datasets to evaluate their tech-029

niques (Dinakar et al., 2011; Sood et al., 2012;030

Waseem and Hovy, 2016; Davidson et al., 2017;031

Fortuna and Nunes, 2018; Kennedy et al., 2020).032

However, these systems are designed to be ef-033

ficient at a given point in time for a specific type034

of online content they were trained on. As hate035

speech evolves significantly across time, at differ-036

ent granularities (Florio et al., 2020), hate-speech037

models need to cope with its diachronic and syn-038

chronic variations. For example, more efficient on-039

line platforms censorship has forced social media040

users to adapt to these platforms’ filtering systems041

to avoid detection, through the evolution of their 042

lexicon and spelling variations, in an endless cat 043

and mouse game (Berger and Perez, 2016; Vidgen 044

et al., 2019). Furthermore, as noted by Markov 045

et al. (2021), the occurrence of new hate speech 046

domains, and their associated lexicons, hashtags, 047

etc. can be triggered by events, from local scope 048

incidents to world-wide crisis.1 The cultural aspect 049

also impacts hate speech in a synchronic fashion. In 050

particular, hate speech perception is highly variable 051

across languages, meaning that some slur expres- 052

sions can be considered not offensive in one lan- 053

guage, denoting an informal register nonetheless, 054

but will be considered offensive, if note hateful, in 055

another (Nozza, 2021). In this paper, we denote 056

this divergence as cultural gap. This notion is also 057

introduced by Cabrio et al. (2014), who study the 058

gap between languages in DBpedia entries. 059

In this work, we focus on cross-lingual varia- 060

tions of hate speech. In resource-scarce scenarios, 061

several works propose methods to transfer hate 062

speech detection models from one language to an- 063

other (Basile and Rubagotti, 2018; van der Goot 064

et al., 2018; Pamungkas and Patti, 2019; Ranas- 065

inghe and Zampieri, 2020). The main options are 066

either to use a multilingual language model-based 067

transfer learning architecture, or to train models 068

on a translation of the initial training data to the 069

target language (Rosa et al., 2021). However, hate 070

speech cultural and linguistic variations can lower 071

the transferability of hate speech detection mod- 072

els across languages. To overcome this limitation, 073

those methods need a certain amount of target lan- 074

guage training data, or efficient translation mod- 075

els, that are not available in low-resource scenar- 076

ios. The cultural and linguistic information spe- 077

cific to the monolingual hate speech target data 078

needs to be found elsewhere in our zero-shot trans- 079

fer setting. We hypothesize that this information 080

1e.g. Hate speech towards the Chinese communities in
2020 with the emergence of the COVID-19 Pandemic.
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may be captured through fine-tuning the languages081

model on resource-rich tasks in both the source and082

the target language of the transfer (van der Goot083

et al., 2021a). For example, sentiment features084

are sometimes used to support hate speech detec-085

tion. We also hypothesize that syntactic features086

learned through tasks such as dependency parsing087

can provide support for adapting hate speech de-088

tection models to new languages. Thus, our work089

focuses on zero-shots cross-language multitask ar-090

chitectures where no annotated hate speech data is091

available for our target languages but some anno-092

tated data for other tasks can be accessed. Using a093

multitask architecture (van der Goot et al., 2021b)094

on top of a multilingual model (XLM-R, Conneau095

et al., 2020), we investigate the impact of auxil-096

iary tasks operating at different sentence linguistics097

levels (POS Tagging, Named Entity Recognition098

(NER), Dependency Parsing and Sentiment analy-099

sis) on the transfer effectiveness. Following Nozza100

(2021)’s original set of languages and datasets (hate101

speech against women and immigrants, from Twit-102

ter datasets in English, Italian and Spanish), our103

main contributions are as follow:104

• Using a strictly comparable setting, we con-105

firm and highlight cultural gap issues for zero-106

shot cross-lingual transfer of hate speech de-107

tection.108

• Through our experiments, we identify aux-109

iliary tasks with a positive impact on cross-110

lingual transfer when trained jointly with hate111

speech detection: sentiment analysis and NER.112

The impact of syntactic tasks is more miti-113

gated, as the information they bring is highly114

language and domain-specific.115

• We confirm that as expected using a domain-116

adapted language model such as XLM-T117

(Barbieri et al., 2021) brings an orthogonal118

improvement to all configurations. Addition-119

ally, running random initialization of XLM-R120

results allowed us to precisely identify the121

cases where the XLM-R pre-training data ac-122

tually prevented the auxiliary tasks to favor an123

efficient cross-lingual transfer.124

2 Related work125

2.1 Enhancing language models with other126

tasks127

In order to improve the efficiency of a pre-trained128

language model for a given task, this model can un-129

dergo a preliminary fine-tuning on an intermediate130

task, before fine-tuning again on the downstream 131

task (Pruksachatkun et al., 2020). This system, 132

also called STILT, was formalized by Phang et al. 133

(2018), who perform sequential task-to-task pre- 134

training. More recently, Phang et al. (2020) deepen 135

the investigation by turning towards cross-lingual 136

STILT. They fine-tune a language model on nine 137

intermediate language-understanding tasks in En- 138

glish, and apply it to a set of non-English target 139

tasks. The efficiency of the systems differs a lot 140

depending on the tasks. One might expect that 141

English STILT would be less efficient than using 142

tasks in the target language. The authors show that 143

machine-translating intermediate task data for train- 144

ing, or using a multilingual language model, does 145

not improve the transfer compared to English train- 146

ing data. They also showed that multi-task training 147

on all intermediate tasks slightly outperforms sepa- 148

rately training on the tasks. 149

Finally, Pruksachatkun et al. (2020) perform a 150

survey of intermediate and target task pairs to ana- 151

lyze the usefulness of this intermediary fine-tuning. 152

To isolate the training effect on each task, they 153

train the language models on each task separately 154

before fine-tuning it on the target (downstream) 155

task. They find a low correlation between the ac- 156

quisition of low-level skills and downstream task 157

performance, while tasks that require complex rea- 158

soning and high-level semantic abilities such as 159

common-sense-oriented tasks have a higher bene- 160

fit. But overall, their results do not allow to draw 161

precise conclusions. 162

In the context of hate speech detection, when 163

auxiliary task training is applied, it is done al- 164

most exclusively with the sentiment analysis task 165

(Bauwelinck, Nina and Lefever, Els, 2019; Aroye- 166

hun and Gelbukh, 2021), and only in monolingual 167

scenarios. But additional information is sometimes 168

added to the hate speech classifier differently. Gam- 169

bino and Pirrone (2020), among the best systems 170

on the HaSpeeDe task of the EVALITA 2020, use 171

the POS-tagged text as input of the classification 172

systems, which is highly beneficial for Spanish and 173

a bit less for German and English. Furthermore, the 174

effect of syntactic information also is investigated 175

by Narang and Brew (2020), using classifiers based 176

on the syntactic structure of the text for abusive lan- 177

guage detection. Markov et al. (2021) evaluate the 178

impact of manually extracted POS, stylometric and 179

emotion-based features on hate speech detection, 180

showing that the latter two are robust features for 181
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hate speech detection across languages.182

2.2 Zero-shot cross-lingual transfer learning183

for hate speech detection184

Due to the lack of annotated data on many lan-185

guages and domains for hate speech detection, zero-186

shot cross-lingual transfer has been tackled a lot187

in the literature. Among the most recent work,188

Pelicon et al. (2021) investigate the impact of a189

preliminary training of a classification model on190

hate speech data languages different from the tar-191

get language; they show that language models pre-192

trained on a small number of languages benefit193

more of this intermediate training, and often out-194

performs massively multilingual language models.195

Nozza (2021), on which this paper builds upon,196

demonstrates the limitation of cross-lingual trans-197

fer for domain-specific hate speech – in particular,198

hate speech towards women – and explains it by199

showing examples of cultural variation between200

languages. Some notable hate speech vocabulary201

in one language may be used as an intensifier in202

another language2.203

3 The bottleneck of zero-shot204

cross-lingual transfer205

3.1 Hate speech corpora206

We use the same hate speech datasets as Nozza207

(2021), who relied on it to point out the limita-208

tions of zero-shot cross-lingual transfer. The cor-209

pora are in three languages: English (en), Spanish210

(es) and Italian (it). Each language is divided into211

corpora from two domains: hate speech towards212

immigrants and hate speech towards women.3213

Comparable settings. The corpora do not have214

the same size in the different languages and do-215

mains. Therefore, we build comparable corpora216

in each language and domain to ensure the com-217

parability of the transfer settings. We reduce all218

datasets to a total size of 2 591 tweets, the size of219

the smallest one, sampling from each original split220

separately; each train set has 1 618 tweets, each221

development set 173, and each test set 800. When222

sub-sampling the corpora, we make sure they stay223

comparable: we use the Kolmogorov–Smirnov test224

2Nozza (2021) gives the example of the Spanish word
puta often used as an intensifier without any misogynistic
connotation, while it translates to a slang version of “prostitute”
in English.

3The corpora come from various shared tasks that are listed
in Table 7 in Appendix A.

to compare the sentence length distribution (num- 225

ber of tokens) between the sampled and the original 226

datasets. We do the same for the percentage of hate 227

speech. The sampling is done randomly until the 228

similarity conditions with the original dataset are 229

met. Finally, we use the remaining observations 230

from the original datasets, that were not sampled to 231

be used in the train-dev-test sets, to create a blind 232

set. We down-sample each blind set to 1000 tweets, 233

except for the one in Spanish on the immigrants 234

domain, which is the smallest of all, thus having no 235

blind test. The original size for each dataset as well 236

as the sampling size for building the comparable 237

datasets can be found in Table 4 in Appendix A. 238

Pre-processing. We process the datasets by re- 239

placing all mentions and urls with specific tokens, 240

and segmenting the hashtags into words.4 Given 241

the compositional nature of hashtags (a set of 242

concatenated words), hashtag segmentation is fre- 243

quently done as a processing step in the literature 244

when processing tweets (e.g. Röttger et al. (2021)); 245

it can improve tasks such as tweet clustering (Gro- 246

mann and Declerck, 2017). 247

3.2 Experimental settings 248

For all our experiments, we use the MACHAMP 249

v0.2 framework5 (van der Goot et al., 2021b), a 250

multi-task toolkit based on AllenNLP (Gardner 251

et al., 2018). We keep the default hyperparame- 252

ters of MACHAMP for all experiments, which the 253

authors optimized on a wide variety of tasks. 254

We fine-tune a multilingual language model on 255

the hate speech detection task for each of the six 256

training corpora described in the previous section. 257

Then, we apply the model on the test set of each tar- 258

get language, investigating two settings: 1) mono- 259

lingual, i.e, training and testing on the same lan- 260

guage and domain for hate speech; 2) zero-shot, 261

cross-lingual, i.e. training on one and testing on 262

another. 263

The test sets sampled from the original corpora 264

are relatively small (800 observations). To increase 265

the robustness of the results, we use five different 266

seeds when fine-tuning a language model on the 267

hate speech detection task and report the average 268

macro-F1 over the five runs. We keep the best out 269

of 20 epochs for each run according to the macro- 270

F1 score on the development set. 271

4Using the Python package wordsegment.
5https://github.com/machamp-nlp/macha

mp, under the MIT license.
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3.3 Hate speech detection baseline272

In this section, we compare two language models:273

m-BERT (Devlin et al., 2019) and XLM-R (Con-274

neau et al., 2020). The latter shows slightly higher275

scores on average. We also ensure that switching276

to comparable corpora using the same model and277

hyperparameters leads to similar tendencies. The278

detailed results of these experiments can be found279

in Table 13 in Appendix C. Given the results that280

show similar tendencies, in all following exper-281

iments, we use the comparable datasets and the282

language model XLM-R.283

We report the results with the XLM-R model,284

following the settings described in the previous sec-285

tion, in Table 1a. To summarize the results, we286

aggregate them according to the two settings ex-287

posed in Section 3.2: monolingual (mono), and288

zero-shot cross-lingual (cross). Table 1b is the ag-289

gregated equivalent of Table 1a. For each domain290

(immigrants and women), we average the scores291

by setting: the “monolingual” columns show the292

average of all scores in italic in Table 1a, while293

the “cross-lingual” column is the average of the294

results for all scores in normal case. We also re-295

port the results from Nozza (2021), which show296

similar tendencies. In particular, we observe the297

phenomenon that raised the issue of zero-shot cross-298

lingual transfer: for the women domain, the models299

tested on Spanish and Italian test sets in a zero-shot300

setting have much lower scores compared to the301

immigrants domain (the cells are highlighted in red302

in the table). This is caused, as demonstrated by303

Nozza (2021), by the language-specific taboo in-304

terjections that lead the model to wrongly classify305

text as hateful towards women.306

On a side note, models trained and tested on307

the English corpus on the immigrants domain have308

particularly low scores. This phenomenon was also309

observed by Nozza (2021), and is explained by310

the authors by the presence of specific words and311

hashtags that were used for scraping the tweets and312

that lead the model to over-fit. This issue is further313

explored in the Discussion section.314

We build on these results to set up an experi-315

ment pipeline to study the impact of auxiliary task316

training on this problem. We describe the multi-317

task training pipeline in the following section. We318

experiment with tasks that rely on syntactic infor-319

mation, sentiment analysis which is related to hate320

speech detection, and named entity recognition. By321

using data for auxiliary tasks in both the source and322

the target language, we expect the auxiliary task 323

training to work as a bridge between the source 324

and target language, helping the cross-lingual trans- 325

fer by providing more information on the target 326

language and the difference between the two lan- 327

guages. 328

4 Auxiliary tasks training 329

We define several training tasks whose effect on 330

cross-lingual transfer of hate speech detection 331

models is to be evaluated: a sequence-level task, 332

sentiment analysis, and several token-level tasks: 333

Named Entity Recognition (NER) and a set syn- 334

tactic tasks that we gather – by misnomer – under 335

the term “Universal Dependency” (UD). The sen- 336

timent analysis and NER tasks allow the model to 337

learn high-level, semantic information, while the 338

UD tasks convey syntactic skills to the model. 339

4.1 Auxiliary tasks 340

Syntactic tasks. We investigate the effect of 341

adding syntactic information by using all Universal 342

Dependency (UD, Nivre et al., 2020) tasks (De- 343

pendency Parsing, Part-Of-Speech (POS) tagging, 344

lemmatization and morphological tagging). We use 345

the dataset EWT (Silveira et al., 2014), GSD and 346

ISDT (Bosco et al., 2014), for English, Spanish 347

and Italian respectively. The datasets being of dif- 348

ferent sizes, we sample them to obtain the same 349

training size in all languages. We use a train set 350

size of 12 543 lines, the size of the smallest dataset. 351

Detailed statistics about the datasets can be found 352

in Table 10 in Appendix A. 353

Sentiment analysis. We use Twitter sentiment 354

analysis datasets on each of our three target lan- 355

guages.6 They have been gathered and unified by 356

Barbieri et al. (2021), with a unique split size (train- 357

ing 1 839, development 324, test 870) and a bal- 358

anced distribution across the three sentiment labels 359

(positive, negative and neutral). Precise statistics 360

and additional information on each dataset can be 361

found in Table 8 in Appendix A. 362

Named Entity Recognition (NER). An advan- 363

tage of this task, which consists in identifying en- 364

tities in a sequence, is that it is more language- 365

agnostic than the others. Indeed, named entities 366

are often transparent between languages, making 367

it a good choice for cross-lingual transfer. We use 368

the NER WikiANN dataset from (Pan et al., 2017; 369

6https://github.com/cardiffnlp/xlm-t
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Model Source
lang

immigrants women

en es it en es it

m-BERT
Nozza (2021)

en 36.8 63.3 59.0 55.9 54.6 44.9
es 59.6 63.0 68.3 55.8 83.9 33.7
it 63.5 66.6 77.7 54.5 46.3 80.8

XLM-R
(comparable

data)

en 52.8 44.2 64.6 49.4 46.6 44.7
es 68.0 75.1 64.9 47.1 60.0 43.8
it 64.4 44.2 74.5 53.3 52.6 83.7

(a) Detailed baseline results. Monolingual transfer settings are high-
lighted in italic.

Model immigrants women

mono cross mono cross

m-BERT 59.2 63.3 73.5 48.3
(16.92) (3.37) (12.53) (7.78)

XLM-R 67.5 58.4 64.4 48.0
(10.38) (10.09) (14.34) (3.67)

(b) Aggregated baseline results, with standard devi-
ation of the scores under each average.

Table 1: Baseline results, both in a detailed and an aggregated fashion. All results except for the one from Nozza
(2021) are macro-F1 (%) averaged over 5 runs. All use 20 epochs. Numbers in brown highlight cases when the
zero-shot cross-lingual transfer fails.

Rahimi et al., 2019), which covers our three lan-370

guages. The sets of our languages have a unique371

split size (training 20 000 examples, development372

10 000, test 10 000).373

4.2 Multi-task learning pipeline374

We perform multi-task learning using the375

MACHAMP framework; it offers code to fine-tune376

contextual embeddings for several tasks and several377

datasets using a shared encoder and different de-378

coders depending on the target task. As our datasets379

have different sizes, we use a “smooth sampling”380

method proposed in the framework to avoid hav-381

ing under-represented datasets during training. It382

consists of re-sampling the datasets according to a383

multinomial distribution for each batch.384

We fine-tune the selected multilingual model,385

XLM-R, on the different auxiliary tasks. For each386

auxiliary task, the training is done jointly on the387

datasets in the three languages, which have been388

sampled to be of the same size. Only the language389

of the hate speech detection training corpus varies390

across the experiments.391

All combinations of the three auxiliary tasks392

are tested. In practice, the language model can393

be trained on the auxiliary tasks either in an in-394

termediary fashion before being fine-tuned on the395

downstream task (“sequential” setting, similarly to396

Pruksachatkun et al. (2020)), or jointly with the397

hate speech detection task (“joint” setting). Ac-398

cording to our experiments, the latter shows the399

best performance; we report only results with joint400

training in the paper. All results involving hate401

speech are obtained using the pipeline described in402

Section 3.2, averaging the macro-F1 over five dif-403

ferent runs. The last encoder layer of the language404

model is used to compute the scores.405

Auxiliary Task immigrants women

mono cross mono cross

XLM-R

None 67.5 58.4 64.4 48.0
Sent 3.0 3.7 1.7 -2.0
UD 2.9 -2.5 1.8 -3.2
NER 0.9 3.1 2.8 1.7
Sent+UD 4.0 5.1 1.1 -2.0
Sent+NER 0.2 3.7 3.3 -2.0
UD+NER -1.0 -1.6 2.0 -6.5
Sent+UD+NER -0.1 5.2 2.8 -2.6

XLM-T

None 67.8 60.3 68.1 53.7

Table 2: Hate speech detection macro-F1 scores (%)
of the XLM-R and XLM-T baselines, and deltas be-
tween the score of each XLM-R model fine-tuned on
the auxiliary tasks and the XLM-R baseline. Green
scores indicates when auxiliary task training has a positive
impact on hate speech detection. Sent stands for Sentiment.

5 Results 406

We analyze the training effect of different combina- 407

tions of auxiliary tasks on top of XLM-R, jointly 408

with monolingual hate speech detection. Aggre- 409

gated results for all tasks combinations can be 410

found in Table 2. Instead of the raw scores, we 411

compute the deltas between the baseline system 412

(no auxiliary task) and the augmented system with 413

training on various auxiliary tasks. For each topic 414

(immigrants and women), we average the deltas by 415

settings (monolingual and zero-shot cross-lingual), 416

as explained for Table 1b. For all of our exper- 417

iments, the non-aggregated results with the full 418

scores instead of the delta can be found in Ap- 419

pendix C, Table 14, Table 19 and Table 15. 420

Training on auxiliary tasks globally improves 421

monolingual hate speech detection in both domains, 422

immigrants and women (Table 2, columns mono). 423
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In the zero-shot cross-lingual transfer scenario424

(cross), we hypothesized that the additional infor-425

mation on the source and target languages could426

bridge the gap between the languages and improve427

the transfer for hate speech detection. Looking at428

the aggregated scores in Table 2, for the immigrants429

domain, all the auxiliary tasks lead to an improve-430

ment, except for UD. Jointly training on our three431

tasks gives the best improvements. However, for432

the women domain, auxiliary task training often433

has a detrimental effect on zero-shot cross-lingual434

transfer; for example, Table 3 shows the results435

on the problematic cases for the sentiment analysis436

auxiliary task. We only have an improvement when437

using the NER task. The cultural gap between the438

languages for this domain appears to be the cause439

of this discrepancy.440

As cross-lingual transfer using UD as auxiliary441

task often leads to a degradation of the perfor-442

mances of hate speech detection, we performed an443

ablation study to investigate the effect of lemmati-444

zation, dependency parsing, and POS-tagging sep-445

arately (see Table 18 in Appendix C). Most UD446

tasks lead to similarly low performances; only de-447

pendency parsing has a slightly better impact on448

hate speech detection.449

6 Impact of Language Model450

Pre-training on Auxiliary Tasks451

6.1 Randomly initialized language model452

Following the behavioral approach of Muller et al.453

(2021b) in order to identify the effect of the pre-454

trained contextual embeddings on our auxiliary455

tasks, we randomly initialize the parameters of all456

layers of XLM-R. Then, we fine-tune this model457

on our auxiliary tasks and conduct the same experi-458

ment as in the previous section.459

The macro-F1 scores are obviously lower than460

XLM-R scores due to the random initialisation.461

Moreover, the impact of the different auxiliary462

tasks (the deltas with the baseline score, with no463

auxiliary task) is most of the time lower when ran-464

domly initializing the XLM-R model. However,465

for the zero-shot cross-lingual transfer problematic466

cases, the effect of auxiliary tasks training is almost467

always higher. Thus, the XLM-R pre-training with468

a large amount of out-of-domain textual data seems469

to be detrimental to the knowledge transfer of the470

auxiliary tasks when a cultural gap between lan-471

guages hinders the zero-shot cross-lingual transfer.472

Table 20 in Appendix shows this behaviour for473

the aggregated results. A detailed example with 474

sentiment analysis as auxiliary task for these prob- 475

lematic cases can be found in Table 3. 476

6.2 Using Twitter-specific language models 477

and training datasets 478

We experiment with XLM-T (Barbieri et al., 2021), 479

an off-the-shelf XLM-R model fine-tuned on 200 480

million tweets (1,724 million tokens) scraped be- 481

tween 05/2018 and 03/2020, in more than 30 lan- 482

guages, including our three target languages. As 483

expected, without auxiliary task training, the in- 484

domain model leads to significantly better scores 485

overall compared to XLM-R (see the last line of 486

Table 2). However, the impact of auxiliary tasks on 487

the performance of hate speech detection is compa- 488

rable to the one observed with XLM-R: positive 489

in all settings except for the zero-shot cross-lingual 490

transfer in the women domain. One of the only 491

auxiliary tasks for which the auxiliary training ben- 492

efits from the Twitter-fine-tuned language model is 493

sentiment analysis (Table 3, aggregated results for 494

all tasks can be found in Table 20 in the Appendix). 495

Contrarily to Wikipedia, where data are highly 496

similar from one high-resource language to another, 497

Twitter data can significantly differ between lan- 498

guages due to cultural differences and events in the 499

respective countries. This issue is further discussed 500

in the next section. 501

Given the positive impact of using a language 502

model fine-tuned on Twitter data, we also use Twit- 503

ter data for our auxiliary tasks. The sentiment anal- 504

ysis corpora are already built from tweets. How- 505

ever, very few Twitter datasets are annotated in 506

Universal Dependencies or NER. 507

For our UD experiments, we use two corpora 508

of small size, in English and Italian only. We add 509

to our existing out-of-domain UD corpora for aux- 510

iliary training given their reduced size. However, 511

training on these augmented UD datasets does not 512

lead to any significant improvement. Details on 513

the Twitter UD datasets can be found in Table 9, 514

and hate speech detection results in Table 16 in 515

Appendix. 516

For our NER experiments, we use the WNUT16 517

NER shared task7 Twitter dataset (Strauss et al., 518

2016), only available in English (cf. Table 11 for 519

statistics of this dataset). Auxiliary training on this 520

dataset has a significant positive impact on hate 521

7The task focuses on finding 10 types of target entities,
including company, facility, geo-location, movie, music-artist,
other, person, product, sport team and TV show
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Model Source
lang es it

XLM-R
en 44.9 44.1
es 61.1 34.2†

it 47.3‡ 83.4

XLM-T
en 50.0 64.3
es 62.9 45.9†

it 48.0‡ 84.8†

XLM-R-
random-init

en 44.2 49.9
es 51.7 56.0‡

it 46.8 83.4

Table 3: Hate speech detection macro-F1 scores (%) of
all 3 models trained jointly with sentiment analysis,
for the problematic cases. Each model is compared with
its associated baseline, green scores indicates when auxiliary
task training has a positive impact on hate speech detection,
red otherwise. The subscript indicates whether the score is
significantly higher or lower compared to the baseline (see
Appendix B).

speech detection; the impact is higher than aux-522

iliary training on the out-of-domain NER corpus523

(NER WikiANN), even for non-English test sets.524

Results can be found in Table 17 in Appendix.525

7 Discussion526

On syntactic information, and the impact of UD527

auxiliary task training. We demonstrate the ef-528

fect variation when jointly training hate speech529

detection with auxiliary tasks: sentiment analysis,530

NER and UD tasks. Compared with the first two531

tasks, adding syntactic information has the low-532

est positive impact on hate speech detection, often533

decreasing the performance for zero-shot cross-534

lingual settings. This is in line with results from535

the literature that agree on the positive effect on536

sentiment analysis (del Arco et al., 2021; Aroyehun537

and Gelbukh, 2021), but face varying conclusions538

when it comes to UD tasks. Narang and Brew539

(2020) show the positive impact of syntactic fea-540

tures on top of non-contextualized embeddings for541

hate speech detection; Gambino and Pirrone (2020),542

among the best systems on the EVALITA2020 hate543

speech detection task, use POS-tagged text as input544

for classification. On the contrary, in a monolingual545

setting, Klemen et al. (2020) show that morpholog-546

ical features added to LSTM and BERT-based hate547

speech detection models do not help for comment548

filtering. Similarly, using sequential auxiliary train-549

ing of tasks such as POS tagging, Pruksachatkun550

et al. (2020) show that the resulting additional low-551

level information often leads to negative transfer552

for many downstream tasks.553

In our cross-lingual setting, our goal was to use 554

these tasks as a proxy to fill the mismatch between 555

languages and facilitate the transfer. We hypothe- 556

size that when working on tweets, their constrained 557

styles – short sentences, generally with low syntac- 558

tic complexity – make additional syntactic knowl- 559

edge unhelpful for a downstream task such as hate 560

speech detection, which benefits more from seman- 561

tic information. 562

On the quality of training datasets. We started 563

this work to understand the cultural gap in multi- 564

lingual hate speech datasets highlighted by Nozza 565

(2021). However, our results on the impact of aux- 566

iliary task training to bridge this cultural gap have 567

to be mitigated with the limitations of the datasets. 568

First, the baseline macro-F1 score for the hate 569

speech detection task (Table 1a) are often quite low, 570

even when the models are tested and evaluated on 571

the same language (e.g. a score of 59.2 on average 572

on the immigrants domain using m-BERT). The 573

scores of hate speech detection models trained on 574

the immigrants-English dataset are particularly low 575

(Table 1a). This might be due to the specificity of 576

this dataset: Two measures, namely the average 577

number of hashtags per tweet and the total number 578

of unique hashtags, show the large discrepancy in 579

hashtag distributions compared to the other datasets 580

(e.g. 2193 unique hashtags in the immigrants En- 581

glish dataset, compared to only 301 in Spanish). 582

Both statistics are around five times stronger in 583

English compared to the other languages (detailed 584

statistics can be found in Table 5 in the Appendix). 585

To confirm the influence of the source language 586

hashtag distribution on the model cross-lingual per- 587

formance, we removed all hashtags in all datasets, 588

and compared the hate speech detection score with 589

the ones on the datasets with hashtags8 (see Ta- 590

ble 6 in Appendix). Removing hashtags led to 591

an overall improvement of macro-F1 scores when 592

training models on the immigrants English dataset, 593

as noted by Nozza (2021). The results are simi- 594

lar when training on the immigrants Italian data, 595

which has the second-highest number of unique 596

hashtags (693). In a shared domain (e.g. interna- 597

tional football events, worlwide movie release, etc.) 598

, hashtags are often the same between languages; 599

thus, removing them should intuitively decrease the 600

cross-lingual transferability of the models. Here, 601

our results indicate that too many hashtags, even 602

8Recall that the default preprocessing in this work is the
segmentation of hashtags into words.
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segmented as words, possibly lead the language603

model to overfit and hinder a tweet-level task’s604

accuracy, such as hate speech detection.605

Cross-lingual zero-shot transfer on a domain606

with cultural gap between languages. We high-607

light that despite all the performance improve-608

ments from auxiliary task training for monolingual609

hate speech detection and cross-lingual zero-shot610

transfer, some “problematic cases” remain: situ-611

ations when cultural variations negatively impact612

the model’s ability to transfer knowledge from one613

language to another. It is especially the case in the614

women domain.615

Using XLM-R, the NER auxiliary tasks (with616

both WikiANN and WNUT16 datasets) lead to the617

best improvement of hate speech detection for cul-618

tural gap cases. Indeed, the cross-lingual transfer-619

ability of NER is facilitated by the fact that many620

named entities are the same across languages (e.g.621

person and organisation names); besides, many622

successful unsupervised cross-lingual transfer sys-623

tems for this task can be found in the literature624

(Rahimi et al., 2019; Bari et al., 2020). Thus, this625

task is well-suited to bridge the gap between lan-626

guages suffering from a variation between their627

hate speech. The other efficient method to improve628

cross-lingual zero-shot transfer is to use a language629

model fine-tuned on Twitter data. With and without630

auxiliary tasks fine-tuning, we showed this adap-631

tation’s significant and consistent positive impact.632

This is in line with the findings of Muller et al.633

(2021a); similarly, Bose et al. (2021) show the supe-634

riority of MLM over other tasks in a cross-corpora635

transfer setting. In a cross-lingual setting, van der636

Goot et al. (2021a) jointly train auxiliary tasks with637

a downstream task (in their case, spoken language638

understanding) to find that MLM fine-tuning con-639

sistently improves the downstream task.640

Beyond the obvious improvement due to the641

MLM training on more adapted data, we would642

have expected XLM-T to increase the impact643

of auxiliary tasks fine-tuning for the problematic644

cases, cross-lingual transfer on the women domain;645

a more adapted language model helping to bridge646

the gap between hate speech in the source and tar-647

get languages. Here, the Twitter data used for the648

XLM-T training may not be optimal for the ob-649

served cultural gap. It was trained on tweets pub-650

lished between 05/2018 and 03/2020, while the651

hate speech corpora range from 2017 to 2018, de-652

pending on the language; moreover, some events653

were specifically targeted when scraping Twitter for 654

hate speech detection (e.g., Gamergate victims for 655

the Italian datasets on hate speech towards women 656

(Fersini et al., 2018)). Overall, when we use XLM- 657

T, we only adapt the model to the form and style of 658

Twitter data (small sentences, with mentions and 659

urls. . . ). The tweets’ content, topic, and vocabulary 660

might differ a lot between the hate speech corpora, 661

the XLM-T training data, and the sentiment anal- 662

ysis corpora. We can only hypothesize on these 663

variations. However, they should be quantified to 664

understand better the impact of fine-tuning on these 665

data and to distinguish this phenomenon from the 666

actual cultural gap between languages. 667

8 Conclusion 668

We showed the positive impact of jointly training 669

hate speech detection with NER, sentiment anal- 670

ysis, and UD tasks. We highlighted problematic 671

cases where zero-shot cross-lingual transfer of hate 672

speech models towards women fails because of the 673

cultural gap between languages. In these cases, 674

we identify the two most efficient solutions: auxil- 675

iary training on the NER task and using a language 676

model fine-tuned on more adapted data. Finally, 677

we discussed limitations related to training data for 678

language model pre-training, auxiliary tasks, and 679

hate speech detection. In particular, we highlighted 680

how Twitter-specific fine-tuning acts as a “knowl- 681

edge proxy” to bridge the gap between languages. 682

In cases when not enough training data is available 683

for domain-adapted MLM fine-tuning, tasks such 684

as NER allow the model to discern common pat- 685

terns between the source and target languages and 686

transfer knowledge from one to another. 687

In a low-resource situation where in-domain hate 688

speech data is not available for training, generating 689

synthetic hate speech data has been investigated to 690

improve training (Wullach et al., 2021) and for do- 691

main adaptation (Sarwar and Murdock, 2021), but 692

only in a monolingual setting, for English. We plan 693

to investigate this research avenue in future work. 694

Meanwhile, we will release our code and models 695

upon publication in the hope that the community 696

will investigate the best way to tackle this cultural 697

gap between languages for hate speech detection. 698
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9 Ethical considerations699

This paper is part of a line of work aiming to tackle700

hate speech detection when we have no training701

data in the target language, fight the spread of of-702

fensive and hateful speech online, and have a pos-703

itive global impact on the world. Its goal is to704

understand if hate speech is transferable from a lan-705

guage to another; as such, it has been approved by706

our institutional review board (IRB), and follows707

the national and European General Data Protection708

Regulation (GDPR).709

We did not collect any data from online social710

media for this work. We only used publicly avail-711

able datasets – exclusively diffused for shared tasks712

that were tackled by a large number of participants713

(see Table 7 in Appendix A). These datasets do not714

include any metadata, only the tweet’s text associ-715

ated with the hate speech label. Thus, linking the716

annotated data to individual social media users is717

not straightforward.718

All our experiments were executed on clusters719

whose energy mix is made of nuclear (65–75%),720

20% renewable, and the remaining with gas (or721

more rarely coal when imported from abroad).722

More details on computational costs can be found723

in Table 12 in Appendix B.724

The presence of bias in the pre-trained languages725

models we use, due to the bias in the data they were726

trained on, may have an impact on the hate speech727

detection; particularly on the topic of hate speech728

towards women. This area of research is currently729

under heavy scrutiny by the community.730
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A Datasets overview1050

A.1 Hate speech datasets overview1051

Domain-language train dev test blind

immigrants-it 2000 500 1000 .
immigrants-en 4500 500 1499 .
immigrants-es 1618 173 800 .
women-it 2500 500 1000 .
women-en 4500 500 1472 .
women-es 2882 327 799 .

Comparable size 1618 173 800 1000

Table 4: Hate speech detection datasets: Size of full
datasets (number of sentences) and new split with com-
parable data size. Only the immigrants-es dataset has
no blind set.

immigrants women
en es it en es it

Nb of tokens per tweet

avg 26.1 21.5 17.4 17.9 20.9 18.6
median 25 19 18 18 19 15
max 55 59 30 63 59 55
min 1 1 2 2 1 2

Nb of hashtags (avg per tweet, total unique nb)

avg 1.33 0.2 0.6 0.18 0.18 0.2
unique 2193 301 693 510 451 369

Train/test OOV Ratio

0.34 0.43 0.41 0.41 0.51 0.48

Table 5: Descriptive statistics on hate speech detection
training datasets.

A.2 Auxiliary tasks datasets overview 1052

Treebanks additional pre-processing As the 1053

MACHAMP framework does not support the Connl 1054

UD format, treebanks must be converted back to 1055

the connl06 format, which most notably involved 1056

the removal of all contracted tokens, potentially 1057

leading to tokenization mismatches between our 1058

data sources. However, a rapid analysis showed 1059

that it has a very limited impact because of their 1060

low frequency and the generalization of sub-word 1061

tokenization. 1062

B Experimental Details. 1063

Language Models. In this paper, we use two lan- 1064

guage models: m-BERT (Devlin et al., 2019) and 1065

XLM-R (Conneau et al., 2020). The former is the 1066

multilingual version of BERT, trained on Wikipedia 1067

content in 104 languages, with 100 parameter. The 1068

latter has the same architecture as RoBERTa (Liu 1069

et al., 2019) with 550M parameters, and is trained 1070

on the publicly available 2.5 TB CommonCrawl 1071

Corpus, covering 100 languages. The checkpoints 1072

are loaded from the Transformers library. We con- 1073

ducted experiments with scalar mixing the 12 en- 1074

coder layers of the language model XLM-R in- 1075

stead of using only the last one, without obtaining 1076

better performances in the downstream task on av- 1077

erage. 1078

Statistical testing. To increase the robustness of 1079

the results, we use five different seeds when fine- 1080

tuning a language model on the hate speech detec- 1081

tion task and report the average macro-F1 over the 1082

five runs. In all results tables, for each score of 1083

experiments using auxiliary tasks, the subscript in- 1084

dicates whether the score is significantly higher or 1085

lower compared to the baseline. The comparison is 1086

made using a one-sided t-test over the list of scores 1087

of the five runs of each model.12 A dagger (†) as 1088

exponent indicates that the p-value is smaller than 1089

0.05, while a double-dagger (‡) indicates a p-value 1090

smaller than 0.01. 1091

Computational Costs. We conduct our experi- 1092

ments on RTX8000 GPUs. Our experiments were 1093

performed on a cluster hosted in a country with a 1094

nuclear mix of 80%. We have three models (XLM- 1095

R, XLM-T and XLM-R with random initializa- 1096

tion) that we test in 7 different auxiliary tasks com- 1097

12https://docs.scipy.org/doc/scipy/ref
erence/generated/scipy.stats.ttest_ind.h
tml.
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Preprocessing Source
lang

immigrants women
en es it en es it

segmented-
hashtags

en 52.8 44.2 64.6 49.4 46.6 44.7
es 68.0 75.1 64.9 47.1 60.0 43.8
it 64.4 44.2 74.5 53.3 52.6 83.7

removed-
hashtags

en 56.6 (3.8) 50.7 (6.5) 68.2 (3.6) 49.2 (-0.3) 44.7 (-1.8) 48.1 (3.4)
es 54.0 (-14.0) 64.4 (-10.7) 55.9 (-8.9) 50.8 (3.6) 52.6 (-7.4) 43.3 (-0.5)
it 65.1 (0.7) 48.5 (4.2) 74.6 (0.1) 54.0 (0.7) 51.0 (-1.6) 83.9 (0.2)

Table 6: Comparison of hate speech detection depending on the hashtags processing method: segmented-hashtags
(removing the "#" and tokenizing the hashtag to divide it into words) and removed-hashtags (removing all hashtags).
Number in parenthesis are the deltas with the scores on segmented-hashtags data. The colour indicated whether
the deltas are positive or negatives.

Shared task Link

Hateval https://github.com/msang/hateval
EVALITA AMi 2018 https://github.com/MIND-Lab/ami2018
HaSpeeDe 2018 https://github.com/msang/haspeede/tree/master/2018

Table 7: Shared tasks used for the Hate speech corpora.

Language Shared task Reference Scraping period

English SemEval 2017 Rosenthal et al. (2017) 01/2012–12/2015
Italian Intertass 2017 Díaz Galiano et al. (2018) 07/2016–01/2017
Spanish Sentipolc 2016 Barbieri et al. (2016) 2013–2016

Table 8: Data overview for the sentiment analysis task. All datasets contain text scraped from Twitter. They have
been unified to a common train / dev / test split size: 1 839 / 324 / 870.

Dataset Language train/dev/test size Period

Tweebank English 1,639 / 710 / 1,201 02/2016 – 07/2016
PoSTWITA Italian 5,368 / 671 / 674 07/2009 – 02/2013

Table 9: Twitter UD data overview.

Dataset Language train dev test

EWT9 English 12 543 2 001 2 077
GSD10 Spanish 14 187 1 400 426
ISDT11 Italian 13 121 564 482

Comparable size 12543 564 426

Table 10: Universal Dependencies (UD) datasets and
size of their respective splits.

Train Dev

# tweets 2,349 1,000
# tokens 46,469 16,261

# entity tokens 2,462 1,128

Table 11: Statistics of the WNUT 2016 NER shared
task dataset.

binations, with 5 seeds each. Details on the average1098

GPU time for the basic task combinations (jointly1099

training hate speech with one task) are in Table 12.1100

Task Duration

Hate only 0:14
Sentiment+Hate 0:21
UD+Hate 1:57
NER+Hate 2:18

Table 12: Duration of training one seed per model

C Complementary results 1101

C.1 Ablation study on UD tasks. 1102

As cross-lingual transfer using UD as an auxil- 1103

iary task often leads to a degradation of the per- 1104

formances of hate speech detection, we investigate 1105

the effect of lemmatization, dependency parsing, 1106

and POS-tagging separately. Table 18 shows the 1107

full results for all tasks. 1108

The results with each task separately are sen- 1109

sibly the same as with the 4 tasks trained jointly, 1110

often with no significant change, sometimes with 1111

13
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Model Source
lang

immigrants women
en es it en es it

Fu
ll

ra
w

da
ta

se
ts

m-BERT
Nozza (2021)

en 36.8 63.3 59.0 55.9 54.6 44.9
es 59.6 63.0 68.3 55.8 83.9 33.7
it 63.5 66.6 77.7 54.5 46.3 80.8

m-BERT
en 32.7 47.0 67.1 52.4 43.7 45.4
es 68.0 81.2 64.6 40.3 61.9 38.9
it 62.4 48.4 77.3 52.8 51.6 84.8

XLM-R
en 36.0 50.1 68.5 54.9 45.9 50.7
es 54.6 74.2 60.1 46.3 62.9 40.9
it 73.2 51.4 77.9 56.4 53.5 85.2

Fu
ll

pr
oc

es
se

d
da

ta
se

ts m-BERT
en 38.4 41.0 68.6 54.0 40.5 36.2
es 68.2 82.3 63.6 47.4 64.7 40.5
it 71.3 48.3 78.3 46.9 49.2 84.4

XLM-R
en 38.8 42.4 66.8 55.1 46.4 51.8
es 67.3 81.4 64.8 48.4 65.3 38.2
it 71.2 51.1 77.8 57.3 55.6 85.2

C
om

pa
ra

bl
e

pr
oc

es
se

d
da

ta
se

ts m-BERT
en 43.3 46.5 64.5 51.2 41.2 42.7
es 70.0 82.9 64.7 45.7 64.6 37.7
it 71.6 46.8 77.4 48.9 48.9 84.5

XLM-R
en 52.8 44.2 64.6 49.4 46.6 44.7
es 68.0 75.1 64.9 47.1 60.0 43.8
it 64.4 44.2 74.5 53.3 52.6 83.7

Table 13: Baseline results on full un-processed (raw) datasets, full pre-processed datasets (special tokens for
mentions and urls, hashtags segmentation), and comparable pre-processed datasets. All results except for the one
from Nozza (2021) are macro-F1 (%) averaged over 5 runs. All use 20 epochs. Numbers in brown highlight cases
when the zero-shot cross-lingual transfer fails.

performance degradation compared to the absence1112

of auxiliary task. In the case of monolingual hate1113

speech detection, UD auxiliary training sometimes1114

degrades the hate speech detection performance,1115

but mostly for English. Overall, UD-dependency1116

auxiliary task training leads to the highest and most1117

consistent improvement compared to the baseline.1118

C.2 In-domain UD datasets1119

We use two Twitter datasets annotated in Universal1120

Dependencies: the Tweebank corpus13 in English,1121

and PoSTWITA 14 in Italian. Detailed information1122

can be found in Table 9. As stated before, we pro-1123

cess the treebanks to remove the cases where words1124

are splitted or inserted. This situation happens for1125

17% of the lines in the raw English Treebank and1126

14% on the Italian one; we conclude that the impact1127

of this processing should be small.1128

We add these datasets, sampled to around 16001129

sentences – the size of the smallest one – to our UD1130

corpora. Training on this augmented dataset does1131

not improve the hate speech classification transfer1132

compared to the original UD datasets. However,1133

13https://github.com/Oneplus/Tweebank
14https://github.com/UniversalDependen

cies/UD_Italian-PoSTWITA

the small size of this additional data, besides the 1134

fact that one language is missing (Spanish), does 1135

not allow us to draw a meaningful conclusion on 1136

the impact of domain-specific UD data on cross- 1137

lingual transfer. 1138

14
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Auxiliary
task

Source
lang

immigrants women
en es it en es it

None
en 52.8 44.2 64.6 49.4 46.6 44.7
es 68.0 75.1 64.9 47.1 60.0 43.8
it 64.4 44.2 74.5 53.3 52.6 83.7

sentiment
en 50.1 55.8‡ 67.7† 53.6 44.9 44.1
es 70.6† 85.1 64.1 57.3† 61.1 34.2†

it 65.9 48.5 76.2 48.1‡ 47.3‡ 83.4

UD
en 50.3 41.9 60.2† 54.9 43.0 50.4
es 61.0† 84.4 60.7 54.3† 58.8 34.9†

it 62.3 49.4 76.2 36.9‡ 49.3 84.6

NER
en 43.7‡ 46.9 69.3‡ 52.0 46.8 58.0†

es 70.9† 85.0 63.5 43.1 65.4† 41.5
it 63.3 54.9† 76.4 55.1 53.7 84.1

sentiment+UD
en 53.4 56.3‡ 71.8‡ 52.7 51.7† 47.7
es 66.7 85.1 66.8† 52.8 59.6 30.9†

it 65.7 53.9† 76.0 46.3‡ 47.0† 84.0

sentiment+NER
en 40.4‡ 48.0 70.1‡ 56.2 41.3† 48.4
es 71.2‡ 85.5 66.0 45.8 63.5 39.5
it 66.9 50.3 77.2† 49.4† 51.6 83.3

UD+NER
en 37.9‡ 48.1 68.4‡ 53.5 44.0 53.4
es 68.1 84.7 52.6 44.7 62.1 34.5
it 63.9 54.7† 77.5 31.5‡ 46.9 85.7†

sentiment+UD+NER
en 38.2‡ 54.5‡ 71.5‡ 53.9 44.0 53.0
es 67.1 85.8 67.4† 49.3 63.1† 32.9†

it 67.4 53.9† 78.0† 45.3‡ 48.0† 84.4

Table 14: Hate speech detection macro-F1 scores (%) of XLM-R fine-tuned on various combinations of auxiliary
tasks jointly with the hate speech detection task. We compare each macro-F1 score with the baseline score (without
auxiliary task). Green values indicate an increase in score, red values a decrease. The subscript indicates whether
the macro-F1 of the model trained with the auxiliary tasks is significantly higher or lower compared to the model
without auxiliary task. The comparison is made using a one-sided t-test over the list of scores of the five runs of
each model. A dagger (†) as exponent indicates that the p-value is smaller than 0.05, while a double-dagger (‡)
indicates a p-value smaller than 0.01.
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Auxiliary
task

Source
lang

immigrants women
en es it en es it

XLMR-none
en 52.8 44.2 64.6 49.4 46.6 44.7
es 68.0 75.1 64.9 47.1 60.0 43.8
it 64.4 44.2 74.5 53.3 52.6 83.7

None
en 46.4 56.7 59.8 60.7 49.6 61.1
es 65.7 84.2 66.2 60.6 59.9 38.8
it 58.9 54.6 72.8 57.0 54.8 83.7

sentiment
en 43.8 58.6 70.2† 57.0† 50.0 64.3
es 65.8 86.9‡ 67.2 54.0† 62.9 45.9†

it 58.6 55.7 76.2‡ 56.9 48.0‡ 84.8†

UD
en 52.2 57.6 65.4 57.4† 43.7‡ 59.2
es 65.5 85.6† 62.0† 55.7 58.3 33.0†

it 55.6 54.3 73.9 36.1‡ 45.3‡ 85.3‡

NER
en 42.3 51.2 69.4† 59.3 42.3‡ 59.4
es 67.9 86.1‡ 66.0 63.4 64.4† 43.4
it 66.2† 61.8† 78.5‡ 52.7 57.6† 85.5‡

sentiment+UD
en 45.7 53.2 68.6† 59.5 46.5 64.4
es 65.9 87.1‡ 67.0 57.6 61.8 37.9
it 62.0 55.0 76.7‡ 54.3 48.4‡ 84.8†

sentiment+NER
en 40.7† 53.2 70.3† 60.5 43.8† 56.7
es 69.9‡ 86.9‡ 66.9 61.4 66.5‡ 43.6
it 65.5 58.9 77.9‡ 56.7 51.0‡ 84.6

sentiment+UD+NER
en 38.7‡ 56.4 71.2† 59.0 46.0† 57.6
es 67.0 86.3† 67.8 58.7 64.8† 39.7
it 61.4 55.6 79.1‡ 54.9 47.7‡ 84.6

Table 15: Hate speech detection macro-F1 scores (%) of XLM-T fine-tuned on various combinations of auxiliary
tasks jointly with the hate speech detection task. We compare each macro-F1 score with the baseline score (without
auxiliary task). Green values indicate an increase in score, red values a decrease. The subscript indicates whether
the macro-F1 of the model trained with the auxiliary tasks is significantly higher or lower compared to the model
without auxiliary task. The comparison is made using a one-sided t-test over the list of scores of the five runs of
each model. A dagger (†) as exponent indicates that the p-value is smaller than 0.05, while a double-dagger (‡)
indicates a p-value smaller than 0.01.

Source
lang

immigrants women
en es it en es it

en 50.1 44.8 64.5 56.5 41.1‡ 61.7†

es 62.5‡ 83.7 54.5‡ 51.3 59.5 36.9
it 56.1 46.0 76.7 41.7‡ 48.1 84.7

Table 16: Hate speech detection macro-F1 scores (%) of XLM-T fine-tuned on UD Twitter jointly with the hate
speech detection task. We compare each macro-F1 score with the baseline score (without auxiliary task). Green
values indicate an increase in score, red values a decrease. The subscript indicates whether the macro-F1 of the
model trained with the auxiliary tasks is significantly higher or lower compared to the model without auxiliary task.
The comparison is made using a one-sided t-test over the list of scores of the five runs of each model. A dagger (†)
as exponent indicates that the p-value is smaller than 0.05, while a double-dagger (‡) indicates a p-value smaller
than 0.01.
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Source
lang

immigrants women
en es it en es it

en 47.5 49.7 67.8‡ 58.4† 45.7 61.8†

es 66.2 83.1 65.2 47.3 61.9 40.9
it 63.5 50.3 76.2 54.4 54.0 83.7

Table 17: Hate speech detection macro-F1 scores (%) of XLM-T fine-tuned on NER Twitter jointly with the hate
speech detection task. We compare each macro-F1 score with the baseline score (without auxiliary task). Green
values indicate an increase in score, red values a decrease. The subscript indicates whether the macro-F1 of the
model trained with the auxiliary tasks is significantly higher or lower compared to the model without auxiliary task.
The comparison is made using a one-sided t-test over the list of scores of the five runs of each model. A dagger (†)
as exponent indicates that the p-value is smaller than 0.05, while a double-dagger (‡) indicates a p-value smaller
than 0.01.

Auxiliary
task

Source
lang

immigrants women
en es it en es it

UD-dependency
en 50.6 45.8 67.4‡ 54.5 47.3 52.0
es 62.3‡ 84.9 61.7† 51.2 60.1 34.3†

it 64.0 48.0 74.8 53.7 51.7 84.2

UD-lemma
en 51.0 37.7† 54.7† 54.4 40.2‡ 51.5
es 61.8‡ 84.0 61.8‡ 42.7 56.1 33.3†

it 57.1† 43.0 76.0 51.4 50.6 84.3

UD-UPOS
en 52.9 43.8 64.7 53.6 41.7 50.0
es 65.6† 84.4 63.6 54.4 56.3 36.1
it 67.3 44.1 75.3 51.6 57.0‡ 84.6

UD-UPOS+dependency
en 53.7 44.4 65.6 50.2 46.7 48.5
es 61.1‡ 83.0 64.4 53.5 59.3 36.3
it 64.0 47.3 75.7 47.5† 46.7† 83.7

Table 18: Ablation study: Hate speech detection macro-F1 scores (%) of XLM-R fine-tuned on the different UD
tasks jointly with the hate speech detection task. We compare each macro-F1 score with the baseline score (without
auxiliary task). Green values indicate an increase in score, red values a decrease. The subscript indicates whether
the macro-F1 of the model trained with the auxiliary tasks is significantly higher or lower compared to the model
without auxiliary task. The comparison is made using a one-sided t-test over the list of scores of the five runs of
each model. A dagger (†) as exponent indicates that the p-value is smaller than 0.05, while a double-dagger (‡)
indicates a p-value smaller than 0.01.
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Auxiliary
task

Source
lang

immigrants women
en es it en es it

None
en 44.4 46.7 58.2 53.6 41.2 46.0
es 52.5 74.4 52.2 47.1 53.2 48.0
it 52.7 50.7 73.4 47.4 48.3 83.9

sentiment
en 44.5 53.4† 62.2† 54.7 44.2 49.9
es 48.7† 74.7 57.5‡ 41.2‡ 51.7 56.0‡

it 52.6 54.8‡ 71.0‡ 40.0‡ 46.8 83.4

UD
en 55.2‡ 45.6 52.7 50.6† 42.5 42.5
es 54.7 74.2 49.9 46.7 52.4 52.5‡

it 50.8 48.0 73.4 44.9 45.7 81.2‡

NER
en 41.5 46.3 57.2 54.4 49.4‡ 45.6
es 55.2† 74.1 53.6 48.9 55.1† 49.9
it 50.9 45.3‡ 72.5† 41.1‡ 50.0 83.9

sentiment+UD
en 52.5† 52.4† 61.9† 51.8 51.7‡ 48.1
es 49.6 74.6 54.8 46.1 52.2 56.6‡

it 53.0 57.8‡ 72.5† 42.5‡ 46.0 81.6‡

sentiment+NER
en 38.4 57.1† 60.2 49.6 45.6 51.6
es 56.0 73.3 53.2 42.1 54.9 54.3
it 49.3† 51.8 72.7 37.5‡ 46.4 81.7†

sentiment+UD+NER
en 37.9† 51.2† 60.6† 51.9 52.7‡ 48.1
es 51.4 74.2 55.1 47.5 54.8 56.6‡

it 51.8 54.9† 72.0† 39.7‡ 45.6 82.0‡

Table 19: Hate speech detection macro-F1 scores (%) of a randomly initialized XLM-R model, fine-tuned on
various combinations of auxiliary tasks jointly with the hate speech detection task. We compare each macro-
F1 score with the baseline score (without auxiliary task). Green values indicate an increase in score, red values a
decrease. The subscript indicates whether the macro-F1 of the model trained with the auxiliary tasks is significantly
higher or lower compared to the model without auxiliary task. The comparison is made using a one-sided t-test
over the list of scores of the five runs of each model. A dagger (†) as exponent indicates that the p-value is smaller
than 0.05, while a double-dagger (‡) indicates a p-value smaller than 0.01.
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Auxiliary Task immigrants women
mono cross mono cross

XLM-R

None 67.5(10.38) 58.4(10.09) 64.4(14.34) 48.0(3.67)

UD 2.9(4.87) -2.5(3.79) 1.8(2.80) -3.2(8.10)

NER 0.9(7.79) 3.1(4.05) 2.8(2.04) 1.7(5.55)

sentiment 3.0(5.27) 3.7(3.85) 1.7(1.87) -2.0(6.18)

sentiment+UD 4.0(4.23) 5.1(4.84) 1.1(1.58) -2.0(6.96)

sentiment+NER 0.2(9.44) 3.7(1.68) 3.3(2.92) -2.0(2.98)

sentiment+UD+NER -0.1(10.62) 5.2(4.05) 2.8(1.56) -2.6(6.36)

UD+NER -1.0(10.25) -1.6(11.48) 2.0(0.94) -6.5(8.05)

XLM-T

None 67.8(15.80) 60.3(4.30) 68.1(11.01) 53.7(7.67)

UD 2.8(2.13) -0.2(3.19) -1.1(2.07) -8.2(6.12)

NER 1.2(4.05) 3.4(5.17) 1.7(2.44) -0.6(4.30)

sentiment 1.1(2.70) 2.4(3.66) 0.1(2.85) -0.5(5.01)

sentiment+NER 0.7(4.66) 3.8(4.38) 2.4(2.99) -1.5(3.60)

sentiment+UD 2.1(1.99) 1.6(3.75) 0.6(1.35) -2.2(2.92)

sentiment+UD+NER 0.2(5.85) 2.9(3.90) 1.4(2.76) -2.9(2.39)

UD+NER -0.7(6.59) 1.7(3.92) -0.3(2.79) -9.1(8.71)

XLM-R-random-init

None 64.1(13.91) 52.2(3.41) 63.5(14.38) 46.3(2.42)

UD 3.5(5.13) -1.9(2.27) -2.2(0.98) -0.5(2.76)

NER -1.4(1.10) -0.8(2.55) 0.9(0.80) 1.1(4.25)

sentiment+NER -2.6(2.40) 2.4(4.14) -1.5(2.36) -0.1(6.04)

sentiment -0.7(1.19) 2.7(3.59) -0.3(1.07) -0.0(5.51)

sentiment+UD 2.5(4.01) 2.8(3.35) -1.7(0.54) 2.2(5.64)

sentiment+UD+NER -2.7(2.71) 2.0(2.25) -0.7(1.68) 1.8(6.36)

Table 20: Aggregated results for all models. For each model, we compute the deltas between the auxiliary task
training and the baseline hate speech detection. For each domain (immigrants and women), we average the scores
by setting: monolingual (mono), and zero-shot cross-lingual (cross). Variances between averaged results in each
settings (e.g., the three cases where the training and test data are in the same language for each domain, for the
mono setting) are in gray next to the deltas. )
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