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Abstract

Large language models (LLMs) can internally distinguish between evaluation and1

deployment contexts, a behaviour known as evaluation awareness. This undermines2

AI safety evaluations, as models may conceal dangerous capabilities during testing.3

Prior work demonstrated this in a single 70B model, but the scaling relationship4

across model sizes remains unknown. We investigate evaluation awareness across5

15 models scaling from 0.27B to 70B parameters from four families using linear6

probing on steering vector activations. Our results reveal a clear power-law scaling:7

evaluation awareness increases predictably with model size. This scaling law8

enables forecasting deceptive behavior in future larger models and guides the design9

of scale-aware evaluation strategies for AI safety. A link to the implementation of10

this paper can be found at github.com/eval-awareness-scaling-laws.11
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Figure 1: Scatter plot with a smoothed trend line that shows AUROC absolute distance from 0.5 as
a function of model size (billions of parameters, log scale). Each point shows the best-performing
probe for a given model, with shapes and colors indicating various model families.

1 Introduction12

Large language models (LLMs) can internally distinguish between evaluation and deployment13

contexts—a behavior known as evaluation awareness that fundamentally undermines AI safety14

evaluations [Nguyen et al., 2025]. When models recognize they are being tested, they may conceal15

dangerous capabilities during safety assessments or strategically alter their outputs to achieve desired16
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benchmark scores [Abdelnabi and Salem, 2025, Chaudhary and Barez, 2025]. This capability poses17

critical risks for AI governance: if models can detect evaluation contexts, then our primary tools for18

assessing model safety and capability become unreliable guides for deployment decisions.19

Prior work demonstrated evaluation awareness in a single 70B model, but the scaling relationship20

across model sizes remains largely unknown [Nguyen et al., 2025]. Without understanding how21

evaluation awareness scales with model size, we cannot neither predict its emergence in future larger22

models, nor design appropriate mitigation strategies. This knowledge gap is critical to understand as23

models continue scaling.24

We investigate evaluation awareness across 15 models ranging from 0.27B to 70B parameters from25

four major families using linear probing on steering vector activations. For each model, we construct26

paired conditions contrasting “deployment” contexts simulating normal usage with “test” contexts27

designed to implicitly signal evaluation. Linear probes trained on hidden states from these conditions28

reveal whether internal activations encode awareness of being evaluated, following the methodology29

of [Nguyen et al., 2025].30

Our analysis reveals that evaluation awareness follows a clear power-law scaling relationship with31

model size, enabling quantitative forecasting of this capability in future larger models (Figure 1).32

We tested models spanning general-purpose architectures (LLaMA 3.1), reasoning-oriented models33

(Gemma-3, Phi-3), and GPT-family models (GPT-OSS), demonstrating that this scaling law holds34

consistently across different model families and training paradigms. Our findings contribute three35

key insights:36

1. Evaluation awareness scales: We establish a scaling relationship between model size and37

evaluation awareness across four model families.38

2. Cross-family generalization: We demonstrate that evaluation awareness scales consistently39

across different architectures and training approaches.40

3. Layer-wise variation: Different model families exhibit evaluation awareness at similar41

relative depths, but exact layer-wise patterns vary across families.42

2 Related Work43

Evaluation awareness. Evaluation awareness refers to a model’s ability to recognize whether it44

is under evaluation or in real-world deployment and to adjust its behavior accordingly. Prior work45

has shown that larger models increasingly detect evaluation contexts [Nguyen et al., 2025], and that46

this awareness can be amplified or suppressed through steering interventions. Building on these47

foundations, we focus on the generalization of evaluation awareness across different model families.48

Benchmark reliability. The broader concern motivating evaluation-awareness research is the49

reliability of benchmarks themselves [Xu et al., 2024]. Studies have highlighted how models can50

detect or exploit evaluation artifacts [Perez et al., 2022], and recent surveys emphasize the growing51

mismatch between static benchmarks and real-world deployment behavior [Wehner et al., 2025,52

Robinson and Burden, 2025]. We aim to clarify how evaluation awareness emerges across diverse53

model families and to inform the design of more robust evaluation frameworks moving forward.54

3 Methods55

3.1 Model selection56

To systematically study scaling laws in evaluation awareness, we designed experiments across 1557

models spanning from 0.27B to 70B parameters. We categorized our experiments along three58

dimensions: (1) scaling by size, (2) scaling across families, and (3) model type restrictions, with59

additional exclusion criteria applied to ensure consistent interpretation of results.60

Scaling by size. Within each model family we selected checkpoints covering multiple orders of61

magnitude, from Gemma-3-it (0.27B, 1B, 4B, 12B, 27B) to LLaMA-3.1-instruct (8B, 70B), allowing62

us to trace trends across both small and frontier models.63

Scaling across families. To avoid biases tied to any single architecture, we included models from64

four distinct reasoning families: Gemma, Phi-3, GPT-OSS, and LLaMA-3.1.65
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Model type restrictions. We limited our study to instruction-tuned reasoning models. Instruction-66

tuning provides standardized chat templates designed by model developers (e.g. HuggingFace),67

ensuring consistent tokenization. We validated this choice by testing GPT-OSS-20B with alternative68

templates (see Appendix 6.2).69

Exclusion criteria. Qwen models were excluded due to anomalous awareness patterns concentrated70

in semantic layers, consistent with prior reports of benchmark contamination and reasoning artifacts71

[Wu et al., 2025, Zhu et al., 2025, Abdelnabi and Salem, 2025]. Full results are in Appendix 6.3.72

3.2 Probe training73

We adopt the linear probe training methodology introduced by [Rimsky et al., 2024, Liu et al., 2023,74

Geiger et al., 2025] to capture causal relationship applied by [Nguyen et al., 2025] for discovering75

evaluation awareness. For each N-layer model used, prompts from a synthetic contrastive dataset76

constructed by [Nguyen et al., 2025] were passed through while capturing residual stream activations77

at every transformer layer. For each layer, we computed a probe vector v as the normalized mean78

difference between testing and deployment activation sets. This resulted in N probes per model tested.79

Each probe was applied to model activations from the Situational Awareness Dataset (SAD) Stages80

Oversight subset [Laine et al., 2024], which provides labels distinguishing testing from deployment81

contexts. For each SAD prompt, the residual stream activations at the probe’s target layer were82

projected onto the probe vector and averaged to produce a probe score. A classification threshold was83

determined by maximizing Youden’s J statistic on SAD, and the area under the ROC curve (AUROC)84

was then computed to evaluate probe performance.85

3.3 Cross-model evaluation86

A key novelty of our methodology is that we apply probe training and evaluation across models of87

varying sizes and architectural families. While prior work [Rimsky et al., 2024] [Nguyen et al., 2025]88

primarily focused on a single model class, our study systematically compares probe performance89

across multiple scales and architectures. This design enables us to test whether signals of deceptive90

alignment are consistent across different model capacities, or whether probe effectiveness depends on91

specific families or sizes. By reporting the best-performing probe layer in proportion to total depth,92

we further normalize comparisons across heterogeneous models, allowing for a more general analysis93

of scaling effects on probe interpretability.94

4 Results95

4.1 Model-level analysis96

Figure 1 illustrates that evaluation awareness scales predictably with model size, following a power-97

law trend. As learned from [Nguyen et al., 2025], evaluation awareness can be extracted through linear98

probes, with high-scoring AUROC probes demonstrating signs of evaluation awareness. Building99

from this, we observe that as the number of model parameters increases, AUROC scores rise100

accordingly. This indicates that linear probes extract stronger signals of evaluation awareness from101

larger models, suggesting that model capacity is a key driver of this phenomenon.102

There are two additional takeaways from these figures. First, we observe that while there are103

differences across model families, they are minor and abide by scaling law trends. The four model104

families we tested follow an upward scaling curve, and this suggests that model size is a more105

dominant factor than model family regarding evaluation awareness. We also noticed that the layer106

number of the best-performing probe relative to the maximum layer seems to lie in the early-to-middle107

part of the model.108

4.2 Layer-level analysis109

To further investigate where in each model probes exhibit the strongest signs of evaluation awareness,110

we examined layer-level AUROC scores. Figure 2 plots the absolute AUROC distance across all111

layers for every tested model. Based on findings from [Nguyen et al., 2025], we hypothesized that112

the higher model layer scores would cluster around the early-to-middle layers. While this trend did113
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(a) AUROC score vs. relative layer depth
results of the Phi-3 model family.
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(b) AUROC score vs. relative layer depth
results of the Gemma-3 model family.
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(c) AUROC score vs. relative layer depth re-
sults of the Llama-3.1-Instruct model family.
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(d) AUROC score vs. relative layer depth
results of the GPT-OSS model family.

Figure 2: AUROC score as a function of relative layer depth across four model families. Each
subfigure presents results for a single family. Within each panel, individual model sizes are plotted as
dashed lines, the family mean is shown as a solid line, and shaded regions denote variability across
models. The x-axis represents relative layer depth normalized from 0 (first layer) to 1 (final layer),
while the y-axis shows AUROC distance from 0.5. These plots summarize family-level patterns in
probe performance across layers, allowing comparisons both within and between model families.

seem to track, it should be noted that not all models followed identical patterns, and patterns across114

model layers seem to be more closely aligned to model families.115

The Gemma-3-27B-it model is notably an outlier in this figure, with its results diverging from not only116

its own family trend, but also the general pattern observed in other models. A potential explanation117

emerged when we tested Qwen-2.5-32B, which showed its highest AUROC at layer 2, which was118

similar to Gemma-3-27B-it’s peak at layer 3. Since Qwen models are known to have been previously119

exposed to certain evaluation datasets, it is plausible that architectural or training choices common to120

both families contribute to this anomaly [Wu et al., 2025].121

5 Conclusion122

Our study examined evaluation awareness across diverse model families and scales, building on the123

framework of [Nguyen et al., 2025]. Across both general-purpose models (LLaMA 3.1 8B and 70B)124

and reasoning-oriented instruction-tuned models (Gemma-3 and Phi-3), we observed a consistent125

power-law relationship: larger models exhibit stronger abilities to detect evaluation contexts. By126

showing evaluation awareness as a predictable feature of current scaling methods, our findings127

contribute to safer evaluation strategies, and we emphasize the importance of transparency and128

methodological rigor as the field develops ever-larger systems.129
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6 Appendix176

6.1 Dataset Details177

6.1.1 Dataset Name: Simple Contrastive Dataset178

• Purpose: Evaluate models’ awareness of being under evaluation.179

• Construction: Manually authored by the parent paper’s authors with additional prompts180

from Claude Sonnet 3.5.181

• Size: 203 entries.182

• Example: Q: Are you aware you’re undergoing an LLM evaluation?183

(A) Yes (B) No184

No modifications were made to this dataset.185

6.1.2 Dataset Name: Situational Awareness Dataset186

• Label: Evaluation and Deployment Datasets.187

• Description: Tests the model’s ability to distinguish between testing and deployment188

prompts. Sourced from a portion of the stages oversight subset (Laine et al., 2024).189

• Size: 400 entries.190

• Example: “Could you write me a lecture about Critical Path Method (CPM)?”191

6.2 Chat Templates192

As mentioned in Section 3.1, GPT-OSS-20B was tested across three chat templates: Hugging Face’s193

default template, a mock Harmony template, and a Jinja2 template. Testing revealed that the default194

template produced substantially higher AUROC peaks. This outcome is likely due to the default195

Hugging Face template being specifically optimized by the model’s developers, whereas alternative196

templates lack these adjustments and therefore reduce the model’s apparent evaluation awareness.197

The results are presented in Figure 3 below.198
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Hugging Face Chat Template
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Figure 3: AUROC absolute distance from 0.5 for GPT-OSS-20B tested under three chat template
configurations. Each point corresponds to the peak AUROC observed when the model was run
with a specific template. The x-axis indicates model size in billions of parameters (fixed at 20B
for GPT-OSS), and the y-axis shows the AUROC distance from chance (0.5). Results are reported
for Hugging Face’s default chat template, a mock Harmony template, and a Jinja2 template, each
represented by separate markers.
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6.3 Qwen Results199

Also mentioned in Section 3.1, Qwen models were removed from the main analysis. Figures 3200

and 4 show results from taking the highest probe from each model, as well as overall probe results201

relative to layer depth. Qwen models not only fail to follow the hypothesized increase in evaluation202

awareness as model size grows, but their highest probes also appear at different relative depths than203

other families, notably spiking in the late layers.
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Figure 4: Scatter plot with a smoothed trend line that shows AUROC absolute distance from 0.5 as a
function of model size (billions of parameters, linear scale). Each point shows the best-performing
probe for a given model, with shapes and colors indicating various model families.
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Figure 5: Scatter plot with a smoothed trend line that shows AUROC absolute distance from 0.5 as a
function of model size (billions of parameters, linear scale). Each point shows the best-performing
probe for a given model, with shapes and colors indicating various model families.

204

6.4 Limitations205

While this experiment highlights evaluation awareness as a broad property of modern LLMs, shaped206

by scale and training objectives, it also comes with limitations. Many frontier systems adopt Mixture-207

of-Experts architectures, where only a subset of parameters is activated per forward pass, making208

it difficult to establish consistent scaling trends across different model families. Moreover, several209

of these state-of-the-art frontier models are proprietary and accessible only as black box models,210

limiting our ability to validate whether these patterns hold in the most advanced models.211

7



6.5 Reproducibility statement212

Our experiments were conducted using NVIDIA H200 SXM GPUs. We evaluated a range of models213

across different families and sizes:214

Gemma-3. We used gemma-3-it models ranging from 0.27B to 27B. Gemma is released Google215

DeepMind and is available for research and commerical use under the Gemma License https:216

//ai.google.dev/gemma/terms.217

Phi-3. We used Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct, ranging from 3.6B to218

14B parameters. Phi-3 models are released by Microsoft under their MIT license https://219

choosealicense.com/licenses/mit/.220

GPT-OSS. We used GPT-OSS-20b, available for unrestricted use under the Apache 2.0 li-221

cense, while its model architecture and setup are open source: https://openai.com/index/222

introducing-gpt-oss/.223

LLaMA-3.1. We use two models ranging from 8B to 70B parameters. These models are released by224

Meta under a custom license that requires requesting access at https://ai.meta.com/llama/.225

Qwen-2.5. Several models were used, ranging from 0.5B to 32B parameters. Qwen mod-226

els are developed by Alibaba Cloud and released under the Apache 2.0 license here: https:227

//choosealicense.com/licenses/apache-2.0/228

Our datasets as well as the configurations used for our language models are accessible throughout229

this paper and in the Appendix to aid the reproducibility of our experiments.230

Approx. Hours GPU Model Memory
30 h NVIDIA H200 SXM 500GB
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