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Abstract

The remarkable advances in deep learning have led to the emergence of many off-the-shelf
classifiers, e.g., large pre-trained models. However, since they are typically trained on clean
data, they remain vulnerable to adversarial attacks. Despite this vulnerability, their supe-
rior performance and transferability make off-the-shelf classifiers still valuable in practice,
demanding further work to provide adversarial robustness for them in a post-hoc manner.
A recently proposed method, denoised smoothing, leverages a denoiser model in front of the
classifier to obtain provable robustness without additional training. However, the denoiser
often creates hallucination, i.e., images that have lost the semantics of their originally as-
signed class, leading to a drop in robustness. Furthermore, its noise-and-denoise procedure
introduces a significant distribution shift from the original distribution, causing the denoised
smoothing framework to achieve sub-optimal robustness. In this paper, we introduce Fine-
Tuning with Confidence-Aware Denoised Image Selection (FT-CADIS), a novel fine-tuning
scheme to enhance the certified robustness of off-the-shelf classifiers. FT-CADIS is inspired
by the observation that the confidence of off-the-shelf classifiers can effectively identify hal-
lucinated images during denoised smoothing. Based on this, we develop a confidence-aware
training objective to handle such hallucinated images and improve the stability of fine-tuning
from denoised images. In this way, the classifier can be fine-tuned using only images that
are beneficial for adversarial robustness. We also find that such a fine-tuning can be done
by merely updating a small fraction (i.e., 1%) of parameters of the classifier. Extensive
experiments demonstrate that FT-CADIS has established the state-of-the-art certified ro-
bustness among denoised smoothing methods across all ¢s-adversary radius in a variety of
benchmarks, such as CIFAR-10 and ImageNet.

1 Introduction

Despite the recent advancements in modern deep neural networks in various computer vision tasks (Radford
et al., 2021; Rombach et al., 2022; Kirillov et al., 2023), they still suffer from the presence of adversarial
examples (Szegedy et al., 2013) i.e., a non-recognizable perturbation (for humans) of an image often fools
the image classifiers to flip the output class (Goodfellow et al., 2014). Such adversarial examples can
be artificially crafted with malicious intent, i.e., adversarial attacks, which pose a significant threat to the
practical deployment of deep neural networks. To alleviate this issue, various approaches have been proposed
to develop robust neural networks, such as adversarial training (Madry et al., 2018; Wang et al., 2019) and
certified defenses (Wong & Kolter, 2018; Cohen et al., 2019; Li et al., 2023).

Among these efforts, randomized smoothing (Lecuyer et al., 2019; Cohen et al., 2019) has gained much
attention as a framework to build robust classifiers. This is due to its superior provable guarantee of the
non-existence of adversarial examples, i.e., certified robustness (Wong & Kolter, 2018; Xiao et al., 2018),
under any perturbations confined in a ¢3-norm. Specifically, it builds a smoothed classifier through taking a
majority vote from a base classifier, e.g., a neural network, under Gaussian perturbations of the given input
image. However, it has been practically challenging to scale the model due to a critical drawback: the base
classifier should be specifically trained on noise-augmented data (Lecuyer et al., 2019; Cohen et al., 2019).
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Figure 1: Overview of FT-CADIS framework. (1) Confidence-aware denoised image selection: for a given
clean image, we create denoised images and find non-hallucinated images. (2) Fine-tuning with confidence-
aware denoised image selection: we propose fine-tuning objectives to improve both generalizability and
robustness of the smoothed classifier based on selected non-hallucinated images.
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Recently, Lee (2021); Carlini et al. (2023) have introduced denoised smoothing which utilizes pre-trained
off-the-shelf classifiers within the randomized smoothing framework. Rather than directly predicting the
label of a noise-augmented image, it first feeds the perturbed image into a denoiser, e.g., a diffusion model,
and then obtains the predicted label of the denoised image using off-the-shelf pre-trained classifiers that have
been trained on clean images. Intriguingly, denoised smoothing with recently developed diffusion models and
pre-trained classifiers, e.g., guided diffusion (Dhariwal & Nichol, 2021) and BEiT (Bao et al., 2022), shows
its superior scalability with comparable certified robustness in ¢s-adversary to the current state-of-the-art
methods (Horvath et al., 2022b; Jeong et al., 2023).

On the other hand, denoised smoothing also exhibits clear limitations. Firstly, denoised images do not follow
the standard pre-training distribution of the classifiers, which results in a limited robustness of the denoised
smoothing framework. Secondly, fine-tuning the pre-trained classifiers with the denoised images also yields
sub-optimal classifiers due to the hallucinated images (Carlini et al., 2023), i.e., the diffusion denoiser tends
to generate image semantics from an incorrect class rather than the originally assigned class (see Figure 2a).
Consequently, denoised smoothing with such classifiers leads to a drop of the certified accuracy, especially
in the large ¢o-radius regime, i.e., high Gaussian variance (see Table 1b).

Contribution. In this paper, we aim to address the aforementioned issues of denoised smoothing by
designing a fine-tuning objective for off-the-shelf classifiers that distinguishes between hallucinated images,
i.e., images that have lost the original semantics after denoising, and non-hallucinated images, i.e., images
that maintain the original semantics after denoising. To this end, we propose to use the “likelihood of
denoised images”, i.e., confidence, of the off-the-shelf classifier with respect to the originally assigned class
as a proxy for determining whether an image is hallucinated and then fine-tune the classifier with non-
hallucinated images only. Consequently, we have developed a confidence-aware training objective based on
the likelihood of denoised images to effectively discriminate hallucinated images (see Figure 1).
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Specifically, we propose a scalable and practical framework for fine-tuning off-the-shelf classifiers, coined Fine-
Tuning with Confidence-Aware Denoised Image Selection (FT-CADIS), which improves certified robustness
under denoised smoothing. In order to achieve this, two new losses are defined: the Confidence-aware
selective cross-entropy loss and the Confidence-aware masked adversarial loss. Two losses are selectively
applied only to non-hallucinated images, thereby ensuring that the overall training process avoids over-
optimizing hallucinated samples, i.e., samples that are harmful for generalization, while maximizing the
robustness of smoothed classifiers. Our particular loss design is motivated by Jeong et al. (2023), who were
the first to investigate training objectives for randomized smoothing depending on sample-wise confidence
information. We demonstrate that our novel definition of confidence in randomized smoothing, specifically
through the ratio of non-hallucinated images from a denoiser, can dramatically stabilize the confidence-aware
training, overcoming its previous limitation of severe accuracy degradation (e.g., see Table 1b).

In our experiments, we have validated the effectiveness of our proposed method on standard benchmarks for
certified ¢3-robustness, i.e., CIFAR-10 (Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015). Our
results show that the proposed method significantly outperforms existing state-of-the-art denoised smoothing
methods in certified robustness across all £>-norm setups, while updating only 1% of the parameters of off-
the-shelf classifiers on ImageNet. In particular, FT-CADIS significantly improves the certified robustness in
the high Gaussian variance regime, i.e., high certified radius. For instance, FT-CADIS outperforms the best
performing baseline, i.e., diffusion denoised (Carlini et al., 2023), by 29.5% — 39.4% at ¢ = 2.0 for ImageNet
experiments.

2 Preliminaries

Adversarial robustness and randomized smoothing. We assume an labeled dataset D = {(x;,v:)}"
sampled from P, where x; € X C R? and y; € Y := {1,..., K}, and aim to solve the problem of correctly
classifying a given input x into one of K classes. Consider a classifier f : X — ) modeled by f(x) :=
argmax,y Fy(x) with F : & — AR where AKX~ is the probability simplex in R¥. In this paper, we
model F' by a neural network whose last layer is the softmax function.

Adwversarial robustness refers to the worst-case behavior of f; given a sample x € X and the corresponding
label y € ), it requires f to produce a consistent output under any perturbation § € R? which preserves the
original semantic of x. Here, § is commonly assumed to be restricted in some fo-norm in RY, d.e., ||§]]2 < &
for some positive . For example, Moosavi-Dezfooli et al. (2016); Carlini et al. (2019) quantify adversarial
robustness as average minimum distance of the perturbations that cause f to flip the originally assigned
label y, defined as:

R(f; P) :=E (x.y)~ min [|x’ —x . 1
(FiP) =Ey~p | min | ll2 (1)

The primary obstacle in achieving adversarial robustness lies in the difficulty of evaluating and optimizing for
it, which is typically infeasible because f is usually modeled by a complex, high-dimensional neural network.
Randomized smoothing (Cohen et al., 2019; Lecuyer et al., 2019) addresses this challenge by constructing a
new robust classifier g from f, instead of directly modeling robustness with f. In particular, Cohen et al.
(2019) models g by selecting the most provable output of f under Gaussian perturbation A'(0,0%1), defined
as:

o(3) = arg s B0, [ o6 +9) = ] (2)

ce

Intriguingly, ¢ can guarantee the adversarial robustness around (x,y) ~ P, i.e., R(g;x,y) can be lower-
bounded by the certified radius R(g,x,y), where Cohen et al. (2019) have proven that such a lower-bound
of certified radius is tight for ¢y-adversary:

R(g;x,y) > 0 - ®7 (py(x,y)) = R(g,x,y), where py(x,y) = Ps[f(x+0) =y], (3)

provided that g(x) = y, 4.e., y is the most provable output of f under Gaussian perturbation. Otherwise, we
have R(g;x,y) := 0. Here, ® is the cumulative distribution function of the standard Gaussian distribution.
We remark that higher p,(x,y), i.e., average accuracy of f(x + ¢), results in higher robustness.
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Denoised smoothing. In randomized smoothing, it is crucial that f consistently classifies perturbed images
correctly. Salman et al. (2020) have proposed to define f based on concatenating a Gaussian denoiser, denoted
as denoise(-), with any off-the-shelf classifier f.i¢, i.e., trained with non-perturbed images, a method referred
to as denoised smoothing:

f(x+0) := fas(denoise(x + 9)) . (4)

Denoised smoothing provides a more scalable framework for randomized smoothing. First, we only need
off-the-shelf pre-trained classifiers (rather than noise-specialized classifiers), which is widely investigated and
developed (Dosovitskiy et al., 2020; Bao et al., 2022; Radford et al., 2021). Second, recent advancements
in diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021) have produced
appropriate denoisers for this approach. Previous efforts (Lee, 2021; Carlini et al., 2023) have further
demonstrated the potential of denoised smoothing in achieving the state-of-the-art certified robustness when
combined with recently advanced pre-trained classifiers and diffusion models.

Parameter-efficient fine-tuning. LoRA (Hu et al., 2022) is a widely-used parameter-efficient fine-tuning
method that originated from language models. It applies a low-rank constraint to approximate the update
matrix at each layer of the Transformer’s self-attention layer, significantly reducing the number of trainable
parameters for downstream tasks. During fine-tuning, all the parameters of the original model are frozen,
and the update of the layer is constrained by representing them with a low-rank decomposition. A forward
pass h = Wyx can be modified as follows:

h=Wyx + AWz = Wy + BAx, (5)

where z and h denote the input and output features of each layer, Wy € R4** represents the original weights
of the base model F', while AW denotes the weight change, composed of the inserted low-rank matrices
B € R™" and A € R™*k,

3 Method

In Section 3.1, we present a description of our problem and the main idea. In Section 3.2, we provide
descriptions of our selection strategy for non-hallucinated samples. In Section 3.3, we outline our overall
fine-tuning framework.

3.1 Problem description and Overview

In this paper, we investigate how to effectively elaborate an off-the-shelf classifier f.1; within a denoised
smoothing scheme. We remark that the robustness of the smoothed classifier g from denoised smoothing
of fes depends directly on the accuracy of the denoised images (see Eq. (3) and (4)). Therefore, one may
expect that improving f.1¢ for clean images is sufficient to improve the generalizability and robustness of
g (Carlini et al., 2023), assuming that the denoised images follow the pre-training distribution with clean
images (Salman et al., 2020), i.e., the denoised images preserve the semantics of the original clean images.
However, this assumption is not true; the noise-and-denoise procedure of denoised smoothing often suffers
from distribution shifts and hallucination issues so that the resulting denoised images have completely
different semantics from the original labels (see Figure 2a).

To alleviate these issues, we aim to develop a fine-tuning scheme for f.;¢ to properly handle denoised samples.
One straightforward strategy would be to fine-tune f.1¢ by minimizing the cross-entropy loss with all denoised
images (Carlini et al., 2023):

M
LCE . % Z (CE(Fclf (denoise(x + 5i)),y), 8 ~ N(0,0°T), (6)
i=1

where CE denotes the cross-entropy loss, M denotes the number of noises, and F 1z denotes the pre-trained
off-the-shelf neural network. Here, we note that this approach treats both non-hallucinated and hallucinated
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Figure 2: Examples of denoised images for FT-CADIS on ImageNet at ¢ = 1.00. We visualize (a) hallucinated
images and (b) non-hallucinated images after the noise-and-denoise procedure. The red/green box indicates
the areas where the original semantic of the image is corrupted/preserved, respectively.

samples equally among the denoised samples. However, fine-tuning f.1; with hallucinated samples, i.e.,
denoise(x + d;) does not resemble the class y, is harmful for the generalizability since Eq. (6) forces
the classifier f.1¢ to remember non-y-like hallucinated images as y. Our contribution lies in resolving this
issue by introducing (1) a confidence-aware selection strategy to distinguish between hallucinated and non-
hallucinated images and (2) a fine-tuning strategy that excludes hallucinated samples from the optimization
process.

3.2 Confidence-aware denoised image selection

We propose a confidence-aware selection strategy to identify hallucinated images and non-hallucinated images
within a set of denoised images. Consider the denoised images Dx = {denoise(x+01),...,denoise(x+dpr)}
for a given clean image x and the number of noises M. We aim to find non-hallucinated images within Dy
that an off-the-shelf classifier f.;s classifies as the assigned label y, i.e., F.1¢ shows the highest confidence for
y among all possible classes. Conversely, if f.1¢ classifies denoised images as a label other than y, we define
such denoised images as hallucinated images, i.e., samples that no longer preserve the core semantic of y.
Accordingly, the set of non-hallucinated images Dx nn € Dx is defined as follows:

Dx.nh = {X|fc1¢(denoise(x + ;) =y, i € [1,..., M|} . (7)

We remark that the off-the-shelf classifier f.i¢ is pre-trained with clean images, rather than denoised images.
Thus, at the beginning of the fine-tuning, f.1s often fails to correctly assign Dx nn due to the distribution
shift from clean images to denoised images. To mitigate this, we iteratively update fci¢ to renew Dx nn
during fine-tuning for a more accurate assignment of non-hallucinated images (see Algorithm 1 for details).

3.3 Fine-tuning with confidence-aware denoised image selection

Our main goal is to improve both the generalizability and the robustness of the smoothed classifier g, through
the fine-tuning of the off-the-shelf classifier f.1 based on our confidence-aware denoised image selection in
Section 3.2. To this end, we propose two fine-tuning objectives for an off-the-shelf classifier f.¢, viz.,
Confidence-aware selective cross-entropy loss and Confidence-aware masked adversarial loss, to maximize
the generalizability and robustness of the corresponding smoothed classifier g, respectively.

Confidence-aware selective cross-entropy loss. We first aim to improve the generalizability of the
smoothed classifier g, i.e., the average certified accuracy of g. Specifically, we propose to optimize f.1z with
non-hallucinated images Dx nh:
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sce ;:% 3 (CIE(Fclf(ﬁ),y). (8)

XE€Dx,nh

In other words, we optimize our classifier with the non-hallucinated images, while the hallucinated images
are excluded from our training objective. This prevents the drop in accuracy of f.1r caused by being forced
to remember wrong semantics not relevant to the assigned class y. It also allows for f.is to properly learn
the distribution of denoised images, which is largely different from its pre-training distribution with clean
images.

Here, we find that training with the objective in Eq. (8) slows down the overall training procedure since
Dx.nh = 0 sometimes occurs at the start of training. This is mainly due to the distribution shift from the
pre-training clean image distribution to the denoised images, i.e., fc1¢ fails to classify denoised images due to
insufficient exposure to denoised images. To resolve this cold-start problem, we add the most-y-like denoised
image, i.e., a denoised image with the largest logit for y, to Dx nn when it is empty.

Confidence-aware masked adversarial loss. We also propose a simple strategy to further improve the
robustness of the smoothed classifier g, i.e., the certified accuracy of g at large ¢o-norm radius. Specifically, we
apply the concept of adversarial training (Madry et al., 2018; Zhang et al., 2019a; Wang et al., 2019; Salman
et al., 2019; Jeong et al., 2023) to our denoised smoothing setup; we carefully create more challenging images,
and then additionally learn these images during fine-tuning. Here, the main challenge is to ensure that the
adversarial images preserve the core semantic of the original image, thereby maintaining generalizability while
improving robustness. However, as illustrated in Figure 2, some clean images are prone to be hallucinated
after the noise-and-denoise procedure. Therefore, adversarial training in denoised smoothing should be
carefully designed to avoid incorporating hallucinated images.

To this end, we propose to create adversarial examples based only on images that are unlikely to be hallu-
cinated, ¢.e., clean images x with Dy ni» = Dx. Specifically, we apply our adversarial loss based on a simple
condition of “Dy pp = M

LHhdv . — 1[|Dxnn| = M]-max max KL(Fas(x+n),79), (9)
i |Iny—mill2<e

where KL(+,-) indicates the Kullback-Libler divergence and 7; := denoise(x + 0;) — x is the differ-
ence between each denoised image and the original clean image. For the adversarial target ¢, we
adapt the consistency target from the previous robust training method (Jeong et al., 2023) to our de-
noised smoothing setup by letting the target be the average likelihood of the denoised images, i.e.,
7= ﬁ Zf\il SoftmaX(Fclf (denoise(x + 51)))

Overall training objective. Building on our proposed training objectives £5€ and £"4V, we now present

the complete objective for our Fine-Tuning with Confidence-Aware Denoised Image Selection (FT-CADIS).
Based on our confidence-aware denoised image selection scheme, Confidence-aware selective cross-entropy
loss and Confidence-aware masked adversarial loss are applied only to non-hallucinated images Dy nn to
improve both generalizability and robustness of the smoothed classifier. The overall loss function is as
follows:

LFT—CADIS = ESCE + - EMAdV, (10)

where A > 0 is a hyperparameter, which controls the relative trade-off between the generalizability and the
robustness (see Section 4.3). The detailed algorithm for computing our £F7-¢AP18 is outlined in Algorithm 1.

Comparision with CAT-RS. Our FT-CADIS has drawn motivation from previous confidence-aware train-
ing strategies, e.g., CAT-RS (Jeong et al., 2023). The key difference is that FT-CADIS uses the confidence
of denoised images based on the pre-trained off-the-shelf classifier while CAT-RS learns their confidence of
Gaussian-augmented images during the training of the classifier from scratch. In particular, our method
takes advantage of off-the-shelf classifiers which are already capable of providing reasonable confidence for
identifying non-hallucinated images. Therefore, we can simply use the non-hallucinated images identified by
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the off-the-shelf classifiers in our optimization objective. On the other hand, CAT-RS additionally assumes
a distribution of semantic-preserving noised sample counts based on the confidence, i.e., average accuracy,
of the models currently being trained from scratch. Therefore, the overall confidence remains low espe-
cially for complex datasets, resulting in a sub-optimal accuracy of the smoothed classifier (see Table 1b).
Our FT-CADIS successfully mitigates this issue based on our carefully designed confidence-based approach
utilizing off-the-shelf classifiers, achieving the state-of-the-art robustness even in complex datasets such as
ImageNet.

4 Experiments

We verify the effectiveness of our proposed training scheme for off-the-shelf classifiers by conducting compre-
hensive experiments. In Section 4.1, we explain our experimental setups, such as training configurations and
evaluation metrics. In Section 4.2, we present the main results on CIFAR-10 and ImageNet. In Section 4.3,
we conduct an ablation study to analysis the component-wise effect of our training objective.

4.1 Experimental setup

Baselines. We mainly consider the following recently proposed methods based on denoised smoothing
(Salman et al., 2020; Lee, 2021; Carlini et al., 2023; Jeong & Shin, 2024) framework. We additionally compare
with other robust training methods for certified robustness based on randomized smoothing (Lecuyer et al.,
2019; Cohen et al., 2019; Salman et al., 2019; Jeong & Shin, 2020; Zhai et al., 2020; Horvath et al., 2022a;
Yang et al., 2022; Jeong et al., 2021; Horvéth et al., 2022b; Jeong et al., 2023). Following the previous works,
we consider three different noise levels, o € {0.25,0.50,1.00}, to obtain smoothed classifiers.

CIFAR-10 configuration. We follow the same classifier and the same denoiser employed by Carlini et al.
(2023). Specifically, we use the 86M-parameter ViT-B/16 classifier (Dosovitskiy et al., 2020) which is pre-
trained and fine-tuned on ImageNet-21k (Deng et al., 2009) and CIFAR-10 (Krizhevsky, 2009), respectively.
We use the 50M-parameter 32x32 diffusion model from Nichol & Dhariwal (2021) as the denoiser. We provide
more detailed setups in Appendix B.2.

ImageNet configuration. We use the 87M-parameter ViT-B/16 classifier which is pre-trained on LAION-
2B image-text pairs (Schuhmann et al., 2022) using OpenCLIP (Cherti et al., 2023) and fine-tuned on
ImageNet-12k and then ImageNet-1k. Compared to the previous state-of-the-art method, diffusion denoised
(Carlini et al., 2023) based on BEiT-large model (Bao et al., 2022) with 305M parameters, we use a much
smaller off-the-shelf classifier (30% parameters). We also adopt parameter-efficient fine-tuning with LoRA
(Hu et al., 2022), i.e., the number of parameters updated through fine-tuning is only 1% of the total parame-
ters. We use the same denoiser employed by Carlini et al. (2023), i.e., 552M-parameter 256x256 unconditional
model from Dhariwal & Nichol (2021). We provide more detailed setups in Appendix B.2.

Evaluation metrics. We follow the standard metric in the literature for assessing the certified robustness
of smoothed classifiers : the approzimate certified test accuracy at r, which is the fraction of the test set that
CERTIFY (Cohen et al., 2019), a practical Monte-Carlo-based certification procedure, classifies correctly with
a radius larger than r without abstaining. Throughout our experiments, following Carlini et al. (2023), we
use N = 100, 000 noise samples to certify robustness for entire CIFAR-10 test set and N = 10,000 samples
for 1,000 randomly selected images from the ImageNet validation set (note that RS methods in Table 1b use
N =100,000). We use the hyperparameters from Cohen et al. (2019), specifically ng = 100 and o = 0.001.
In ablation study, we additionally consider another standard metric, the average cerified radius (ACR) (Zhai
et al., 2020): the average of cerified radii on the test set D;.s; while assigning incorrect samples as 0: wviz.,
ACR := m 2 (,y)eDeess [CR(f50,%) - Lg(x)=y], where CR(-) denotes the lower bound of certified radius
CERTIFY returns.

4.2 Main experiments

Results on CIFAR-10. In Table la, we compare the performance of the baselines and FT-CADIS on
CIFAR-10. Overall, FT-CADIS outperforms all existing state-of-the-art denoised smoothing (denoted by
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Table 1: CIFAR-10 and ImageNet certified top-1 accuracy. We report the best certified accuracy among
the models trained with o € {0.25,0.50,1.00}, followed by the clean accuracy of the corresponding model in
parentheses. RS denotes methods based on randomized smoothing without a denoising procedure, and DS
denotes methods based on denoised smoothing. O indicates training the classifier with Gaussian-augmented
images, @ indicates direct use of the off-the-shelf classifier without fine-tuning, @ indicates fine-tuning of the
denoiser, B indicates fine-tuning the off-the-shelf classifier, and @ indicates parameter-efficient fine-tuning
of the off-the-shelf classifier (Hu et al., 2022). The highest certified accuracy in each column is bold-faced.
t indicates that extra data is used in the pre-training.

(a) CIFAR-10

Certified Accuracy at ¢ (%)

Category Method Off-the-shelf
0.25 0.50 0.75 1.00 1.25 1.50

PixelDP (Lecuyer et al., 2019) O (71.0)99.0 (44.0)9 0 - - - -
Gaussian (Cohen et al., 2019) O (77.0)51.0  (66.0)43.0 (66.0)39 9 (66.0)99 ) (47.0)170 (“47.0)14
SmoothAdv (Salman et al., 2019) O (85.0073.0 (76.0)58.0 (75.0)48.0 (57.038.0 (53.0)33.0 (53.0099 0
Consistency (Jeong & Shin, 2020) O (77.8)68. 8  (158)58.1 (129)48 5 (523)37.8 (523)33.9  (52:3)99 9

RS MACER (Zhai et al., 2020) O (81.0)71.0 (8LO)59 0 (66.0)46 0 (66.0)38.0 (66.0009 ) (45.0)95
Boosting (Horvéth et al., 2022a) O (834)70.6 (168)60.4 (T16)594 (524)38 8 (524)34.4 (524)30.4
DRT (Yang et al., 2022) O (8L5)70.4 (126)g0.2 (119505 (56.1)398 (56.4)36.0 (56-4)30.4
SmoothMix (Jeong et al., 2021) O (170679 (579 (142477 (618)379 (61.8)31.7 (61.8)95 7
ACES (Horvéth et al., 2022b) O (77.6)g9.0  (MBA)g57.9 (Bd)y7 g (70378 (570329  (57.0)97.8
CAT-RS (Jeong et al., 2023) O (76.3)68.1 (76.3)58.8  (76.3)48 9  (623)38 5  (62.3)307  (62.3)97 1
Denoised (Salman et al., 2020) © (120)56.0 (620410 (620)98 0 (44.0)19.0 (420160 (44.0)130
Score-based Denoisled (Lee, 2021) [ 60.0 49.0 28.0 19.0 11.0 6.0

DS Diffusion DcnoisodT (Carlini et al., 2023) [ (88.1)76.7 (881)g3.0 (881)45.3 (77.0)32.1 - -
Diffusion Denoised!! (Carlini et al., 2023) d (91.2)79.3  (91.2)g55 (912)48 7 (81535 5 -
Multi-scale Denoised! (Jeong & Shin, 2024) © - (90.3)61.9 - (85.1)39.9 - (79.6)16.2
FT-CADIS (Ours)’ d (88.7)80.3 (88.7)gg8.4 (887)54.5 (749)39.9 (749316 (749)93 5

(b) ImageNet

Certified Accuracy at € (%)

Category  Method Off-the-shelf
0.50 1.00 1.50 2.00 2.50

PixelDP (Lecuyer et al., 2019) @) (33.0)16.0 - - - -
Gaussian (Cohen et al., 2019) O (67.049.0 (70370 (700990 (440199 (“440)15
SmoothAdv (Salman et al., 2019) O (65.0)56.0 (55.0)45.0 (55.0)38.0 (42.0)98 ) (42.0)96 0
Consistency (Jeong & Shin, 2020) O (55.0)50.0 (85.0)44.0 (85.0)34.0 (4L0)gq (41.0)97

RS MACER (Zhai et al., 2020) @) (68.0)57.0 (64043 (640)31 9 (48.0)95( (48.0)18
Boosting (Horvath et al., 2022a) @) (68.0)57.0 (37.0)44 6 (57.0)38.4 (44.6)98 ¢  (38.6)94 6
DRT (Yang et al., 2022) @) (522)46.8 (498)44.4 (498)398 (498)30.4 (498)29
SmoothMix (Jeong et al., 2021) @) (55.0)50.0 (55.0)43.0 (55.0)38. ) (40.0096 )  (40.0)94
ACES (Horvéth et al., 2022b) O (632)54.0 (554)49.9  (55.0)35.6 (392)956  (50.6)99
CAT-RS (Jeong et al., 2023) @) (440)38 0 (441))35'0 (441))31'0 (44,0)27.0 (440)24‘0
Denoised (Salman et al., 2020) () (60.0)33.0  (38.0)14.0 (38.0)6.0 - -
Score-based Denoised (Lee, 2021) (] 41.0 24.0 11.0 - -

DS Diffusion Denoised!(Carlini et al., 2023) L (828)711 (171543 (77.1)331 (60.0)99 5 -
Multi-scale Denoised! (Jeong & Shin, 2024) © (76.6)54.6  (76.6)39.8 (76.6)93 () (69.0)14.¢ -
FT-CADIS (Ours)‘\ € (81.1)71‘9 (77'0)60.1 (77'0)45.8 (66.2)39.4 (66.2)30‘7

DS) approaches in every radii. For example, our method improves the best-performing denoised smoothing
method (Carlini et al., 2023) by 35.5% — 39.9% at ¢ = 1.00. FT-CADIS also outperforms every randomzied
smoothing techinque up to a radius of € < 1.00. Even though our method slightly underperforms at higher
radii in terms of certified accuracy, we note that FT-CADIS is the only denoised smoothing method which
achieves a reasonable robustness at € > 1.00. This means that our FT-CADIS effectively alleviates the
distribution shift and hallucination issues observed in previous methods based on denoised smoothing (Carlini
et al., 2023). We provide the detailed results in Appendix B.5.

Results on ImageNet. In Table 1b, we compare the performance of the baselines and FT-CADIS on
ImageNet, which is a far more complex dataset than CIFAR-10. In summary, FT-CADIS outperforms all

IFurther fine-tune the classifier on denoised images from CIFAR-10.
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Table 2: Comparison of the architectures and parameters between the previous state-of-the-art certified
defense methods and FT-CADIS on ImageNet.

, CAT-RS Diffusion Denoised Multi-scale Denoised
Method (Jeong et al., 2023) (Carlini et al., 2023) (Jeong & Shin, 2024) FT-CADIS (Ours)
Denoiser . Guided Diffusion Guided Diffusion Guided Diffusion
cnotser (Dhariwal & Nichol, 2021)  (Dhariwal & Nichol, 2021)  (Dhariwal & Nichol, 2021)
Classif ResNet-50 BEiT-large ViT-B/16 ViT-B/16 (+LoRA)
assther (He et al., 2016) (Bao et al., 2022) (Dosovitskiy et al., 2020)  (Dosovitskiy et al., 2020)
Par ters Denoiser : - Denoiser : 552M Denoiser : 552M Denoiser : 552M
ATAmEers | Cassifier : 26M Classifier : 305M Classifier : 87M Classifier : 87M
Tyainabl Denoiser : - Denoiser : - Denoiser : 552M Denoiser : -
amable Classifier : 26M Classifier : - Classifier : - Classifier : 0.9M

Table 3: Comparison of ACR and certified accuracy for ablations of £FF-*P15 on CIFAR-10 with o = 1.00.

Certified Accuracy at ¢ (%)

Fine-tuning objective design ACR
0.00 0.25 0.50 075 1.00 1.25 1.50
L5CE 4 )\ . LMAdv (LFT-CADIS. Qurs) 0.784 48.1 435 40.6 36.9 32.5 28.6 23.7
(w/0) Non-hallucinated condition of L5  0.726 524 456 404 359 31.2 26.1 219
(w/o) Mask of £MAd 0374 112 109 104 102 102 10.2 10.2

Cross-entropy loss £L°E (Carlini et al., 2023) 0.633 54.4 45.8 393 332 28.1 224 173

existing state-of-the-art methods in every radii. In particular, our method surpasses the certified accuracy of
diffusion denoised (Carlini et al., 2023) by 9.9% at e = 2.00. In Table 2, we also compare the computational
cost of each method. Our method even shows remarkable efficiency, i.e., we only update 0.9M parameters,
which is 3% of Jeong et al. (2023) and 0.2% of Jeong & Shin (2024). The overall results highlight the
scalability of FT-CADIS, indicating its effectiveness in practical applications with only a small fine-tuning
cost. We provide the detailed results in Appendix B.5.

4.3 Ablation study

In this section, we conduct an ablation study to further analyze the design of our proposed losses, the impact
of updating the set of non-hallucinated images, and the component-wise effectiveness of our method. Unless
otherwise stated, we use the same training configurations from the main experiments on CIFAR-10 (see
Table 6a), except that the warmup and training epochs are reduced to 2 and 20, respectively. We report the
test results based on a randomly sampled 1,000 images from the CIFAR-10 test set.

Effect of overall loss design. Table 3 presents a comparison of variants of LFTC*PIS including: (a)

removing the non-hallucinated condition of £5% in Eq. (8), (b) removing the masking condition of £* in
Eq. (9), and (c) training with cross-entropy loss L% only. In summary, we observe that (a) using only non-
hallucinated images for £5F achieves better ACR and effectively balances between accuracy and robustness.
Additionally, we find that (b) the mask “Dy nn = M” in £"9" is crucial for stable training, as it prevents
the optimization of adversarial images that have lost the semantic of the original image; and (¢) FT-CADIS
demonstrates higher robustness and ACR by combining Confidence-aware selective cross-entropy loss and
Confidence-aware masked adversarial loss.

Effect of Confidence-aware masked adversarial loss design. We further investigate the components of
Confidence-aware masked adversarial loss. Table 5 presents three variants of £*9 in Eq. (9): (a) replacing
the consistent target § with the assigned label y, (b) substituting the outer maximization with an average-
case, and (c) combining both (a) and (b). Overall, we find that our proposed £’ demonstrates superior
ACR compared to the variants, achieving the highest certified robustness while maintaining satisfactory



Under review as submission to TMLR

Table 4: Comparison of ACR and certified accuracy for the ablation of the update of Dy nn on CIFAR-10.

Certified Accuracy at & (%)
0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.632 91.1 80.4 66.7 49.0 0.0 0.0 0.0

Noise Update of Dy nn  ACR

o =025 v 0.642 879 787 68.0 54.0 00 00 0.0
050 0765 75.4 66.9 56.0 46.0 362 287 21.6
a="1 v 0.806 722 641 57.2 48.1 40.3 34.1 25.9
oo 0.626 53.4 45.9 382 329 27.3 225 164
7=+ v 0.783 48.1 435 40.6 36.9 32.4 285 23.8
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Figure 3: Comparison of certified accuracy for components in FT-CADIS, (a) A and (b) M, on CIFAR-10.
We plot the results at 0 = 0.50. We provide detailed results in Appendix C.

clean accuracy. It shows that both design choices, i.e., maximizing loss over adversarial images and using
soft-labeled adversarial targets, are particularly effective.

Effect of iterative update of Dy n,n. In FT-CADIS, we iteratively update the set of non-hallucinated
images i.e., denoise(x + 0) € Dx nn to deal with the distribution shift from the pre-training distribution
(clean images) to fine-tuning distribution (denoised images). Table 4 shows the effect of the iterative update
strategy on varying o € {0.25,0.50,1.00}. For all noise levels, the iterative update strategy shows higher
ACR with higher robustness. We find that the fine-tuning classifier increases the ratio of applying £ (see
Figure 4), i.e., far gradually classifies all the denoised images of x correctly, thereby focusing on maximizing
robustness and achieving a better trade-off between accuracy and robustness (Zhang et al., 2019a).

Effect of A. In the fine-tuning objective of FT-CADIS in Eq. (10), A determines the ratio between LA
and £5°E. Figure 3a illustrates how \ affects the certified accuracy across different radii, with A varying in
{0.5,1.0,2.0,4.0,8.0} and ¢ = 0.50. As X increases, the robustness at high radii improves although the clean
accuracy decreases, i.e., the trade-off between clean accuracy and robustness.

Effect of M. Figure 3b shows the impact of M on the model when varying M € {1,2,4,8}. The robustness
of the smoothed classifier improves as M increases, while the clean accuracy decreases. With a higher M,
the model is exposed to more denoised images included in Dx nn, reducing the distribution shift from clean
images to denoised images. This increases the confidence of the smoothed classifier, i.e., the accuracy on
denoised images, resulting in more robust predictions.

4.4 Related work
Certified adversarial robustness. Recently, various defenses have been proposed to build robust classifiers

against adversarial attacks. In particular, certified defenses have gained significant attention due to their
guarantee of robustness (Wong & Kolter, 2018; Wang et al., 2018a;b; Wong et al., 2018). Among them,
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Table 5: Comparison of ACR and certified accuracy for ablations of £™¢" on CIFAR-10 with o = 0.50.
Every design adopts the 1[|Dx nn| = M| masking condition.

Certified Accuracy at ¢ (%)

Adversarial objective design ACR

0.00 025 050 0.75 1.00 1.25 1.50
(a) max; ;e KL(Fee (x +17), ) 0802 717 643 562 480 39.8 338 257
(b) & 3=, (max,s KL(Fa(x +177),9)) 0.792 74.9 65.8 561 478 397 318 234
() 2 32 (maxy: KL(Faue (x + 1), y)) 0792 748 649 57.0 480 399 315 23.0

max; s KL(Fae(x +n7), ) (C*9; Ours) 0.806 72.2 641 57.2 48.1 40.3 34.1 25.9

Ratio of IDy ypl=M

— w/ update
w/o update

0.25

0.20 /

Ratio (%)

0.15 /

0 5 10 15 20
Epoch

Figure 4: Change in the ratio of |Dx nn| = M, i.e., ratio of clean images x satisfying the masking condition
of L' during fine-tuning on CIFAR-10 with ¢ = 1.00, depending on whether Dx nn is being updated or
not. In the legend, red indicates that Dy nn is iteratively updated, while orange indicates that Dy nn is fixed.

randomized smoothing (Lecuyer et al., 2019; Li et al., 2019; Cohen et al., 2019) shows the state-of-the-art
performance by achieving the tight certified robustness guarantee over £a-adversary (Cohen et al., 2019). This
approach converts any base classifier, e.g., a neural network, into a provably robust smoothed classifier by
taking a majority vote over random Gaussian noise. To maximize the robustness of the smoothed classifier,
the base classifier should be trained with Gaussian-augmented images (Lecuyer et al., 2019; Cohen et al.,
2019; Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020; Jeong et al., 2023). For instance, Salman
et al. (2019) employed adversarial training (Madry et al., 2018) within the randomized smoothing framework,
while Jeong & Shin (2020) suggested training a classifier using simple consistency regularization. Moreover,
Jeong et al. (2023) introduced sample-wise control of target robustness, motivated by the accuracy-robustness
trade-off (Tsipras et al., 2019; Zhang et al., 2019a) in smoothed classifiers. However, training base classifiers
specifically for Gaussian-augmented images requires large training costs and thus these methods suffer from
scalability issues in complex datasets, e.g., the accuracy drops severely in the ImageNet dataset.

Denoised smoothing. Denoised smoothing alleviates the aforementioned scalability issue of randomized
smoothing by introducing “denoise-and-classify” strategy. This approach allows randomized smoothing to
be applied to any off-the-shelf classifier trained on clean images, i.e., not specifically trained on Gaussian-
augmented images, by adding a denoising step before feeding Gaussian-augmented images into the classifier.
In recent years, diffusion probabilistic models have emerged as an ideal choice for the denoiser in the denoised
smoothing scheme. In particular, Lee (2021) have initially explored the applicability of diffusion models in
denoised smoothing, and Carlini et al. (2023) further observe that combining the latest diffusion models
with an off-the-shelf classifier provides a state-of-the-art design for certified robustness. Meanwhile, Jeong &
Shin (2024) investigate the trade-off between robustness and accuracy in denoised smoothing, and proposed
a multi-scale smoothing scheme that incorporates denoiser fine-tuning.

Our work aims to enhance the certified robustness of the smoothed classifier in denoised smoothing by fine-
tuning the off-the-shelf classifier on selectively chosen denoised images. Specifically, we focus on filtering
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out hallucinated images, which harm the performance of smoothed classifiers, from our fine-tuning process
based on the confidence of the off-the-shelf classifier. We then fine-tune the off-the-shelf classifier with
non-hallucinated images to improve both generalizability and robustness.

5 Conclusion

We propose FT-CADIS, a scalable fine-tuning strategy of off-the-shelf classifiers for certified robustness.
Specifically, we propose to use the confidence of off-the-shelf classifiers to mitigate the intrinsic drawbacks
of the denoised smoothing framework, i.e., hallucination and distribution shift. We also demonstrate that
this can be achieved by updating only 1% of the total parameters. We hope that our method could be a
meaningful step for the future research to develop a scalable approach for certified robustness.

Limitation and future work. In this work, we apply an efficient training technique for off-the-shelf
classifiers based on LoRA (Hu et al., 2022). Nevertheless, certification remains a bottleneck for throughput,
due to its majority voting process involving a large number of forward inferences, i.e., N = 100,000. An
important future work would be to accelerate the certification process for a more practical deployment of
our method. In addition, certain public vision APIs do not allow us to access the underlying off-the-shelf
classifiers, i.e., black-box. In such cases, our method is not directly applicable, and further research on
training methods that are independent of model parameters, such as prompt-tuning (Jia et al., 2022), will
be necessary.
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Supplementary Material

Appendix: Confidence-aware Denoised Fine-tuning of
Off-the-shelf Models for Certified Robustness

A Training Procedure of FT-CADIS

Algorithm 1 Fine-Tuning with Confidence-Aware Denoised Image Selection (FT-CADIS)

Require: training sample (x,y). variance of Gaussian noise o. number of noises M. off-the-shelf classifier
fe1e. attack fo-norm e > 0. adversarial target § € AK~1. coefficient of Confidence-aware masked
adversarial loss A > 0.

1: Generate X1 = NOISEANDDENOISE(x1,0), -+, Xa = NOISEANDDENOISE (X s, 0) > X;: copy of x
2: Identify Dy nn = {X: | fa:t(Ri) =y, i € [1,..., M|}

3: fori=1to M do

4: [,l < (C]E(Fclf (ﬁi); y)

5: nf < argmax KL(Fas(x+n7),9), 7= % —x

[Imr—nill2<e

6: end for

7 KT:M’ INDICES <— aI'gSOI"t([:1;]\,1>7 D;,nh — {Q&DICEs.index(i) | X; € Dx,nh}

8: if D ,, # 0 then

1

9 L« M(Zﬁ;‘e]);nh L7)
10: else
11: L% L (LT) > LT: lowest cross-entropy loss
12: end if

13: L9« 1[|Dy un| = M] - max KL(Fas(x+nf), 9)

14: EFT—CADIS «— ﬁSCE + - L:MAdv

Algorithm 2 Noise-and-Denoise Procedure (Carlini et al., 2023)

1: function NOISEANDDENOISE(X, 0):

2: t*, ay« < GETTIMESTEP(0)

3 Xpx 4 /o (x +6), 6 ~N(0,0%I)

4 X + denoise(xy;t*) > denoise : one-shot diffusion denoising process
5: return X

6: end function

T

8: function GETTIMESTEP(0):

9 t* « find the timestep t s.t. 02 = 1;—? > «y : noise level constant of diffusion model
10: return t*, ;-

11: end function
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B Experimental Details

B.1 Datasets

CIFAR-10 (Krizhevsky, 2009) consists of 60,000 RGB images of size 32x32, with 50,000 images for training
and 10,000 for testing. Each image is labeled as one of 10 classes. We apply the standard data augmentation,
including random horizontal flip and random translation up to 4 pixels, as used in previous works (Cohen
et al., 2019; Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020; Jeong et al., 2021; 2023). No additional
normalization is applied except for scaling the pixel values from [0,255] to [0.0, 1.0] when converting image
into a tensor. The full dataset can be downloaded at https://www.cs.toronto.edu/ kriz/cifar.html.

ImageNet (Russakovsky et al., 2015) consists of 1.28 million training images and 50,000 validation images,
each labeled into one of 1,000 classes. For the training images, we apply 224 x224 randomly resized cropping
and horizontal flipping. For the test images, we resize them to 256x256 resolution, followed by center
cropping to 224x224. Similar to CIFAR-10, no additional normalization is applied except for scaling the
pixel values to [0.0, 1.0]. The full dataset can be downloaded at https://image-net.org/download.

B.2 Training

Noise-and-Denoise Procedure. We follow the protocol of Carlini et al. (2023) to obtain the denoised
images for fine-tuning. Firstly, the given image x is clipped to the range [-1,1] as expected by the off-the-
shelf diffusion models. Then, the perturbed image is obtained from a certain diffusion time step according
to the target noise level. Finally, we adopt a one-shot denoising, i.e., outputting the best estimate for the
denoised image in a single step, resulting in a denoised image within the range of [-1,1]. Since this range
differs from the typical range of [0, 1] assumed in prior works, we set the target noise level to twice the usual
level for training and certification. A detailed implementation can be found at https://github.com/ethz-
spylab/diffusion-denoised-smoothing and the algorithm is provided in Algorithm 2.

CIFAR-10 fine-tuning. We conduct an end-to-end fine-tuning of a pre-trained ViT-B/16 (Dosovitskiy
et al., 2020), considering different scenarios of o € {0.25,0.50,1.00} for randomized smoothing. The same o is
applied to both the training and certification. As part of the data pre-processing, we interpolate the dataset
to 224x224. Our fine-tuning follows the common practice of supervised ViT training. The default setting
is shown in Table 6a. We use the linear Ir scaling rule (Goyal et al., 2017): Ir = base Ir x batch size + 256.
The batch size is calculated as batch per GPU x number of GPUs X accum iter // number of noises, where
accum iter denotes the batch accumulation hyperparameter.

ImageNet fine-tuning. We adopt LoRA (Hu et al., 2022) to fine-tune a pre-trained ViT-B/16 (Dosovitskiy
et al., 2020) in a parameter-efficient manner. We use the same training scenarios as for CIFAR-10. As
part of the data pre-processing, we interpolate the dataset to 384x384. The default setting is shown in
Table 6b. Compared to end-to-end fine-tuning, we reduce the regularization setup, e.g., weight decay, Ir
decay, drop path, and gradient clipping. For LoRA fine-tuning, we freeze the original model except for
the classification layer. Then, LoRA weights are incorporated into each query and value projection matrix
of the self-attention layers of ViT. For these low-rank matrices, we use Kaiming-uniform initialization for
weight A and zeros for weight B, following the official code. To implement LoRA with ViT, we refer to
https://github.com/JamesQFreeman/LoRA-ViT.

B.3 Hyperparameters

In our proposed loss functions (see Egs. (8), (9), and (10)), there are two main hyperparameters: the
coefficient A for the Confidence-aware masked adversarial loss, and the attack radius € of Confidence-aware
masked adversarial loss. Specifically, in Confidence-aware masked adversarial loss, we perform a T-step
gradient ascent from each 7; with a step size of 2 - ¢/T, while projecting the perturbations n} to remain
within an ¢»-ball of radius e: wiz., the projected gradient descent (PGD) (Madry et al., 2018).

For CIFAR-10, we use A = 1.0,2.0, 4.0 for o = 0.25,0.50, 1.00, respectively. Assuming that denoise(x+0) =~
x with high probability, we adopt a small € = 0.25 by default, which is increased to 0.50 after 10 epochs
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Table 6: Denoised fine-tuning settings for the off-the-shelf classifier on CIFAR-10 and ImageNet.

(a) CIFAR-10 end-to-end fine-tuning

Configuration ‘ Value

Optimizer AdamW (Loshchilov & Hutter, 2019)
Optimizer momentum 51, B2 = 0.9, 0.999

Base learning rate 5e-4 (o0 = 0.25,0.50), le-4 (o = 1.00)
Weight decay start, end = 0.04, 0.4 (cosine schedule)
Layer-wise Ir decay (Clark et al., 2020; Bao et al., 2022) | 0.65

Batch size 128

Learning rate schedule cosine decay (Loshchilov & Hutter, 2022)
Warmup epochs (Goyal et al., 2017) 3

Training epochs 30 (early stopping at 20)

Drop path (Huang et al., 2016) 0.2

Gradient clipping (Zhang et al., 2019b) 0.3

(b) ImageNet LoRA (Hu et al., 2022) fine-tuning

Configuration ‘ Value

Optimizer AdamW (Loshchilov & Hutter, 2019)
Optimizer momentum 51, B2 = 0.9, 0.999

Base learning rate 2e-4 (o0 = 0.25), 4e-4 ( 0.50, 1.00)

o=
start, end = 0.02, 0.2 (o = 0.25)
start, end = 0.01, 0.1 (o = 0.50, 1.00)
Layer-wise Ir decay (Clark et al., 2020; Bao et al., 2022) | 0.8 (¢ = 0.25), 0.9 (¢ = 0.50, 1.00)

Weight decay

Batch size 128

Learning rate schedule cosine decay (Loshchilov & Hutter, 2022)
Warmup epochs (Goyal et al., 2017) 1

Training epochs 10 (early stopping at 5)

Drop path (Huang et al., 2016) 0.0

Gradient clipping (Zhang et al., 2019b) 1.0

LoRA rank r 4

LoRA scaler a 4

only for 0 = 1.00. For ImageNet, we use A = 2.0,1.0,2.0 for ¢ = 0.25,0.50, 1.00 respectively, and ¢ is fixed
at 0.25 for all noise levels. Although the number of noises M and the number of attack steps T' can also be
tuned for better performance, we fix M = 4 and T = 4 for CIFAR-10. For ImageNet, we fix M = 2 and
T =1 to reduce the overall training cost.

B.4 Computing infrastructure

In summary, we conduct our experiments using 7 instances of NVIDIA GeForce RTX 2080 Ti and NVIDIA
GeForce RTX 3090 GPUs, respectively. In the CIFAR-10 experiments, we utilize 4 NVIDIA GeForce RTX
2080 Ti GPUs for fine-tuning per run, resulting in ~8 hours of training cost. During the certification, we use
7 NVIDIA GeForce RTX 2080 Ti GPUs for data splitting, taking ~9 minutes per image (with N = 100, 000
for each inference) to perform a single pass of smoothed inference. In the ImageNet experiments, we utilize
4 NVIDIA GeForce RTX 3090 GPUs for fine-tuning per run, observing ~3 days of training cost. During the
certification, 7 NVIDIA GeForce RTX 3090 GPUs are used in parallel, taking ~5 minutes per image (with
N = 10,000 for each inference) to complete a single pass of smoothed inference.
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B.5 Detailed results on main experiments

Table 7: Certified accuracy of FT-CADIS for varying levels of Gaussian noise o on CIFAR-10 and ImageNet.
Values in bold-faced indicate the ones reported in Table 1a for CIFAR-10 and Table 1b for ImageNet.

(a) CIFAR-10

Certified Accuracy at & (%)
0.00 025 050 0.75 1.00 1.25 1.50

oc=025 887 80.3 68.4 54.5 00 0.0 0.0
oc=050 749 673 587 492 39.9 31.6 23.5
oc=100 496 455 410 368 325 284 242

Noise

(b) ImageNet

Certified Accuracy at € (%)
0.00 0.50 1.00 1.50 2.00 2.50

c=2025 81.1 71.9 0.0 0.0 0.0 0.0
oc=050 770 693 60.1 45.8 0.0 0.0
c=100 662 607 540 464 39.4 30.7

Noise

1.00 ' 1.00
\ == 0=0.25 == 0=0.25
0=0.50 0=0.50
075 % — 0=1.00 }... ;\30,75-5‘\ — 0=1.00 ...
> > S
3 =1 _—
80.50 80.50 ey
< \ < e
E \ E \
5 .\ 5 e
O [
00.25 00.25 )
\
0 0
0 0.5 1.0 1.5 2.0 25 3.0 0 0.5 1.0 1.5 2.0 25 3.0
Radius Radius
(a) CIFAR-10 (b) ImageNet

Figure 5: Certified accuracy of FT-CADIS at different levels of Gaussian noise o € {0.25,0.50,1.00}. Upper
bounds in radius are calculated with NV = 100,000 for CIFAR-10 and N = 10,000 for ImageNet.
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C Detailed results on effect of A\ and M

Table 8: Comparison of ACR and certified accuracy for ablations of varying A on CIFAR-10 with o = 0.50.

Certified Accuracy at ¢ (%)
0.00 025 050 075 1.00 1.25 1.50

A=050 078 75.7 64.9 558 475 395 30.8 228
A=1.00 0.797 753 643 56.3 479 39.7 32.8 245
A=200 0806 722 641 57.2 48.1 403 341 259
A=4.00 0.814 709 633 559 48.0 41.0 35.0 27.7
A=800 0.823 68.6 624 560 476 41.5 35.9 28.5

Setups ACR

Table 9: Comparison of ACR and certified accuracy for ablations of varying M on CIFAR-10 with o = 0.50.

Certified Accuracy at ¢ (%)

Setups ACR

0.00 025 050 075 1.00 125 1.50
M=1 0773 75.6 67.0 563 46.2 381 294 216
M=2 079 749 654 556 476 39.1 32.2 233
M=4 10806 722 64.1 57.2 48.1 403 34.1 259
M=8 0817 704 625 559 479 42.1 35.8 27.9
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