© © N O O A~ W N =

31

32
33
34

OpenGovCorpus: Evaluating LLMs on Citizen Query
Tasks

Anonymous Author(s)
Affiliation
Address

email

Abstract

"Citizen queries" are questions about government policies, guidance, and services
relevant to an individual’s circumstances. LLM-powered chatbots have a number
of strengths that make them the obvious future for citizen query-answering, but
hallucinated or outdated answers can cause significant harm to askers in such a
sensitive context. We introduce OpenGovCorpus-UK and OpenGovCorpus-
eval: a 7.5k-Q&A-pair benchmark synthesized from gov.uk, and its use in an
evaluation framework for LLMs in citizen-query tasks. The protocol spans three
evaluator classes ((1) open-weights models, (2) GPT-family models, and (3) human
judgment) combining a persona-aware Metadata Grader, embedding- and token-
level Semantic Similarity, and LLM-as-a-Judge with pass-rate aggregation. Results
show strong few-shot gains, context and persona mismatches not captured by
similarity metrics alone, and variation across families of closed/open models. We
provide a reproducible procedure and thresholds suitable for lifecycle monitoring
as policies and models evolve, supporting evidence-based public sector deployment
for the future of trustworthy LLMs in government services.

1 Introduction

“Citizen queries” are questions about government policies and services that are specific to an individ-
ual’s circumstances, spanning topics such as benefits, taxes, immigration, employment, and public
health. This task naturally fits large language models (LLMs) (Fig.[Ta) given their conversational
interfaces and innate abilities to adapt language to users’ literacy and accessibility needs. However,
deployment for citizen queries is high-stakes: hallucinated or outdated guidance can harm end
users, providing misinformation that has consequence for their day-to-day life, so LLM adoption
requires evidence of accuracy and trustworthiness on citizen-query tasks. There is no widely adopted
benchmark for this setting; we therefore introduce OpenGovCorpus-UK and an accompanying eval-
uation framework, OpenGovCorpus-eval. OpenGovCorpus-UK contains 7,553 prompt-response
pairs derived from gov . uk policy and service text, enabling evaluation in a UK context. We assess
models with similarity metrics and automated graders, including a persona-aware Metadata Grader,
a Semantic Similarity grader, and LLM-as-a-Judge, and report pass-rate summaries using defined
thresholds. In addition to open-weights evaluations under zero/few-shot prompting, we run automated
evaluations on GPT-family models using a reproducible pipeline.

2 Background

Citizen queries and AI. Early work on citizen queries emerged during the 2000s e-government
movement, which shifted information seeking from in-person or telephone advice toward online
search and government websites [Schelin, 2003}, |Curtin et al.| |2003]]. Users generally preferred
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the online modality [Reddickl 2005]], and public-sector research focused on designing government
websites around real information needs [[Anthopoulos et al.| |2007]]. Evidence from advice agencies
showed that citizen queries span broad, high-stakes topics, including financial vulnerability and
other sensitive domains [Marcella and Baxter}, 2000], and also many everyday concerns, sometimes
unrelated to government itself [Lambert, |2011]. In the 2020s, this kind of interaction has increasingly
migrated to LLM platforms such as ChatGPT and Gemini, now embedded across mobile apps, voice
assistants, and search integrations [OpenAl, 2025b, |Gemini Team) 2023} |OpenAll 20254l Googlel,
2024} |Chapekis and Lieb}, 2025[]. LLM strengths—conversational interfaces and adaptable, personal-
ized responses—map well to citizen queries [Bhayanal [2024, |Kleiman and Barbosal [2025] (Chen et al.|
2023} |Gobara et al., [2024] Martinez et al., 2024} Wang et al.,|2024]|. Yet weaknesses—hallucinations,
degradation risks for QA systems, and privacy concerns—constrain high-stakes use [[Yun et al., 2023}
Pan et al., 2023 Mireshghallah et al., 2024], limiting trust especially in the sensitive contexts of
citizen queries raised by Marcella and Baxter| [2000].

Collecting evidence with factuality benchmarking. Credible adoption requires evidence of
accuracy and factuality built on benchmark datasets. No standard benchmark exists for citizen queries
comparable to HellaSwag or MMLU |[Zellers et al., 2019, [Hendrycks et al., 2020]. Automated
factuality measures such as FActScore and related variants provide document-grounded checks [Min
et al.,[2023| |Rajendhran et al., [2025} Zha et al.,[2023]], often paired with retrieval-based verification
[Muhlgay et al.l 2023| |Krishna et al., [2024].

Closely related work to ours, on UK public health information, develops a benchmark dataset and
evaluation protocol, finding strong multiple-choice performance but weaker free-form accuracy
for frontier LLMs [Harris et al., [2025]]. As governments pilot LLMs in services [Battina, 2021,
Kleiman and Barbosal, 2025]], a benchmark that spans the topical breadth, depth, and sensitivity of
citizen queries and reflects user diversity is needed [[DSIT] 2025]]; we address this by introducing
OpenGovCorpus-UK.

3 Methodology: Developing OpenGovCorpus-UK

Data Source. gov.uk is the official UK government website. Launched in 2012, it replaced
individual departmental sites to centralise access to policy and service information [Winters, [2016].
Content spans many domains and subdomains and is written in plain English or Welsh following
established design principles [GDS|2012]]. Practitioners often regard gov . uk as a leading government
portal for accessibility and ease of use [[Smart City Expo World Congress}, 2025]. Empirical evidence
further suggests gov . uk is frequently surfaced by LLMs when answering civic questions, indicating
its presence in training or retrieval workflows [Majithia et al., 2024]. Table [5]in Appendix
sketches the site’s mostly three-layer architecture, with key guidance reachable within two clicks. We
scraped 2,781 pages under the site’s content reuse policy| |to build the source corpus.

Dataset Curation. We defined a metadata taxonomy tailored to citizen-facing queries on gov . uk,
covering: service domains (e.g., benefits, immigration, housing), user demographics (e.g., age group,
region, digital literacy), prompt intent (e.g., definitional, procedural, grievance), reasoning complexity,
and source provenance. This structure enables stratified evaluation for factual utility and context
alignment.

Design requirements. The dataset: (i) consists of zero-shot Q&A pairs imitating citizen queries; (ii)
covers diverse domains and subdomains; (iii) includes varied query types (factual lookup, procedural
walk-throughs, multi-step reasoning); (iv) assigns a persona per question to test LLM adaptation to
end-users; (v) anchors each example with an expected reference answer and links to the relevant
gov.uk pages; and (vi) records quality attributes including metadata completeness and flags for
toxicity/bias.

Synthesis and postprocessing. Because these requirements exceed simple QA generation (e.g.,
SQuAD-style pipelines with TS5 [Raffel et al., 2023| Rajpurkar et al.l [2016]), we used Qwen 2.5
72B-Instruct [Qwen et al., 2024], selected for its expressive metadata generation and recent adoption
for large-scale synthetic datasets [NVIDIA| [2025]]. Prompts (Appendix [A.2) instruct the model to

"https://www.gov.uk/help/reuse-govuk-content
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Table 1: Open-weights models: zero-shot on Table 2: Open-weights models: few-shot on

OpenGovCorpus-UK (T=0.7, V100). OpenGovCorpus-UK (T=0.7, V100).

Model F11 Cosine T BERTScore T  Model F11 Cosine T BERTScore 1
meta-1lama/llama-3.1-8b- 0.19 0.425 0.845 meta-1lama/Llama-3.1-8B- 0.72 0.86 0.83
instruct Instruct

meta-llama/llama-3.1-70b- 0.231 0.437 0.855 meta-1lama/Llama-3.1-70B- 0.77 0.89 0.87
instruct Instruct

mistralai/mistral-7b-instruct- 0.18 0.431 0.845 mistralai/Mistral-7B-Instruct- 0.75 0.88 0.86
v0.3 v0.3

mistralai/mixtral-8x22b-instruct  0.203  0.440 0.851 mistralai/Mixtral-8x22B-Instruct  0.84 0.92 0.91
qwen/qwen-2.5-7b-instruct 0.220 0.44 0.857 qwen/Qwen-2.5-7B-Instruct 0.74 0.87 0.85
qwen/qwen-2.5-72b-instruct 0.23  0.449 0.861 qwen/Qwen-2.5-72B-Instruct 0.88 0.94 0.93

produce a Q&A pair for a given persona, populate metadata fields, and output a confidence score for
metadata completeness. We ran three generations per page. Postprocessing removed near-duplicates
(556 rows) and applied toxicity/bias screening with Cleanlab Studio [Cleanlab Incl 2025bla]. We did
not filter rows solely on toxicity/bias flags; instead, we retain these signals for downstream analysis
in evaluation.

4 Dataset Contents and Composition

OpenGovCorpus-UK contains 7,553 prompt-response pairs, cleaned from an initial 7,863 (ex-
amples in Appendix 2). Pairs cover all 16 gov.uk home-page domains (e.g., Benefits, Childcare);
distributions reflect our design choice to generate three Q-A pairs per scraped page (Fig. [ID).
The corpus includes 139 subdomains and 1,854 topics (page-level headings). Prompts span 10
types—procedural, definitional, navigational, transactional, legal, comparative, informational, per-
sonal, factual, other—with procedural dominant (5,158). Mean prompt length is 88.2 letters; mean
response length is 244.4 letters.

Each pair is linked to a persona aligned with the prompt context, drawn from 5 age groups, 5 education
levels, 3 digital literacy levels, 248 professions, 69 non-professional roles, 3 income levels, and 4
regions (England, Wales, Scotland, Northern Ireland). Rows include source metadata (URLs, licence,
language); all pages are under the Open Government Licence. Postprocessing added toxicity and bias
scores (0—1) from Cleanlab Studio; toxicity remained low, while bias varied but only reflected benign
mentions of protected attributes or countries at war. These scores are retained for archival purposes
only.

Human Quality Assurance. A manual review of 80 pairs found no invalid reference answers; ~5%
of prompts were ambiguous or only loosely relevant to reference material, implying an approximate
95% upper bound for benchmark performance. An external non-specialist reviewer rated sampled
pairs as strongly relevant, factually correct, and generally fluent, but noted formatting that is less
accessible than typical government guidance. The dataset is therefore best suited for factuality
benchmarking rather than fine-tuning for style.

5 Benchmarking Results

Open-weights: zero/few-shot. Few-shot conditioning substantially improved similarity metrics rel-
ative to zero-shot (Tables E]—@ In zero-shot, qwen-2.5-72B led on cosine similarity and BERTScore,
while 11ama-3.1-70B led F1. In few-shot, qwen-2.5-72B was best across all metrics, with
mixtral-8x22B close behind. Because qwen-2.5-72B was used in data synthesis, upward bias
toward Qwen models is expected. Similarity metrics likely do not capture the full nuance required
for evaluations in citizen query contexts.

GPT models: OpenAl Evals. With fixed thresholds (Table 4) and Overall defined as the un-
weighted mean of Metadata, Semantic Similarity, and Judge (Table[3), we evaluated seven GPT-family
models: gpt-5, gpt-5-mini, o1, gpt-4.1-mini, gpt-4.1, 03-mini, gpt-3.5-turbo. ol ranks
highest overall (91%) and on Similarity (100%), and ties for Judge (89%). gpt-5 ranks second
overall (90%), leads Metadata (92%), and ties Judge (89%). Open- vs. closed-weights results are not
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Table 3: Evaluation results using OpenAl Evals. Overall is the unweighted Table 4: Pass criteria

mean of Metadata, Semantic Similarity, and LLM-as-a-Judge. used by each grader.
Model Overall T Metadata T Semantic Sim. T LLM-as-a-Judge 1 Grader Range Pass
gpt-5 90.00% 92% 89% 89% Metadata 0.0-1.0 >0.75
gpt-5-mini 84.33% 79% 87% 87% Semantic Sim.  0.0-1.0 > 0.80
ol 91.00% 84% 100% 89% LLM-as-a- 1-7 >4.0
gpt-4.1-mini 87.00% 87% 92% 82% Judge

gpt-4.1 81.33% 76% 84% 84%

03-mini 80.67% 76% 84% 82%

gpt-3.5-turbo 58.33% 58% 56% 61%

directly comparable due to protocol differences. Some examples of zero-shot and few-shot responses
are shown in Table[6] & [7]in Appendix [A.3]

Evaluating utility with LLLM-as-a-Judge We use GPT-4.1 as the judge model to run a holistic,
multi-step review for each candidate model’s response. It assesses utility from a user’s perspective,
performs concise error analysis with suggested improvements, and assigns a seven-point score (1-7).
This provides a scalable proxy for human judgment, capturing clarity, helpfulness, and alignment
with user needs. Pass thresholds are in Table [4; per-model pass rates are in Table

6 Impact

How well does OpenGovCorpus-UK work as a benchmark for LLM performance in citizen
queries? Preliminary analysis and applications to multiple LLMs demonstrate utility for citizen-
query tasks. The 7,553 prompt-response pairs span the full range of gov.uk topics, covering
categories found by [Lambert| [2011]] and the nuance highlighted by [Marcella and Baxter| [2000].
Persona metadata enables evaluation of personalization across education and digital literacy.

Zero- and Few-shot Evaluations of Open-weight LLMs We hypothesized: (1) larger models out-
perform smaller ones; (2) few-shot prompting outperforms zero-shot; (3) Qwen models show upward
bias given their role in data synthesis. In all families (Meta, Mistral, Qwen), (1) holds—relevant for
public-sector settings where hosting favors smaller models. With (2) also holding (aside from small
BERTScore dips for Llama 3.1 8B and Qwen 2.5 7B), few-shot conditioning raises smaller models to
acceptable utility. For (3), Qwen models outperform size peers in zero-shot, so comparisons should
note this evaluative bias.

Contrast with closed-weight auto-evals. Using OpenAl Evals on GPT-family models, the rea-
soning model o1 led overall (with gpt-5 being second) and on semantic similarity but did not top
metadata; gpt-4.1-mini exceeded gpt-4. 1, showing size is not a reliable rank predictor among
recent closed models. Results across open- vs. closed-weight protocols are not directly comparable;
nonetheless, few-shot prompts plus grounding make open-weight options viable under compute and
compliance constraints.

7 Conclusion and Future Directions

We introduced OpenGovCorpus-UK and OpenGovCorpus-eval, transforming gov . uk content into
a structured benchmark with persona metadata for citizen-query evaluation. Using this corpus, we
assessed six open-weights models and six GPT-family models, observing consistent gains from
few-shot conditioning and the utility of a three-grader protocol (Semantic Similarity, Metadata,
LLM-as-a-Judge) for deployment-oriented pass-rate reporting. The benchmark offers a practical
basis for evidence-driven adoption of LLMs in public services.

Future work: (i) extend to multilingual and retrieval-augmented settings; (ii) periodically refresh
the corpus to address policy drift; (iii) scale human-in-the-loop and automated pipelines to track
factuality and utility over time.
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Figure 1: Dataset coverage and interaction example.
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Figure 4: Distribution of prompts by service domains.

A.1 Overview of gov.uk’s (mostly) 3-layered Architecture

A.2 Instruction Prompts

~

You are an AI assistant designed to simulate the perspective of an
average citizen interacting with government services. Your goal is
to:

1. Generate realistic, practical, and clear questions (prompts)
that ordinary people would ask after reading the provided government
website text.

2. Provide concise, helpful answeEF (responses) using ONLY the
information in the provided text.

3. Assign metadata based on the taxonomy of government services.

Rules:
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### TASK

Follow this 3-step process and repeat for 4 iterations per input
text:

STEP 1: Draft Q&A

1.1. Generate realistic user question (‘‘prompt”’).

1.2. Provide a simple, concise answer ("response") using only the
INPUT TEXT.

STEP 2: Metadata Tagging

Infer the following attributes:

# User Demographics: Who is asking the question?

- targetAgeGroup: wunderl8, 18-25, 26-45, 46-65, 65+

- genderIdentity: female, male, non-binary, unspecified

- educationBackground: mnone, primary, secondary, graduate,
postgraduate

- targetProfession: e.g., student, teacher, healthcare worker,
farmer, pensioner, unemployed, business owner

- digitalliteracy: low, medium, high

- geoRegion: England, Scotland, Wales, Northern Ireland, other
- householdIncomeStatus: wunder poverty limit, moderate, above
moderate

- targetRole: e.g., individual citizen, parent, widow, caregiver,
immigrant

# User Intent

- promptIntentType: informational, navigational, transactional,
procedural, comparative, legal interpretation, personalized guidance,
grievance / appeals

# Geographic Context
- geographicContext: UK-wide, England, Scotland, Wales, Northern
Ireland, N/A

# Risk Assessment
- vulnerableGroupTargeted: boolean
- confidenceScore: float in [0.0, 1.0]

# Source Provenance

- serviceDomain: <copy from INPUT TEXT>

- subServiceDomain: <copy from INPUT TEXT>

- sourceURL: https://www.gov.uk/browse/{<copy from INPUT TEXT>}
- sourceDomain: www.gov.uk

- sourcelicense: Open Government Licence (OGL) v3.0

- dateCreated: YYYY-MM-DD

- language: en

STEP 3: QOutput
Return ONLY the final result as a JSON object.

11
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Metadata-Based Custom Grader Prompt

You are evaluating how well an AI-generated response addresses a
citizen’s question, based on both content and metadata context.
Evaluate the model-generated response compared to the reference
answer.

### Prompt:

{{item.prompt}}

### Model Response:

{{sample.output_text}}

### Reference Response (Ground Truth):

{{item.response}}

### Citizen Metadata:

Age Group: {{item.targetAgeGroup}} Gender: {{item.genderIdentity}}
Education: {{item.educationBackground}} Profession:
{{item.targetProfession}} Digital Literacy: {{item.digitalliteracy}}
Region: {{item.geoRegion}} Income: {{item.householdIncomeStatusl}}
Role: {{item.targetRolel}}

### Prompt Metadata:

Intent Type: {{item.promptIntentType}} Reasoning

Complexity: {{item.reasoningComplexity}} Geographic

Context: {{item.geographicContext}} Sensitive Info Present:
{{item.sensitiveInformationPresent}} Vulnerable Group

Targeted: {{item.vulnerableGroupTargeted}} Confidence Score:
{{item.confidenceScore}}

### Service Metadata:

Service Domain: {{item.serviceDomain}} Sub-domain:
{{item.subServiceDomain}} Topic: {{item.topic}}

### Evaluation Criteria

1. Content Accuracy - Correctness relative to the prompt.

2. Clarity and Simplicity - Accessible to the given education and
digital literacy.

3. Metadata Alignment - Persona fit, domain fit,
region/jurisdiction correctness.

4. Bias or Misalignment - Absence of bias and mismatched
phrasing.

12



283 A.3 Semantic Similarity Grader Prompt

Semantic Similarity Grader Prompt Format

Evaluate the degree of similarity between the given output and the
ground truth on a scale from 1 to 5.
Criteria

* 5: Highly similar - near-identical with minor differences.
* 4: Somewhat similar - largely similar with few differences.

* 3: Moderately similar - some differences but core meaning
captured.

* 2: Slightly similar - few elements match; several
differences.

* 1: Not similar - substantially different.
Steps
List key elements in output and ground truth.
Compare elements for overlaps and differences.
Assess semantic meaning alignment.
Assign category using the criteria.

Provide a brief justification.

D O W N

Output an integer score in {1,2,3,4,5}.

284 N\

285 A.4 Evaluation Prompt for LLM-as-a-Judge

LLM-as-a-Judge Evaluation Prompt

Task: Given a citizen prompt, the model response, and the reference

answer with metadata, rate overall utility on a 1-7 scale considering

correctness, actionability, clarity, persona-fit, citation of
relevant gov.uk pages, scope control, and safety. Provide a short
rationale and a final integer score.

286

287 A.5 [Example responses for selected citizen queries.
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Question

Ground Truth Answer

LLaMA-3 8B (Zero-shot)

Mixtral-8x22B
shot)

(Zero-

How do I register to
vote in Northern Ire-
land?

To register to vote in North-
ern Ireland, visit the Elec-
toral Office for Northern Ire-
land (EONI) website and
fill out the registration form.
You can also contact them
by phone or post. Deadline
dates vary by election.

You can register to vote on
the government website by
filling out a form with your
personal details. Make sure
to do it before the deadline.

To register in Northern Ire-
land, use the online form
or contact your local coun-
cil. Deadlines can vary, so
check early.

What  support is
available for carers in
Wales?

Carers in Wales may be
eligible for support from
local authorities, including
Carer’s Allowance, respite
care, and assessments un-
der the Social Services
and Well-being (Wales) Act
2014.

Carers in Wales can ap-
ply for benefits and access
respite services through lo-
cal councils. Financial and
emotional support are avail-
able.

You may be entitled to ben-
efits and services such as
respite care or counseling
if you’re a carer in Wales.
Contact your local authority
for details.

Table 6: Example zero-shot responses for selected citizen queries.

Question Reference Answer LLaMA 3 8B Mixtral 8x22B Qwen 2.5 72B

Can a civil servant | Yes, but only with explicit | Yes, civil servants | No, civil servants cannot | Yes, with depart-

receive  payment | permission from their de-| can have a second | hold second jobs without | mental approval to

from a second job? | partment or agency. job if declared. approval. avoid conflicts of in-
terest.

How do I register to | You can register to | Visit the UK govern-| You can register at|Go to the official

vote in Wales?

vote in Wales by visiting
gov.uk/register-to-vg

ment’s website to
tregister.

gov.uk/register-to-vq

tmvernment website
and fill in the regis-
tration form.

Table 7: Few-shot comparisons of model-generated responses with reference answers.
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