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Abstract

Directly generating 3D meshes, the default representation for 3D shapes in the
graphics industry, using auto-regressive (AR) models has become popular these
days, thanks to their sharpness, compactness in the generated results, and ability to
represent various types of surfaces. However, AR mesh generative models typically
construct meshes face by face in lexicographic order, which does not effectively
capture the underlying geometry in a manner consistent with human perception.
Inspired by 2D models that progressively refine images, such as the prevailing
next-scale prediction AR models, we propose generating meshes auto-regressively
in a progressive coarse-to-fine manner. Specifically, we view mesh simplification
algorithms, which gradually merge mesh faces to build simpler meshes, as a natural
fine-to-coarse process. Therefore, we generalize meshes to simplicial complexes
and develop a transformer-based AR model to approximate the reverse process of
simplification in the order of level of detail, constructing meshes initially from a
single point and gradually adding geometric details through local remeshing, where
the topology is not predefined and is alterable. Our experiments show that this
novel progressive mesh generation approach not only provides intuitive control
over generation quality and time consumption by early stopping the auto-regressive
process but also enables applications such as mesh refinement and editing.
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1 Introduction

3D triangular surface mesh is the predominant representation in graphics. Due to its explicit control
nature, compactness, and strong compatibility with modern graphics pipelines, it is important and has
been widely used in various applications, such as the gaming industry and film production. Since 3D
meshes are discrete and often non-watertight, autoregressive (AR) models are increasingly popular
for directly generating meshes instead of relying on intermediate representations like implicit fields,
which may struggle with non-watertight, non-manifold, or thin-sheet surfaces. While AR models
prove highly effective in modeling discrete ordered sequences in many other domains, such as natural
languages, their application to meshes is less straightforward since mesh vertices and faces are
inherently unordered. Prior works typically assign lexicographic orders [29]] (for instance, from left
to right and bottom to top in a canonical coordinate system) or face traversal orders [4} 48, 160] to
transform a mesh into a 1D sequence, and later employ an autoregressive model to learn the sequence
directly for mesh generation. However, these artificially created orders are often less meaningful
in geometry, failing to capture the overall shape during generation, and do not align well with how
humans perceive objects in a hierarchical, coarse-to-fine manner.

Such an issue also exists for AR models in 2D, where a raster scanning order for images is easy to
implement but not optimal. Recent approaches, such as VAR [49], instead define the AR sequence as
predicting the next scales, i.e., generating a higher-resolution image from a lower-resolution one. We
are therefore prompted to explore what the “next-scale” prediction for 3D meshes could be.

Unlike images or voxel grids that are structured regularly and allow for easy up- or down-sampling to
obtain different resolutions, the “scale,” more commonly known as level-of-detail (LOD) in graphics,
is rarely explored for 3D meshes with deep learning due to the irregular nature and complexity of
explicitly managing a mesh’s connectivity and topology. Nevertheless, one can still define the LOD
for a mesh in terms of the number of faces or vertices. The widely accepted mesh simplification
algorithms, such as QSlim [16], help by progressively reducing the face count of a mesh through
the repeated collapsing of edges, where an edge connecting two vertices is merged into a single
vertex, thus creating different levels of detail for the mesh. By leveraging a mesh simplification
algorithm, we are motivated to train an AR model to learn from this reversed simplification sequence
and generate meshes by progressively adding geometric details through local remeshing.

Our paper primarily draws upon two works [[17,141]] in the traditional area of mesh processing from
several decades ago. Specifically, we propose an adapted version of [17], termed GSlim in this paper,
which is designed to operate on and simplify simplicial complexes (introduced later in Section[3.1), a
generalization of triangular meshes, within a unified framework. The algorithm is enhanced with
the capability to allow for topological changes during simplification. With our algorithm, a mesh,
regardless of how complex its initial topology may be, will ultimately be reduced to a single point,
benefiting from the use of simplicial complexe which is unsupported by QSlim. The algorithm can
provide information as a byproduct on how we simplify a mesh in the LOD order. By reversing the
simplification process, we can obtain a 1D refinement sequence that progressively refines a mesh
through local remeshing, an idea that has been roughly discussed by Popovi¢ and Hoppe [41]]. The
above algorithms essentially convert a mesh into a 1D sequence. We then design a tokenization
scheme to discretize the 1D sequence into compact tokens and subsequently train an autoregressive
(AR) transformer using the tokenized sequences. This process can also be referred to as next-
level-of-detail prediction, as the model essentially predicts refinement operations that add details to
construct the next LOD. By employing our method, we can easily obtain a mesh with a user-specified
LOD/complexity by early stopping the AR generation, which was unachievable in earlier work. Our
experiments also show that such a trained transformer model is a useful and effective shape encoder
that can faithfully capture shapes with high fidelity in the task of unconditional mesh generation.

In summary, to achieve direct mesh generation in the order of LODs, this paper proposes reversing
the mesh simplification algorithm, thereby converting a mesh into a coarse-to-fine mesh refinement
sequence. We train an AR model on these sequences to predict the next LODs. During generation,
the mesh initially starts from a single point and is iteratively refined according to the predictions made
by the AR model, progressively adding geometric and topological details through local remeshing.
Experiments show its streaming generation with flexible controllability over quality and time usage.

2If we do not use simplicial complexes, an isolated single point cannot be described along with a triangular
mesh. Additionally, simplicial complexes accommodate various types of meshes, including those with different
topologies, non-watertight or non-manifold cases, mixed dimensions, and so on, as indicated by [17].



2 Related Work

Indirect Mesh Generation. A mesh can be indirectly obtained by converting it from other rep-
resentations. Researchers have shifted their focus to studying generation with implicit fields after
recognizing the ease of using these fields to handle different topologies [6, 34} 139]. Numerous
studies [[7, 18, 113} [15} 25) 126, 27, 128, 39} 43]] have emerged along this line. Some aim to describe
shapes purely geometrically, typically using signed distance fields [6} 34} 39], while others further
explore how to encode both geometry and appearance within the same representation, typically
employing neural radiance fields [20, 24} 35 [36, 155]]. Their representations can be either continu-
ous [34} 135136, 139] or discrete [28130,43]]. They often rely on a post-processing step of iso-surface
extraction [31] to convert their representation into a surface mesh. The drawbacks of indirectly
generating meshes prompt us to study direct mesh generation methods, as detailed below.

Direct Mesh Generation. Initial attempts in this area involve deforming a shape template (e.g.,
a sphere) to a target [54} 58], which is limited to a fixed topology. Some approaches attempt to
explicitly modify the topology [38] or leverage local surface patches to adapt the topology [18 [19],
but still fail to produce a mesh with concise tessellation. Some methods capable of obtaining a
concise tessellation are based on intermediate representations and need to derive the mesh indirectly
from them [} [13]]. PolyGen [37] is the first to directly generate a mesh by explicitly generating its
vertices and faces. MeshGPT [45] learns codebooks to facilitate the encoding of triangular faces;
some methods [3, 4, 21} 29| |60] strive to develop efficient tokenization strategies that convert a
mesh into a one-dimensional sequence; some researchers [[21} 53] study the architecture for efficient
training of a mesh generation network. However, although there have been numerous works in this
area, the paradigm they use mainly originates from [37]], where the mesh is constructed face by face.
In contrast, we attempt to generate a mesh progressively in the order of levels of detail.

Levels-of-Detail. Representing signals with multiple resolutions can generally be effective. Tradi-
tional methods [10} 16} 122} |42]] focus on designing simplification algorithms that produce multiple
levels from a given mesh input. Some works in deep learning [} 36} 40, 47] suggest producing im-
plicit fields hierarchically or using hierarchical data structures to facilitate fine-grained representation;
however, they do not natively operate on the mesh itself. This is mainly due to the challenges associ-
ated with handling a mesh’s connectivity. A recent work [48] in direct mesh generation attempted
to incorporate an additional token for face count control; however, it does not intrinsically model
different levels of detail, still essentially treating various levels as distinct meshes. A concurrent work
named VertexRegen [61]] is built upon progressive meshes [22]], which require the initialization to be
homeomorphic to the target mesh. However, our method does not have these restrictions.

3 Preliminaries
3.1 Generalizing Mesh into Simplical Complex

A mesh can be considered exclusively composed of triangles. However,
triangles alone are insufficient in this paper. Our method relies on a new
representation called simplicial complex (SC), which is a generalization
of meshes. A simplicial complex further generalizes a mesh to accom-
modate (isolated) points and line segments that are not necessarily part
of any triangles. Figure [2]illustrates this idea. We sometimes refer to
an SC simply as a mesh in this paper for simplicity. Another benefit of
using SC is its conciseness and abstractness in describing geometry. For
example, line segments are better suited for describing skeletons, while
Figure 2: Ansimplicial ~ an SC composed exclusively of points is essentially a point cloud.
complex example.

3.2 QSlim: The Standard Quadric-Based Simplification Algorithm

To make our paper self-contained, we briefly introduce the widely accepted mesh simplification
algorithm QSlim [16]] here before formally introducing the GSlim algorithm that we actually used.
For a triangular face o defined by the plane n' (x — p) = 0 with ||n|| = 1 and p being the barycenter,
we can easily see that the squared distance from a point x € R? to the plane n" (x — p) = 0 can be
calculated as:

T

Qo(x) = (n'(x— p))2 =x"Ax+2b'x+c
with A=nn', b

=-Ap, c=p'Ap



The above distance, also called the cost, is uniquely defined by the triplet @, = (A, b, ¢), which is
referred to as the fundamental quadric of 0. We note that since geometric error can be measured in
total as the sum of costs, the quadric is essentially additive. The quadric of a vertex v is therefore the
sum of the quadrics of all faces incident to it, that is, Q,, = ZUE N, Q., where NV, is the set of faces
incident to v. The quadric of an edge e is defined as the sum of the quadrics of its two endpoints,
that is, Q. = @, + Qu,, Wwhere v and v, are the two endpoints of e. If the edge e will collapse, it
will merge vy and vs into a single vertex v* which is the minimizer of @)., and the quadric of v* is
updated with Q,« = @, + Q.,. For simplicity, v* is practically determined by
v = argmin = Q.(u)

vy +vo
u€{v1,v2, 5

with the collapse cost being Q. (v*). This means the collapse position is taken from either the
endpoints or the midpoint of the edge. We can calculate the collapsing costs for every edge in the
mesh and employ a greedy strategy to iteratively collapse the edge with the minimum cost found. A
min-heap data structure will help find the minimum. The algorithm terminates when certain criteria
are met, such as when the face count falls below the desired number. At the end of the algorithm, we
will obtain a coarse mesh that is homeomorphic (has the same topology) to the original mesh.

To preserve boundary edges, the algorithm needs to generate a perpendicular plane that runs through
the edge. These constraint planes are later converted into quadrics, weighted with a large penalty,
and added to the initial quadrics for the endpoints of the edge. Apart from the inconvenience of
preserving boundaries, there are also several limitations, including unchangeable topology and the
inability to handle isolated points and edges. These limitations make the QSlim algorithm unusable
for our task, since we envision that any mesh will eventually be simplified to a single vertex, which
will require changes to both the topology and simplex dimension during simplification.

4 Method
4.1 GSlim: Generalized Mesh Simplification Algorithm

The GSlim algorithm we used addressed the aforementioned limitations (Section[3.2)). It is adapted
from [17] to enable topological changes. It is compatible with SC and supports reducing a mesh to
the coarsest shape possible, which is a single point that also serves as the starting point for generation.

Unlike QSlim, which only defines fundamental quadrics for triangles, GSlim defines them for every
simplex’| The quadric coefficient A for a simplex o of intrinsic dimension d is instead calculated as

A=1- Zle eieiT

where {e; } is its tangent orthonormal basis of ¢, and I is an identity matrix.

A larger quadric value in the above formulation will indicate that updates involving o are difficult,
thereby postponing its edge collapse. Similarly, we need to aggregate nearby quadrics to compute
the edge collapse quadric @), the calculation process of which has been detailed in Section [3.2]
During the aggregation, we can optionally weight the fundamental quadrics with a large penalty
factor to adjust the strength of preserving that simplex. For example, if we assign a large penalty to
the boundary edges, it will attempt to preserve the boundary, which is much easier than QSlim. We
have included an ablation study in Section[5.1]to investigate which set of penalty factors is the best.

It is interesting to note that for a mesh with n vertices, the algorithm requires n — 1 steps to simplify
it until only a single vertex remains, as each edge collapse reduces the vertex count by exactly one.

4.2 PSC: Reversing Simplification into Generation

Since the simplification process is a many-to-one mapping, it is not inherently reversible unless
additional information is recorded to specify how to reverse this process. The reverse operation
of edge collapse is called “vertex split,” and an example is provided in Figure 4] By reversing
simplification with vertex splits, one can reformulate a simplicial complex into a new representation
called a Progressive Simplicial Complex (PSC) [41]], which consists of a starting point followed by a
sequence of vertex splits for coarse-to-fine refinement. Since in PSC only new simplices are added to
the existing mesh with new indices, without altering the indices of pre-existing simplices, to convert
an edge collapse sequence into a vertex split sequence, one must also reorder the simplices’ indices
so that they are in ascending order. The following information must be recorded for each vertex split:

A simplex may refer to a point (d = 0), an edge (d = 1), or a triangle (d = 2).



vertex pairs for collapse. Unlike the convention [16] that uses
@ candidate pairs from triangles, we further include “virtual edges”

Contraction
I -

%\ Before the algorithm begins, we need to specify a set of candidate

that bridge up disconnected components to facilitate topological
changes. Figure [3] presents two examples of virtual edges for
collapse. Following [41], these virtual edges are derived from the
. Delaunay tetrahedralization [1}157]] of the input vertices. After the
Figure 3: Two examples of gener- gimplification is applied, the algorithm will produce a sequence of
alized edge collapse. Two points jncreasingly coarsened meshes as side products, visualized from
will collapse into one point after rjghy to left in In the next section, we will discuss what
contraction, leading to topologi- jnformation should be recorded during progressive simplification
cal changes. to facilitate our future use.

» which vertex to split: an integer index is sufficient for selecting the vertex for splitting

* how the split is performed: a boolean indicating whether the current position remains
unchanged or becomes the midpoint of the split vertex pair

* the relative positional offset: an offset vector for translating the new vertex position relative
to the current vertex position

* how the topology changes in adjacency: a list of topological labels for adjacent simplices
A vertex split operation can be represented as a JSON configuration, which may look like:

{ :0, :true, :[1.2,0.7,2.5]1, :[1,2,5,3,3,4,6,71 }
The first three are quite straightforward, while the fourth is less intuitive, and we will elaborate on
what it actually means and how we derive it by explaining the example below.

Table 1: Enumeration of topological cases.

1 il B Input Output Cases After Vertex Split
3 Vertex Split 2 ; 7o ’ 7 -
2 ”~ M
7 S
1 7 6 55 S s
0 0 1 4 E0 E1 E2 E3
o 0 0 t t t t
,,,,,,,,,,,,,, fTopologicaI List 0 s . . . ;
iv1 Eo E3 E1 E1E2 Fo [F1
i Label Fo F1 F2
0 012 3 4 01 Index t t t
. . s
Figure 4: An example of vertex split. s s s

In Figured] a vertex O is split into two, resulting in the creation of a new vertex 1. Since the vertex
split only influences its adjacent primitives (vertex 0 itself, five edges 0=4, and two faces 0, 1), the
topological changes must occur solely in its adjacency. We can use a list called “topological list”
to carry the topological change information for each adjacent simplices (always including vertex 0
itself), and its length is exactly the number of adjacent primitives, as shown at the bottom of Figure 4]
The list is first sorted by the dimension of the primitives, and then by ascending indices. Each entry
in the list represents a classification label ranging from 0 ~ 8, corresponding to the nine possible
cases (VO, V1, EO, E1, E2, E3, FO, F1 and F2) summarized in Table

Let’s interpret the topological cases in Table [I] For a single vertex marked as s (source), it can
either be split to form a new vertex & (target) or create a new edge Ist connecting is and t. They are
respectively denoted as case VO and V1. Similarly, there are four cases for an edge: EO merely adds a
t; E1 switches the edge to connect with t; E2 creates a new edge to connect with t; and finally, E3
creates a new triangle. The explanation for triangle cases is analogous and omitted for brevity.

With Table[T} we can interpret the case presented in Figure[d] For instance, for edge 1 in Figure ]
after splitting vertex 0 to create vertex 1, a new face 2 is created, corresponding to case E3 in
Table[T] We note that creating face 2 also implies that all its sub-simplices exist or are created as well,
including edges 6, 5, and 1. This also suggests a constraint on the topological labels, i.e., case VO is
inherently incompatible with E3, because the former suggests that edge stl (specifically, the edge 5)
exists, while the latter does not. There are many more hard constraints like this that the configuration
must adhere to. The original paper [41] provides only incomplete rules and cannot be used directly
for our purposes. We analyze and summarize all topological constraints into the following four rules:



index coordinate vertex face edge bit

(7 7 <1 < I I e e e I ]

id range: 0~255 256~511 512~513 514~516 517~520  521~522

Figure 5: An example of a tokenization layout for a refinement operation.

1. If VO, then cannot have E3.

2. If v C ey,es and e, e5 C FO, then ey, €5 # E1.

3. Ifv Ceg,epand eg,e5 C F1, then e, e5 # EO.

4, If v C e1,es and e1, e2 C F2, then e1, e # EO and # E1.

A detailed explanation of rules (2-4) is provided in the footnoteﬂ These four rules are complete and
can be rigorously derived by thoroughly enumerating all possible cases in a table and summarizing
the rules that encompass each entry. They also indicate that we can modify only the predictions of the
edges to ensure that all the topological label predictions are consistent. We will leverage this property
to design our tokenization layout, as shown in Figure[5] where the edge predictions follow the vertex
and face predictions to facilitate the constrained decoding process introduced in Section[4.3]

By formulating the vertex split operations (refinement sequence) as a series of JSON configurations,
we are able to progressively reconstruct a simplicial complex from a single point with the sequence.
In the next section, we will detail how to turn this into a learnable process with AR models.

4.3 Auto-Regressive Learning from Refinement Sequences

After obtaining the refinement sequences, we can utilize transformers to learn from these sequencesﬂ
We need to tokenize the sequence before feeding it into the transformer network. Unlike [56], which
directly converts the structured input to textual format, we organize it in a compact layout. We show
the operation layout after tokenization in Figure[5] In this example, there are three faces and four
edges incident to the selected vertex, resulting in three squares colored in yellow and four squares
colored in coral. We now explain the layout in detail: (1) The first two bytes encode the vertex index
using int16, and each slot ranges from 0 to 255; (2) The subsequent six bytes encode the relative
offset using 3 x £p16, with the first three bytes storing their most significant bytes, and each slot
ranges from 256 to 511; (3) We then store the topological labels for the selected vertex, as well as
incident faces and edges, respectively. There are only two cases for the selected vertex, so it ranges
from 512 to 513. There are only three cases for the incident faces, so it ranges from 514 to 516.
There are four cases for the incident edges, so it ranges from 517 to 520; (4) The last byte denotes a
boolean indicating whether the current vertex is the midpoint after the vertex split. After all vertex
split operations are tokenized, we should be able to obtain a long sequence by concatenating all
tokens for autoregressive learning. Figure [ below illustrates the network design for learning.

end We simply adopt a transformer network [52] to fit the se-
|:| |:| |:| |:| |:| |:| i |:| |:| |:| |:| quences. Since we primarily focus on unconditional gener-
ation in this paper, the network receives no input conditions.
Autoregressive Transformer | The network is responsible for predicting the next token un-
til it reaches the end token and stops generation. However,
OOCOCOCOOCOBECOCOLD predictions generated by the transformer may not always
Start "Operation 1 Operationz _ Operation3  correspond to a valid operation, as analyzed in Section[4.2]
We may need a solution to determine whether the predic-
tion is valid, possibly through constrained decoding, as
shown below, to address this issue and ensure validity.

Figure 6: An example of autoregressive
learning of three refinement operations.

Apart from the four rules summarized in Section [21;2], there are additional constraints, such as
those related to the vertex index and the relationships among different refinement configurations. To
facilitate implementation, we can manually hardcode a function, denoted as ¢(z; | x1,...,x;—1), that
takes the newly generated token z; as input, conditioned on all the previous tokens {x1,...,z;_1},
and outputs a boolean value indicating whether the new token x; is compatible with the previous

*The second rule states that if there are two edges e; and e incident to the split vertex and are subset to a
face with a topological label of FO, then the topological labels of e; and e cannot be E1. The explanation for
the other rules is quite similar.

>We would like to note that our major contribution (Sections and is theoretically independent of how
the learning scheme is designed; we simply present the simplest learning solution here.
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Figure 7: Mesh simplification results at different levels of detail. Our method incorporates isolated
points and edges, which also help to approximate the original fine shapes. When simplifying to 1%,
the geometric accuracy remains nearly the same.

tokens {1, ...,2;—1}. We hardcode the function ¢ in Python with caching. The basic idea to ensure
validity is to use a depth-first search-based tree traversal combined with random sampling to introduce
diversity. The function ¢ is evaluated at each node, and the most probable node is selected for deeper
traversal. If it cannot proceed further, it backtracks to the parent nodes to find alternative solutions.
Using this constrained decoding strategy provides an implementation guarantee that the operations
predicted by the transformer are always consistent with the previously generated ones.

5 Experiments

Dataset. Our 3D mesh data mainly come from Stanford 3D Scans [50], Thingi10K [63], NeRF [35],
AMASS [33]], and ShapeNet [2]]. The ShapeNet data has been preprocessed by Siddiqui et al. [43]],
which contains < 1, 700 vertices and < 800 faces for each mesh, and we follow their settings.

Metrics. Following previous works [32,145| 51} 162]], we adopt the following metrics for evaluation:
Minimum Matching Distance (MMD), Coverage (COV), and 1-Nearest-Neighbor Accuracy (1-NNA).
For MMD, lower values are better; for COV, higher values are better; and for 1-NNA, 50% is optimal.
These metrics are calculated based on Chamfer Distance (CD). To measure visual similarity, we also
use FID and KID scores to assess visual quality, with lower values being better. We also report mesh
compactness as the average number of vertices and faces per mesh.

Implementation Details. For simplification, we set the penalty factors for vertices, boundary edges,
and faces to 0, 1, and 1, respectively, as their default values in our experiments. We follow the
standard techniques in LLM, employing Byte Pair Encoding (BPE) to compress tokens. The entire
vocabulary size is 16,384, resulting in a length reduction of 2 ~ 3 times. We basically follow the setup
of MeshGPT [45] for our comparative experiments. We adopt a 12-layer transformer with a width
of 768 for training, utilizing variable-length bf 16 flash attention [11} [12] for efficient training. The
average batch size is ~ 60 per GPU. The learning rate is 10~* for pre-training across all categories
and 10~° for supervised fine-tuning on specific categories (chair, table, bench, and lamp). The model
is pretrained on 4 H20 GPUs for ~ 4 days and fine-tuned on 2 H20 GPUs for ~ 2 days.

5.1 Ablation Studies

Simplification with Different Levels-of-detail. In this part, we study how the geometric recon-
struction accuracy varies w.r.t. different LODs using our simplification algorithm. We test a very
complex LEGO shape from [35] that contains up to 2 million faces. Visualization results, along with
the numerical accuracy, are presented in Figure[7] We find that our simplification algorithm indeed
produces meshes with different LODs that consistently mimic the original shape.

Simplification on Non-manifold Meshes. We study the necessity of using our proposed generalized
simplification (GSlim) algorithm over the widely used QSlim [[16] and present the results in Figure [§]
Since QSlim cannot handle non-manifold cases, it either crashes during processing or produces
erroneous results. Our algorithm is often useful since many datasets contain non-manifold cases;
using GSlim will enable direct processing of a non-manifold mesh without preprocessing.

Simplification with Different Penalties. To investigate how the penalty factors affect the simplifica-
tion results, we conduct experiments and present the visualizations in Figure[9] We find that without
the boundary edge penalty applied, the simplified mesh cannot maintain a hole in the middle, and the
leg length is clearly shortened. With the vertex penalty applied, the resulting triangles become close
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Figure 8: Different mesh simplification algorithms. The popular QSlim algorithm may result in
broken and cracked surfaces, while our algorithm (GSlim) still captures the overall shape perfectly,
even when the mesh is non-manifold. The QSlim we used is implemented by MeshLab [9].

to equilateral; however, it cannot adaptively distribute its triangles to fit the geometric curvature. The
best configuration is therefore VEF = (0, 1, 1), which is the default for all our other experiments.

VEF=(0,0,1)

Figure 9: Different penalty factors used in simplification. The four right subfigures show the results
with only 2% refinement steps applied. The notation “VEF” at the bottom denotes the penalty values
for vertices, boundary edges, and faces, respectively. It is clear that VEF = (0, 1, 1) is the best.
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Figure 10: Mesh collection learning with 100 objects taken from the Thingil0K [63] dataset.

5.2 Direct Mesh Encoding

Direct Single Mesh Encoding at Different Levels of Detail. In this part, we study and compare
methods capable of obtaining meshes with different resolutions in the context of single mesh fitting.
From Figure [T} we find that our method can faithfully reconstruct the shape, while other methods,
such as DMesh [46], require significantly more training steps to achieve better results. Additionally,
EdgeRunner [48]], a pretrained model that receives a point cloud as input, produces only three LODs
and struggles to accurately reconstruct shapes at higher LODs. These three LODs not only may
correspond to poor quality and deviate significantly from the claimed number of generated faces but
are also insufficient to meet practical requirements due to the limited choices of LODs. In contrast,
our method can produce any LODs as needed, and the number of generated vertices is precise.

Direct Mesh Collection Encoding with Transformer Networks. Following [44], we investigate
whether the refinement sequences can be effectively learned by the transformer using 100 objects.
Although simple, the learning process could fail if the sequences are meaningless (nearly random) or
if local minima exist, which makes convergence unstable and slow. We present some fitted meshes
from the ThingilOK [63]] dataset, along with the accuracy curve shown in Figure[I0] Fortunately, we
did not observe any of these obstacles during training. After the learning rate warms up (increasing
linearly to 10~%), we find that our method converges quickly to a very high accuracy, indicating its
effectiveness in learning the refinement sequences with transformer networks.

5.3 Unconditional Mesh Generation
We conducted unconditional generation experiments on four categories of the ShapeNet [2] dataset.
Visualization results are presented in Figure[T2] PolyGen [37]] tends to produce simple and incomplete
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Table 2: Quantitative results of unconditional mesh
generation for two categories of the ShapeNet [2]]
dataset with different LOD ratios.

Class Ratio COVY MMD] I-NNA FID, KID} |V|/|F|

0.1 57.37 2.76 7247 4991 0.0246  23/36
0.2 65.45 2.05 6321 2791 0.0096  44/80

EdgeRunner

Lamp 0.5 71.79 1.54 51.74 10.44 0.0013 109/209
1.0 70.68 1.54 4120 6.60 0.0005 216/418
E 0.1 41.07 1.67 86.53 41.80 0.0187 22/30
o) B 02 47.40 1.15 83.83 2194 0.0106 42/74
ench

0.5 54.84 0.87 66.88 1023 0.0022 105/196
1.0 56.29 0.75 39.81  2.63 0.0001 208/384

Refinement Step

Figure 11: Different LOD methods in mesh reconstruction.
EdgeRunner [48] is conditioned on point clouds.

Table 3: Quantitative results on unconditional genera-
tion across four categories of the ShapeNet [2] dataset.
Numerics are copied from [43]].

Class  Method COVt MMD| I-NNA FID| KID} VI/|F]

AtlasNet 9.03 4.05 95.13  170.71  0.169 2500/ 4050
BSPNet [§] 16.48 3.62 91.75 46.73  0.030 673/ 1165
Polygen 31.22 4.41 93.56  61.10  0.043 248 /603
GET3D [15]  40.85 3.56 83.04 81.45  0.054 13725/27457

Chair

GET3D* 38.75 3.57 84.07 7829  0.065 199 /399
MeshGPT 43.28 3.29 75.51 1846  0.010 125/228
Ours 36.67 244 67.40 1.54  0.0001 1987377

AtlasNet 7.16 3.85 96.30 16138  0.150 2500/ 4050
BSPNet [§] 16.83 3.14 93.58 30.78  0.017 420/699

e PobeenBZ 3299 300 8865 3853 0029 147/454

GET3D [I5]  41.70 2.78 8554 9393  0.076 13767/27537
GET3D" 3795 285 8193 5046 0037 1997399
McshGPT  45.68 236 72.88 624 0002 99/ 187
Ours 3294 194 6946 205 00002 1567305

AtlasNet 2053 247 9058 18939 0.163 250074050

bench BSPNetBl 2874 205 8844 5001 0030  457/756
Polygen 5192 197 7698 4934 0031  172/430
- MeshGPT 5523 144 6824 872 0001  159/291
PolyGen MeshGPT PivotMesh Ours Ours 5629 075 3981 263 00001  208/384

AtlasNet 19.97 4.68 91.85 17791 0.139 2500 /4050
BSPNet 8] 18.38 5.32 93.13 112,65 0.077 587/1011
Polygen 47.86 4.18 8142 5248  0.025 1857558
MeshGPT 53.88 3.94 65.73 19.91  0.004 1507288

Ours 70.68 1.54 41.20 6.60  0.0005 216/418

Figure 12: Visualization of unconditional direct mesh
generation on the ShapeNet [2] dataset.

Lamp

meshes because it requires separate training of the vertex and face models. MeshGPT [43] may
generate meshes with messy tessellation due to its limited capabilities and learning challenges.
PivotMesh [59] can produce plausible results, but some artifacts may be observed in local details. Our
method successfully generates shapes with complex topology and clean tessellation. The numerical
results in Table [3] further validate the superiority of our approach in terms of generation diversity
and fidelity, with most metrics surpassing those of other mesh generation methods. Table [2] presents
metrics for different simplification ratios. We find that a 50% simplification still yields decent results.
The average generation time (full) is & 1 minute, suggesting a potential additional speedup of 50%.

We also compare our tokenization scheme with other tokenization methods, such as EdgeRunner [48]]
and BPT [60], in Table El under an unconditional setting. We observe that our method achieves
comparable performance to the other methods when all (100%) auto-regressive steps are applied.
Notably, we find that it is considerably superior when only a few steps (10%, 20%, 50%) are applied
compared to the other methods. This is because the intermediate results produced by our scheme
are consistently good approximations of the finest level of detail, whereas other approaches produce
meshes in a partial-to-complete manner, causing their intermediate results to deviate significantly
from the targets if the generation process is not fully completed.

In the last two columns of Table @] we also present the average number of tokens required by
each tokenization scheme, either per shape or per geometric element. We notice that our method,
on average, needs fewer tokens to represent a mesh than other methods, even though our method
generally requires more tokens to represent a vertex than other methods do to represent a triangle.
This demonstrates the superiority of our tokenization scheme regarding compactness.



Coarse Input

Refined Output

Table 4: Quantitative results of various tokenization approaches [48 |60]] with different percentages
of auto-regressive steps applied are measured on the bench category of the ShapeNet [2] dataset.
EdgeRunner [48]] and BPT [60] are based on triangles, while the elements in our method are vertices.

COoV 1 MMD | #Token |
Methods
10% 20% 50% 100% 10% 20% 50% 100% per shape per elem.
EdgeRunner [48] 9.43  30.99 4033 5490 1032 487 259 081 5840 4.5
BPT [60] 15.15 26.65 34.11 5635 3.02 197 126 0.76 3235 2.73
Ours 41.07 47.40 5484 5629 1.67 115 087 0.75 2556 9.1
==\

N\

Original Mesh Edited Mesh 1 Edited Mesh 2

Figure 13: Our representation supports refining Figure 14: A coarse skeleton can be easily der.i\./ed
a coarse mesh input (top row) into a fine-grained ~ Using our approach for fine-grained mesh editing
output mesh (bottom row). using surface deformation.

5.4 Possible Applications with Our Approach

Shape Refinement from Sketchy Inputs. Our method can also be used to refine a 3D sketchy shape,
as shown in Figure [I3] This is practically useful for 3D modelers, as they only need to specify a
coarse outline without expending effort on fine-grained geometric details, significantly saving time.

Shape Editing by Manipulating a Coarse Skeleton. A skeleton can be easily derived using our
approach to facilitate the manipulation of a fine shape, as shown in Figure[T4] By modifying the coarse
skeleton, marked in red, one can easily manipulate the human shape through surface deformation.

6 Limitation, Future Work and Conclusion

Like prior works [435]], the main drawback of our method is its relatively limited generalization ability
compared to those built upon continuous space (e.g., Diffusion). Using an order-of-magnitude larger
amount of training data may alleviate this problem. To suppress excessive topological flexibility, we
may use PSC to create an initial result with the desired topology and then use the normal progressive
meshes representation [22] for the remaining steps of further refinement without changing the
topology. During generation, we may reduce the linear complexity to logarithmic complexity by
using parallel vertex splits [14} 23] in future work. Lastly, our method lacks gradients to update the
PSC; therefore, it would be interesting to derive a differentiable PSC that can adaptively fit a mesh in
a coarse-to-fine manner through local remeshing with gradient guidance.

This paper suggests formulating direct mesh generation in the order of levels of detail (LODs),
consistent with how humans perceive objects, and generating in a preferable coarse-to-fine manner.
The basic idea is to generalize meshes to simplicial complexes, reverse the mesh simplification process,
and train a model to learn mesh generation, initially starting with a single point and iteratively refining
the previous coarse results. Experiments verify the promise and effectiveness of our approach.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
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the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
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reproducibility. In the case of closed-source models, it may be that access
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be possible for other researchers to have some path to reproducing or
verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide demo code in the supplementary materials to help examine our
method.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

» At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided sufficient training and testing details in both the experimental
section and the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We lacked computational resources, so they are not included in this paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, con-
fidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables
or figures symmetric error bars that would yield results that are out of range (e.g.
negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided this information in the experimental section.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We comply with the Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not think that our method can have any positive or negative societal
impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the assets, including code, data, and models, are properly credited and
respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

» If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We include the code for reproducibility in the supplementary materials.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human participants were involved; thus, IRB approval and risk disclosure
are not required.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

» We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the Neur[PS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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