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ABSTRACT

Predicting the ligand’s binding conformation within a target protein is a pivotal
step in drug discovey. Based on prior knowledge of the binding site (protein
pocket) on the target protein, biochemical researchers use molecular docking soft-
ware to generate the ligand conformation within that pocket. Despite its speed,
molecular docking is ill-suited for blind docking where the pocket is unknown,
and the generated ligand conformation often lacks required precision. Recently,
deep generative models, especially diffusion models, have been proposed for ac-
curate blind docking. However, it is found that while deep generative models
excel in locating the pocket, they still lag behind traditional methods in terms of
conformation generation. Thus, bridging such gap with a hybrid approach is natu-
rally expected to further improve the model performance. Therefore, in this study,
we introduce a blind docking approach named DiffSim to seamlessly integrate the
diffusion model with molecular dynamics (MD) simulation. We propose a novel
loss function to align reverse diffusion sampling with MD simulation trajectories,
aiming to efficiently generate ligand conformations informed by MD-modelled
protein-ligand interactions at atomic resolution. Through theoretical analysis, we
unveil the consistency in dynamics between diffusion models and MD simulation,
demonstrating that the diffusion model is essentially a coarse-grained simulator
for MD simulation. Empirical results demonstrate the effectiveness of our ap-
proach and highlight the potential of combining physics-informed MD simulation
with deep learning models in drug discovery.

1 INTRODUCTION

Identifying bioactive ligands for a specific target within a vast compound library is a significant chal-
lenge in drug development, made laborious and costly by the need to experimentally test thousands
of compounds (Blanes-Mira et al., 2022). To reduce the overall cost of drug discovery, molecular
docking (Raval & Ganatra, 2022) serves as an efficient technique to computationally predict binding
conformations of small molecules within the binding site (also called protein pocket) of a target pro-
tein, drastically reducing the conformation space that otherwise needs to be explored through time-
consuming and cost-intensive experiments. However, scoring functions used in molecular docking
often rely on simplifications about molecular interactions (Singh et al., 2022), which are inadequate
for modeling intricate protein-ligand interactions and may lead to inaccurate ligand conformation
predictions. In addition, traditional molecular docking methods require prior knowledge of the ap-
proximate binding site on the target protein, which makes them ill-suited for blind docking where
the binding site is unknown. To overcome the limitations of traditional molecular docking, machine
(deep) learning models have emerged, aiming to achieve accurate blind docking. Numerous mod-
els focus on tackling particular subtasks of blind docking, including pocket searching (Krivák &
Hoksza, 2018; Jiménez et al., 2017; Yan et al., 2022), conformation generation (Xu et al., 2022; Zhu
et al., 2022), and scoring functions (Wang & Zhang, 2017; Liao et al., 2019; Shen et al., 2022). Some
latest models (Zhang et al., 2022; Lu et al., 2022; Stärk et al., 2022; Corso et al., 2022) have been
dedicated to addressing the entire process of blind docking, including all subtasks in an end-to-end
manner, which can directly generate ligand conformations conditioned on target proteins.
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Figure 1: Overview of DiffSim. (a) The figure illustrates the fundamental concept behind DiffSim,
a hybrid approach seamlessly integrating the diffusion model with molecular dynamics (MD) sim-
ulation. (b) The figure illustrates the specific approach of DiffSim: aligning reverse diffusion with
MD trajectories to achieve physics-informed modeling for accurate blind docking.

Despite the progress made in deep learning-based molecular docking, there is an ongoing debate
about whether deep learning could surpass traditional docking methods. Based on a series of experi-
ments, it has been found that while deep learning models excel in pocket searching, their accuracy in
ligand conformation generation lags behind traditional molecular docking methods given the same
pockets (Yu et al., 2023). Thus, a natural enhancement strategy to further improve model perfor-
mances involves adopting a hybrid approach, such as incorporating traditional molecular docking
into deep learning models. Some prior efforts (Jeon & Kim, 2020; Ma et al., 2021) have been di-
rected towards such strategy, but exhibit certain limitations, such as operating on two-dimensional
(2D) molecular representation rather than directly manipulating three-dimensional (3D) structure.

Bringing traditional paradigms in computational biochemistry into the scope, molecular docking is
frequently used in conjunction with molecular dynamics (MD) simulation (Morris & Corte, 2021).
This combination allows for a delicate and holistic characterization of protein-ligand interactions.
Specifically, molecular docking is used as an initial step to predict several possible binding poses
and rank them based on binding affinities. The top-ranked protein-ligand complexes by docking
can then be further refined using molecular dynamics simulation to obtain more accurate ligand
conformations. However, the computational cost of molecular dynamics simulation is prohibitively
high, which makes it infeasible to be used on large datasets.

Inspired by the paradigm in computational biochemistry and recent prominence of diffusion mod-
els in generating reasonable ligand conformations for blind docking, we propose an intuitive and
effective hybrid approach called DiffSim, which seamlessly integrates MD simulation and diffusion
models. We devise a loss function to align ligand trajectories derived from MD simulation and re-
verse diffusion trajectories sampled from the diffusion model. DiffSim allows the MD-informed
diffusion model to harness the strengths of both sides: the physics-based insights as well as confor-
mation refinement capability provided by MD, and the sampling efficiency of the diffusion model.

Intuitively, our hybrid approach DiffSim can help mitigate potential challenges in drug discovery
which limits the capacity of diffusion models to generate accurate ligand conformations, encom-
passing two major aspects that are applicable to a broader range of deep generative models as well:

• DiffSim leverages MD simulation to introduce conformation flexibility into diffusion mod-
els. Most existing models treat proteins as static and regard ligands as rigid bodies with limited
degrees of freedom, which could fail to capture the inherent dynamics of proteins and intricate
conformational change of ligands. By integrating MD simulation into diffusion models, DiffSim
incorporates the dynamic nature of both proteins and ligands with flexibility at atomic resolution,
moving beyond the limitations of static and rigid structure.

• DiffSim explicitly infuses knowledge of protein-ligand interaction provided by MD simu-
lation into diffusion models. Previous diffusion models as well as other deep-learning based
blind docking models make simplifications of protein-ligand interactions, typically considering
only atomic distances and atom types, which render them inadequate for incorporating complex
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protein-ligand interactions. Hybridization of diffusion models and MD simulation empowers Diff-
Sim to embed intricate protein-ligand interaction inherent in MD simulation.

DiffSim combines the strengths of MD simulations and diffusion models in order to achieve accu-
rate and efficient blind docking. In addition to achieving complementarity between the two, we the-
oretically showcase the consistency of their dynamics, which further substantiates the rationale for
DiffSim to seamlessly integrate MD simulation and diffusion models by aligning their trajectories.
Specifically, we demonstrate that diffusion models are, in their essence, coarse-grained simulators
for MD simulation, which could be a strong backup for our hybrid approach DiffSim as well as a
physics-based perspective for the recent success of diffusion-based molecular generative models.

Empirically, DiffSim demonstrates superior performance over existing models in terms of com-
monly used evaluation metrics.

To summarize, the main contributions of our work are:

• We propose a novel hybrid approach for accurate and efficient blind docking named DiffSim,
which seamlessly integrates diffusion models and MD simulation by aligning reverse diffusion
trajectories and MD simulation trajectories. To strike a balance between MD computational cost
and the need for conformation refinement, we introduce an active learning approach to selectively
curate an MD trajectory dataset based on the training set.

• To the best of our knowledge, this work is the first to explicitly unveil the theoretical connection
between diffusion-based molecular conformation generation and MD simulation, which serves as
a physics-based support for the alignment strategy adopted by DiffSim as well as a new perspective
on recent success of diffusion-based molecular generative models.

• We devise a loss function to guide the reverse diffusion trajectories sampled from the diffusion
model to align with the trajectories of MD simulation. Experimental results show that DiffSim
have state-of-the-art capability of generating accurate ligand conformations for blind docking.

2 RELATED WORK

2.1 DEEP GENERATIVE MODELS FOR LIGAND CONFORMATION GENERATION

Ligand conformation generation is essentially a conditional generation task, which requires the lig-
and to bind to a specific protein. Graph- (Tan et al., 2022) and SMILES-based (Skalic et al., 2019;
Xu et al., 2021) generative models produce topological (2D) structures of molecules conditioned on
protein context. Although 3D molecular conformations can be obtained by combining 2D genera-
tive models with conformation generation modules (Grow et al., 2019; Nguyen et al., 2020), which
embed 2D structures into 3D space, choosing suitable embedding algorithms can be quite tricky.

Numerous recent works have turned to 3D conditional generative models to directly produce rea-
sonable binding poses. While these models offer exciting possibilities, they also present significant
challenges in modelling the complex protein-ligand interactions. Ragoza et al. (2022) generate
pocket-aware 3D molecules by voxelizing molecules in atomic density grids, but ligands and pro-
tein pockets are separately encoded. DiffAb (Luo et al., 2022) adopts a pairwise embedding MLP
to encode the Euclidean distances and dihedral angles between amino acids, but ignore atomic-level
intricacy. TargetDiff (Guan et al., 2023), EQUIBIND (Stärk et al., 2022) and TANKBind (Lu et al.,
2022) encode the interaction between the ligand atoms and the protein atoms with GNNs, but only
take atomic distances and atom types into account. Besides, most existing models make simplifica-
tions by confining ligands and proteins to quite limited degrees of freedom. For example, DiffSBDD
(Schneuing et al., 2022) and DiffDock (Corso et al., 2022) keeps the protein fixed throughout the
generation procedure, which does not align well with the actual binding process where both ligands
and proteins exhibit conformational flexibility.

Our approach DiffSim leverages MD simulation to go beyond rigid docking and explicitly captures
the intricate protein-ligand interaction at atomic resolution.

2.2 HYBRID APPROACHES FOR BLIND DOCKING

Despite the advances in deep learning models for blind docking, questions have emerged regarding
whether they are superior to traditional approaches. Yu et al. (2023) find that deep learning models
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including Stärk et al. (2022); Lu et al. (2022); Corso et al. (2022) excel in searching protein pockets
while traditional methods like Yu et al. (2022) are better at docking on given pockets.

Integration of deep learning models and traditional methods opens up a promising avenue to tackling
the challenges of blind docking. For example, Zhang et al. (2021); Gomes et al. (2022); Yang
et al. (2022) use molecular docking ad molecular dynamics simulations to further screen the ligands
generated by deep learning models. However, these approaches simply use traditional methods after
the calculations of deep generative models. Thus, the final selected ligands are not always optimal.

Some research directly incorporates traditional methods into the generative process of deep gener-
ative models. SBMolGen (Ma et al., 2021) generates ligand molecules by a SMILES-based search
tree and RNN, evaluates them by molecular docking, and the docking results are fed back into the
search tree to update the weightings. MORLD (Jeon & Kim, 2020) employs docking tools to calcu-
late binding affinities, which are then integrated as rewards in a reinforcement learning framework to
generate and optimize ligands. Nevertheless, both SBMolGen and MORLD operate on the SMILES
representation of ligands and utilize RDKit (Landrum, 2006) and OpenBabel (O’Boyle et al., 2011)
to generate 3D conformation of the ligands, rather than directly manipulating 3D structure.

Our method DiffSim is a hybrid approach seamlessly combining physics-based molecular dynam-
ics simulation with a diffusion model, which directly generates 3D structures. DiffSim involves
molecular dynamics simulation to interfere the generative process of the diffusion model.

3 METHOD

This section is organized as follows: In Section 3.1, we provide an overview of relevant concepts:
MD simulation, score-based generative model (referred to as diffusion model in this paper), and
DiffDock (a state-of-the-art diffusion model for blind docking we build our experiments upon).
Section 3.2 outlines our hybrid approach DiffSim and the proposed loss function for alignment. In
Section 3.3, we introduce an active learning approach to select a subset of training data for MD sim-
ulation. Section 3.4 delves into the theoretical connection of MD simulation and diffusion models.
We demonstrate that diffusion models can serve as coarse-grained simulators for MD simulation and
provide a bias-variance tradeoff perspective on DiffSim.

3.1 PRELIMINARIES

3.1.1 MOLECULAR DYNAMICS SIMULATION

We consider an MD trajectory M of a molecule with T time frames. M(t) =
(
x(t),v(t)

)
denotes a

snapshot at time t ∈ [T ]. There x(t) ∈ RN×3 and v(t) ∈ RN×3 denote the 3D coordinates and the
velocities of each atom, respectively.

MD simulations simulate physical movements of atoms in a system and generate the atomic tra-
jectories with certain initial conditions and boundary conditions. This is obtained by solving the

first-order differential equation of the Newton’s second law:F (t)
i = miai

(t) = −∂U(x(t))
∂x

(t)
i

where

F
(t)
i is the net force acting on the i-th atom of the system at a given point in the t-th timeframe, mi

is the mass, a(t)
i is the acceleration and U (x) is the potential energy function defined by force field.

Numerical methods are utilized to advance the trajectory over small time increments ∆t with the
assistance of some integrator.

3.1.2 SCORE-BASED GENERATIVE MODEL

Score-based generative models (Song & Ermon, 2019), referred to as diffusion models in this paper,
have garnered increasing interest in molecular generation (Ganea et al., 2021).

Diffusion process. Assume a diffusion process {x(s)}Ss=0 indexed by a continuos time variable
s ∈ [0, S], such that x(0) ∼ p0, for which we have a dataset of i.i.d. samples, and x(S) ∼ pS , for
which we have a tractable form to generate samples efficiently. Let ps(x) be the probability density
of x(s). The diffusion process is modeled as the solution to an Itô SDE:

dx = f(x, s)ds+ g(s)dw, (1)
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where w is a standard Wiener process, f(·, s) : Rd → Rd is a vector-valued function called the drift
coefficient of x(s), and g(·) : R → R is a scalar function known as the diffusion coefficient of x(s).

Reverse process. By starting from samples of x(S) ∼ pS and reversing the diffusion process, we
can obtain samples x(0) ∼ p0. The reverse-time SDE is also a diffusion process as:

dx =
[
f(x, s)− g(s)2∇x log ps(x)

]
ds+ g(s)dw, (2)

where w is a standard Wiener process when time flows backwards from S to 0, and ds is an infinitesi-
mal negative timeframe. The score of a distribution can be estimated by training a score-based model
on samples with score matching.

3.1.3 DIFFDOCK

DiffDock (Corso et al., 2022) is a state-of-the-art diffusion model for blind docking, upon which
we conduct our experiment. A diffusion process is defined over translations, rotations, and torsion
angles of the ligand. Translations of the ligand position, rigid rotations of the ligand, changes in
torsion angles at each rotatable bond are associated with the 3D translation group T(3), the 3D
rotation group SO(3), and a copy of 2D rotation group SO(2) repectively. In all three groups, the
forward SDE is defined as dx =

√
dσ2(t)/dtdw where σ2 = σ2

tr, σ
2
rot, or σ2

tor for T(3), SO(3),
SO(2) respectively and where w is the corresponding Brownian motion.

3.2 DIFFSIM STRATEGY: SEARCH AND REFINE IN A UNIFIED FRAMEWORK

With a seed ligand conformation generated by RDKit ETKDG (Landrum et al., 2013) as input, we
train DiffSim by aligning the reverse diffusion trajectory of the conformation with its MD simulation
trajectory to generate accurate ligand conformations for blind docking. Specifically, we consider
there are N iteration steps, and denote the conformation sampled from the reverse diffusion process
at step i as C rev

i and the conformation optimized through MD simulation at step i as Csim
i . The loss

function for alignment is as:

L =

N∑
i=1

wiRMSD(C rev
i , Csim

i ), (3)

where RMSD(C rev
i , Csim

i ) =
√

1
n

∑n
j=1 ||rrev

j − rsim
j ||2, with the total number of atoms denoted

as n, the position vectors of the j-th atom of the reverse diffusion process and MD simulation
process denoted as rrev

j and rsim
j , respectively. To encourage the desired alignment similarity, we

devise different weighting schedules in experiments, including equal weighting wi =
1
N and gradual

weighting wi =
ei/N∑N

j=1 ej/N
. Equal weighting assigns each iteration step with equal importance while

gradual weighting emphasizes alignments at later stages since the conformation gradually converges
to the ground truth over time, with later steps providing more accurate representations.

However, a critical prerequisite for alignment is that the diffusion model and MD simulation exhibit
comparable sampling efficiencies. This poses a significant challenge in aligning the two due to
the inherent discrepancy between their sampling efficiencies. Directly aligning them from the initial
conformation would result in a noticeable lag in the sampling efficiency of MD simulation compared
to the diffusion model. Empirically, the diffusion model can reach the same bounded conformation
within a mere 20 steps, whereas millions of steps of all-atom MD simulations would be required to
achieve the same outcome (Lu et al., 2023).

To tackle such challenge and facilitate meaningful alignment between the diffusion model and MD
simulation, DiffSim utilizes the diffusion model alone in the initial few steps of reverse diffusion be-
fore conducting MD-informed reverse diffusion through the loss function for alignment. The initial
few steps serve the purpose of “pocket searching”, rapidly exploring the vast conformational space
and narrowing it down to a limited subspace. The subsequent MD-informed steps are intended for
“conformation refinement” to achieve more accurate and physics-informed ligand conformations.
With the subspace as the starting point for alignment, MD simulation can better keep pace with the
diffusion model and fully exert the conformation refinement capabilities.
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3.3 ACTIVE LEARNING-BASED SELECTION FOR MD SIMULATION

Despite a powerful technique to investigate the structural and dynamical protein-ligand properties,
MD simulation consumes considerable computational resources (Liu et al., 2016). For example, one-
microsecond simulation of a relatively small system running on 24 processors requires months of
computation to complete (Durrant & McCammon, 2011), and expensive petascale supercomputers
are required to study larger systems (Sothiselvam et al., 2014). The substantial computational cost
of MD simulation makes it practically infeasible to apply on the entire training set.

To strike a balance between computational resources and the need for meticulous conformation
refinement, we introduce an active learning approach to select a subset from the training data, for
which MD simulation can be most effectively leveraged. In particular, we choose ligands whose final
conformations, after reverse diffusion, exhibit root mean square deviation (RMSD) values exceeding
2Å, while maintaining centroid distance values below 1Å. 1Å, 2Å, and 5Å have been the most
commonly used thresholds in the literature(Lu et al., 2022; Stärk et al., 2022; Corso et al., 2022; Yu
et al., 2023), and from the practical aspect of computational cost, we consider the number of ligands
that satisfy these criteria, leading to the choice of 1Å and 2Å as thresholds for centroid distance and
RMSD, respectively. This criterion signifies the successful identification of approximate binding
site locations, yet highlights the need for further conformation refinement.

3.4 DIFFSIM AS INTERMEDIARY BETWEEN NEWTONIAN AND LANGEVIN DYNAMICS

We leverage the connection between Newtonian dynamics and Langevin dynamics to offer theo-
retical insights into DiffSim’s alignment of MD simulation and diffusion model. We demonstrate
diffusion models and Langevin dynamics are mathematically equivalent so that diffusion models
can be conceptualized as carrying out coarse-grained MD simulations. Further, we formulate a gen-
eralized bias-variance decomposition and develop a bias-variance tradeoff perspective on DiffSim.

Diffusion Models: Coarse-grained Simulators for MD Simulation
In MD simulation, the motions of all atoms are described by Newton’s second law (i.e., Newtonian
dynamics). When it comes to a small subset of degrees of freedom, the Langevin equation serves
as a successful description of the dynamics in such subspace (i.e., Langevin dynamics). Langevin
dynamics can be regarded as Newtonian dynamics with effective force fields and added frictional
forces as well as (time-dependent) fluctuating forces. In particular, assume we would like to consider
motion along a small subset of the whole coordinate space defined by the coordinates q1, ..., qM for
M ≪ N . The Langevin equations which model the dynamics in this subspace are then:

µj
d2

dt2
qj = − ∂

∂qj
W (q1, . . . , qM )− γj

d

dt
qj + σjξj(t)(j = 1, 2, ...,M), (4)

The first term on its r.h.s. describes the force field of an effective potential W (q1, . . . , qM ), the
second term describes the velocity dependent frictional forces, and the third term the fluctuating
forces ξj(t) with coupling constants σj .W (q1, . . . , qM ) includes the effect of the thermal motion of
the remaining n−M degrees of freedom on the motion along the coordinates q1, . . . , qM .
Lemma 3.1. Diffusion process, the reverse process, and Langevin equation, as defined in Equation
1, 2, and 4, respectively, are mathematically equivalent in form.

Proof. Consider stochastic differential equations in the form of a first order differential equation

∂tx(t) = A[x(t), t] +B[x(t), t] · η(t), (5)

subject to the initial condition x(0) = x0.

Note that diffusion process 1 and reverse process 2 are special cases of 5.

The Langevin equation 4, written here in the form µq̈ = f(q) − γq̇ + σξ(t), is also a special case
of 5. In fact, defining x ∈ R2 with components x1 = mq̇, x2 = mq reproduces 5 if one defines

A[x(t), t] =

(
f (x2/m)− γx1/m

x1

)
, B[x(t), t] =

(
σ 0
0 0

)
, and η(t) =

(
ξ(t)
0

)
.

We thus conclude that diffusion process, reverse process, and Langevin equation are mathematically
equivalent in form as Equation 5.

6



Under review as a conference paper at ICLR 2024

We showed that the diffusion model is driven by Langevin dynamics, which captures the dynamics
within a subspace encompassing only a fraction of all degrees of freedom. The stochastic terms
serve to describe the effect of the remaining degrees on the degrees of interest. Specifically, in our
experiments which employ DiffDock as the diffusion model, the subset of degrees refers to transla-
tional, rotational, and torsional degrees of freedom. Since Langevin dynamics is a modification of
Newtonian dynamics for handling constrained degrees of freedom, one can conceptualize diffusion
models as carrying out MD simulations within a subset of degrees of freedom.

Balancing Bias and Variance: A Tradeoff Perspective on DiffSim
We further show the rationale for aligning MD simulation, representing Newtonian dynamics, and
diffusion models, characterized by Langevin dynamics, from a bias-variance tradeoff perspective.

Let Cgt ∈ RN×3 denotes the ground-truth ligand conformation, and {Ci}Ni=1 ∼ N (µ,Σ) denotes
N initial conformation drawn randomly from an isotropic Gaussian distribution, which undergo the
reverse diffusion and MD simulation, resulting in N final conformations {C rev

i }Ni=1 and {Csim
i }Ni=1,

respectively. ϕ, φ̂i
rev, and φ̂i

sim ∈ R3N are defined as vec(Cgt), vec(C rev) and vec(Csim), re-
spectively, where vec refers to the vectorization of a multi-dimensional tensor by concatenating its
last dimension into a single vector. The bias and variance of φ̂i are as Bias(φ̂i) := E{φ̂i − ϕ},
Cov(φ̂i) := E{(φ̂i − E{φ̂i})(φ̂i − E{φ̂i})T

}
, where φ̂i denote a generic form of φ̂i

rev and φ̂i
sim.

Define φ := [φ̂1 φ̂2 ... φ̂N ]. We also overload the definition of bias by defining Bias(φ) :=
[E{φ̂1 − ϕ} E{φ̂2 − ϕ} ... E{φ̂N − ϕ}]
We formulate a generalized bias-variance decomposition in Lemma 3.2 (proof in Appendix A).

Lemma 3.2. For a positive semi-definite weighting matrix W and a matrix X, we define ∥X∥2W :=
XTWX. The following generalized bias-variance decomposition holds as

n
∑
i

E
{

RMSD2
i

}
= Tr{W

∑
i

Cov(φ̂i)}+Tr{∥Bias(φ)∥2W }

where n denotes the total number of atoms within the ligand.

Remark. DiffSim uses active learning to select ligands with small centroid distances but large
RMSD values. This selection criteria is analogous to choosing generated conformations having
small mean square error with repect to their ground-truth counterparts, when measured by a diag-
onal weighting matrix W that assigns greater weights to heavy atoms and smaller weights to light
atoms. Interestingly, such interpretation of W can be extended to MD simulation and the diffusion
model. In both contexts, lighter atoms tend to exhibit greater mobility compared to heavier ones,
which makes the conformation refinement process lean more towards the lighter atoms, resulting in
ligand conformations that closely align with their ground-truth counterparts when the measurement
is defined with W placing greater weights on light atoms. Let {φ̂i

0}Ni=1 denote inital conformations,
{φ̂i

d}Ni=1 as generated conformations after reverse diffusion, {φ̂i
a}Ni=1 as selected conformations

after active learning, and {φ̂i
m}Ni=1 as final conformations after MD-informed reverse diffusion.

We have
∑

RMSD(φ̂i
m
) ≤

∑
RMSD(φ̂i

a
) ≤

∑
RMSD(φ̂i

d
) ≤

∑
RMSD(φ̂i

0
).

We hypothesize that φ̂sim exhibits lower bias but higher variance while φ̂rev displays higher bias but
lower variance, ultimately presenting a dynamic tradeoff between bias and variance within DiffSim.
To elaborate, by offering a delicate characterization of protein-ligand interaction at atomic reso-
lution, MD simulation is expected to guide the system towards an ideal conformation with lower
bias. However, due to its deterministic nature, distinct initial conformations can lead to divergent
conformations, hence higher variance in final outcomes. Conversely, the diffusion model introduces
additional stochastic terms of Langevin dynamics and explores a conformation space with a subset
of degrees of freedom. While the stochastic terms and the reduced set of degrees may introduce a
relatively high bias by diminishing the likelihood of locating the optimal conformation, they lead to
more stable outcomes, resulting in lower variance.

In computational biochemistry, attempts have been made to use Langevin dynamics for MD simu-
lation in order to reduce the computational cost and improve numerical stability of MD simulation
(Lange & Grubmüller, 2006; Leimkuhler & Matthews, 2013; Paquet et al., 2015). The numerical
stability issue, to some extent, supports our hypothesis that MD simulation can exhibit high variance,
while Langevin dynamics (diffusion model) help mitigate the variance.
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Furthermore, active learning can also play a role in bias-variance tradeoff. It selects the samples
with small centroid distances but large RMSDs, which indicates high bias but probably low variance
(since the approximate binding site has been identified). MD simulation can then focus on these
samples and fit them with low-bias regularization to further reduce the mean square error.

4 EXPERIMENT

4.1 DATASET

We follow the approach used in prior research (Corso et al., 2022; Stärk et al., 2022) by evaluat-
ing DiffSim on PDBBind dataset (Liu et al., 2017) v2020, a collection of protein-ligand structures
sourced from Protein Data Bank (PDB) (Berman et al., 2003), and employing time-based splits to
create training, validation, and test sets. Specifically, 17,347 complexes discovered before 2019
are for training and validation. 125 unique proteins are randomly selected from 1512 complexes
discovered in 2019 or later, and 363 new complexes containing these proteins are as the test set.

We select 711 complexes from the aforementioned training set to curate the MD trajectory dataset
through the active learning approach described in section 3.3.

4.2 MD SIMULATION SETUP

MD simulations are performed on each pair of the selected ligand conformations and their corre-
sponding target proteins. We use CHARMM36 forcefield (Lee et al., 2016) and GPU-accelerated
GROMACS (Van Der Spoel et al., 2005), a MD software for simulations of proteins, lipids, and nu-
cleic acids. Ligands and proteins are preprocessed to prepare their MD simulation input files. Specif-
ically, Ligand hydrogenation is carried out by ProteinsPlus (Schöning-Stierand et al., 2022) server1.
Ligand topology and parameter files are generated using ACPYPE (Sousa da Silva & Vranken,
2012) Server2. Missing protein residues are fixed by Swiss-PdbViewer (Guex & Peitsch, 1997).

The preprocessed protein-ligand complex is solvated in a truncated periodic TIP3P water box, and
the minimum distance from the box surface to the complex atoms is set to 12 Å. Counter ions are
added to neutralize systems, followed by energy minimization to reduce unreasonable collisions of
atoms within the complex. Subsequently, a 100 ps NVT (constant volume and temperature) simula-
tion is conducted at 310K (human body temperature), followed by a 100 ps NPT (constant pressure
and temperature) simulation at standard atmospheric pressure before initiating MD simulation.

Following Min et al. (2022), we exclude complexes with certain conditions which cause failed MD
simulations: 1) complicated ligands with failed forcefield parametrization; 2) proteins with too many
missing residues to repair; and 3) specific types of proteins unsuitable for simulation in a water box.

Consequently, MD simulation is conducted on 412 protein-ligand complexes. For each complex, 10
ns simulation was performed, and 20 snapshots were sampled to form a trajectory.

4.3 EVALUATION

We compare our approach DiffSim with existing deep learning-based blind docking models on com-
monly used evaluation metrics, namely ligand RMSD and centroid distance. Ligand RMSD calcu-
lates root-mean-square deviation of corresponding atomic positions between a generated ligand and
its ground-truth counterpart. Centroid distance is defined as the Euclidean distance between the
averaged coordinate of a generated ligand and its ground-truth counterpart.

Both DiffSim and DiffDock sample 40 initial conformations from an isotropic Gaussian distribution
and obtain 40 ligand conformations through reverse diffusion. Among the 40 conformations, the
one with the lowest RMSD is designated as “top-1” and the five conformations with the lowest
RMSDs as “top-5”. In contrast, TANKBind and EQUIBIND generate a single result, equivalent
to directly generating the top-1 ligand. As shown in the Tab. 1 and Tab. 2, DiffSim demonstrates
superior performance on both RMSD and centroid distance over existing models, which indicates
that DiffSim is capable of generating more accurate ligand conformations.

1https://proteins.plus
2https://www.bio2byte.be/acpype/
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Table 1: Top-1 PDBBind Docking. For EQUIBIND (Stärk et al., 2022) and TANKBind (Lu et al.,
2022), we report the best-performing variants on each metric as described in their paper. DiffSim
(equal weight) and DiffSim (gradual weighting) refer to DiffSim trained using the alignment loss
function with an equal weighting schedule and a gradual weighting schedule, respectively. DiffSim-
w/o search refers to directly aligning reverse diffusion with MD trajectory from the initial confor-
mation. DiffSim-w/o AL refers to random selection for MD simulation without active learning.

Ligand RMSD Centroid Distance
Percentiles ↓ % below thresh. ↑ Percentiles ↓ % below thresh. ↑

Methods 25th 50th 75th 5Å 2Å 25th 50th 75th 5Å 2Å
EQUIBIND (/|+Q|+Q2|+S) 2.1 5.6 10.3 46.4 24.6 0.9 2.0 6.2 71.0 50.6

TANKBind (/|-R|-C|-P) 2.4 4.0 7.7 61.7 19.6 1.0 1.7 4.2 77.4 56.5
DiffDock 1.35 2.52 4.58 77.35 41.16 0.79 1.86 5.00 74.86 53.87

DiffSim-w/o search 2.30 3.28 5.72 62.30 36.85 0.82 1.94 5.43 75.92 50.30
DiffSim-w/o AL 1.39 2.52 4.76 75.43 39.40 0.68 1.97 3.10 81.79 65.24

DiffSim (equal weight) 1.30 2.47 4.50 77.90 40.33 0.45 0.97 2.29 85.91 71.82
DiffSim (gradual weight) 1.31 2.44 4.65 77.62 41.71 0.44 0.97 2.14 85.64 72.10

Table 2: Top-5 PDBBind Docking

Ligand RMSD Centroid Distance
Percentiles ↓ % below thresh. ↑ Percentiles ↓ % below thresh. ↑

Methods 25th 50th 75th 5Å 2Å 25th 50th 75th 5Å 2Å
DiffDock 1.52 2.88 5.43 72.10 37.40 0.50 1.13 2.50 83.37 68.34

DiffSim-w/o search 1.67 3.29 5.62 70.34 35.28 0.56 1.39 2.94 80.10 62.42
DiffSim-w/o AL 1.62 3.00 5.37 71.97 35.19 0.53 1.22 2.56 83.32 66.50

DiffSim (equal weight) 1.52 2.93 5.20 73.70 37.07 0.48 1.10 2.50 84.09 67.96
DiffSim (gradual weight) 1.52 2.85 5.34 72.60 37.51 0.50 1.12 2.43 83.70 68.45

Compared to DiffDock, DiffSim exhibits a more pronounced advantage in top-1 ligand than top-5
ligands, which reflects the bias-variance tradeoff perspective discussed in Section 3.4. This exper-
imental observation can be attributed to the incorporation of MD simulation, which increases the
likelihood of achieving ideal conformations (low bias) while introduces higher variance in final out-
comes. Consequently, DiffSim exhibits a more substantial advantage for top-1 ligand than top-5
ligands whose performances can be affected by variance.

4.4 ABLATION STUDY

We conduct ablation studies to investigate factors that influence the performance of DiffSim. As
shown in Tab. 1 and Tab. 2, directly aligning reverse diffusion with MD trajectory from the ini-
tial conformation (denoted as ’DiffSim-w/o search’) causes noticeable decreases in performances,
which emphasizes the necessity of ’pocket searching’ in the initial few steps by exlusively using
the diffusion model and highlights DiffSim’s strategy of integrating search and refine in a unified
framework. Replacing the active learning approach by random selection (denoted as ’DiffSim-w/o
AL’) also results in suboptimal outcomes, which indicates that prioritizing informative samples is
crucial in harnessing the full potential of MD simulation and facilitating meaningful integration of
diffusion model and MD simulation.

5 CONCLUSIONS

We propose a new hybrid approach called DiffSim, which aligns reverse diffusion and MD simula-
tion trajectory. DiffSim facilitates diffusion-based generation of accurate ligand conformations, aug-
mented by physics-informed MD insights that transcend the constraints of static and rigid structures
and incorporate intricate dynamics of protein-ligand interactions. We demonstrate the theoretical
connection between diffusion models and MD simulation, which provides theoretical underpinnings
for DiffSim’s alignment strategy and inspires a new perspective for recent success of diffusion-
based molecular generative models. Empirically, DiffSim demonstrates state-of-the-art capability
of generating accurate ligand conformations for blind docking. DiffSim is anticipated to bring fresh
insights to other model architectures beyond diffusion models in AI-enhanced drug discovery.
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A PROOF

A.1 PROOF OF LEMMA 3.2

Lemma 3.2. For a positive semi-definite weighting matrix W and a matrix X, we define ∥X∥2W :=
XTWX. The following generalized bias-variance decomposition holds as

n
∑
i

E
{

RMSD2
i

}
= Tr{W

∑
i

Cov(φ̂i)}+Tr{∥Bias(φ)∥2W }

where n denotes the total number of atoms within the ligand.

Proof.

nE
{

RMSD2
i

}
=E

{
∥φ̂i − ϕ∥2W

}
(recall that ϕ refers to the ground-truth conformation)

=E
{
(φ̂i − ϕ)TW (φ̂i − ϕ)

}
=E

{
Tr

{
W (φ̂i − ϕ)(φ̂i − ϕ)T

}}
=Tr

{
WE

{
(φ̂i − ϕ)(φ̂i − ϕ)T

}}
=Tr

{
WE

{
(φ̂i − E{φ̂i}+Bias(φ̂i))(φ̂i − E{φ̂i}+Bias(φ̂i))

T
}}

=Tr
{
W Cov(φ̂i) +W (Bias(φ̂i))(Bias(φ̂i))

T

+WE{(φ̂i − E{φ̂i})}(Bias(φ̂i))
T

+W (Bias(φ̂i))E
{
(φ̂i − E{φ̂i})T

}}
=Tr

{
W Cov(φ̂i) +W (Bias(φ̂i))(Bias(φ̂i))

T
}

=Tr{W Cov(φ̂i)}+ ∥Bias(φ̂i)∥2W .

The fourth equality exploits the linearity of the trace to commute it with the expectation value.
The fifth equality uses the identity ϕ = E{φ̂} − Bias(φ̂). The seventh equality uses the fact that
E{φ̂− E{φ̂}} = 0.

Sum L.H.S and R.H.S of the above derivation over i, and note that
∑

i ∥Bias(φ̂i)∥2W =
Tr{∥Bias(φ)∥2W }, thus completing the proof.
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