
Structure and randomness in
planning and reinforcement learning

Piotr Kozakowski∗
University of Warsaw

p.kozakowski@mimuw.edu.pl

Piotr Januszewski∗
Gdansk University of Technology

& University of Warsaw
piotr.januszewski@pg.edu.pl

Konrad Czechowski∗
University of Warsaw

k.czechowski@mimuw.edu.pl

Łukasz Kuciński
Polish Academy of Sciences
lkucinski@impan.pl

Piotr Miłoś
Polish Academy of Sciences

pmilos@impan.pl

Abstract

Planning in large state spaces inevitably needs to balance depth and breadth of
the search. It has a crucial impact on planners performance and most manage this
interplay implicitly. We present a novel method Shoot Tree Search (STS), which
makes it possible to control this trade-off more explicitly. Our algorithm can be
understood as an interpolation between two celebrated search mechanisms: MCTS
and random shooting. It also lets the user control the bias-variance trade-off, akin
to TD(n), but in the tree search context.
In experiments on challenging domains, we show that STS can get the best of both
worlds consistently achieving higher scores.

1 Introduction
Classically, reinforcement learning is split into model-free and model-based methods. Each of these
approaches has its strengths and weaknesses: the former often achieves state-of-the-art performance,
while the latter holds the promise of better sample efficiency and adaptability to new situations.
Interestingly, in both paradigms, there exists a non-trivial interplay between structure and randomness.

In the model-free approach, Temporal Difference (TD) prediction leverages the structure of function
approximators, while Monte Carlo (MC) prediction relies on random rollouts. Model-based methods
often employ planning, which counterfactually evaluates future scenarios. The design of a planner
can lean either towards randomness, with random rollouts used for state evaluation (e.g. random
shooting), or towards structure, where a data-structure, typically a tree or a graph, forms a backbone
of the search (e.g. Monte Carlo Tree Search).

We present a novel method: Shoot Tree Search (STS). The development of the algorithm was
motivated by the aforementioned observations concerning structure, randomness, and dilemma
between breadth and depth of the search. It lets the user control the depth and breadth of the search
more explicitly and can be viewed as a bias-variance control method. STS itself can be understood as
an interpolation between MCTS and random shooting. We show experimentally that, on a diverse set
∗equal contribution, random order of authors

1st Workshop on Learning Meets Combinatorial Algorithms @ NeurIPS 2020, Vancouver, Canada.

of environments, STS can get the best of both worlds. We also provide some toy environments, to get
an insight into why STS can be expected to perform well. The critical element of STS, multi-step
expansion, can be easily implemented on top of many algorithms from the MCTS family. As such, it
can be viewed as one of the extensions in the MCTS toolbox.

2 Background and related work

The introduction to reinforcement learning can be found in Sutton and Barto [16]. In contemporary
research, the line between model-free and model-based methods is often blurred. An early example
is Guo et al. [6], where MCTS plays the role of an ‘expert’ in DAgger (Ross and Bagnell [12]), a
policy learning algorithm. In the series of papers Silver et al. [14, 15], culminating in AlphaZero,
the authors developed a system combining elements of combinatorial algorithms and reinforcement
learning methods that master the game of Go (and others). Similar ideas were also studied in Anthony
et al. [1]. In Miłoś et al. [10], planning and model-free learning were brought together to solve
combinatorial environments. As most of these works, we use the model-based reinforcement learning
paradigm, in which the agent has access to a true model of the environment.

3 Methods

A Generic Planner, presented in Algorithm 1, gives a unified view on all methods analyzed in the
paper: Random Shooting, MCTS and, our novel approach, STS. By a suitable choice of functions
SELECT, EXPAND, UPDATE and CHOOSE_ACTION, we can recover each of these methods.

Typically, a planner is a part of a training process, see Algorithm 2. In a positive feedback loop,
the planner improves the quality of data used for training of the value function Vθ and a policy πφ.
Conversely, the policy and value function might further improve planning. Implementation details of
Algorithm 2 are provided in Appendix A.1.

In the Appendixes A.4 and A.5 we give a detailed description of the Random Shooting and MCTS
planning methods. Below we present our novel planner.

Algorithm 1 Generic Planner, defines required
constants, variables and objects used in further
algorithms

Require: C planning passes
H planning horizon
γ discount factor

Use: N(s, a) visit count
W (s, a) total action-value
Q(s, a) mean action-value
Vθ value function
πφ policy

model environment simulator
Initialize N,W,Q to zero
function PLANNER(state)

for 1 . . . C do
path, leaf← SELECT(state)
rollout, leaf← EXPAND(leaf)
UPDATE(path, rollout, leaf)

return CHOOSE_ACTION(state)

Algorithm 2 Training loop, additionally requires
environment env
Initialize parameters of Vθ, πφ
Initialize replay_buffer
repeat

episode← COLLECT_EPISODE
replay_buffer.ADD(episode)
B ← replay_buffer.BATCH
Update Vθ, πφ using B and SGD

until convergence
function COLLECT_EPISODE

s← env.RESET
episode← []
repeat

a← PLANNER(s)
s′, r ← env.STEP(a)
episode.APPEND((s, a, r, s′))
s← s′

until episode is done
return CALCULATE_TARGET(episode)

Shoot Tree Search Shoot Tree Search (STS) extends MCTS in a novel way, by redesigning the
expansion phase, see Algorithm 3. Given a leaf and a planning horizon H the method expands H
consecutive vertices starting from the leaf. Each new node is chosen according to the in-tree policy
and is added to the search tree. Note a crucial difference between STS and vanilla MCTS using
random rollouts: in contrast to the latter, STS adds visited nodes to the tree, so the explored paths can
easily be branched out during later planning passes. We call this mechanism multi-step expansion.

2

Algorithm 3 Shoot Tree Search

function EXPAND(leaf)
s← leaf
rollout← []
for 1 . . . H do

MCTS.EXPAND(s)
a← CHOOSE_ACTION(s)
s′, r ← tree[s][a]
rollout.APPEND((s, a, r))
s← s′

return rollout, s

function SELECT(state)
The same as in Algorithm 7.

function CHOOSE_ACTION(s)
The same as in Algorithm 7.

function UPDATE(path, rollout, leaf)
s′ ← leaf
c← 1
quality← 0
for s, a, r ← reversed(path+ rollout) do

if s′ ∈ path then
v← 0

else
v← Vθ(s

′)
c← c+ 1

quality← c ∗ r + γ ∗ (quality+ v)
W (s, a)←W (s, a) + quality
N(s, a)← N(s, a) + c

Q(s, a)← W (s,a)
N(s,a)

s′ ← s

STS can be viewed as a sophisticated version of Random Shooting applied to MCTS. In this
interpretation, STS interpolates between the two methods. We demonstrate empirically that the
change introduced by STS is essential to solving challenging RL domains; see Section 4. We note
that H = 1 corresponds to MCTS.

4 Experiments

We tested the spectrum of algorithms presented in Section 3 on the Sokoban and Google Research
Football domains. Those tasks present numerous challenges, which evaluate various properties of
planning algorithms. The training details, a list of hyper-parameters, network architectures and
multi-step expansion analysis are presented in appendices A.1, A.2, A.3 and A.9 respectively.

4.1 Sokoban Scenario C H S. rate Np Nt Ng

av. loops

256 1 95.2% 1224 1224 716
64 4 96.5% 299 1194 830
16 16 95.7% 114 1822 1333
4 64 89% 62 3960 1491

no av. loops
256 1 84.5% 1497 1497 376
32 8 88.4% 185 1483 409
2 128 65.3% 36 4589 967

Table 1: Comparison on evaluation of MCTS and STS. C,H are
parameters in Algorithm 1. S. rate is the ratio of solved boards,
Np, Nt(= Np · H), Ng are the average number of passes, tree
nodes and game states observed until the solution is found. Full
table is available in Table 4.

In the first experiment, we evaluated
the planning capabilities of STS. We
used a pre-trained value function and
varied the number of passes C and the
depth of multi-step expansionH , such
thatH ·C remains constant. In Table 1
we present quantities (Np, Nt, Ng),
which measure planning costs. In two
presented scenarios, there is a sweet
spot for the choice of H . For this
choice, the number of tree nodes, Nt,
which is the most important metric, is
the smallest. Interestingly, we observe
an increase in the solved rate. This may possibly be explained by the fact that the number of distinct
visited game states, Ng , grows. This suggests that STS explores more aggressively and efficiently.

In the second line of experiments, we analyzed the training performance (see Algorithm 2). For
MCTS we used C = 50 passes per step, while for STS we considered C = 10 passes with multi-step
expansionH = 5. The learning curve for STS dominates the learning curve for MCTS, which persists
throughout training, see Figure 1. Since the difficulty of Sokoban levels increases progressively, the
achieved improvement is substantial, even though in absolute terms, it may seem small.

Random Shooting methods perform poorly for Sokoban: we evaluated Bandit Shooting (Algorithm 5),
which struggled to exceed 5% solved rate.

3

4.2 Google Research Football

Figure 1: Learning curve for Sokoban domain for limited interval
of values on the y axis. The results are averaged over 10 runs,
shaded areas shows 95% confidence intervals. The x axis is the
number of collected samples. See Figure 4 for the full version.

For a description of Google Research
Football see Appendix A.8.

STS and MCTS STS achieves
state-of-the-art results on the GRF
Academy and significantly outper-
forms other methods. For STS we
used C = 30 passes with H = 10
and for MCTS we set corresponding
C = 300.

STS Conv. completely solves 8 out of
11 academy environments, see full re-
sults in Table 5, and is the best or close
to the best on the remaining 3. One
can observe that in Corner, Counter-
attack easy and hard, Pass and shoot
with keeper, Run to score with keeper,
and Single goal vs. lazy academies the
difference between STS and MCTS,
as well as most of the other methods, is substantial. See Table 2 for exact results. We stress that
STS Conv. easily beats any other method in one-to-one comparison across all academies. STS MLP
achieves a close second place. These results provide further evidence that STS gives a boost in
environments requiring long-horizon planning. This stands in sharp contrast with MCTS, which was
not able to achieve impressive results in the considered time budget. In the STS experiments we used
approx. 0.8M training samples (median). More details can be found in Appendix A.8, including
ablations.

Method

3
vs

.1
w

ith
ke

ep
er

C
or

ne
r

C
ou

nt
er

at
ta

ck
ea

sy

C
ou

nt
er

at
ta

ck
ha

rd

Pa
ss

an
d

sh
oo

t
w

ith
ke

ep
er

R
un

pa
ss

an
d

sh
oo

tw
ith

ke
ep

er

R
un

to
sc

or
e

R
un

to
sc

or
e

w
ith

ke
ep

er

Si
ng

le
go

al
ve

rs
us

la
zy

PPO 0.90 0.10 0.70 0.65 0.65 0.90 0.90 1.00 0.90

R
an

do
m

Sh
oo

tin
g flat 0.10 0.00 0.05 0.10 0.05 0.10 0.00 0.00 0.00

PPO 0.45 0.10 0.10 0.30 0.25 0.80 0.80 0.20 0.30
MLP 0.90 0.87 0.80 0.73 0.87 0.70 0.90 0.37 0.67

B
an

di
t

Sh
oo

tin
g flat 0.20 0.10 0.00 0.00 0.05 0.05 0.05 0.00 0.00

PPO 1.00 0.05 0.95 0.80 0.55 1.00 0.85 0.45 0.60
MLP 0.87 0.47 0.73 0.60 0.90 0.80 0.93 1.00 0.60

Conv. 0.97 0.41 0.81 0.44 0.94 0.69 1.00 0.91 0.00
MCTS Conv. 0.81 0.50 0.31 0.31 0.45 0.89 0.70 0.00 0.00

ST
S MLP 1.00 0.78 1.00 0.97 0.94 0.97 1.00 0.94 0.94

Conv. 1.00 0.81 1.00 1.00 1.00 1.00 1.00 0.97 0.97
Table 2: Summary of selected algorithms’ performance on GRF. Entries correspond to solved rates across at
leat 20 episodes per environment and these are medians across at least 3 seeds. PPO results come from Kurach
et al. [8]. Results for the whole GRF Academy are presented in Table 5.

5 Conclusions
In this paper, we introduced a new algorithm, Shoot Tree Search. STS aims to explicitly address the
dilemma between depth and breadth search in large state spaces. Having empirically verified the
efficiency of this extension in many challenging scenarios, we argue that it could be included in a
standard MCTS toolbox.

4

References
[1] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning

and tree search. In NIPS, 2017.

[2] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in games, 4(1):1–43, 2012.

[3] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[4] Dorit Dor and Uri Zwick. Sokoban and other motion planning problems. Computational
Geometry, 13(4):215–228, 1999.

[5] Matthew L. Ginsberg. GIB: Imperfect information in a computationally challenging game.
Journal of Artificial Intelligence Research, 2001. ISSN 10769757. doi: 10.1613/jair.820.

[6] Xiaoxiao Guo, Satinder P. Singh, Honglak Lee, Richard L. Lewis, and Xiaoshi Wang. Deep
learning for real-time atari game play using offline monte-carlo tree search planning. In NIPS,
2014.

[7] Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Tobias Pfaff, Theophane Weber,
Lars Buesing, and Peter W. Battaglia. Combining q-learning and search with amortized value
estimates. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=SkeAaJrKDS.

[8] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espe-
holt, Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain
Gelly. Google research football: A novel reinforcement learning environment. arXiv preprint
arXiv:1907.11180, 2019.

[9] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain Gelly.
Google research football. https://github.com/google-research/football, 2019.

[10] Piotr Miłoś, Łukasz Kuciński, Konrad Czechowski, Piotr Kozakowski, and Maciek Klimek.
Uncertainty-sensitive learning and planning with ensembles. arXiv preprint arXiv:1912.09996,
2019.

[11] Sébastien Racanière, Theophane Weber, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yu-
jia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra.
Imagination-augmented agents for deep reinforcement learning. In NIPS, 2017.

[12] Stéphane Ross and J. Andrew Bagnell. Reinforcement and imitation learning via interactive
no-regret learning. CoRR, abs/1406.5979, 2014. URL http://arxiv.org/abs/1406.5979.

[13] Brian Sheppard. World-championship-caliber Scrabble. Artificial Intelligence, 2002. ISSN
00043702. doi: 10.1016/S0004-3702(01)00166-7.

[14] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George Van Den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. Nature, 2017.

[15] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Thore Graepel, Timothy
Lillicrap, Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science, 1144:1140–1144, 2018.

[16] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

5

https://github.com/openai/baselines
https://openreview.net/forum?id=SkeAaJrKDS
https://openreview.net/forum?id=SkeAaJrKDS
https://github.com/google-research/football
http://arxiv.org/abs/1406.5979

A.1 Training details

We provide the code of our methods and hyper-parameters configuration files in https://github.
com/shoot-tree-search/sts.

The training loop follows the logic of Algorithm 2. We use a distributed setup with 30 workers and a
replay buffer of size 30000. We perform 1000 optimizer updates on batches of transitions whenever
all workers collect and store one full episode. During batch sampling, we ensured an equal amount of
examples from solved and unsolved episodes. In GRF and Sokoban experiments, each episode was
limited to 100 and 200 time steps, respectively.

A value function approximator, Vθ, is trained via the MSE loss and "reward-to-go" targets∑T
i=t+1 γ

i−t−1ri, where T is the terminal time-step in an episode. Q-function approximator, used
by MCTS and STS in GRF experiments (see Section A.5 for details), is trained via the MSE loss and
tree action-values targets, similar to the one used in Hamrick et al. [7], Miłoś et al. [10].

Policy, πφ, is trained using the cross-entropy loss. As targets, we use one-hot encoded actions chosen
in the environment for Random Shooting and the empirical distribution of actions chosen in the root
during the planning for Bandit Shooting, MCTS, and STS.

The total loss is a weighted sum of the value function (or the Q-function) loss, the policy loss
(weighted by 1e−2 in Random Shooting and Bandit Shooting, and 1e−3 in MCTS and STS), and a
regularizing, l2 term (weighted by 1e−6).

A pre-trained PPO policy in Shooting methods was obtained using a script included in the Google
Research Football repository (see Kurach et al. [9]) and the OpenAI Baselines (Dhariwal et al. [3])
PPO2 implementation.

A.2 Hyper-parameters

Sokoban Google Research Football
Parameter Shooting MCTS STS Shooting MCTS STS

Number of passes C 48 50 10 30 300 30
Planning horizon H 5 1 5 10 1 10
Discounting γ 0.99 0.99 0.99 0.95 / 0.991 0.99 0.99
Exploration weight cpuct 10.02 - - 1.0 / 2.53 1.0 1.0
Policy πφ temperature4 2.0 - - 2.0 1.0 1.0
Action sampling temp. τ - - - 0.35 0.3 0.3
Dirichlet parameter α - - - 0.035 0.3 0.3
Noise weight cnoise - - - 0.15 0.1 0.1 / 0.36

Depth limit depth limit7 - - - - 30 30
VF zero-initialization8 no no no no yes yes
Optimizer RMS RMS RMS RMS Adam Adam
Learning rate 2.5e−4 2.5e−4 2.5e−4 1.0e−4 1.0e−3 1.0e−3
Batch size 32 32 32 64 64 64
1 All γ = 0.99 except for Shooting experiments with a uniform and a pre-trained PPO policy, where γ = 0.95.
2 Applies only to Bandit Shooting.
3 cpuct = 1.0 for Bandit Shooting with a uniform and a pre-trained PPO policy and cpuct = 2.5 for Bandit

Shooting with a trained policy.
4 Softmax temperature. MCTS and STS in Sokoban does not use policy, see Section A.5 for details.
5 Applies only to Bandit Shooting with additional exploration mechanisms, see Section A.4.
6 cnoise = 1.0 for STS Conv. and cnoise = 0.3 for STS MLP.
7 The maximum number of nodes visited in a single planning pass, see Section A.5.
8 If the last layer of a value function neural network was initialized to 0, see Section A.8.2.

Table 3: Default values of hyper-parameters used in our experiments.

Table 3 presents hyper-parameters used in our experiments. These were based on hyper-parameters
previously proposed in the literature, e.g., Miłoś et al. [10], and a certain amount of tuning.

6

https://github.com/shoot-tree-search/sts
https://github.com/shoot-tree-search/sts

A.3 Network architectures

In GRF experiments we use two different state representations: ’simple115’ and ’extended’ (see
Section A.8). In the former case, we use an MLP architecture with two hidden layers of 64 neurons,
while in the latter case, we use 4 convolutional layers with 16, 3x3, filters, zero-padding and stride 2,
followed by a dense layer of 64 neurons. In both cases, two heads, corresponding to a value function
(or Q-function for MCTS and STS) and policy, follow.

In Sokoban experiments, we use 5 convolutional layers of 64, 3x3, filters with zero-padding and
stride 1, followed by a dense layer of 128 neurons and heads corresponding to a value function and
policy (policy is used only for Shooting methods).

In all the cases, we use the ReLU non-linearity. We use the standard Keras initialization schemes,
except for MCTS and STS in GRF experiments, see Section A.8.2.

A.4 Random Shooting

In this section we present two instantiations of Algorithm 1, which use Monte Carlo rollouts to
evaluate state-actions pairs: Random Shooting and Bandit Shooting, see Algorithm 4 and Algorithm
5, respectively.

Algorithm 4 Random Shooting Planner
function SELECT(state)

s← state
a ∼ πφ(s, ·)
s′, r ← model.STEP(s, a)
return (s, a, r), s′

function EXPAND(leaf)
s0 ← leaf
rollout← (sk, ak, rk+1)

H−1
k=0

where sk+1, rk+1 ← model.STEP(sk, ak)
and ak ∼ πφ(sk, ·)

return rollout, sH

function UPDATE(path, rollout, leaf)
Ĝ←

∑H
k=1 γ

k−1rk + γHVθ(leaf)
where rk ∈ rollout
s, a, r ← path

quality← r + γ ∗ Ĝ
W (s, a)←W (s, a) + quality
N(s, a)← N(s, a) + 1

Q(s, a)← W (s,a)
N(s,a)

function CHOOSE_ACTION(s)
return argmaxaQ(s, a)

The simplest version of Algorithm 4, the so-called flat Monte Carlo [5, 13], does not use a policy
πφ (instead rollouts are uniformly sampled) nor a value function Vθ (just truncated sum of rewards
Ĝ =

∑H
k=1 γ

k−1rk). Bandit Shooting, presented in Algorithm 5, is a Multi-armed Bandits variant of
Random Shooting and uses PUCT [15] rule to improve exploration and thus achieve more reliable
evaluations of actions.

Algorithm 5 Bandit Shooting Planner, additionally requires exploration weight cpuct
function SELECT(state)

s← state
U(s, a)←

√∑
a′ N(s, a′)/(1 +N(s, a))

a← argmaxa(Q(s, a) + cpuctπφ(s, a)U(s, a))
s′, r ← model.STEP(s, a)
return (s, a, r), s′

function EXPAND(leaf)
The same as in Algorithm 4.

function UPDATE(path, rollout)
The same as in Algorithm 4.

function CHOOSE_ACTION(s)
return argmaxaN(s, a)

7

Algorithm 6 Bandit Shooting Planner with additional exploration mechanisms, requires exploration
weight cpuct, action sampling temperature τ , noise weight cnoise and Dirichlet distribution parameter
α

function SELECT(state)
s← state
P (s, a)← (1− cnoise)πφ(s, a) + cnoiseD

U(s, a)←
√∑

a′ N(s, a′)/(1 +N(s, a))
a← argmaxa(Q(s, a) + cpuctP (s, a)U(s, a))
s′, r ← model.STEP(s, a)
return (s, a, r), s′

function EXPAND(leaf)
The same as in Algorithm 4.

function UPDATE(path, rollout)
The same as in Algorithm 4.

function CHOOSE_ACTION(s)
a ∼ softmax

(
1
τ
logN(s, ·)

)
return a

Bandit Shooting with additional exploration mechanisms Algorithm 6 describes Bandit Shoot-
ing with additional exploration mechanisms: mixing the policy with Dirichlet noise (as in [15]) and
action sampling with temperature τ in CHOOSE_ACTION(s). The noise variable D is sampled from
the Dirchlet distribution Dir(α) each time when PLANNER is called (see also Algorithm 2).

A.5 MCTS

Monte Carlo Tree Search (MCTS) is a family of methods, that iteratively and explicitly build a
search tree, see Browne et al. [2]. It follows the schema of Algorithm 1. SELECT traverses down the
tree, according to an in-tree policy, until a leaf is encountered. EXPAND grows the tree by adding
the leaf’s children. The values of these new nodes are estimated, usually with the help of a rollout
policy in a similar vein as Random Shooting Planner, or via the value network Vθ (see Silver et al.
[14]). In this work, we refer to the latter version, using value networks, as MCTS. Finally, UPDATE
backpropagates these values from the leaf up the tree. After planning, CHOOSE_ACTION chooses an
action to take according to the number of visits in each child of the root node. This is consistent with
AlphaZero [15]. A basic variant of MCTS is presented in Algorithm 7. More details are provided in
Appendix A.5.

Algorithm 7 MCTS, additionally uses tree structure tree.
function SELECT(state)

s← state
path← []
while s belongs to tree do

a← CHOOSE_ACTION(s)
s′, r ← tree[s][a]
path.APPEND((s, a, r))
s← s′

return path, s

function EXPAND(leaf)
for a ∈ A do

s′, r ← model.STEP(leaf, a)
tree[leaf][a]← (s′, r)
W (leaf, a)← r + γ ∗Vθ(s

′)
N(leaf, a)← 1
Q(leaf, a)←W (leaf, a)

return [], leaf

function UPDATE(path, rollout, leaf)
quality← Vθ(leaf)
for s, a, r ← reversed(path) do

quality← r + γ ∗ quality
W (s, a)←W (s, a) + quality
N(s, a)← N(s, a) + 1

Q(s, a)← W (s,a)
N(s,a)

function CHOOSE_ACTION(s)
return argmaxaQ(s, a)

In our experiments, we used various implementations of MCTS. The reasons were two-fold. First,
some implementation details fit better Sokoban and some GRF. Second, we wanted to check in
various cases that the multi-step expansion is beneficial, see Section A.6.

In Sokoban experiments, we used the MCTS implementation similar to the one in Miłoś et al. [10],
containing a loop avoidance mechanism and transposition tables. The loop avoidance mechanism
alters SELECT and CHOOSE_ACTION (see Algorithm 7) so that the selected path does not contain
repetitions of states. The transposition tables are a rather standard technique, which proposes to
accumulate search statistics (i.e., W,N,Q) for states of the environment (rather than for the nodes of
the search tree, as it happens in the standard case).

8

In GRF, we used our custom implementation of MCTS based on the one in Silver et al. [14]. It uses
leaf evaluation with Q-function and policy networks. The Q-function is used to evaluate all children
of a given node at once (instead of separately invoking value function Vθ in UPDATE). The policy
network is considered to be ’prior’ for choosing actions, similarly as in SELECT in Algorithm 6.
Dirichlet noise, parameterized by α and cnoise, is mixed with the prior in the root and action sampling
with temperature τ is used to choose action on the real environment, similarly as in Bandit Shooting
with additional exploration mechanisms in Section A.4. Additionally, we put a limit, depth limit,
on the maximum number of nodes visited in a single STS pass.

A.6 STS

We tested STS with two MCTS setups described in Section A.5. In both the cases we observed
substantial experimental improvements as reported in Section A.7 and Section A.8. This alone, in our
view, provides enough evidence that the multi-step expansion is a useful method.

Apart from this, STS offers practical computational benefits, which are analyzed below.

A.6.1 Computational benefits of STS

We distinguish three types of computational costs in MCTS (see Algorithm 7):

1. Traversing down the search tree (performed in SELECT and EXPAND).

2. Backpropagation of values and counts update (handled by UPDATE).

3. Evaluation of heuristics (value network Vθ, or Q-function and policy as described in Section
A.5)

In large GRF experiments, we found that it was the first cost that dominated the remaining two.
The reason is that the cost of building a search tree is quadratic to its depth. The use of multi-step
expansion significantly reduces this cost as several nodes are added during single tree traversal. In
our case, these benefits allowed for much smoother experimenting with GRF and are, arguably, a
step towards developing more efficient planners. We expect this might be practically useful (i.e.,
costs 1 and 2 are dominant) when the search size is large, or the heuristic evaluation is relatively
cheap compared to the environment step. This is the case in some of our GRF experiments. The GRF
simulator is rather complex and slower than small MLP networks.

The following simple lemma offers some theoretical analysis.

Lemma A.6.1. Assume that STS and MCTS build the same tree T , starting from the root state s0.
Denote the number of nodes in T as C and the number of nodes to be added at a single multi-step
expansion of STS as H . Then the number of steps in T performed by STS will be lower compared to
MCTS by a factor in [h−12 , h].

Proof. Lets consider h consecutive nodes s1, . . . , sh in the search tree added in a single EXPAND step
during STS search. In STS, the number of steps, CSTS , in the tree during SELECT and EXPAND is
equal to h+d, where d is distance between s0 and s1 in T . To add the same set of nodes during MCTS
search, one need h separate calls to SELECT and EXPAND. The total number of steps performed is
CMCTS =

∑h−1
k=0 d+ k + 1 = hd+ hh−12 . Clearly,

h− 1

2
CSTS ≤ CMCTS ≤ hCSTS .

Similar calculation hold for the costs of backpropagation.

A.7 Sokoban experiments

Sokoban is a well-known combinatorial puzzle, where the agent’s goal is to push all boxes (marked
as yellow, crossed squares) to the designed spots (marked as squares with a red dot in the middle),
see Figure 2. Additionally, to the navigational challenge, Sokoban’s difficulty is attributed to the
irreversibility of certain actions. A typical example is pushing a box into a corner, though there are

9

H

Figure 3: Sokoban on simpler boards: training curves for MCTS, STS and Bandit Shooting with
and without loop avoidance. Mean over 5 seeds with shaded regions representing 95% confidence
intervals.

multiple less apparent cases. The environment’s complexity is formalized by the fact that, deciding
whether a level of Sokoban is solvable or not, is PSPACE-complete, see e.g. Dor and Zwick [4]. Due
to these challenges, the game is often used to test reinforcement learning and planning methods.

Figure 2: Example (10, 10)
Sokoban board with 4 boxes.
Boxes (yellow) are to be pushed
by agent (green) to designed spots
(red). The optimal solution in this
level has 37 steps.

Sokoban is an environment known for its combinatorial complexity.
The agent’s goal is to push all boxes (marked as yellow, crossed
squares) to the designed spots (marked as squares with a red dot in
the middle), see Figure 2. Apart from the navigational challenge,
the difficulty of this game is greatly increased by the fact that some
actions are irreversible. A canonical example of such an action is
pushing a box into a corner, though there are multiple less obvious
cases. Formally, this difficulty manifests itself in the fact that de-
ciding whether a level of Sokoban is solvable or not, is NP-hard,
see e.g. Dor and Zwick [4]. Due to these challenges the game has
been considered as a testbed for reinforcement learning and planning
methods.

For a description of Sokoban see Section 4.1. In our experiments,
we used inputs of dimension (x, x, 7), where (x, x) is the size of
the board ((10, 10) in most cases) and 7 is one-hot encoding of the
state of a given cell (enumerated as follows: wall, empty, target,
box_target, box, player, player_target). In most experiments, we
used 4 boxes and the limit of 200 steps. The agent is rewarded with
1 by putting a box into a designated spot and additionally with 10
when all the boxes are in place2. The action space consists of four
movement directions (up, down, right, left).

A.7.1 Evaluation experiments

In Table 4 we show full details of the evaluation experiment (which complements Table 1). Recall
that in this experiment, we evaluated the planning capabilities of STS in isolation from training. To
this end, we used a pre-trained value function and varied the number of passes C and the depth
of multi-step expansion H , such that H · C remains constant. In Table 4, we present quantities
(Np, Nt, Ng), which measure planning costs for finding a solution (the average number of passes,

2Our Sokoban code is fully compatible with Racanière et al. [11].

10

Figure 4: Learning curve for Sokoban domain. Left figure shows full results, right one inspects the same data
for limited interval of values on the y axis. The results are averaged over 10 runs, shaded areas shows 95%
confidence intervals. The x axis is the number of collected samples.

Scenario C H S. rate Np Nt Ng

avoid loops

256 1 95.2% 1224 1224 716
128 2 95.9% 569 1137 728
64 4 96.5% 299 1194 830
32 8 95.9% 173 1385 1040
16 16 95.7% 114 1822 1333
8 32 93.4% 79 2527 1528
4 64 89% 62 3960 1491
2 128 80% 52.7 6754 1207

no avoid loops

256 1 84.5% 1497 1497 376
128 2 86.3% 724 1448 332
64 4 87.8% 385 1541 370
32 8 88.4% 185 1483 409
16 16 89.5% 110 1754 539
8 32 89.9% 84 2690 882
4 64 85.2% 68 4463 1300
2 128 65.3% 36 4589 967

Table 4: Evaluation of various STS settings on Sokoban

tree nodes and game states observed, respectively, until the solution is found). We run experiments
with and without the loop avoidance mechanism (see Section A.5). We observe that there is a sweet
spot for the choice of H . It is evident for the ’no avoid loop’ case, C = 32, H = 8. For this choice,
the number of tree nodes, Nt, which is the most important metric, is the smallest. Interestingly, we
observe a significant increase in the solved rate. This may be explained by the fact that the number
of distinct visited game states, Ng, grows. This suggests that STS explores more aggressively and
efficiently. For bigger H , we observe a further increase of the solved rate until some point, though at
the cost of much bigger Nt.

In experiments with the avoid loop mechanism, there is a similar effect for C = 64, H = 4, though
more subtle, probably because results are already quite strong. Moreover, we observe a more
significant drop in performance as H increases (when planning resembles more shooting methods).

The values presented in Table 4 are averages over more than 5000 boards.

A.7.2 MCTS and Shooting on simpler boards

We found the Bandit Shooting method underperforming on Sokoban. As a sanity test, we tested a
simpler setting with smaller boards of size (6, 6) and two boxes. Learning curves are presented in
Figure 3. MCTS and STS experiments quickly learn to solve over 99% of boards. Bandit Shooting
experiment showed stable but much slower progress. We also evaluated the version of Bandit
Shooting, with additional loop avoidance, see Section A.5. This mechanism was beneficial for MCTS
and STS but failed to bring improvements for the shooting algorithms.

11

Figure 5: Sokoban value function heatmap,
brighter means higher value estimate.

Figure 6: Sokoban value function heatmap,
brighter means higher value estimate.

A.7.3 Correcting biased value functions estimates with deep search

To generate value function heatmaps we evaluated the pre-trained MCTS value function for each
possible agent position in a room. Figures 5 and 6 present two chosen rooms with their corresponding
VF heatmaps. Specifically, the room in Figure 6 was solved by the STS with 10 passes and 5
steps of multi-step expansion and wasn’t solved by the MCTS with 50 passes, both without the
avoid loops mechanism. We include movies of both agents in this room in the code repository:
https://github.com/shoot-tree-search/sts/tree/master/movies.

Because the value function is biased, it makes MCTS stuck in states with overestimated value. See
Figure 6, in this room MCTS gets stuck in the bottom-left region. However, with a deeper tree, STS
can get unstuck quicker and still find a solution. Remember that the search statistics (i.e., W,N,Q)
are accumulated for states of the environment (see Appendix A.5). As this overestimated region gets
searched deeper the bias in the value function gets discounted more and the agent figures out there
are no rewards in reality. At some point, other actions will have a higher value and the agent has a
chance to get unstuck and explore other parts of the room. That being said, it should be noted that
this "potential well" will still attract the agent, make its planning paths distracted, even when it gets
unstuck. STS is less vulnerable to this effect and is able to solve this room despite high bias in the
value function.

12

https://github.com/shoot-tree-search/sts/tree/master/movies

A.8 Google Research Football experiments

For a description of Google Research Football see Appendix A.8.

Google Research Football (GRF) is an environment recently introduced in Kurach et al. [8]. It is an
advanced, physics-based simulator of the game of football. A part of GRF is the Football Academy
consisting of 11 scenarios highlighting various tactical difficulties, see Kurach et al. [8, Table 10]
for description. A GRF Academy episode is considered finished after 100 steps or when the goal is
scored by the agent.

Reported results correspond to solved rates over 20 episodes in case of Shooting methods with an
uniform and a pre-trained policy and around 30 episodes in case of all other methods. Results for
MCTS, STS, and Shooting methods with the trained policy are medians of at least three training
runs. During evaluations we disabled Dirichlet noise and action sampling (in Bandit Shooting Expl.,
MCTS and STS).

Google Research Football offers two major mode of observations: ’simple115’ and ’extracted’ (also
called the super mini-map).

The simple115 state representation is consists of coordinates of players, players’ movement directions,
the ball position, a ball movement direction, a one-hot encoding of ball ownership, a one-hot encoding
of which player is active. This totals in a vector of length 115.

The extracted state representation consists 4 stacked layers of size (72, 96). Layers contain one-hot
encoding of spatial positions of game entities. These are (on the subsequent layers): players on the
left team, players on the right team, the ball, and the active player.

We note that even though the extracted representation contains ’less information’ than simple115, it
has been reported in [8] to generate better results.

In our experiments, we use the so-called checkpoint rewards, which provide an additional signal
for approaching the goal area. Details can be found in [8], where they were introduced and used in
large-scale experiments.

The action space in GRF consists of 19 actions representing high-level football behaviors (e.g. "Short
Pass"), see Kurach et al. [8, Table 1].

Figure 7 shows selected training curves on Google Research Football, the best from each family of our
methods: Shooting, MCTS and STS. Figure 8 shows all training curves for our methods on Google
Research Football. On the y-axis is the solved rate calculated as described above in Section A.8.
On the x-axis is the number of real steps in the environment (planning steps in the simulator are not
added). Curves are mean over 3 training runs with different seeds and shaded regions represent 95%
confidence intervals (exceptionally for Bandit Shooting we report just one run). Moreover, to smooth
the curves, data points are averaged in the windows of 10000 steps.

A.8.1 Shooting methods

Table 5 presents our methods performance in all Google Research Football academies.

Tuning cpuct turned out to be the most important one to make Bandit Shooting work, see Algorithm
5. In a nutshell, it needs to be adjusted to scale of rewards (value function) in a given environment. In
our experiments we found cpuct = 2.5 to work best.

Using additional Dirichlet noise, cnoise > 0, and action sampling on the real environment, τ > 0
(see Algorithm 6) resulted in inferior results with an exception of the "Counterattack hard" scenario.

A.8.2 MCTS and STS experiments

Apart from multi-step expansion we introduced another simple novel method, which might be of
interest to the general public. Namely, before starting training, we set the weights of the last layer
of the Q-value neural network to 0 (see Section A.3 for a detailed description of architectures). We
observed that this significantly improved the training stability due to better exploration (and avoiding
suboptimal strategies at the early stages of training). See ’No zero initialization’ on Figure 10.

13

H

Figure 7: Google Research Football training curves for three best methods on GRF. Mean over 3
seeds with shaded regions representing 95% confidence intervals.

14

H

Figure 8: Google Research Football training curves for all methods on GRF. Mean over 3 seeds with
shaded regions representing 95% confidence intervals.

15

Method

3
vs

.1
w

ith
ke

ep
er

C
or

ne
r

C
ou

nt
er

at
ta

ck
ea

sy

C
ou

nt
er

at
ta

ck
ha

rd

E
m

pt
y

go
al

E
m

pt
y

go
al

cl
os

e

Pa
ss

an
d

sh
oo

t
w

ith
ke

ep
er

R
un

pa
ss

an
d

sh
oo

tw
ith

ke
ep

er

R
un

to
sc

or
e

R
un

to
sc

or
e

w
ith

ke
ep

er

Si
ng

le
go

al
ve

rs
us

la
zy

PPO 0.90 0.10 0.70 0.65 0.90 1.00 0.65 0.90 0.90 1.00 0.90

R
an

do
m

Sh
oo

tin
g flat 0.10 0.00 0.05 0.10 0.00 0.95 0.05 0.10 0.00 0.00 0.00

PPO 0.45 0.10 0.10 0.30 1.00 1.00 0.25 0.80 0.80 0.20 0.30
MLP 0.90 0.87 0.80 0.73 0.93 1.00 0.87 0.70 0.90 0.37 0.67

B
an

di
t

Sh
oo

tin
g

flat 0.20 0.10 0.00 0.00 0.05 0.35 0.05 0.05 0.05 0.00 0.00
PPO 1.00 0.05 0.95 0.80 1.00 1.00 0.55 1.00 0.85 0.45 0.60
MLP 0.87 0.47 0.73 0.60 1.00 1.00 0.90 0.80 0.93 1.00 0.60

Conv. 0.97 0.41 0.81 0.44 0.97 1.00 0.94 0.69 1.00 0.91 0.00
Expl. 1.00 0.53 0.50 0.66 1.00 0.00 0.81 0.34 0.00 0.00 0.09

MCTS Conv. 0.81 0.50 0.31 0.31 0.99 1.00 0.45 0.89 0.70 0.00 0.00

ST
S MLP 1.00 0.78 1.00 0.97 1.00 1.00 0.94 0.97 1.00 0.94 0.94

Conv. 1.00 0.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.97

Table 5: Summary of methods performance on GRF. Entries correspond to rounded solved rates over
at least 20 episodes per environment. Results for Shooting methods with the trained policy, MCTS
and STS are reported as median of at least three training runs. PPO results come from Kurach et al.
[8].

A.8.3 Ablations

The ablations were performed on three environments from GRF Academy: corner, counterattack
hard and empty goal, see Figure 10. The first two environments are difficult, while the last one is
easy. The following parameters or settings were subject to analysis (they correspond to the labels in
Figure 10):

• prior noise weight: a weight in the mixture of Dirichlet noise and the prior.

• depth limit: the maximum number of nodes visited in a single STS pass.

• sampling temperature: temperature for sampling the actions on the real environment.

• MCTS n_passes 300: this corresponds the standard MCTS setting with H = 1 (MCTS)
and C = 300

• Value network n_passes: value network is used instead of Q-function. Note that
n_passes = 2 matches roughly the Q-function version in terms of visited states (re-
call, see Section 7, that Q-function evaluates all children at once and that number of actions
in GRF is 19).

• No policy: instead of a learned policy network, a uniform policy is used.

• No zero initialization: the last layer of the value function neural network was not
initialized to 0 (see description at the beginning of Section A.8.2).

The default setup (denoted as Prior noise weight 0.1) is always positioned at the top in Figure 10.
It uses parameters described in Table 3 in the Google Research Football STS column.

A.9 Multi-step expansion analysis on toy problems

First, consider an MDP presented at the top of Figure 9. It showcases the situation when the errors
are systematic: in the vicinity of the starting state s0, the estimates of the value function are biased
(for simplicity set to 0 and shown as white vertices), while the values in the area surrounding
terminal states are accurate (shown as color vertices). This example is an exaggeration. However,
something similar can happen in practice, when information is propagated with TD-like methods or
the environment has an “easy” region, which is hard to find. Under these circumstances, STS, given

16

large enough H , will be able to reach accurate values (color vertices) within a few passes. On the
contrary, MCTS would explore the whole uncertain area (white vertices) in a breadth-first fashion.

Second, consider an MDP shown at the bottom of Figure 9. It illustrates the case when the errors are
“pseudo-random”. In this MDP all rewards are 0 except the marked edges, where they are −a, a > 0.
Starting from s0, the agent can move only to the right. The perfect value function is 0 in every state,
however we assume that the current noisy value estimates equal to εi on the “tail” part of the diagram.
In this example, we assume that the errors arise in interactions of many factors, thus can be modeled
as i.i.d. centered random variables εi such that E|εi| < +∞.

The optimal path, going over the green edge and later over the tail, is accompanied by several ’decoy’
paths (marked in orange). They will not be entered unless errors on the tail have accumulated below
−a. We denote the probability of such an event by pH , where H is the number of steps in the
multi-step expansion (H = 1 corresponds to MCTS). In Lemma A.9.1, we show that p1 > pH for
H ≥ 2, and in fact pH → 0 when H → +∞.
Lemma A.9.1. Under the above assumptions p1 > pH and pH → 0.

Proof. Assume that for the first ` ≥ 2 steps of the search tree was unfolded via the middle (green)
edge and further via the tail. The state-action value estimated by the MCTS/STS is thus q` =
(ε0 + . . .+ ε`−2)/`. Consequently,

pH = P(∃k∈NqkH < −a).

The claims follow from the fact q` → 0 a.s., which itself is the consequence of the strong law of large
numbers.

As the lemma serves mainly the illustrative purpose we used the i.i.d. assumption, which can
be easily weakened. As a test we simulate the case εi ∼ N (0, 1) and a = 0.3. In this case
p1 = 0.56, p2 = 0.46, p4 = 0.35, p8 = 0.41, p16 = 0.21. Note that p1/pH is as high as 3 for
H = 16 and quite natural choice of a and εi.

A.10 Infrastructure used

We ran our experiments on clusters with servers typically equipped with 24 or 28 CPU cores and
64GB of memory. A typical experiment was 72 hours long (the timeout set on the clusters), which
was enough for most experiments. Experiments that did not converge during this time were resumed.

During the project, we run more than 10k experiments.

17

Figure 9: Visualization of the toy environments.

18

Figure 10: Ablations performed GRF Academy environments: corner, counterattack hard and empty
goal.

19

	Introduction
	Background and related work
	Methods
	Experiments
	Sokoban
	Google Research Football

	Conclusions
	Training details
	Hyper-parameters
	Network architectures
	Random Shooting
	MCTS
	STS
	Computational benefits of STS

	Sokoban experiments
	Evaluation experiments
	MCTS and Shooting on simpler boards
	Correcting biased value functions estimates with deep search

	Google Research Football experiments
	Shooting methods
	MCTS and STS experiments
	Ablations

	Multi-step expansion analysis on toy problems
	Infrastructure used

