
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MAXCUTPOOL: DIFFERENTIABLE FEATURE-AWARE
MAXCUT FOR POOLING IN GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel approach to compute the MAXCUT in attributed graphs, i.e.,
graphs with features associated with nodes and edges. Our approach is robust to the
underlying

:::::
works

::::
well

:::
on

:::
any

::::
kind

:::
of graph topology and is fully differentiable,

making it possible to
:::
can find solutions that jointly optimize the MAXCUT along

with other objectives. Based on the obtained MAXCUT partition, we implement
a hierarchical graph pooling layer for Graph Neural Networks, which is sparse,
differentiable

:::::::
trainable

:::::::::
end-to-end, and particularly suitable for downstream tasks

on heterophilic graphs.

1 INTRODUCTION

The MAXCUT is the problem of partitioning the nodes of a graph such that as many edges as possible
connect nodes from different sides of the partition. The MAXCUT is orthogonal to the more commonly
encountered minCUT, which aims at partitioning the nodes into strongly connected groups. While
minCUT is closely related to clustering, MAXCUT relates to the concept of downsampling, e.g., keeping
one-every-K, under the assumption that there is a redundancy among the K samples. Like the
minCUT, the MAXCUT is a combinatorial optimization problem that, in practice, is approximated by
approaches that find suboptimal or unstable solutions for a large class of graphs (Makarychev et al.,
2014).

Pooling is ubiquitously used in deep learning for gradually reducing the size of the data while retaining
important information. In Convolutional Neural Networks (CNNs), pooling is typically implemented
by selecting the maximum within a contiguous patch (max-pool) or by computing an average (avg-
pool). These strategies are naturally related to MAXCUT and minCUT problems, respectively. Similarly
to CNNs, Graph Neural Networks (GNNs), which can be seen as a generalization to irregular data,
are typically built by alternating Message Passing (MP) and graph pooling layers (Zhou et al., 2020a).
A hierarchy of pooling layers gradually extracts global graph properties through the computation
of local summaries and is key to building deep GNNs for graph classification (Khasahmadi et al.,
2020), node classification (Gao & Ji, 2019; Ma et al., 2020), graph matching (Liu et al., 2021), and
spatio-temporal forcasting (Cini et al., 2024; Marisca et al., 2024).

Two important approaches are followed when implementing hierarchical graph pooling. One is to
account for the node features with trainable functions that are adapted to a downstream task at hand.
The other is to optimize graph theoretical objectives, such as the minCUT or the MAXCUT, to guide
the computation of the coarsened graph. Combining the first approach with minCUT objectives is
relatively straightforward, as they complement the smoothing effect of MP layers (Hansen & Bianchi,
2023). Conversely, objectives such as MAXCUT that select sparse and uniformly distributed subsamples
of nodes have been implemented so far only within non-differentiable frameworks, which account
neither for node features nor for task objectives (Luzhnica et al., 2019).

1.1 CONTRIBUTIONS

MAXCUT for attributed graphs. Our first contribution is graph theoretical and consists of a novel
GNN-based approach to compute a MAXCUT partition in attributed graphs. Being completely dif-
ferentiable, our method can be seamlessly integrated into a deep-learning framework where other
loss functions can influence the MAXCUT solution. Remarkably, our method is also more robust than
traditional approaches in computing the MAXCUT on non-attributed graphs, as it finds a better cut

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

on most graph topologies. This makes our contribution relevant to every application of the MAXCUT
problem, such as quantum computing (Zhou et al., 2020b), circuit design (Bashar et al., 2020),
statistical physics (Borgs et al., 2012), material science (Liers et al., 2004), computer vision (Abbas
& Swoboda, 2022), and quantitative finance (Lee & Constantinides, 2023).

Graph pooling and coarsening. The MAXCUT application we focus on is the problem of learning
a coarsened graph within a GNN. In particular, we design a new hierarchical pooling layer that
reduces the graph by keeping the nodes from one side of the MAXCUT partition. Our layer is the first
to combine a graph theoretical MAXCUT objective with a differentiable and

::::::
pooling

::::::::
approach

::::
that

:
is

features-aware approach for pooling
:::
and

::::::::
trainable

:::::::::
end-to-end. When we include the newly proposed

pooling layer in GNNs for graph and node classification, we achieve similar or superior performances
compared to state-of-the-art pooling techniques.

Improved scoring-based pooling framework. We propose a simple and efficient scheme to assign
node to supernodes when computing the pooled graph. Our scheme can be applied not only to
our method but to the whole family of sparse scoring-based graph pooling operators enhancing, in
principle, their representational power. Importantly, we bridge the gap between scoring-based and
dense pooling methods by using the same operations to compute the features and the topology of the
pooled graph.

Heterophilic graph classification dataset. Differently from the existing differentiable pooling
operators, the nature of the MAXCUT solution makes our graph pooling operator particularly suitable
for heterophilic graphs. While there are benchmark datasets for node classification on heterophilic
graphs, there is a lack of such datasets for graph classification. To fill this gap, we introduce a novel
synthetic dataset that, to our knowledge, is the first of its kind.

2 BACKGROUND

2.1 THE MAXCUT PROBLEM AND THE CONTINUOUS RELAXATIONS

Let G = (V, E) be an undirected graph with non-negative weights on the edges, and let N be the
number of nodes in G. A cut in G is a partition (S,V \ S) where S ⊂ V . The MAXCUT problem
consists of finding a cut that maximizes the total volume of edges connecting nodes in S with those
in V \ S. The MAXCUT objective can be expressed as the integer quadratic problem

max
z

∑
i,j∈V

wij(1− zizj) s.t. zi ∈ {−1, 1}, (1)

where z ∈ {−1, 1}N is an assignment vector indicating to which side of the partition each node is
assigned to and wij is the weight of the edge connecting nodes i and j.

Like other discrete optimization problems of this kind, MAXCUT is NP-hard. The Goeman-Williamson
(GW) algorithm (Goemans & Williamson, 1995) provides a semidefinite relaxation of the integer
quadratic problem, which makes it tractable:

max
X

∑
i,j∈V

wij(1− xi · xj) s.t. ∥xi∥ = 1, (2)

where X ∈ RN×D is a matrix whose rows are the continuous embeddings of the nodes in G. The
vectors X are projected on a random hyperplane to split the nodes and assign them to the two sides
of the partition. This algorithm guarantees an expected cut size of .868 of the maximum cut.

Another simple yet effective continuous relaxation is the largest eigenvector vertex selection (LEVS)
method (Shuman et al., 2015). Let L be the Laplacian matrix associated to the graph G and let umax

be the eigenvector of L associated to the largest eigenvalue λmax. A cut in G can be found based on
the polarity of the components of umax, for instance by letting S = {i : umax[i] ≥ 0}. In the field of
graph signal processing, the eigenvectors related to the largest eigenvalues of L are closely related to
the operation of high-pass filtering of a graph signal (Tremblay et al., 2018). Specifically, they are
used to design graph filters that amplify high-frequency components of a signal, i.e., the components
that vary the most across adjacent nodes (Shuman et al., 2013).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The MAXCUT problem is closely related to graph coloring, which aims at assigning different colors
to adjacent nodes. In particular, the 2-color approximate coloring (Aspvall & Gilbert, 1984), is the
problem of identifying subsets of nodes such that the connections within each subset are minimized.
Such coloring is a high-frequency graph signal and induces a partition that is orthogonal with respect
to spectral clustering (von Luxburg, 2007).

(a) (b) (c) (d)

0.4 0.2 0.0 0.2 0.4
0

20

(e)

0.4 0.2 0.0 0.2 0.4
0

5

(f)

0.4 0.2 0.0 0.2 0.4
0.0

2.5

(g)

0.4 0.2 0.0 0.2 0.4
0

20

(h)

1.0 0.5 0.0 0.5 1.0
0

20

(i)

1.0 0.5 0.0 0.5 1.0
0

50

(j)

0.5 0.0 0.5 1.0
0

20

(k)

1.0 0.5 0.0 0.5 1.0
0

20

(l)

Figure 1: Top row: Partitions induced by the sign of the elements in umax. The nodes are colored
based on the partition and the red edges are those not cut (the less, the better). Middle row: histograms
of umax inducing the partitions above. While in bipartite graphs the separation is sharp, the more a
graph is irregular and dense the more the values are clustered around zero, making it difficult to find
the optimal MAXCUT. Bottom row: histograms of the score vectors generated by our model, which
always produce a clear and sharp partition.

A MAXCUT partition that cuts every edge exists only for bipartite graphs. Conversely, in fully connected
graphs no more than half of the edges can be cut. Algorithms relying on continuous relaxations to
find the MAXCUT partition tend to be unstable and perform poorly, especially as the graph topology
departs from the bipartite case (Trevisan, 2009). Fig. 1(a-h) shows the performance of the LEVS
method on bipartite and non-bipartite graphs: numerical issues typically occur in more dense and less
regular graphs, making it difficult to identify the optimal MAXCUT solution.

2.2 MESSAGE PASSING IN GNNS

Let us consider a graph G =
(
X ∈ RN×F ,A ∈ RN×N

)
. A basic MP operator can be described as

X ′ = σ (PXΘ) (3)

where σ is a non linear activation function, Θ are trainable parameters, and P is a propagation
operator matching the sparsity pattern of A. Each MP layer relies on a specific propagation operator.
For instance, in Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), the propagation
operator is defined as P = D̂− 1

2 ÂD̂− 1
2 , where Â = A+ I and D̂ii =

∑
j=0 Âij .

Due to the fixed, non-negative smoothing nature of most propagation operators, the repeated applica-
tion of P can lead to over-smoothing. If that happens, the feature representations of nodes become
increasingly similar, hindering the function approximation capabilities of a GNN, which can only
learn smooth graph signals (Wu et al., 2019; Wang et al., 2019). In contrast, by using a sharpening
propagation operator

::::::::
combining

:::::::::
smoothing

::::::::::
propagation

::::::::
operators

::::
with

::::::::::
sharpening

::::
ones, any kind of

gradients can be learned (Eliasof et al., 2023). Since there is no universal definition for such an
operator, we rely on the formulation introduced by Bianchi (2022):

P = I − δ
(
I −D

1
2AD

1
2

)
= I − δLsym (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where δ is a smoothness hyperparameter and Lsym is the symmetrically normalized Laplacian of G.
As observed by Bianchi (2022), when δ = 0 the MP behaves like a simple Multilayer Perceptron
(MLP). Instead, when δ = 1 the behavior is close to that of a GCN. Finally, as noted by Eliasof et al.
(2023), when δ > 1 the propagation operator favors the realization of non-smooth signals on the
graph and we refer to this variant as a Heterophilic Message Passing (HetMP) operator. We note that
this can be seen as a graph-equivalent

::
the

:::::
graph

::::::::::
counterpart of the Laplacian sharpening kernels for

images, mapping connected nodes to different values (Mather & Koch, 2022).

2.3 GRAPH POOLING

While there are profound differences between existing graph pooling approaches, most of them
can be expressed through the Select-Reduce-Connect (SRC) framework (Grattarola et al., 2022).
Specifically, a pooling operator POOL : (A,X) 7→ (A′,X ′) can be expressed as the combination of
three sub-operators:

• SEL : (A,X) 7→ S ∈ RN×K , is a selection operator that defines how the N original nodes are
mapped to the K pooled nodes, called supernodes, being S the selection matrix.

• RED : (X,S) 7→X ′ ∈ RK×F , is a reduction operator that yields the features of the supernodes.
A common way to implement RED is X ′ = S⊤X .

• CON : (A,S) 7→ A′ ∈ RK×K
≥ 0 , is a connection operator that generates the new adjacency matrix

and, potentially, edge features. Typically, CON is implemented as A′ = S⊤AS or A′ = S+AS.

Different design choices for SEL, RED, and CON induce a taxonomy of the operators. For example, if
SEL, RED, and CON are learned end-to-end the pooling operators are called trainable, non-trainable
otherwise. Relevant to this work, are the families of pooling methods described in the following.

Soft-clustering methods, sometimes referred to as dense (Grattarola et al., 2022), assign each node to
more than one supernode through a soft membership. Representatives methods such as DiffPool (Ying
et al., 2018), MinCutPool (Bianchi et al., 2020a), StructPool (Yuan & Ji, 2020), HoscPool (Duval &
Malliaros, 2022), and Deep Modularity Networks (DMoN) (Tsitsulin et al., 2023), compute a soft
cluster assignment matrix S ∈ RN×K either with an MLP or an MP-layer operating on node the
features and followed by a softmax. Each method leverages different unsupervised auxiliary loss
functions to guide the formation of the clusters. Trainable soft-clustering methods usually perform
well on downstream tasks due to their flexibility and expressive power, which is the capability of
retaining all the information from the original graph (Bianchi & Lachi, 2023). However, storing the
soft assignments S is a memory bottleneck for large graphs (see, e.g., the analysis of memory usage
in Appendix F.3) and soft memberships cause pooled graphs to be very dense and not interpretable.
Additionally, each graph is mapped to the same fixed number of supernodes K, which can hinder the
generalization capabilities in datasets where the size of each graph varies significantly.

Scoring-based methods select supernodes from the original nodes based on a node scoring vector
s. The chosen nodes correspond to the top K elements of s, where K can be a ratio of the nodes in
each graph, making these methods adaptive to graph size. Representatives such as Top-k Pooling
(Top-k) (Gao & Ji, 2019; Knyazev et al., 2019), ASAPool (Ranjan et al., 2020), SAGPool (Lee
et al., 2019), PanPool (Ma et al., 2020), TAPool (Gao et al., 2021), CGIPool (Pang et al., 2021), and
IPool (Gao et al., 2022) primarily differ in how they compute the scores or in the auxiliary tasks they
optimize to improve the quality of the pooled graph. Despite a few attempts to encourage diversity
among the selected nodes (Zhang et al., 2019; Noutahi et al., 2019), scoring-based methods derive
the scores from node features that tend to be locally similar, especially after being transformed by
MP operations. As such, the pooled graph often consists of a chunk of strongly connected nodes that
possess similar characteristics. Consequently, entire sections of the graph are usually not represented,
leading to reduced expressiveness and lower performance in downstream tasks (Wang et al., 2024).

One-every-K methods leverage graph-theoretical properties to select supernodes by subsampling
the graph uniformly. For instance, k Maximal Independent Sets Pooling (k-MIS) (Bacciu et al., 2023)
identifies as supernodes the members of a maximal K-independent set, i.e., nodes separated by at
least K-hops on the graph. Graclus (Dhillon et al., 2007; Defferrard et al., 2016) creates supernodes
by merging the pairs of most connected nodes in the graph. SEP (Wu et al., 2022) partitions the node
hierarchically according to a precomputed tree that minimizes the structural entropy of the graph.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Node Decimation Pooling (NDP) (Bianchi et al., 2020b) divides the graph into two sets, V+ and V−,
according to the partition induced by the components of umax (see Section 2.1). One of the two sides
of the partition is dropped (V−), while the other (V+) becomes the set of supernodes. While both
Graclus and NDP can only reduce the number of nodes by approximately half, higher pooling ratios
(one-every-2K) are achieved by applying them recursively K times. Nevertheless, they lack the same
control of soft-clustering and scoring-based methods in fixing the size of the pooled graphs. Like the
scoring-based methods, one-every-K methods are adaptive and produce crisp cluster assignments.
However, they are not trainable and precompute the pooled graph based on the topology without
accounting for the node features or the downstream task. Tab. 1 summarizes the drawbacks of the
existing families of pooling methods.

Table 1: Drawbacks of different types of pooling operators.

Soft-clustering Score-based One-every-K
✗ Not adaptive to graph size ✗ Pooling not uniform ✗ Limited flexibility
✗ Dense and not interpretable pooled graphs ✗ Not expressive ✗ Features agnostic
✗ High memory cost ✗ Worse performance ✗ Task agnostic

3 METHOD

We leverage a GNN to generate a MAXCUT partition while accounting for node features and additional
objectives from a downstream task. In particular, we let node features and task-specific losses
influence the selection of the MAXCUT solution, creating partitions that not only maximize the number
of cut edges but also prioritize nodes that are optimal for the downstream task. To reach this goal,
it is necessary to overcome a tension between the effect of a standard MP layer and the MAXCUT:
the first applies a smoothing operation that makes adjacent nodes as similar as possible, which is
orthogonal to the objective of the latter. Therefore, to implement MAXCUT with a GNN we rely on
HetMP, implemented by setting δ > 1 in the MP operation in Eq. 4. As discussed in Sec. 2.1, solving
the MAXCUT problem is equivalent to coloring adjacent nodes differently. Notably, this is an intrinsic
effect of HetMP that makes features of adjacent nodes as different as possible, effectively acting
as a high-pass filter. Therefore, optimizing a MAXCUT loss on features generated by HetMP layers
addresses the limitation of traditional scoring-based methods that compute the scores from features
produced by homogeneous MP operations.

The layer we propose is called MaxCutPool and we present it through the SRC framework. The SEL
operation in MaxCutPool identifies as supernodes a subset S of the nodes in the original graph. An
auxiliary GNN, called ScoreNet, consists of a stack of HetMP layers that map the node features into a
vector s = ScoreNet(X,A) ∈ [−1, 1]N that assigns a score to each node. The indices i = topK(s)
associated with the highest scores identify the K supernodes. Additional details about the ScoreNet
are in Appendix C.1. Fig. 1(i-l) shows the histograms of the score vectors s generated by the ScoreNet
for the 4 example graphs. Compared to the histograms of umax in Fig. 1(e-h), the values in s always
follow a distribution with two sharp and well-separated modes, yielding a clear node partition.

After the K supernodes are selected, the remaining N−K nodes are assigned to one of the supernodes
via the nearest neighbor aggregation. An assignment matrix S is built by performing a breadth first
::::::::::
breadth-first visit of the graph where, starting from the supernodes, all the remaining nodes are
assigned to their nearest supernode (see Figure 2). More formally, the assignment matrix S is defined
as

SEL : [S]ij = 1 ⇐⇒ j = ϕ(S,A, i),
where ϕ(S,A, i) returns the nearest supernode of node i. The visit of the graph is iterated until
all nodes are assigned to a supernode or until a maximum number of iterations is reached. In the
latter case, nodes that are still unassigned are assigned at random, which ensures that the pooled
graph is always connected. Keeping the maximum number of iterations small (e.g., 2 or 3) prevents
pointless attempts to reach a supernode, e.g., when there are no supernodes within a disconnected
graph component, and also injects randomness acting as a regularizer that helps to move away from
suboptimal configurations often encountered at the beginning of the training stage. The pseudo-code
for a GPU parallel implementation of the proposed assignment scheme is in Appendix A.

The RED operation for computing the features of the supernodes can be implemented in two ways:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d) (e)

Figure 2: (a) The nodes with the K = 9 highest scores are selected. (b-c) Their ID is propagated to
the unselected nodes until all are covered or until a maximum number of iterations (2 here) is reached.
(d) The 4 remaining nodes are assigned randomly. (e) The pooled graph is obtained by aggregating
the nodes with the same ID and coalescing the edges connecting nodes from different groups.

RED: [X ′]i: = si ⊙ [X]i: ::::::::::::::
X ′ = si ⊙ [X]i or RED: X ′ = s⊙ S⊤X

::::::::::::::
X ′ = si ⊙ S⊤X .

:::
The

:::::::::
Hadamard

:::::::
product

::
⊙

::::::
enables

::::::::
gradients

::::::
flowing

:::::::
through

:::
the

::::::::
ScoreNet

::::::
during

:::::::::::::::
back-propagation,

::::::
making

::
it

:::::::
possible

:::
for

::
the

::::::::
gradients

::
of
:::

the
::::
task

::::
loss

::
to

:::::
reach

:::::
every

:::::::::
component

::
of

:::
our

::::::
model,

::::::
despite

::
the

:::::::::::::::
non-differentiable

:::::
topK ::::::::

operation.
:
When the first and second options are used to implement RED,

we refer to the pooling operator as MaxCutPool and MaxCutPool-E, respectively. The suffix “-E”
indicates the pooling operator satisfies the sufficient conditions for expressiveness defined by Bianchi
& Lachi (2023).

Finally, having defined a cluster assignment matrix S, the CON operation can be implemented as

CON : A′ = S⊤AS.

3.1 AUXILIARY LOSS

Each MaxCutPool layer is associated with an auxiliary loss that encourages the top-K selected nodes
to belong to the same side of the MAXCUT partition. The loss is defined as:

Lcut =
s⊤As

|E|
(5)

where |E| =
∑

ij wij is the total edge weight of the graph. Since −1 ≤ si ≤ 1, we have −|E| ≤
s⊤As ≤ |E|, hence −1 ≤ Lcut ≤ 1. This loss evaluates the ratio between the volume of the cut
and the total volume of the edges. Minimizing Lcut encourages the nodes to be assigned to different
partitions if and only if they are connected. The loss reaches its minimum −1 when all connected
nodes are assigned to opposite sides of the partition, i.e., when all the edges are cut. Clearly, this can
happen only in bipartite graphs. The details about the derivation of the loss are in Appendix B.

A GNN model consisting of MP layers interleaved with MaxCutPool layers can be trained end-to-end
to jointly minimize a task loss Ltask and the auxiliary loss Lcut. The total loss is then defined as

L = Ltask +
∑
l

βL(l)
cut (6)

where β is a scalar weighting each auxiliary loss L(l)
cut associated with the l-th MaxCutPool layer.

3.2
:::::::::::
HOMOPHILIC

::::
AND

:::::::::::::
HETEROPHILIC

::::::::::::
OPERATIONS

::::::
Despite

:::
the

::::::::
presence

::
of

:::::::
HetMP

:::::
layers

:::
and

::::
the

::::::::::
heterophilic

::::
loss,

:::::::::::
MaxCutPool

:::
can

:::
be

:::::::
inserted

:::
into

::::::
GNNs

:::::::
equipped

::::
with

:::::::::
traditional

::::
MP

:::::
layers.

::
In

::::
fact,

:::
the

::::::::::
homophilic

::::::
nature

::
of

:::
the

::::
latter

::
is
::::::::
leveraged

::
by

:::
our

::::::::
method.

:::::
After

::
a

:::::::
standard

::::::::::
homophilic

::::
MP,

:::
the

::::::::
stronger

:::
the

:::::::::
association

::::::::
between

:
a
::::

pair
::
of

:::::
nodes,

:::
the

:::::
more

::::::
similar

::::
their

:::::::
features

::::
will

:::
be.

:::::::
Keeping

:::::
them

::::
both

::::
will,

::::
thus,

:::
be

:::::::::
redundant,

:::
and

:::
one

::
of

::::
them

:::
can

:::
be

:::::::
dropped.

::::
This

::
is

::::::::
precisely

::::
what

::
is

::::
done

:::
by

::::
SEL

::::
that,

:::::
thanks

::
to

:::
its

::::::::::
heterophilic

::::::
design,

::::::
samples

::::::
nodes

::::
with

:::
few

:::::
direct

:::::
links

:::
that

:::
are

::::::::
uniformly

::::::::::
distributed

::::
over

::
the

::::::
graph.

:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

:::::::::::
MaxCutPool

::::::
contains

:::
an

:::::::::
additional

:::::::::
homophilic

:::::::::
operation:

::::::::::
computing

:::
the

::::::::::
assignments

:::
S

::::::
through

::
the

:::::::::::::::
nearest-neighbor

::::::::::
aggregation,

::::::
which

:::::::::
synergizes

::::
with

:::
the

:::::::
uniform

::::::::
sampling

:::
of

:::
the

::::::::::
supernodes.

:::
The

::::::::::
assignments

:::
are

:::::
used

::
by

::::
CON

:
to

:::::::
produce

::
a

::::::::::
connectivity

::::::
matrix

:::
that

::
is

:::::::::
connected

:::
yet

:::::
sparse

:::
and

:::
they

::::
can

::::
also

:::
be

::::::::
leveraged

:::
by

::::
RED

:
to
::::::

ensure
::::

the
::::::::::::
expressiveness

:::
of

:::
the

:::::::
pooling

:::::
layer.

:::::::::
However,

::
for

:::::::::::
heterophilic

::::::::
datasets,

::::::
where

::::
such

::
a
::::::::::

homophilic
::::::::::

assignment
::::::

might
:::
not

:::
be

:::::::::::
appropriate,

:::
the

::::::::::::
non-expressive

::::::
variant

::
of

:::
our

:::::::
method

:::::
offers

:
a
:::::
more

:::::::
suitable

:::::::::
alternative.

:

::
In

:::::::
general,

::::::
rather

::::
than

::::::::
creating

:::::::
tension,

::::::::::
combining

::::::::::
homophilic

::::
and

:::::::::::
heterophilic

::::::::::
components

:::::::
provides

:
a
:::::
GNN

::::
with

:::::::::::
MaxCutPool

:::
the

::::::::
flexibility

::
for

::::::::
handling

:::::::
different

:::::::::
scenarios.

::
As

:::
we

:::::
show

::
in

::
the

::::::::::
experimental

::::::::::
evaluation,

:::
our

:::::
model

:::
can

:::::
even

:::::
switch

::
to

::
a

:::::::::
completely

:::::::::
homophilic

::::::
setting

:::
by

:::::::
adjusting

::
the

::::::
values

::
of

::
δ

:::
and

::
β,

::
or

:::
by

:::::::
ignoring

:::
the

::::::::
auxiliary

::::
loss.

3.3 RELATION WITH OTHER POOLING METHODS

MaxCutPool belongs to the scoring-based pooling family from which inherits the possibility of speci-
fying any desired pooling ratio adaptable to the size Ni of the i-th graph, i.e., K(i) = ⌊N (i) ∗ 0.5⌋.
Differently from the other scoring-based methods and thanks to the HetMP layers, MaxCutPool
selects supernodes that are not concentrated in the same section of the graph but are, instead,
distributed more uniformly over the whole graph, which is similar to the

::::::::::::::
Ki = ⌊Ni ∗ 0.5⌋,:::::

while
::::::::
achieving

::::
node

::::::::
selection

:::::::
patterns

::::::
similar

::
to one-over-K methods. In methods like k-MIS the flexi-

bility provided by trainable functions is only used to choose between a small set of maximal solutions
that do not break the hard constraint of the supernodes to be K-independent. On the other hand, in
MaxCutPool any set of supernodes can, in principle, be chosen making MaxCutPool more flexible
and able to better adapt to the requirements of the downstream task. Finally, MaxCutPool is the only
scoring-based pooler with a graph-theoretical auxiliary regularization loss.

The proposed method for constructing the cluster assignment matrix S from the selected supernodes
can be applied to other scoring-based pooling methods. This naturally enhances their expressiveness
by enabling the use of the same CON and RED operations adopted by soft-clustering approaches,
which retains all the information from the original graph. By addressing the key limitation in

::
the

expressiveness of scoring-based pooling methods, our approach retains the benefits of sparsity and
interpretability of scoring-based poolers while narrowing the gap with soft-clustering methods.

4 EXPERIMENTAL EVALUATION

We consider three different tasks to demonstrate the effectiveness of MaxCutPool. The code to
reproduce the reported results in publicly available1. The details about the architectures used in each
experiment and the hyperparameters selection procedure are described in Appendix C.

4.1 COMPUTATION OF THE MAXCUT PARTITION

This experiment focuses on computing
:::
The

::::
main

:::::
focus

::
of

::::
this

:::::::::
experiment

::
is

::
to

::::::
evaluate

:::
the

:::::::::
capability

::
of

:::
the

:::::::
proposed

::::
loss

:::
Lcut::

to
::::::::
optimize

:::
the MAXCUT

:::::::
objective,

::::::
despite

:::
the

::::::::
potential

::::
risks

::
of

::::::
getting

:::::
stuck

::
in

::::
local

::::::
minima

::::
due

::
to

::
its

::::::::::::
gradient-based

::::::
nature.

:::
We

::::::::
compute a MAXCUT partition by training a simple

GNN consisting of a MP layer followed by MaxCutPool and trained by minimizing only the loss
in Eq. 5 (details in Appendix C.2). We use a Graph Isomorphism Network (GIN) layer (Xu et al.,
2019) as the MP layer. We compare our model against the LEVS approach based on umax, the GW
algorithm, and a GNN with GCN layers that minimize a MAXCUT loss, as proposed by Schuetz et al.
(2022). For a fair comparison, ours and this GNN architecture have a comparable number of learnable
parameters.

We considered 9 graphs generated via the PyGSP library (Defferrard et al., 2017), including bipartite
graphs such as the Grid2D and Ring, and 7 graphs from the GSet dataset (Ye, 2003), including
random, planar, and toroidal graphs, typically used as benchmark for evaluating MAXCUT algorithms
(details in App. D.1). Results are shown in Tab. 2. Performance is computed in terms of the percentage
of cut edges: the higher, the better. With one exception, MaxCutPool always finds the best cut.

1https://anonymous.4open.science/r/MaxCutPool

7

https://anonymous.4open.science/r/MaxCutPool

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Size of the graph cuts obtained with MaxCutPool, a GNN with GCN layers, and two common
algorithms to compute the MAXCUT. GW results are absent for some entries of the PyGSP datasets
and for GSet because the solver failed to converge.

(a) PyGSP datasets

Dataset GW NDP GCN MaxCutPool

BarabasiAlbert 0.6875 0.6589 0.7240 0.7292
Community 0.6767 0.6429 0.6805 0.6814
ErdősRenyi 0.6920 0.6858 0.6797 0.7105
Grid (10×10) 1.0000 1.0000 0.9222 1.0000
Grid (60×40) - 0.9787 0.1862 0.9815
Minnesota - 0.9104 0.8904 0.9130
RandRegular 0.4827 0.8760 0.8733 0.9040
Ring 1.0000 1.0000 0.4200 1.0000
Sensor 0.6000 0.5719 0.6281 0.6406

(b) GSet datasets

Dataset NDP GCN MaxCutPool

G14 0.6155 0.6323 0.6412
G15 0.5945 0.6288 0.6424
G22 0.6441 0.6409 0.6577
G49 1.0000 0.9683 1.0000
G50 0.9800 0.9610 0.9750
G55 0.7568 0.7865 0.8068
G70 0.8803 0.8945 0.9086

4.2 GRAPH CLASSIFICATION

For this task, we evaluate the classification accuracy of a GNN classifier with the following structure:
MP(32)-Pool-MP(32)-Readout, using GIN as the MP layer. The Pool operation is implemented either
by MaxCutPool or by the following competing methods: Diffpool (Ying et al., 2018), DMoN (Tsit-
sulin et al., 2023), MinCutPool (Bianchi et al., 2020a), Top-k (Gao & Ji, 2019), Graclus (Dhillon et al.,
2007), k-MIS (Bacciu et al., 2023). We also consider Edge-Contraction Pooling (ECPool) (Diehl,
2019) that pools the graph by contracting the edge connecting similar nodes. For MaxCutPool,
we evaluate three variants: (i) MaxCutPool, the standard version; (ii) MaxCutPool-E, the variant
with expressive CON; (iii) MaxCutPool-NL, where “NL” stands for “no loss”, meaning we do not
optimize the auxiliary loss in the GNN. This serves as an ablation study to assess the importance of
the auxiliary loss. Whenever edge attributes are available, the first GIN layer is replaced by a GINE
layer (Hu et al., 2020), which takes into account edge attributes. Further implementation details are
in Appendix C.3.

As graph classification datasets we consider 8 TUD datasets (COLLAB, DD, NCI1, ENZYMES,
MUTAG, Mutagenicity, PROTEINS, and REDDIT-BINARY) (Morris et al., 2020), the Graph Classi-
fication Benchmark Hard (GCB-H) (Bianchi et al., 2022), and EXPWL1 (Bianchi & Lachi, 2023),
which is a recent dataset for testing the expressive power of GNNs. In addition, we introduce a
novel dataset consisting of 5, 000 multipartite graphs: each graph is complete 10-partite, meaning
that the nodes can be partitioned into 10 groups so that the nodes in each group are disconnected,
but are connected to all the nodes of the other groups. To the best of our knowledge, this is the
first benchmark dataset for graph classification with heterophilic graphs. While the Multipartite
dataset consists of complex graph structures, the classification label is determined solely by the node
features, allowing us to assess whether the GNN can effectively isolate relevant information despite
the presence of misleading topological information. The construction of the Multipartite dataset and
a further discussion about its properties are reported in Appendix D.2.

Whenever the node features were not available, we used node labels. If node labels were also
unavailable, we used a constant as a surrogate node feature. Further details about the remaining
datasets can be found in Appendix D.3. The datasets were split via a 10-fold cross-validation
procedure. The training dataset was further partitioned into a 90-10% train-validation random split.
This approach is similar to the procedure described by Errica et al. (2020). Each model was trained
for 1, 000 epochs with early stopping, keeping the checkpoint with the best validation accuracy.

The results are reported in Tab. 3. For completeness, we also reported the performance of the same
GNN model without pooling layers (“No pool”). We conducted a preliminary ANOVA test (p-value
0.05) for each dataset followed by a pairwise Tukey-HSD test (p-value 0.05) to group models whose
performance is not significantly different. Those belonging to the top-performing group are colored
in green. The ANOVA test failed on ENZYMES, PROTEINS, MUTAG, and DD, meaning that the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Mean and standard deviations of the graph classification accuracy. For each dataset the best
performing method and those that are not significantly different from it are colored in green. If a
method is in the top-performing group is assigned with a score of 1, 0 otherwise.

Pooler GCB-H COLLAB EXPWL1 Mult. Mutag. NCI1 REDDIT-B Score

No pool 74±4 74±2 87±2 14±12 79±2 78±3 90±2 -

DiffPool 51±8 70±2 69±3 9±1 78±2 75±2 90±2 1
DMoN 74±3 68±2 73±3 52±2 80±2 77±2 88±2 3
EdgePool 75±4 72±3 90±2 55±3 80±2 77±3 91±2 4
Graclus 75±3 72±3 90±2 25±18 80±2 77±2 90±3 4
k-MIS 75±4 71±2 99±1 58±2 79±2 75±3 90±2 4
MinCutPool 75±5 70±2 71±3 56±3 78±3 73±3 87±2 1
Top-k 56±5 72±2 73±2 43±3 75±3 73±2 77±2 0

MaxCutPool 73±3 77±2 100±0 90±2 77±2 75±2 89±3 5
MaxCutPool-E 74±3 77±2 100±0 87±5 79±1 76±2 89±2 7

MaxCutPool-NL 61±6 77±3 100±0 91±1 76±3 74±2 86±3 3

difference in the performance of the GNNs equipped with different poolers is not significant. For this
reason, the results on these datasets are omitted from Tab. 3 and reported in Appendix E.1.

MaxCutPool consistently ranks among the top-performing methods across all evaluated datasets.
Notably, on the EXPWL1 even the non-expressive variant of MaxCutPool achieves a perfect accuracy
(100%), outperforming the competitors. This is the first known instance

:::::::
example of a non-expressive

pooler passing the expressiveness test provided by this dataset, serving as a counterexample to
Theorem 1 in Bianchi & Lachi (2023).

:
.On the Multipartite dataset, MaxCutPool performs signifi-

cantly better than every pooling method. When compared to the “No pool” baseline, on most datasets
MaxCutPool improves the classification performance by increasing the receptive field of the MP
layers while retaining only the necessary information and enhancing the overall expressive power
of the GNN model. It is worth noting that the EXPWL1 and Multipartite are the least homophilic
datasets (see Appendix D.3), indicating that MaxCutPool is particularly effective for heterophilic
graphs. On the COLLAB dataset, all MaxCutPool variants achieve the top accuracy of 77%, show-
ing a statistically significant improvement over other methods. Notably, in the MaxCutPool and
MaxCutPool-E variants the auxiliary loss term plateaued around 0, making them equivalent to the
MaxCutPool-NL variant that, in this case, achieves the same performance. This indicates that our
method remains robust even when the auxiliary loss is not needed for the downstream task. Overall,
the MaxCutPool-E variant, which satisfies expressiveness conditions, exhibits similar or better perfor-
mance compared to MaxCutPool across most datasets. In contrast, the performance decline observed
in the MaxCutPool-NL variant demonstrates the importance of the auxiliary loss.

4.3 NODE CLASSIFICATION

For this task, we adopted a simple auto-encoder architecture for node classification: MP(32)-Pool-
MP(32)-Unpool-MP(32)-Readout, with GIN as MP. The Unpool operation (also referred to as
lifting (Jin et al., 2020)) is implemented by copying in each node i the value of the supernode j to
which the i was assigned by the SEL operation in the pooling phase. Zero-padding is used when
lifting nodes not assigned to any supernode, like in the case of Top-k. Further details about the
architecture for node classification and the unpooling procedure are deferred to Appendix C.4.

For this experiment, we considered the 5 heterophilic datasets presented in Platonov et al. (2023)
(details in Appendix D.4). As pooling methods we considered Top-k (Gao & Ji, 2019), k-MIS (Bacciu
et al., 2023), NDP (Bianchi et al., 2020b), and MaxCutPool. We did not consider Graclus or any
soft-clustering poolers, as they were exhausting the RAM and GPU VRAM, respectively, given
the large size of the graphs. On the other hand, MaxCutPool is very parsimonious in terms of
computational resources and scales very well with the graph size. To systematically estimate the
space complexity of the different pooling methods we performed an experimental evaluation of the
GPU VRAM usage, which can be found in Appendix F.3.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Following Platonov et al. (2023), in Tab. 4 we report the means and standard deviations of the
accuracy for Roman-empire and Amazon-ratings, and of the ROC AUC for Tolokers, Minesweeper,
and Questions. The results are computed on the 10 public folds of these datasets. When configured

Table 4: Node classification accuracy (Roman-empire, Amazon-ratings) and AUROC (Minesweeper,
Tolokers, Questions). The best performing models in each dataset are in green and get 1 score point,
0 otherwise.

Pooler Roman-e. Amazon-r. Minesw. Tolokers Questions Score

No pool 59±0 46±1 86±2 86±4 71±2 -
Top-k 26±7 46±4 94±1 89±5 64±3 1
k-MIS 23±3 48±2 75±2 84±2 83±1 1
NDP 22±5 53±2 98±0 88±6 68±4 3
MaxCutPool 56±3 53±1 96±1 87±3 82±4 4
MaxCutPool-E 60±4 53±2 97±1 91±2 85±5 5

with MaxCutPool and MaxCutPool-E, the node classification architecture achieves significantly
superior performance on the Roman-Empire dataset, which is notably the most heterophilic among all
the datasets (see Tab. 11). On the remaining datasets, our method performs well overall. Unlike the
other pooling methods that achieve top performance only on a subset of the datasets, MaxCutPool-E
is consistently in the top tier.

5 CONCLUSION

This work contributes significantly to both the MAXCUT optimization and the development of special-
ized GNN architectures to solve combinatorial optimization problems. Our proposed GNN-based
MAXCUT algorithm not only extends the MAXCUT optimization to attributed graphs and combines it
with task-specific losses but also surpasses the performances of traditional methods on non-attributed
graphs. While a conventional GNN with a huge capacity manages to optimize a MAXCUT loss (Schuetz
et al., 2022), our model is much more efficient thanks to the Heterophilic Message Passing layers.
This results highlight the importance of aligning the GNN architecture with the problem’s inherent
structure: in this case, leveraging heterophilic propagation to solve problems that seek dissimilarity
between neighboring nodes.

Our second contribution is to utilize the proposed MAXCUT optimizer to implement a graph pooling
method that combines the flexibility of soft-clustering approaches with the efficiency of scoring-based
methods and with the theoretically-inspired design of one-every-K strategies. GNNs for graph
and node classification equipped with our proposed pooling layer consistently achieves superior
performance across diverse downstream tasks. Differently from existing graph pooling and graph
coarsening approaches that aim at preserving low-frequencies on the graph (Loukas, 2019), our
method performs exceptionally well also on heterophilic datasets. While our pooling layer can
implement any pooling ratio, the auxiliary loss is optimized for the node partition induced by the
MAXCUT, whose size might not be aligned with the specified pooling ratio. When the distribution of
the nodes’ degree is approximately uniform, the MAXCUT induces an approximately balanced partition
corresponding to a pooling ratio of ≈ 0.5, which is, thus, generally a good choice.

Looking forward, we see great potential in pretraining GNNs with auxiliary losses. This aligns with
the principles of foundational models (Bommasani et al., 2021) and could facilitate the development
of more effective and general-purpose graph pooling techniques.

REFERENCES

Ahmed Abbas and Paul Swoboda. Rama: A rapid multicut algorithm on gpu. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8193–8202, 2022.

Bengt Aspvall and John R. Gilbert. Graph coloring using eigenvalue decomposition. SIAM Journal
on Algebraic Discrete Methods, 5(4):526–538, 1984.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Davide Bacciu, Alessio Conte, and Francesco Landolfi. Graph pooling with maximum-weight
k-independent sets. In Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023.

Mohammad Khairul Bashar, Antik Mallick, Daniel S. Truesdell, Benton H. Calhoun, Siddharth Joshi,
and Nikhil Shukla. Experimental demonstration of a reconfigurable coupled oscillator platform to
solve the max-cut problem. IEEE Journal on Exploratory Solid-State Computational Devices and
Circuits, 6(2):116–121, 2020. doi: 10.1109/JXCDC.2020.3025994.

Filippo Maria Bianchi. Simplifying clustering with graph neural networks. arXiv preprint
arXiv:2207.08779, 2022.

Filippo Maria Bianchi and Veronica Lachi. The expressive power of pooling in graph neural networks.
In Advances in Neural Information Processing Systems, volume 36, pp. 71603–71618, 2023.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling. In International conference on machine learning, pp. 874–883. PMLR,
2020a.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Hierarchical represen-
tation learning in graph neural networks with node decimation pooling. IEEE Transactions on
Neural Networks and Learning Systems, 33(5):2195–2207, 2020b.

Filippo Maria Bianchi, Claudio Gallicchio, and Alessio Micheli. Pyramidal reservoir graph neural
network. Neurocomputing, 470:389–404, 2022. ISSN 0925-2312. doi: https://doi.org/10.1016/j.
neucom.2021.04.131.

::::::
Derrick

:::::::
Blakely,

::::
Jack

::::::::::
Lanchantin,

:::
and

::::::
Yanjun

:::
Qi.

:::::
Time

:::
and

:::::
space

:::::::::
complexity

::
of

:::::
graph

:::::::::::
convolutional

::::::::
networks.

:::::::
Accessed

:::
on:

::::
Dec,

:::
31:

:::::
2021,

:::::
2021.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Christian Borgs, Jennifer T Chayes, László Lovász, Vera T Sós, and Katalin Vesztergombi. Conver-
gent sequences of dense graphs ii. multiway cuts and statistical physics. Annals of Mathematics,
pp. 151–219, 2012.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021.

Andrea Cini, Danilo Mandic, and Cesare Alippi. Graph-based Time Series Clustering for End-to-End
Hierarchical Forecasting. International Conference on Machine Learning, 2024.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Michaël Defferrard, Lionel Martin, Rodrigo Pena, and Nathanaël Perraudin. Pygsp: Graph signal pro-
cessing in python, October 2017. URL https://doi.org/10.5281/zenodo.1003158.

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE transactions on pattern analysis and machine intelligence, 29(11):
1944–1957, 2007.

Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv preprint arXiv:1905.10990,
2019.

Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. Adagnn: Graph neural
networks with adaptive frequency response filter. In Proceedings of the 30th ACM international
conference on information & knowledge management, pp. 392–401, 2021.

Alexandre Duval and Fragkiskos Malliaros. Higher-order clustering and pooling for graph neural
networks. In Proceedings of the 31st ACM international conference on information & knowledge
management, pp. 426–435, 2022.

11

https://doi.org/10.5281/zenodo.1003158

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Moshe Eliasof, Lars Ruthotto, and Eran Treister. Improving graph neural networks with learnable
propagation operators. In International Conference on Machine Learning, pp. 9224–9245. PMLR,
2023.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In International Conference on Learning Representations,
2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Guoji Fu, Peilin Zhao, and Yatao Bian. p-laplacian based graph neural networks. In International
Conference on Machine Learning, pp. 6878–6917. PMLR, 2022.

H. Gao, Y. Liu, and S. Ji. Topology-aware graph pooling networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(12):4512–4518, dec 2021. ISSN 1939-3539. doi: 10.1109/
TPAMI.2021.3062794.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pp.
2083–2092. PMLR, 2019.

Xing Gao, Wenrui Dai, Chenglin Li, Hongkai Xiong, and Pascal Frossard. ipool—information-
based pooling in hierarchical graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 33(9):5032–5044, 2022. doi: 10.1109/TNNLS.2021.3067441.

Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145, nov 1995.
ISSN 0004-5411. doi: 10.1145/227683.227684.

Daniele Grattarola, Daniele Zambon, Filippo Maria Bianchi, and Cesare Alippi. Understanding
pooling in graph neural networks. IEEE Transactions on Neural Networks and Learning Systems,
2022.

Jonas Berg Hansen and Filippo Maria Bianchi. Total variation graph neural networks. In International
Conference on Machine Learning, pp. 12445–12468. PMLR, 2023.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks, 2020.

Yu Jin, Andreas Loukas, and Joseph JaJa. Graph coarsening with preserved spectral properties. In
International Conference on Artificial Intelligence and Statistics, pp. 4452–4462. PMLR, 2020.

Amir Hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, and Quaid Morris. Memory-based
graph networks. In International Conference on Learning Representations, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization
in graph neural networks. Advances in neural information processing systems, 32, 2019.

Francesco Landolfi. Revisiting edge pooling in graph neural networks. In ESANN, 2022.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International conference
on machine learning, pp. 3734–3743. PMLR, 2019.

W Bernard Lee and Anthony G Constantinides. Quantumized graph cuts in portfolio construction
and asset selection. Springer-Nature Transactions on Computational Science and Compu-tational
Intelligence, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Frauke Liers, Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi. Computing exact ground states
of hard ising spin glass problems by branch-and-cut. New optimization algorithms in physics, pp.
47–69, 2004.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

Ning Liu, Songlei Jian, Dongsheng Li, Yiming Zhang, Zhiquan Lai, and Hongzuo Xu. Hierarchical
adaptive pooling by capturing high-order dependency for graph representation learning. IEEE
Transactions on Knowledge and Data Engineering, 35(4):3952–3965, 2021.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20(116):1–42, 2019.

Enxhell Luzhnica, Ben Day, and Pietro Lio. Clique pooling for graph classification. arXiv preprint
arXiv:1904.00374, 2019.

Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path integral based convolution
and pooling for graph neural networks. Advances in Neural Information Processing Systems, 33:
16421–16433, 2020.

Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu–linial stable
instances of max cut and minimum multiway cut. In Proceedings of the twenty-fifth annual
ACM-SIAM symposium on Discrete algorithms, pp. 890–906. SIAM, 2014.

Ivan Marisca, Cesare Alippi, and Filippo Maria Bianchi. Graph-based forecasting with missing data
through spatiotemporal downsampling. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 34846–34865.
PMLR, 2024.

Paul M Mather and Magaly Koch. Computer processing of remotely-sensed images. John Wiley &
Sons, 2022.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

Emmanuel Noutahi, Dominique Beaini, Julien Horwood, Sébastien Giguère, and Prudencio Tossou.
Towards interpretable sparse graph representation learning with laplacian pooling. arXiv preprint
arXiv:1905.11577, 2019.

Yunsheng Pang, Yunxiang Zhao, and Dongsheng Li. Graph pooling via coarsened graph infomax. In
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 2177–2181, 2021.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of GNNs under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, 2023.

Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling for
learning hierarchical graph representations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 5470–5477, 2020.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
networks and other irregular domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013. doi:
10.1109/MSP.2012.2235192.

David I Shuman, Mohammad Javad Faraji, and Pierre Vandergheynst. A multiscale pyramid transform
for graph signals. IEEE Transactions on Signal Processing, 64(8):2119–2134, 2015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nicolas Tremblay, Paulo Gonçalves, and Pierre Borgnat. Design of graph filters and filterbanks. In
Cooperative and Graph Signal Processing, pp. 299–324. Elsevier, 2018.

Luca Trevisan. Max cut and the smallest eigenvalue. In Proceedings of the forty-first annual ACM
symposium on Theory of computing, pp. 263–272, 2009.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph
neural networks. J. Mach. Learn. Res., 24:127:1–127:21, 2023.

Ulrike von Luxburg. A tutorial on spectral clustering, 2007.

Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Improving graph attention networks
with large margin-based constraints, 2019.

Pengyun Wang, Junyu Luo, Yanxin Shen, Siyu Heng, and Xiao Luo. A comprehensive graph pooling
benchmark: Effectiveness, robustness and generalizability. arXiv preprint arXiv:2406.09031, 2024.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 6861–6871. PMLR, 09–15 Jun 2019.

Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. Structural entropy guided graph hierarchical
pooling. In International conference on machine learning, pp. 24017–24030. PMLR, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Yinyu Ye. The gset dataset, 2003.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Hao Yuan and Shuiwang Ji. Structpool: Structured graph pooling via conditional random fields. In
Proceedings of the 8th International Conference on Learning Representations, 2020.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can Wang.
Hierarchical graph pooling with structure learning. arXiv preprint arXiv:1911.05954, 2019.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020a. ISSN 2666-6510. doi: 10.1016/j.aiopen.2021.01.001.

Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D Lukin. Quantum
approximate optimization algorithm: Performance, mechanism, and implementation on near-term
devices. Physical Review X, 10(2):021067, 2020b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A NEAREST NEIGHBOR ASSOCIATION ALGORITHM

As discussed in Sec. 3, each node is associated to one of the supernodes (preferably the closest
in terms of path-distance on the graph). Naively searching for each node the closest supernode is
computationally demanding and becomes intractable for large graphs. Therefore, we propose an
implementation of the assignment scheme that is efficient and can be easily parallelized on a GPU.
The proposed algorithm is based on a Breadth First Search (BFS) of the graph and is detailed in the
pseudo-code in Algorithm 1.

Algorithm 1 Pseudo-code for the assignment scheme to the supernodes

1: procedure ASSIGNNODESTOSUPERNODES(G,S,MaxIter)
2: E ← InitializeEncodings(G,S) ▷ One-hot encoding
3: m← InitializeMask(G,S)
4: Assignments← InitializeEmptyList()
5: for i = 1 to MaxIter do
6: if AllNodesAssigned(m) then
7: break
8: end if
9: E′ ← ParallelMessagePassing(G,E) ▷ E′ = AE

10: Assignments← ParallelAssignment(E′,S,m)
11: m← UpdateMask(m, Assignments)
12: E ← E′

13: end for
14: if not AllNodesAssigned(m) then
15: RndAssignments← ParallelRandomAssignment(UnassignedNodes,S)
16: end if
17: FinalAssignments← GetFinalAssignments(Assignments,RndAssignments)
18: return FinalAssignments
19: end procedure

The algorithm takes as input the graph G (in particular, its topology described by the adjacency matrix
A), the set of K supernodes S identified by the SEL operation, and a maximum number of iterations
(MaxIter), which represent the maximum number of steps a node can traverse the graph to reach its
closest supernode before being assigned at random.

In line 2, an encoding matrix E of size N ×K + 1 is initialized so that row i is a one-hot vector
with the non-zero entry in position k + 1, if the node i of the original graph is the k-th supernode.
Otherwise, row i in a zero-vector of size K + 1. This matrix will be gradually populated when
supernodes are encountered during the BFS. It’s important to note that the 0-th column in matrix E
(and subsequently in E′) serves a special purpose. This column represents a “fake” supernode, which
plays a crucial role in the assignment process.

A Boolean mask m ∈ {0, 1}N indicating whether a node already encountered the closest supernode
is initialized in line 3 with 1 in position i is nodes i is a supernode and 0 otherwise. Finally, an empty
list indicating to which supernode each node is assigned is initialized (line 4).

Until the maximum number of iterations is reached or until all nodes are assigned (line 6), the
encoding matrix E is propagated with an efficient message passing operation (line 9) that can be
parallelized on a GPU. As soon as a 1 appears in position k within a line i of E previously full of
zeros, node i is assigned to supernode k and the assignments and mask m are updated accordingly
(lines 10 and 11). The ParallelAssignment function (line 10), in particular, takes the rows of the
newly generated embeddings E′ that have not yet been assigned and performs an argmax operation
on the last dimension. If the argmax doesn’t find any valid supernode for a node (i.e., all values in
the row are zero), it returns 0, effectively assigning the node to the “fake” supernode represented by
the 0-th column. This allows to filter out the unassigned nodes in line 11.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

If there are still unassigned nodes at the end of the iterations, the remaining nodes are randomly
assigned to one of the K supernodes (line 15). Finally, all the assignments are merged (line 17).

B DERIVATION OF THE AUXILIARY LOSS

Let us consider the MAXCUT objective in Equation 1. It can be rewritten as

max
z

(∑
i,j∈V

wij −
∑
i,j∈V

zizjwij

)
= max

z

(
|E| −

∑
i,j∈V

zizjwij

)
,

which is equivalent to

max
z

(
1−

∑
i,j∈V

zizjwij

|E|

)
.

The solution z∗ for the original objective is thus the solution for

min
z

z⊤Az

|E|
.

C IMPLEMENTATION DETAILS

C.1 MAXCUTPOOL LAYER AND SCORENET

A schematic depiction of the MaxCutPool layer is illustrated in Fig. 3, where the SEL, RED, and CON
operations are highlighted.

N
N

 A
gg

r.

Sc
or

eN
et Expres

sive?

Figure 3: Scheme of the MaxCutPool layer.

SEL first computes a score vector s using the auxiliary GNN, ScoreNet, based on the node features
X and the connectivity matrix A. A top-K operation is used to find the indices i of the K nodes with
the highest scores that become the supernodes, i.e., the nodes of the pooled graph. The remaining
N −K nodes are assigned to the nearest supernode through a nearest-neighbor (NN) aggregation
procedure that yields an assignment matrix S, whose jk-th element is 1 if nodes j is assigned to
supernode k, and zero otherwise. The score vector s is used to compute the loss Lcut, which is
associated with each MaxCutPool layer.

The RED operation computes the node features of the pooled graph X ′ by multiplying the features of
the selected nodes Xi with the scores s. This operation is necessary to let the gradients flow past the
top-K operation, which is not differentiable. In the expressive variant, MaxCutPool-E, RED computes
the new node features by combining those from all the nodes in the graph through the multiplication
with matrix S. We combine the features by summing them instead of taking the average since the
sum enhances the expressiveness of the pooling layer (Bianchi & Lachi, 2023).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The CON operations always leverage the assignment matrix to compute the adjacency matrix of the
pooled graph. In particular, the edge connecting two supernodes i and j is obtained by coalescing all
the edges connecting the nodes assigned to supernode i with those assigned to supernode j. Also in
this case, we take the sum as the operation to coalesce the edges. The resulting edges in the pooled
graph are associated with a weight wij that counts the number of combined edges.

The details of the ScoreNet used in the MaxCutPool layer are depicted in Fig. 4. The ScoreNet
consists of a linear layer that maps the features X to a desired hidden dimension. Afterward, a
stack of HetMP layers gradually transforms the node features by amplifying their high-frequency
components with heterogeneous MP operations. Finally, an MLP transforms the node features of the
last HetMP layer into score vector s, which is a high-frequency graph signal. We note that while the

Li
ne

ar

H
et
M
P

H
et
M
P

H
et
M
P

M
LP

Figure 4: Scheme of the ScoreNet.

simple HetMP we adopted works well in our case, different heterophilic MP operators could have
been considered (Chien et al., 2021; Dong et al., 2021; Fu et al., 2022).

The ScoreNet is configured with the following hyperparameters:

• Number of HetMP layers and number of features in each layer. We use the notation [32, 16, 8]
to indicate a ScoreNet with three HetMP layers with hidden sizes 32, 16, and 8, respectively.
We also use the notation [32] × 4 to indicate 4 layers with 32 units each. As default, we use
[32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8].

• Activation function of the HetMP layers. As default, we use TanH.

• Number of layers and features in the MLP. As default, we use [16, 16].

• Activation function of the MLP. As default, we use ReLU.

• Smoothness hyperparameter δ. As default, we use 2.

• Auxiliary loss weight β. As default, we use 1.

The optimal configuration has been identified with the cross-validation procedure described in Sec.4.
Depending on the experiment and the GNN architecture, some parameters in the ScoreNet are kept
fixed at their default value while others are optimized.

C.2 CUT MODEL

The model used to compute the MAXCUT is depicted in Fig. 5. The model consists of a single MP
layer followed by the ScoreNet, which returns the score vector s. The MAXCUT partition is obtained

Sc
or
eN

et

R
ou
nd
in
g

M
P

Figure 5: Scheme of the model used for computing the MAXCUT.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

by rounding the values in the score vector as follows

yi =

{
1 if si > 0,

−1 otherwise.

The model is trained in a completely unsupervised fashion only by minimizing the auxiliary loss Lcut.

As MP layers we used a GIN (Xu et al., 2019) layer with 32 units and ELU activation function. The
model was trained for 2000 epochs with Adam optimizer (Kingma & Ba, 2015), with the initial
learning rate set to 8e−4. We used a learning rate scheduler that reduces by 0.8 the learning rate when
the auxiliary loss does not improve for 100 epochs. For testing, we restored the model checkpoint
that achieved the lowest auxiliary loss.

The best configuration was found via a grid search on the following set of hyperparameters:

• HetMP layers and units:
– [32]× 4,
– [4]× 32,
– [8]× 16,
– [16]× 8,
– [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8].

• HetMP activations:
– ReLU,
– TanH.

• Smoothness hyperparameter δ:
– 2,
– 3,
– 5.

In Tab. 5 we report the configurations of the ScoreNet used for the different graphs in the MAXCUT
experiment.

Table 5: Hyperparameters configurations of the ScoreNet for the MAXCUT task.

Dataset MP units MP Act δ

G14 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU 2.0
G15 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU 2.0
G22 [4]× 32 TanH 2.0
G49 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] TanH 2.0
G50 [8]× 16 ReLU 2.0
G55 [4]× 32 ReLU 2.0
G70 [8]× 16 ReLU 2.0
BarabasiAlbert [4]× 32 TanH 2.0
Community [4]× 32 TanH 2.0
ErdősRenyi [4]× 32 TanH 2.0
Grid2d (10×10) [4]× 32 TanH 2.0
Grid2d (60×40) [4]× 32 ReLU 2.0
Minnesota [4]× 32 TanH 2.0
RandRegular [4]× 32 TanH 2.0
Ring [4]× 32 ReLU 2.0
Sensor [4]× 32 TanH 2.0

C.3 GRAPH CLASSIFICATION MODEL

The model used to perform graph classification is depicted in Fig. 6. The model consists of an MP
layer, followed by a pooling layer, an MP acting on the pooled graph, a global pooling layer that sums

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Po
ol

M
P

M
P

G
lo

ba
l P

oo
l

M
LP

Figure 6: Scheme of the graph classification model.

the features of all the nodes in the pooled graph, and an MLP that produces the label y associated
with the input graph. The model is trained by jointly minimizing the cross-entropy loss between the
predicted graph labels and the true ones and the auxiliary losses associated with the different pooling
layers. The models are trained using a batch size of 32 for 1000 epochs, using the Adam optimizer
with an initial learning rate of 1e− 4. We used an early stopping that monitors the validation loss
with a patience of 300 epochs. For testing, we restored the model checkpoint that achieved the lowest
validation loss during training.

The best configuration was found via a grid search on the following set of hyperparameters:

• HetMP layers and units:
– [32]× 8,
– [32]× 4,
– [8]× 16, [16]× 8,
– [32, 32, 16, 16, 8, 8],
– [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8].

• Auxiliary loss weight β:
– 1,
– 2,
– 5.

Table 6: Hyperparameters configurations of the ScoreNet for the graph classification task.

MaxCutPool MaxCutPool-E

Dataset MP units β MP units β

GCB-H [8]× 16 3.0 [32]× 8 5.0
COLLAB [32]× 8 1.0 [32]× 8 1.0
DD [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] 1.0 [8]× 16 5.0
ENZYMES [8]× 16 3.0 [16]× 8 3.0
EXPWL1 [32, 32, 16, 16, 8, 8] 1.0 [16]× 8 1.0
MUTAG [8]× 16 1.0 [16]× 8 3.0
Multipartite [32]× 8 3.0 [32]× 8 1.0
Mutagenicity [32, 32, 16, 16, 8, 8] 1.0 [32]× 8 5.0
NCI1 [32, 32, 16, 16, 8, 8] 1.0 [8]× 16 3.0
PROTEINS [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] 3.0 [32, 32, 16, 16, 8, 8] 5.0
REDDIT-B [32]× 8 1.0 [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] 1.0

In Tab. 6 we report the configurations of the ScoreNet used in the graph classification architecture for
the different datasets in the expressive and non-expressive variant of MaxCutPool.

C.4 NODE CLASSIFICATION MODEL

The model used to perform node classification is depicted in Fig. 7. The model consists of an MP
layer, followed by a pooling layer, an MP acting on the pooled graph, an unpooling (lifting) layer, an
MP on the unpooled graph, and an MLP that produces the final node labels y.

The entry yi represents the predicted label for node i. The model is trained by jointly minimizing the
cross-entropy loss between the predicted node labels and the true ones and the auxiliary loss of the
pooling layer.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Po
ol

M
P

M
P

U
np
oo
l

M
P

M
LP

Figure 7: Scheme of the node classification model.

Pool

Unpool
(broadcast)Supernodes

Node
assign.

Unpool
(padding)

Figure 8: The two possible strategies for performing unpooling (lifting).

When using MaxCutPool, the unpooling/lifting procedure can be implemented in two different ways,
illustrated in Fig. 8. The first strategy, broadcast unpooling, copies the values X ′ of the nodes of the
pooled graph to both the corresponding supernodes and to the nodes associated with the supernodes
according to the assignment matrix S, obtained as described in Sec. 3 and Appendix A. Formally, the
unpooled node features X̃ are:

X̃ = SX ′.

We note that this is the commonly used approach to perform unpooling in cluster-based poolers.

In the second strategy, padding unpooling, the values X ′ are copied back only to the supernodes,
while the remaining nodes are padded with a zero-valued vector:

[X̃]i =

{
[X ′]i if i is a supernode
0 otherwise.

This is the approach to perform unpooling used by scoring-based approaches such as Top-k and by
one-over-K approaches such as NDP that only select the supernodes and leave the remaining nodes
unassigned.

For the node classification task presented in Sec. 4.3, as MP layers we used a GIN (Xu et al., 2019)
layer with 32 units and ReLU activation function. The MLP has a single hidden layer with 32 units, a
ReLU activation function, and a dropout layer between the hidden and output layers with a dropout
probability of 0.1. The unpooling strategy used in this architecture is the broadcast one for k-MIS
and MaxCutPool and the padding one for Top-k and NDP.

The best configuration was found via a grid search on the following set of hyperparameters:

• HetMP layers and units:

– [32]× 4,
– [4]× 32,
– [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8].

• MLP activations:

– ReLU,
– TanH.

The configuration of the ScoreNet for the MaxCutPool pooler used in the different datasets is reported
in Tab. 7.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Hyperparameters configurations of the ScoreNet in the node classification task.

Dataset MP units MLP Act.

Roman-Empire [32, 32, 32, 32] ReLU
Amazon-Ratings [32, 32, 32, 32] ReLU
Minesweeper [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU
Tolokers [32, 32, 32, 32, 16, 16, 16, 16, 8, 8, 8, 8] ReLU
Questions [32, 32, 32, 32] ReLU

The node classifier was trained for 20, 000 epochs, using the Adam optimizer with an initial learning
rate of 5e − 4. We used a learning rate scheduler that reduces by 0.5 the learning rate when the
validation loss does not improve for 500 epochs. We used an early stopping that monitors the
validation loss with a patience of 2, 000 epochs. For testing, we restored the model checkpoint that
achieved the lowest validation loss during training.

We considered also an additional architecture for node classification with skip (residual) connections,
depicted in Fig. 9. This architecture is similar to the Graph U-Net proposed by Gao & Ji (2019). The

Pool

M
P

M
P

Unpool

M
P

M
LP

Skip

Figure 9: Scheme of the node classification model with skip connections.

node features obtained after the first MP layer are concatenated to the node features generated by
the unpooling step. In this architecture, we used the broadcast unpooling for k-MIS and padding
unpooling for MaxCutPool, Top-k, and NDP. The results obtained with this architecture are reported
in App. E. In Tab. 8 we report the configurations of the ScoreNet used in the architecture with skip
connection in the different datasets.

Table 8: Hyperparameters configurations for the node classification task based on the architecture
with skip connections.

Dataset MP units MLP Act.
Roman-Empire [32, 32, 32, 32] ReLU
Amazon-Ratings [32, 32, 32, 32] ReLU
Minesweeper [32, 32, 32, 32] TanH
Tolokers [32, 32, 32, 32] ReLU
Questions [32, 32, 32, 32] ReLU

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.5 IMPLEMENTATION OF OTHER POOLING LAYERS

The pooling methods Top-k, Diffpool, DMoN, Graclus, and MinCutPool are taken from PyTorch
Geometric (Fey & Lenssen, 2019). For k-MIS we used the official implementation 2. For ECPool,
we used the efficient parallel implementation 3 proposed by Landolfi (2022). For NDP we adapted
to PyTorch the original Tensorflow implementation 4. All pooling layers were used with the default
hyperparameters. Since k-MIS does not allow to directly specify the pooling ratio, we set k = ⌊1/k⌋.

D DATASETS DETAILS

D.1 CUT DATASETS

The statistics of the PyGSP and the Gset datasets used to compute the MAXCUT partition in Sec. 4.1
are reported in Tab. 9. While the PyGSP graphs are built from the library (Defferrard et al., 2017),
the Gset dataset is downloaded from the original source 5.

Table 9: Statistics of the PyGSP datasets used to compute the MAXCUT.

(a) PyGSP datasets

Dataset # Nodes # Edges Vertex attr.
Barabasi-Albert 100 768 2
Community 90 532 2
Erdős-Renyi 100 974 2
Grid2d (10×10) 100 360 2
Grid2d (60×40) 2,400 9400 2
Minnesota 2642 6608 2
RandRegular 500 1500 2
Ring 100 200 2
Sensor 64 640 2

(b) Gset

Dataset # Nodes # Edges Vertex attr.
G14 800 4, 694 –
G15 800 4, 661 –
G22 2, 000 19, 990 –
G49 3, 000 6, 000 –
G50 3, 000 6, 000 –
G55 5, 000 12, 468 –
G70 10, 000 9, 999 –

D.2 MULTIPARTITE DATASET DESCRIPTION

The Multipartite graph dataset is a synthetic dataset consisting of complete multipartite graphs. The
nodes of each graph can be partitioned into C clusters of independent nodes, such that every node is
connected to every node belonging to every other cluster. The generation of the graphs and the class
labels is formally described by the pseudo-code in Algorithm 2 and is discussed in the following.

1. A set of C cluster centers with 2D coordinates (x, y) is initially arranged in a polygon shape.
Each center is associated with a label, i.e., a color.

2. The graph class is determined by the position and the color of the cluster centers. Specifically,
the graph class is given by the color of the cluster whose center is on the positive x-axis.

3. For each class, we generate multiple graphs using these cluster centers. A graph is created
by drawing at random the position of the nodes around each cluster center. The number of
nodes per cluster varies randomly up to a maximum. Nodes within a cluster share the same
color, which is determined by the cluster center.

4. The topology of each graph is obtained by connecting nodes from one cluster to the nodes of
all the other clusters, but not to the nodes of the same cluster. Therefore, a node is connected
only to nodes with different colors, making the graphs highly heterophilic.

5. After generating graphs for one class, the cluster centers are rotated, and this rotated
configuration is used for the next class. Indeed, each rotation brings a different cluster to the
positive x-axis.

2https://github.com/flandolfi/k-mis-pool
3https://github.com/flandolfi/edge-pool
4https://github.com/danielegrattarola/decimation-pooling
5http://web.stanford.edu/˜yyye/yyye/Gset/

22

https://github.com/flandolfi/k-mis-pool
https://github.com/flandolfi/edge-pool
https://github.com/danielegrattarola/decimation-pooling
http://web.stanford.edu/~yyye/yyye/Gset/

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 2 Multipartite graph dataset generation
Input: num clusters, max nodes per cluster, graphs per class
Output: dataset
1: cluster centers← GeneratePolygonVertices(num clusters) ▷ Initial arrangement of centers
2: dataset← {}
3: for class label← 0 to num clusters - 1 do
4: for 1 to graphs per class do
5: graph← GenerateMultipartiteGraph(cluster centers, max nodes per cluster)
6: graph.label← class label ▷ Label based on current rotation
7: Add graph to dataset
8: end for
9: cluster centers← RotateClockwise(cluster centers) ▷ Rotate for next class

10: end for
11: return dataset

12: function GENERATEMULTIPARTITEGRAPH(cluster centers, max nodes per cluster)
13: for each center in cluster centers do
14: num nodes← RandomInt(1, max nodes per cluster)
15: node positions← GenerateNodesAroundCenter(center, num nodes)
16: node color← GetColorForCluster(center) ▷ Each cluster has a unique color
17: AddNodesToGraph(node positions, node color)
18: end for
19: ConnectNodesAcrossClusters() ▷ Create complete multipartite graph
20: return graph
21: end function

22: function ROTATECLOCKWISE(centers)
23: return [centers[-1]] + centers[:-1] ▷ Move last center to front
24: end function

6. The rotation process continues until the graphs for all the C different classes, whose number
is equal to the number of clusters, are generated.

Class 0 (red) Class 1 (blue) Class 2 (green)

Figure 10: Example of multipartite graphs with C = 3 cluster centers generated via our procedure. The graph
class corresponds to the color of the nodes from the group to the right.

Examples of multipartite graphs obtained for C = 3 are shown in Figure 10.

The process depends on a few parameters that determine the number of clusters, the maximum nodes
per cluster, and the number of graphs per class, providing control over the dataset size and complexity.
The specific instance of the dataset used in our experiments has 10 centers, 500 graphs per center,
and a maximum of 20 nodes per cluster, and is available online 6.

The Multipartite dataset is intentionally designed so that the class label is determined solely by
node features: specifically, the color and one of the 2D coordinates (the node’s position along the
x-axis). Although the graph’s topology is structured to ensure that each graph is multipartite, this

6hidden_for_peer_review

23

hidden_for_peer_review

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

structure is independent of the class label. This creates an intriguing dichotomy between the graph’s
topology and its classification labels. In theory, a simple MLP focusing exclusively on node features
could accurately solve the classification task, as the graph’s topology is essentially irrelevant for
determining the correct labels. However, when processed by GNNs, this dataset allows us to explore
whether the model can correctly identify and utilize the relevant node features for classification,
despite the presence of potentially misleading or noisy topological information. Through this
carefully constructed dataset, we aim to highlight the strengths and potential limitations of certain
GNNs architectures, particularly in scenarios where the relationship between graph structure and
classification labels is non-trivial, such as in heterophilic datasets.

D.3 GRAPH CLASSIFICATION DATASETS

In addition to the novel Multipartite dataset introduced in Sec. D.2, we consider 10 additional datasets
for graph classification in our experimental evaluation. The TU Datasets (Morris et al., 2020) (NCI,
PROTEINS, Mutagenicity, COLLAB, REDDIT-B, DD, MUTAG, and Enzymes) are obtained through
the loader of PyTorch Geometric 7. The EXPWL1 and GCB-H datasets, respectively introduced by
Bianchi & Lachi (2023) and by Bianchi et al. (2022), are taken from the official repositories 8 9. The
statistics of each dataset are reported in Tab. 10.

Table 10: Details of the graph classification datasets.

Dataset #Samples #Classes Avg. #vert. Avg. #edg. V. attr. V. lab. h̄(D)

EXPWL1 3,000 2 76.96 186.46 – yes 0.2740
NCI1 4,110 2 29.87 64.60 – yes 0.6245
PROTEINS 1,113 2 39.06 72.82 1 yes 0.6582
Mutagenicity 4,337 2 30.32 61.54 – yes 0.3679
COLLAB 5,000 3 74.49 4,914.43 – no 1
REDDIT-B 2,000 2 429.63 995.51 – no 1
GCB-H 1,800 3 148.32 572.32 – yes 0.8440
DD 1,178 2 284.32 1,431.32 – yes 0.0688
MUTAG 188 2 17.93 19.79 – yes 0.7082
ENZYMES 600 6 32.63 62.14 18 yes 0.6687
Multipartite 5000 10 99.79 4,477.43 3 yes 0.1101

Since the node labels are not available in the graph classification setting, it is not possible to rely on
the homophily ratio h(G) (Lim et al., 2021) considered in the node classification setting. Therefore,
to quantify the degree of homophily in the graphs we look at the node features instead and introduce
a surrogate homophily score h̄(D), where D denotes the whole dataset. The new score is defined as
the absolute value of the average cosine similarity between the node features of connected nodes in
each graph of the dataset:

h̄(D) =

∣∣∣∣∣ 1

|D|
∑
G∈D

1

|EG |
∑

(i,j)∈EG

xixj

∥xi∥∥xj∥

∣∣∣∣∣
where |D| is the number of graphs in the dataset, EG is the set of edges of the graph G and xi,xj are
the feature vectors of the i-th and j-th node respectively.

D.4 NODE CLASSIFICATION DATASETS

The datasets are the heterophilic graphs introduced by Platonov et al. (2023) and are loaded with the
API provided by PyTorch Geometric 10. The nodes of each graph are already split in train, validation,
and test across 10 different folds. The statistics of the five datasets are reported in Tab. 11. The

7https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_
geometric.datasets.TUDataset.html

8https://github.com/FilippoMB/The-expressive-power-of-pooling-in-GNNs
9https://github.com/FilippoMB/Benchmark_dataset_for_graph_

classification
10https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_

geometric.datasets.HeterophilousGraphDataset.html

24

https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.TUDataset.html
https://github.com/FilippoMB/The-expressive-power-of-pooling-in-GNNs
https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification
https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.HeterophilousGraphDataset.html
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.HeterophilousGraphDataset.html

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 11: Statistics of node classification datasets.

Dataset # Nodes # Edges # Classes h(G)
Roman-Empire 22,662 32,927 18 0.021
Amazon-Ratings 24,492 93,050 5 0.127
Minesweeper 10,000 39,402 2 0.009
Tolokers 11,758 519,000 2 0.180
Questions 48,921 153,540 2 0.079

column h(G) is the class insensitive edge homophily ratio as defied by Lim et al. (2021), which
represents a measure for the level of homophily in the graph.

E ADDITIONAL RESULTS

E.1 GRAPH CLASSIFICATION

In Tab. 12 we report the additional graph classification results for the dataset where GNNs equipped
with different pooling operators did not achieve a significantly different performance from each other.

Table 12: Graph classification accuracy values (subset)

Pooler DD MUTAG ENZYMES PROTEINS

No pool 73±5 78±13 33±6 71±4

Diffpool 77±4 81±11 36±7 75±3

DMoN 78±5 82±11 37±7 76±4

ECPool 73±5 84±12 35±8 74±5

Graclus 73±4 82±12 33±7 73±4

k-MIS 75±3 83±10 33±8 73±5

MinCutPool 78±5 81±12 34±9 77±5

Top-k 72±5 82±10 29±7 74±5

MaxCutPool 77±4 84±10 31±6 74±4

MaxCutPool-E 77±3 85±9 34±5 74±4

MaxCutPool-NL 74±4 83±11 31±4 70±4

E.2 NODE CLASSIFICATION

Tab. 13 presents the results for node classification using the architecture with skip connections
described in Appendix C.4. For this architecture, we focused on the non-expressive variant of
MaxCutPool, which consistently delivered superior performance in this context. The improved results
can be attributed to the architecture’s ability to preserve the original node information through skip
connections. Additionally, by avoiding the combination of neighboring node features (as is done
in the expressive variant) the model is better equipped to learn high-frequency features, which is
particularly advantageous for heterophilic datasets. For the Minesweeper dataset, we chose to use

Table 13: Node classification accuracy (Roman-empire, Amazon-ratings) and AUROC (Minesweeper,
Tolokers, Questions) obtained when using the architecture with skip connections.

Pooler Roman-e. Amazon-r. Minesw.∗ Tolokers Questions Score
Top-k 20±11 49±7 91±1 96±0 70±3 1
k-MIS 19±2 53±3 90±0 91±2 82±4 2
NDP 19±4 56±5 94±0 90±8 69±7 2
MaxCutPool 67±2 53±1 92±1 96±1 82±2 3

a GIN layer with 16 units as the MP layer, instead of the usual 32 units. This decision was made

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

because, regardless of the pooling method used, the architecture with skip connections consistently
achieved nearly 100% ROC AUC whenever configured with a higher capacity.

F
::::::::::::::
COMPLEXITY

:::
We

::::
first

:::::::
discuss

:::
the

::::::::::
algorithmic

::::::::::::
complexities

::::
and

::::
then

::::::
report

:::::::::
empirical

::::::::::::
measurements

:::::
about

:::::::::
processing

::::
time

:::
and

:::::::
memory

::::::
usage.

:::
All

::::::::::::
measurements

:::
are

::::
done

:::
on

::
an

::::::
Nvidia

::::
RTX

:::::::
A6000.

F.1
::::::::::::
ALGORITHMIC

::::::::::::
COMPLEXITY

:::
The

::::::::::
complexity

::
of

:::::::::::
MaxCutPool

:::::::
depends

::
on

:::
the

:::::::::::
complexities

::
of

:::
the

:::::::::
operations

::::
SEL,

::::
RED

:
,
:::
and

::::
CON

:::
and

::
of

:::
the

::::::::
auxiliary

:::
loss

::::
Lcut.:

::::
SEL

:::
The

:::::::::
complexity

::
of

:::
the

:::::
SEL

::::::::
operation

:::::::
depends

::
on

:::
the

:::::::::
ScoreNet,

:::::
which

:::::::
consists

::
of

::
a

::::
stack

::
of

:
L
:::::::
HetMP

:::::
layers

:::::::
followed

:::
by

::
an

:::::
MLP,

::::
and

::
on

:::
the

:::::
topK::::::::

selection.
:

•
::::::
HetMP

:
.
:::::::::
Following

:::
the

:::::::
analysis

::
in

:::::::::::::::::
Blakely et al. (2021),

:::
for

:
a
:::::
graph

:::::
with

::
N

::::::
nodes,

::
E

:::::
edges,

::::
and

::
F

:::::::
features,

::::
each

:::::::
HetMP

::::
layer

:::
has

::
a
::::
time

:::::::::
complexity

:::
of

:::::::::::::
O(NF 2 + EF)

::::
and

:
a
:::::
space

::::::::::
complexity

::
of

::::::::::::::::
O(E +NF + F 2).

::::
This

::::::
results

::
in

::
a
:::::
space

:::
and

::::
time

::::::::::
complexity

::
of

:::::::::
O(N + E)

:::::
with

::::::
respect

::
to

::
the

::::::
input.

•
::::
MLP

:
.

:::
The

::::::
MLP

:::
has

::
a

:::::
fixed

::::::::
structure

::::
with

:::::::::::::
predetermined

:::::
layer

:::::
sizes.

:::::::
Since

::
it
::::::::

operates
:::::::::::
independently

:::
on

::::
each

::::::
node’s

::::::
feature

::::::
vector

:::
and

::::
the

::::::
number

:::
of

:::::::::
operations

:::
per

::::
node

::
is
::::::::
constant,

:::::::::
processing

::::
each

:::::
node

:::::
takes

:::::
O(1)

::::
time.

::::::
With

::
N

::::::
nodes

::
to

:::::::
process,

::::
this

::::::
results

::
in
::

a
::::
total

:::::
time

:::::::::
complexity

::
of

::::::
O(N)

::::
with

::::::
respect

::
to

:::
the

:::::
input.

::::
The

:::::
space

:::::::::
complexity

::
is

::::
also

::::::
O(N),

::
as

::
we

:::::
need

::
to

::::
store

:::
the

:::::
MLP

:::::
hidden

::::
and

:::::
output

:::::::
features

:::
for

::::
each

:::::
node.

:

•
:::
top

:K::::
The

::::::::::
complexity

::
of

::::::
sorting

:::
an

:::::
array

::
of

:::
N

:::::::
elements

::
is
:::::::::::::
O(N log(N)).

:::::::::
However,

::
if

:::
we

:::
are

::::::::
interested

::
in

::::::
finding

:::::
only

:::
the

::::::
top-K

::::::::
elements

:::
the

:::::::::
complexity

::::
can

:::
be

:::::::
lowered

::
to

::::::::::::
O(N log(K))

::
or

::::::::::
O(N +K),

:::::::::
depending

:::
on

:::
the

::::::::
algorithm

:::::::
adopted.

::::::::::
Therefore,

::
we

::::
can

::::::
assume

:::
an

:::::::::::
almost-linear

:::::::::
complexity

::
in

::::
time

:::
and

:::::
space

::::
with

:::::::
respect

::
to

:::
the

::::::
number

::
of

::::::
nodes

::
N .

:

::::
RED

::
For

:::
the

:::::::::::::
non-expressive

:::::::
variant,

::::
RED

::::::
involves

::
a
:::::::::
Hadamard

:::::::
product

:::::::
between

:::
the

::::::
scores

:::
and

::::::
features

:::
of

:::
the

:::
K

:::::::
selected

::::::
nodes,

::::::
giving

::
a
::::
time

::::::::::
complexity

:::
of

::::::
O(K).

:::::
The

:::::::::
expressive

::::::
variant

::::::
requires

:::
an

:::::::::
additional

::::::::::::
multiplication

::::
with

:::
the

::::::::::
assignment

::::::
matrix

::
S,

:::::::::
increasing

::::
the

:::::::::
complexity

::
to

:::::::::::
O(K +NF).

::::::
When

::
K

::
is
::
a
:::::::
function

::
of

:::
N

::::
(e.g.,

::::::::::
K = N/2),

::::
both

:::::::
variants

::::
have

::
a
::::
time

::::::::::
complexity

::
of

:::::
O(N)

::::
with

::::::
respect

::
to
:::
the

::::::
input.

:::
The

:::::
space

::::::::::
complexity

:
is
::::::
O(N),

:::::::::::
representing

:::
the

::::::
storage

::
of

:::::
input

:::
and

::::::
output

::::
data.

:

::::
CON

:::
Our

:::::::
efficient

:::::::::::::
implementation

::
of

:::
the

:::::::
nearest

:::::::
neighbor

::::::::::
assignment

:::::::
follows

:::
the

:::::::::
complexity

::
of

::::
BFS:

::::::::::
O(N + E)

::::
time

:::
and

::::::
O(N)

:::::
space.

:

::::::::
Auxiliary

::::
loss

:::
The

:::::::
auxiliary

::::
loss

::::
Lcut :::::::

requires
:::::::::
computing

:
a
::::::::
quadratic

:::::
form,

::::
with

::::
time

::::::::::
complexity

:::::
O(E)

:::
and

:::::
space

::::::::::
complexity

::::::::::
O(N + E).

::::
Total

::::::::::
complexity

:::
The

::::::
overall

::::::::::
complexity

::
of

:::::::::::
MaxCutPool

::
is:

:

Time complexity: O(E +N)

Space complexity: O(E +N)
::::::::::::::::::::::::

(7)

:::::
These

::::::::::::
sub-quadratic

:::::::::::
complexities

::::::
match

:::::
those

::
of
::::

the
:::::
most

:::::::
efficient

:::::
MP

::
and

::::::::
trainable

:::::::
pooling

::::::::
operators.

:

F.2
::::::::::
EXECUTION

::::::
TIMES

::
In

:::
Tab.

:::
14

:::
we

:::::
report

:::
the

::::::
number

::
of

:::::::
seconds

::::
used

::
by

:::
the

::::::::::
architecture

:::
for

::::
node

:::::::::::
classification

::
to

::::::
process

:
a
:::::
batch

:::::
when

:::::::::
configured

::::
with

:::::::
different

:::::::
pooling

::::::::
operators.

:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 14:
::::::::
Execution

:::::
times

::
in

:::::
terms

:::
of

::::::
batches

:::::::::
processed

:::
per

::::::
second

:::::
(b/s)

::
by

:::
the

:::::::::::
architecture

:::
for

::::
node

:::::::::::
classification

:::::::::
configured

::::
with

:::::::
different

:::::::
pooling

::::::::
methods.

:::

Pooler Roman-e. Amazon-r. Minesw. Tolokers Questions

Diffpool 0.72 b/s 0.93 b/s 0.05 b/s 0.11 b/s OOM
DMoN 0.66 b/s 0.83 b/s 0.06 b/s 0.11 b/s OOM
MinCutPool 1.32 b/s 1.63 b/s 0.14 b/s 0.23 b/s OOM
Top-k 0.01 b/s 0.01 b/s 0.01 b/s 0.01 b/s 0.03 b/s
Graclus 0.01 b/s 0.01 b/s 0.01 b/s 0.01 b/s 0.01 b/s
k-MIS 0.01 b/s 0.01 b/s 0.04 b/s 0.01 b/s 0.01 b/s
NDP 0.01 b/s 0.01 b/s 0.00 b/s 0.01 b/s 0.01 b/s
MaxCutPool 0.03 b/s 0.10 b/s 0.01 b/s 0.09 b/s 0.13 b/s

:::
We

::::
note

:::
that

::::::::::
one-over-K

::::::::
methods

::::
such

::
as

:::::::
Graclus,

:::::
NDP,

::::
and

::::::
k-MIS

:::::::
perform

:
a
::::::::::::
preprocessing

:::
step

::
on

:::
the

::::
CPU

::::::
before

:::
the

:::::::
training

:::::
starts.

::::
Such

:::::::::
operations

:::
are

:::
not

:::::::::
accounted

:::
for

::
in

:::
the

:::::::::::
measurements

::
in

:::
Tab.

:::
14,

:::
but

::::
they

::::
can

:::
take

:::::::::
significant

::::
time

::::
and

::
be

::
a

::::::::
bottleneck

::
in
:::::

those
:::::
cases

:::
that

:::::::
require

::::::::
operations

::::
such

::
as

::::::::::
eigenvalues

::::::::::::
decomposition.

:

F.3 MEMORY USAGE

In Figure

Table 15:
:::::::
Average

::::
and

:::::::::
maximum

:::::
GPU

:::::::
memory

::::::
usage

:::
(in

:::::
MB)

:::
by

:::
the

::::::::::
architecture

::::
for

::::
node

::::::::::
classification

:::::
when

:::::::::
configured

::::
with

::::::::
different

::::::
pooling

::::::::
methods.

:::

Roman-e. Amazon-r. Minesw. Tolokers Questions
Pooler Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max
Diffpool 7167.3 11277.2 8367.8 13165.6 1397.4 2199.4 1931. 3039.7 OOM OOM
DMoN 5301.9 7359.5 6189.5 8591.2 1035.1 1438.2 1429. 1984.7 OOM OOM
MinCutPool 7167.8 11277.6 8367.9 13165.8 1398.0 2200.3 1932. 3040.0 OOM OOM
Top-k 2.8 3.9 3.4 4.9 1.4 1.8 3.4 6.0 5.1 8.9
Graclus 2.5 2.6 4.0 4.1 1.5 1.5 14.6 15.1 10.4 10.6
k-MIS 1.3 1.3 0.7 0.8 0.3 0.3 2.4 2.5 5.2 5.3
NDP 1.8 2.5 1.8 9.7 0.6 2.5 2.4 70.8 2.4 26.1
MaxCutPool 13.7 25.7 16.8 31.2 6.9 12.7 27.9 52.2 32.6 61.6

::
In

::::
Tab.

:::
15

:::
we

:::::
report

:::
the

:::::::
average

::::
and

:::::::::
maximum

::::
GPU

:::::::
VRAM

:::::
used

::
by

::::
the

::::::::::
architecture

:::
for

::::
node

::::::::::
classification

:::
on

:::
the

::::::::
different

:::::::
datasets.

:::
As

:::
for

:::
the

:::::
time,

:::
the

:::::
values

::::::::
reported

:::
for

:::::::
Graclus,

::::
NDP

:
,
:::
and

::::::
k-MIS

::
do

:::
not

::::::
include

:::
the

::::
SEL

:::
and

::::
CON

:::::::::
operations

::::::::
performed

:::
in

::::::::::::
preprocessing.

::
To

::::
give

::
a
:::::
more

::::::::::
interpretable

:::::::::::::
demonstration

::
of

::::
how

:::
the

:::::
space

::::::::::
complexity

::::::
scales

:::
for

:::
the

:::::::
different

::::::
pooling

::::::::
methods,

::
in

::::
Fig. 11 we report the GPU VRAM usage of the different poolers . This has been

evaluated on
::::
when

:::::::::
processing

:
a
:
randomly generated Erdős-Renyi graphs with a

:::::
graph

::
of

::::::::
increasing

::::
size.

:::
All

:::
the

:::::
graphs

:::
are

::::::::
generated

:::::::
keeping

::
at 0.01 probability of connection. The GPU VRAM usage

of the different poolers.
:::
the

:::::::::
probability

::
of

::::::
having

:::
an

::::
edge

:::::::
between

:::
any

::::
pair

::
of

::::::
nodes.

The plot shows that in soft-clustering methods the GPU VRAM usage grows exponentially with the
graph size. On the other hand, for scoring-based methods, including the proposed MaxCutPool, the
growth is sublinear, making these approaches extremely suitable for working with large graphs.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 11:
:::
The

::::
GPU

::::::
VRAM

::::
usage

::
of

:::
the

::::::
different

:::::::
poolers.

28

	Introduction
	Contributions

	Background
	The MAXCUT problem and the continuous relaxations
	Message passing in GNNs
	Graph pooling

	Method
	Auxiliary loss
	Homophilic and heterophilic operations
	Relation with other pooling methods

	Experimental evaluation
	Computation of the MAXCUT partition
	Graph classification
	Node classification

	Conclusion
	Nearest neighbor association algorithm
	Derivation of the auxiliary loss
	Implementation details
	MaxCutPool layer and ScoreNet
	Cut model
	Graph classification model
	Node classification model
	Implementation of other pooling layers

	Datasets details
	Cut datasets
	Multipartite dataset description
	Graph classification datasets
	Node classification datasets

	Additional results
	Graph classification
	Node classification

	Complexity
	Algorithmic complexity
	Execution times
	Memory usage

