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Abstract
Predicting the effect of unseen interventions is at
the heart of many scientific endeavours. While
causal discovery is often used to answer these
causal questions, it involves learning a full causal
model, not tailored to the specific goal of pre-
dicting unseen interventions, and operates un-
der stringent assumptions. We introduce a novel
method based on meta-learning that predicts in-
terventional effects without explicitly assuming
a causal model. Our preliminary results on syn-
thetic data show that it can provide good general-
ization to unseen interventions, and it even com-
pares favorably to a causal discovery method. Our
model-agnostic method opens up many avenues
for future exploration, particularly for settings
where causal discovery cannot be applied. Our
source code is available here.

1. Introduction
Answering causal questions is at the core of many scien-
tific enquiries in various fields such as genomics (Friedman
et al., 2000), economics (Heckman, 2008), and the biomed-
ical sciences (Imbens & Rubin, 2015). Scientists want to
predict the effect of new interventions on a system. As
a concrete example, given gene expression data under in-
terventions such as single-gene knockouts, we could be
interested in predicting the effect of an unseen combination
of knockouts (Zhang et al., 2023). The standard approach to
predicting intervention effects is causal discovery, where a
directed acyclic graph that captures the causal mechanisms
underlying the system is learned from data. However, if
the end goal is predicting the effect of interventions, full
causal discovery may not be necessary and incurs signif-
icant costs. First, learning DAGs over many variables is
both computationally expensive and non-identifiable from
limited data (Peters et al., 2017). Second and importantly,
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many systems in which we want to model perturbations are
not well-modeled by standard causal assumptions such as
acyclicity (e.g., feedback loops in biology (Tejada-Lapuerta
et al., 2025; Freimer et al., 2022)), or the absence of hid-
den confounders. Consequently, the goal of this work is to
model perturbations in systems without the need for causal
discovery.

The challenge in modeling perturbations is that, naively,
without appropriate inductive biases, a model might fail to
capture a key aspect of real-world systems: perturbing one
mechanism generally leaves the rest of the system invariant.
Models that capture this property adapt much faster to new
perturbational regimes during training. Indeed, since they
have fewer mechanism parameters to change, they require
fewer samples from the new regimes to adapt them. At in-
ference time, this property also allows models to generalize
to perturbations never seen during training. Bengio et al.
(2019) has leveraged this difference in speed of adaptation
to provide a learning signal towards the correct causal struc-
ture. While the notion of independently manipulable causal
mechanisms is leveraged extensively for causal discovery
(Bengio et al., 2019; Perry et al., 2022), here, we adapt this
inductive bias to model perturbations in a model-agnostic
way.

To develop models of interventions and their effects that
generalize to novel interventions, we build on the frame-
work of Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017). Briefly, MAML is an approach to optimizing
parameters so that they need to be adapted only minimally
to solve a novel task. To achieve this, MAML leverages
data from multiple tasks at training time. In this work, we
introduce a model that maps interventions to effects, opti-
mizing it in a meta-learning framework so that its parameters
require minimal adaptation under novel interventions. Anal-
ogous to the multiple tasks used by MAML, we train the
model on multiple underlying data-generating processes.
The final goal is to obtain a flexible method that will be
able to predict the effects of novel interventions given new
datasets sampled from new causal models without explicitly
learning a DAG. Our contributions are 1) to propose a new
optimization-based meta-learning approach that learns to
predict the effect of novel interventions, and 2) to compare
our method on synthetic data to several baselines, two of
which are causal discovery methods.
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2. Background & Related Works
Causal Bayesian Networks. A common class of causal
models, which we denote byM, is Causal Bayesian Net-
works (CBNs). Let X = (X1, . . . , Xd) ∼ PX be a random
vector and G = (V,E) be a directed acyclic graph (DAG).
We assume that the distribution PX is Markov to G, which
induces the following factorization:

PX(X) =

d∏
i=1

P (Xi | paG(Xi)) (1)

where paG(Xi) are the variables that are the parents of Xi

in G. Intervening corresponds to modifying the condition-
als of the variable intervened on. Let I ⊆ X be some
interventional target. Then, the interventional distribution
corresponding to intervening on I is given by:

P IX(X) =
∏
i/∈I

P (Xi | paG(Xi))
∏
i∈I

P̃ (Xi | paG(Xi))

(2)
where the conditionals P not intervened on are the same
as in Eq. 1 and the conditionals P̃ are new ones. This
modularity of the mechanisms, which is often called the
independent causal mechanisms principle (Schölkopf et al.,
2021), is at the basis of the idea of using speed of adaptation
as a learning signal. One common class of interventions
is perfect interventions, where the conditionals are fixed to
some values and thus do not depend on their parents.

Related work. Recently, Lorch et al. (2022); Ke et al.
(2022); Dhir et al. (2024) proposed amortized approaches
to do causal discovery in a supervised manner. Compared
to our approach, these methods focus on learning graphs. In
other words, if we were to predict the effects of interven-
tions, we would have to first fit a parametric model based
on the DAG predicted by their methods. Also, in contrast to
the setting we will present, these approaches unrealistically
assume that the ground-truth graphs for each dataset are
known.

More recently, there is a line of works that aim to predict
the effects of interventions without explicitly learning a
causal model based on a graph. For example, Lotfollahi
et al. (2023); Roohani et al. (2024); Gaudelet et al. (2024)
propose methods that are trained on data containing mainly
genetic perturbations on single genes in order to predict the
effects of novel combinations of perturbations. While the
setting is similar to ours, the method we propose is more
general and is based on the speed of adaptation.

3. Method
In this work, we present a novel method based on meta-
learning that aims to learn to predict effects of unseen inter-
ventions, where the training data consists entirely of obser-
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Figure 1. Illustration of our data-generating process.

vations of causal variables and their interventional targets.
Importantly, once trained, our method can predict the effect
of unseen interventions without any data in this regime.

3.1. Setting

Our distribution over tasks p(T ) is as follows: for each
task T (i), we first draw a causal model M(i) ∼ p(M)

and interventional regimes I(i) = (I
(i)
1 , ..., I

(i)
M ) ∼ p(I),

where I(i)j indicates the node targets of the jth interventional
regime in task i. The M sampled interventional regimes
then allow us to generate a training dataset D(i)

train and a test
dataset D(i)

test drawn fromM(i). We illustrate this process
in Figure 1. We will detail our choices for the priors p(M)
and p(I) in section 4.

3.2. Objective

Inspired by Finn et al. (2017) and motivated by maximizing
speed of adaptation, our learning objective is:

ψ∗ ∈ argmin
ψ

∑
Ti∼p(T )

LD(i)
train,D

(i)
test

transfer (ψ − α∇ψL
D

(i)
train

fit (ψ)),

(3)
where

LD
fit(ψ) =

−1
n

∑
i,j,k

log p(x
(i,k)
j |x(i,k)−j , I(i);D, ψ); (4)

LDtrain,Dtest
transfer (ψ)

=
−1
n

∑
i,j,k

log p(x
(i,k)
j,test |x

(i,k)
−j,test, I

(i)
test;Dtrain, ψ).

(5)
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Algorithm 1 Meta-learning training procedure
Require: Randomly initialized neural network parameters

ψ, learning rates α, β
1: for t = 1, ..., T do
2: Sample a causal modelM(t) ∼ p(M)

3: Sample interventions (I(t)1 , ..., I
(t)
M ) ∼ p(I)

4: Construct a training dataset D(t)
train and a test dataset

D(t)
test fromM(t) and (I

(t)
1 , ..., I

(t)
M )

5: end for
6: while not done training do
7: for t = 1, ..., T do
8: ψ̃(t) ← ψ − α∇ψL

D(t)
train

fit (ψ)
9: end for

10: ψ ← ψ − β∇ψ
∑T
t=1 L

D(t)
train,D

(t)
test

transfer (ψ̃(t))
11: end while

The index i is over interventional regimes, the index j is over
causal variables, and the index k is over samples of a given
interventional regime. Furthermore, n denotes the total
number of samples. For a given variable xj , its probability
is parameterized by a neural network with parameters ψ
that takes as input all the other variables x−j as well as
the interventional targets I . The datasets D or Dtrain are
considered metadata that the neural network is conditioned
on. In LD

fit(ψ), the model is penalized for prediction errors
on the same samples belonging to the conditioning datasetD.
InLDtrain,Dtest

transfer (ψ), the model is penalized for prediction errors
on samples coming from the test dataset while using the
train dataset Dtrain as conditioning information. In practice,
in order to optimize Equation 3, we use Algorithm 1.

The downstream application is to predict effects of unseen
interventions on a new dataset D∗

test given a context D∗
train

coming from the same causal modelM∗1. Thus, after train-
ing our model with Algorithm 1, we fine-tune it on D∗

train

by performing a few gradient descent steps on LD∗
train

fit (ψ).
See section 4 for empirical evidence in favor of this pro-
cedure. We call our method MIP-FT: “Meta-learning for
intervention prediction fine-tuned”.

3.3. Amortized Model Architecture

In order to make predictions, our model takes as input the
data, the interventional targets, and some conditioning meta-
data (see Appendix D for its explicit form). More precisely,
it operates by separately predicting each variable xj given
the rest (x−j), hence the first input is a vector of the val-

1As a comparison, classical causal discovery methods only
perform this step: they are presented with a single dataset (context),
and the downstream application is to use the recovered DAG to
predict effects of unseen interventions on new samples drawn from
the same causal model as the one that was used to generate the
context data.

ues of x−j . The second input is made of the interventional
targets I that we want to predict under. The conditioning
metadata is a dataset drawn from the same causal model as
the data that we are trying to predict, as a form of context.
Inspired by Ke et al. (2022); Lorch et al. (2022); Dhir et al.
(2024), we first pass the conditioning dataset as input to an
alternating attention module (see Figure 5), which extracts
implicit information about the causal structure to produce
a summary 16-dimensional vector of features. Then, we
embed each interventional target into a 16-dimensional vec-
tor and add the corresponding embeddings for multi-target
interventional embeddings. Note that these parameters are
shared across all predicted variables. Finally, we have spe-
cialized MLP modules - one for each variable - that take
as input the summary metadata features, the intervention
embeddings, the values of x−j , in order to predict xj . In
the experiments, we add standard isotropic Gaussian noise
to the predictions to obtain a likelihood suitable for the
computations of the losses in Equation 4 and Equation 5.

4. Experiments
Our goal is to answer the questions below:

• How does the performance of our meta-learning
method compare to different baselines, such as classi-
cal causal discovery?

• How does the fine-tuning step affect our model’s per-
formance?

• What is the importance of using a meta-learning objec-
tive instead of relying on supervised learning?

4.1. Synthetic data

For each task, we first sample a DAGG following the Erdős–
Rényi scheme with the same number of edges as the number
of variables (d) in expectation, then we sample data from a
linear-Gaussian additive noise model as follows:

X =WX +N (6)

where N ∼ N (0, 0.1Id) and W ∈ Rd×d are sampled from
N (0, 1) where samples between [−0.5, 0.5] are rejected
and resampled. We use the adjacency matrix of G as a
mask on W . For each meta-training task T (i), we present
all possible single-node intervention targets and most two-
node targets in the training dataset D(i)

train, in addition to
the observational setting. We leave out a certain number of
unseen two-node interventional regimes for the test dataset
D(i)

test. We use perfect interventions where we fix the value of
the intervened variables to 2. Note that for our considered
setting, the causal model should be identifiable since all
variables are intervened upon (Eberhardt et al., 2012).
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We present here the setting where graphs have d = 20
variables (See Appendix C for d ∈ {4, 10}). In each train-
ing dataset D(i)

train, we include the observational setting, 20
single-node interventions, and

(
20
2

)
−10 = 180 double-node

interventions, for a total of 201 regimes. With 20 samples
per interventional setting, we have a total of 4020 samples.
In each test dataset D(i)

test, we have the remaining 10 unseen
two-node interventional regimes, for a total of 200 samples.

We reserve a held-out task T ∗, with the same intervention
configurations as the previous tasks, but with a new causal
model drawn from the same prior, for testing our model
(see subsection 4.3).

4.2. Baselines

For several baselines, we do not rely on an amortized ap-
proach. Instead, for a given task, we take a DAG and then
fit a linear Gaussian model using maximum likelihood esti-
mation (MLE).

• As an upper bound for the performance, we use the
ground-truth DAG (GT).

• We use the causal discovery methods GIES (GIES)
(Hauser & Bühlmann, 2012) and IGSP (IGSP)(Wang
et al., 2017) to learn a DAG. GIES is a score-based
method, while IGSP is constraint-based. Both meth-
ods support interventional data and assume a linear
Gaussian model.

• Finally, as a “trivial” baseline, we also compare against
a full DAG (Full) that is obtained by sampling a
topological ordering and by adding all the possible
edges.

4.3. Evaluation Methodology

For our baselines, we only train on the training dataset of the
downstream task, D∗

train. We then evaluate the predictions of
the learned model on the unseen interventions in D∗

test and
report the mean squared error (transfer loss). We
aggregate our results over 20 different seeds.

For our amortized learning model, we have three experimen-
tal training schemes. The default one (MIP-FT) is training
according to Algorithm 1 on a set of tasks {Tt}Tt=1, fine-
tuning on the training dataD∗

train of the downstream task T ∗,
and reporting the mean squared error, LD∗

train,D
∗
test

transfer (ψ∗), be-
tween the model’s predictions on D∗

test and the true samples,
given the context D∗

train. The second setting (MIP) removes
the fine-tuning step. For the last setting (supervised learn-
ing, or SL), we simply perform one gradient descent step on

L
D(t)

train
fit (ψ) for each task t = 1, ..., T , omitting the optimiza-

tion of the transfer objective. However, we still report the

transfer loss on T ∗ as before. We aggregate our results over
5 different seeds.

4.4. Results

We report our results in Figure 2. We notice that our meta-
learning approach with fine-tuning (MIP-FT) performs bet-
ter than all other methods, except GT and GIES. In partic-
ular, we can observe that MIP-FT has better performance
than IGSP. The experiments on smaller graph sizes in Ap-
pendix C show that the trend of beating more baselines
seems to emerge when considering more variables, which is
a promising sign for our method regarding scalability.
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Figure 2. Comparison of the baselines against the different training
schemes of our amortized model on datasets over 20 variables. In
this setting, MIP-FT outperforms IGSP.

Secondly, we find that, if we remove the fine-tuning step,
our model has a much worse performance (when comparing
MIP-FT and MIP), a trend that is consistently observed in
smaller graphs as shown in Appendix C. This makes sense,
since Equation 3 is incentivizing the model to have a low
transfer loss once we have already fit to the training dataset
of a particular task.

Finally, since MIP and SL have a similar performance, we
don’t have conclusive evidence to support the benefits of
the objective in Equation 3 alone.

5. Conclusion
Our preliminary results are promising: the new method
we proposed is better than a causal discovery method in a
setting where the ground-truth is a Causal Bayesian Net-
work. For future work, we want to consider more diverse
settings, such as larger problems and soft interventions,
and also real-world applications such as the prediction of
gene perturbations. We also aim to test more deeply the
effect of some design choices of our method and study more
closely under what conditions our method performs well.
We believe this line of research can significantly advance
the practical deployment of causal inference methods in
complex, real-world domains.
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B. Additional Discussion and Future Work
We have demonstrated that our method, MIP-FT, shows promising generalization capabilities for directly predicting the
effects of unseen interventions. When the true data-generating process can be represented by an identifiable DAG, one
interesting question is to what extent our model has the capacity to implicitly represent the true DAG. One candidate idea
for testing this hypothesis could be to systematically perform hard interventions on different variables and observe how the
predicted outputs change. For example, if the predictions for xj under an intervention on xi change depending on the value
that xi is set to, then we can conclude that xi is an ancestor of xj in the implicit representation of the DAG. However, we
need to be very careful about the conclusions drawn using this approach. As our model has no structural inductive biases
to learn DAGs, it can simply learn to memorize the effects of all the interventions seen during the fine-tuning step, then
perform well on some unseen combinations of targets and poorly on other unseen combinations. So far, we have only tested
our model in very limited settings, with access to an overwhelmingly large set of interventions at train time, and testing
generalization on only a few unseen two-node combinations.

We leave future experiments as a follow-up work where we will vary more systematically the availability of interventions at
train and test time, including introducing interventions affecting more than two nodes at the time. We will also study the
generalization on unseen combinations compared to unseen single-node targets and dissect the performance based on the
different combinations (instead of simply reporting aggregate statistics), to see whether the conclusions from the current
work will be robust. We expect that a model that has implicitly learned the correct DAG will predict well the effects of all
possible unseen combinations of interventional targets.

If the conclusions of our work are robust to the experimental settings described above, we could use causal discovery
methods to understand what causal model our black box method emulates. However, our work is rather motivated by the
settings where the data-generating process does not follow a DAG structure. In such cases, we expect our method to still be
able to reliably predict effects of unseen interventions, as opposed to DAG-based causal discovery methods. We will test our
aforementioned hypothesis in future work.

C. Additional Experimental Results
We further test our method on a small scale problem (d = 4 variables) and on a medium one (d = 10). In the d = 4 setting,
we use 200 samples for each interventional setting. For each training dataset D(i)

train, we include the observational setting, 4
single-node interventional regimes, and

(
4
2

)
− 1 = 5 double-node interventional regimes, for a total of 10 regimes and 2000

training samples. For each test dataset D(i)
test, we have exactly one interventional regime: the remaining unseen two-node

targets. Hence, D(i)
test has 200 samples.

In the d = 10 setting, we have 50 samples per interventional regime. For each training dataset, we include the observational
setting, 10 single-node interventions, and

(
10
2

)
− 5 = 40 double-node interventions, for a total of 51 regimes and 2550

training samples. For each test dataset, we have 5 unseen two-node interventional regimes. Hence, D(i)
test has 250 samples.

Figures 3 and 4 show boxplots for these two settings, while Table 1 shows a numerical summary of the results across all of
our experiments.

We notice that the fine-tuning step becomes increasingly important as the number of variables increases, as explained by the
higher performance gap between MIP-FT and MIP on 10 variables compared to 4 variables.
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Table 1. We show the transfer losses of all the models across all the problem sizes that we tested. We report the average and the standard
deviation across 20 runs for the baseline models (GT, GIES, IGSP, Full), and across 5 runs for the different training schemes of our
amortized model (MIP-FT, MIP, SL).

d GT (oracle) GIES IGSP Full MIP-FT MIP SL
4 0.03± 0.015 0.03± 0.015 0.204± 0.37 0.633± 0.673 0.11± 0.063 0.204± 0.124 0.232± 0.120

10 0.073± 0.009 0.077± 0.019 0.183± 0.085 0.313± 0.148 0.207± 0.025 0.627± 0.165 0.655± 0.162

20 0.126± 0.011 0.127± 0.011 0.28± 0.06 0.279± 0.06 0.178± 0.015 0.519± 0.081 0.514± 0.082
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Figure 3. Comparison of the baselines against the different training schemes of our amortized model on datasets over 4 variables.
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Figure 4. Comparison of the baselines against the different training schemes of our amortized model on datasets over 10 variables.

D. Additional Architectural Details
When used to make predictions on a test dataset Dtest while using the train dataset Dtrain belonging to the same causal model
as conditioning information (to compute Equation 5), our model can be written as a transformation of the following form:

xj,test = fj(x−j,test, EΦ(Itest);hθ(Dtrain), ϕj) + z ∀j = 1, ..., d. (7)

The case where we make predictions on the same dataset as the conditioning one (to compute Equation 4) is a special case,
lettingDtrain = Dtest. EΦ is the interventional embedding function, while hθ is the alternating attention module. z ∼ N (0, 1)
is noise injected so that our model induces a probability distribution over the outputs. fj contains several MLPs that combine
the features provided by the different modules to compute the output. Note that the parameters Φ and θ are shared, while ϕj
are specific to each causal variable. The set of all parameters together form ψ, which we train in Algorithm 1.

Attention moduleEmbedding fct

Figure 5. Illustration of the different modules composing our model architecture.
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Inspired by Lorch et al. (2022), for the alternating attention module, we obtain the input tokens from D with position-wise
MLPs that convert the values of the causal variables and the intervention targets to 16-dimensional vectors. We pass the
input tokens through 8 layers of transformer encoders (Vaswani et al., 2017). Inside each layer, we first perform multi-head
attention across the different causal variables for each sample, then we perform multi-head attention across the different
samples for each causal variable. The sharing of the parameters of EΦ across causal variables is motivated by the hypothesis
that, if there is an embedding space in which the effects of interventions can be composed “nicely”, then the embeddings
should be reusable. The sharing of the parameters of hθ across causal variables is motivated by the observation that, in Lorch
et al. (2022), the attention module extracts the key summary features that enable the prediction of the DAG structure
underlying D. We use 8 attention heads, a transformer feedforward dimension of 32, a dropout rate of 0.1, and a ReLU
activation.

All MLPs have (32, 32) hidden sizes and use the leaky ReLU activation.

E. Further Hyperparameters Details
For GIES, we did a grid search for the sparsity regularization coefficient: λ ∈ {1000, 100, 10, 1}, including its default
value. For IGSP, we use the partial correlation as the independence test, and we did a search for the significance level
α ∈ {0.5, 0.1, 0.05, 0.01, 0.005}. We keep the hyperparameters that lead to a better performance on a held-out dataset with
interventions that were seen at train time.

For all the training schemes of the amortized model, we used the Adam optimizer with a learning rate of 0.00005. We
let T = 500 meta-training tasks and evaluated on one meta-test task. For MIP-FT, we performed 10 fine-tuning gradient
descent steps.
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