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ABSTRACT

Source-free domain adaptation (SFDA), which tackles domain adaptation without
accessing the source domain directly, has gradually gained widespread attention.
However, due to the inaccessibility of source domain data, deterministic invari-
able features cannot be obtained. Current advanced methods mainly evaluate
pseudo-labels or consistent neighbor labels for self-supervision, which are sus-
ceptible to hard samples and affected by domain bias. In this paper, we propose
an efficient transFormer with a consistent Auxiliary domain for source-free do-
main adaptation, abbreviated as AudoFormer, which solves the invariable feature
representation from a new perspective by domain consistency. Concretely, Audo-
Former constructs an auxiliary domain module (ADM) block, which can achieve
diversified representations from the global attention feature in the intermediate
layers. Then based on the auxiliary domain and target domain, we distinguish in-
variable feature representation by exploiting multiple consistency strategies, i.e.,
dynamically evaluated consistent labels and consistent neighbors, which can di-
vide the whole target samples into source-like easy samples and target-specific
hard samples. Finally, we align the source-like with the target-specific samples
by conditional guided multi-kernel max mean discrepancy (CMK-MMD), which
guides the hard samples to align the corresponding easy samples. To verify the ef-
fectiveness, we conduct extensive experiments on three benchmark datasets (i.e.,
Office-31, Office-Home, and VISDA-C). Results show that our approach achieves
significant performance among multiple domain adaptation benchmarks compared
to the other state-of-the-art baselines. Code will be available.

1 INTRODUCTION

Deep learning has achieved remarkable success in various applications of computer vision but also
suffers from some drawbacks. Firstly, the success of deep learning relies on huge manual annotation,
which is extremely expensive in real-world applications. Besides, owing to insufficient generaliza-
tion, applying existing models to other relevant scenarios usually encounters the domain shifting.
To address the said issue, unsupervised domain adaptation (UDA) has been introduced, which aims
to transfer knowledge from the source domain to the target domain. The key idea of UDA is to
exploit the network to extract the labeled source domain and unlabeled target domain feature, and
then project the feature in common feature space to learn domain invariant Long et al. (2015) and
common semantic information Goodfellow et al. (2014). Nevertheless, since security privacy pro-
tection and data transmission limitations, the model cannot access the source data directly in some
scenarios.

To overcome the data-absent problem, some prospective efforts Liang et al. (2020); Yang et al.
(2021b); Saito et al. (2018); Li et al. (2020); Xia et al. (2021) work on source-free domain adapta-
tion (SFDA). In general, these methods roughly fall into two branches: adversarial-based approaches
and pseudo-label evaluation. Adversarial-based approaches mainly utilize the generator to synthe-
size the target feature distribution and aim to improve the generalization performance of the target
domain Saito et al. (2018); Li et al. (2020); Xia et al. (2021). However, these approaches incur
extensive resources and time to optimize the generator and synthetic images, and the generated
samples cannot fully reflect the distribution of the real data when encountering complex data sce-
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Figure 1: Basic thinking of our proposed methods. (a): The above are easy samples, which are
more similar to the source data. The below are hard samples, which are hard to discriminate. (b):
Construct an auxiliary domain to discriminate easy and hard samples.

narios, thereby limiting the generalization performance. While pseudo-label evaluation approaches
commonly leverage the pre-trained model of the source domain to evaluate the centroid by clus-
tering the nearest neighborhood feature, and mitigate variation between cross-domains by certain
constraints Liang et al. (2020); Yang et al. (2021b). Although this method has achieved promising
results, it is still vulnerable to erroneous evaluations caused by hard samples. For example, in the
Office31 dataset as Fig. 1 (a), easy samples are closer to the source domain while hard samples
have great discrepancies. These hard samples are difficult to align and are more prone to produce
incorrect evaluations. Compared to DA tasks Long et al. (2015), the main dilemma of SFDA is the
inability to obtain invariant feature representations. Intuitively, if obtaining sufficient relevant fea-
tures, we can emulate the invariant features to reconstruct the source domain with some strategies, as
shown in Fig. 1 (b). Therefore, this motivates us to pay attention to the intermediate layer features.

In this paper, we proposed an efficient transFormer with a consistent Auxiliary domain for source-
free domain adaptation (termed as AudoFormer), which solves the invariable feature representation
from a new perspective by domain consistency. We exploit the vision transformer (ViT) as our back-
bone model mainly for the following considerations: First, compared to the CNN-based model, the
inner feature dimensions of each layer in the ViT backbone are consistent, enabling the relatively
low cost of constructing the auxiliary domain. Second, we argue that self-attention features can
capture discriminative features, which surpass general semantic features in terms of representation
power. Besides, since the long-distance dependence of features is solved, the current ViT model has
achieved immense success in many fields Dosovitskiy et al. (2021); Carion et al. (2020); Zheng et al.
(2021), while related research has been relatively less explored in the field of SFDA. This motivates
us to adopt the ViT backbone model and its variants to study related problems. Specifically, Aud-
oFormer first acquires the multi-layer global attention from the intermediate layers via exponential
moving average (EMA), and then introduces an auxiliary domain module (ADM) block for the ViT
backbone to obtain additional diverse representations from the global attention, which can be used to
construct an auxiliary domain, as shown in Fig. 2. We train the AudoFormer in the source stage (i.e.,
first stage) by supervised learning and self-distillation. Then we initialize the target model with the
parameters of the source domain, fixing the auxiliary domain module and the target domain module
to conduct domain adaptation. In light of the auxiliary domain and target domain of domain adapta-
tion stage (i.e., second stage), we distinguish invariable feature representation by employing multiple
consistency strategies, i.e., dynamically evaluated consistent labels and consistent neighbors, which
can divide the whole target samples into source-like easy samples and target-specific hard samples.
Finally, we align the source-like with the target-typical sample by conditional guided multi-kernel
max mean discrepancy (CMK-MMD), which guides the hard samples to align corresponding easy
samples.

To verify the effectiveness, we conduct extensive experiments on three benchmark datasets, i.e.,
Office-31, Office-Home, and VISDA-C. Eventually, our approach can outperform other source-free
approaches and achieve superior performance among multiple domain adaptation benchmarks. To
sum up, our key contributions are as follows: 1) We introduce an efficient transformer framework
with an auxiliary domain for SFDA and first solve the issue from a new perspective by domain
consistency. 2) We propose to exploit multiple consistency strategies to distinguish invariable feature
representation which can divide the whole target samples into score-like easy samples and target-
specific hard samples. 3) To further improve the alignment effect of the domain adaptation, we align
the source-like with target-specific samples by CMK-MMD, which guides the samples to align the
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Figure 2: The overall workflow of the proposed AudoFormer. The Upper is the first-stage training
and distillation in the source domain, where the attention feature of each layer is aggregated by EMA
to produce global attention. The ADM block Gs is the trainable module by distillation of the output
of classifier Cs. The Bottom is the adaptation stage. We first evaluate the pseudo-labels of the target
domain and auxiliary domain to distinguish easy samples (dark color) and hard samples (light color)
by consistency strategies. Then, we store the easy and hard samples in the memory bank respectively
and re-evaluate the hard samples by consistent neighbors. Finally, we exploit CMK-MMD to align
the samples of source-like and target-specific.

hard samples to corresponding easy samples. 4) Extensive experiments are conducted on three
benchmark datasets to verify the effectiveness of our proposed approaches.

2 METHODS

2.1 PRELIMINARIES AND NOTATIONS

Notation. In this paper, we address the unsupervised SFDA task only with a pre-trained source
model and without accessing any source data. We consider image classification and denote the
labeled source domain data with ns samples as Ds =

{
(xi

s, y
i
s)
}ns

i=1
where xi

s ∈ Xs, y
i
s ∈ Ys,

and unlabeled target domain data with nt samples as Dt =
{
xi
t

}nt

i=1
where xi

t ∈ Xt. The goal
of SFDA is to train a classifier of F ◦ C with the given source data to predict the labels

{
yit
}nt

i=1

of unlabeled data in the target domain, where F(·; θF ) : xi
t → f i

t denotes the backbone model of
features extractor, where ft denotes the feature representation. C(·; θC) : f i

t → zit denotes the linear
classifier, and zit represents the distribution of logits, as shown in Fig. 2. Besides, we introduce an
ADM block as G(·; θG) : x̂i

a → f̂ i
a and ẑia, where x̂i

a denotes global attention feature, f̂ i
a and ẑia

denotes the feature representations and the distribution logits extracted by the ADM, respectively.

Multi-head Self-Attention. Self-attention mechanism is a core component of ViT, which cap-
tures the long-distance dependence by MHSA. For self-attention, the layer-normalized patches
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are mapped by three learnable linear projectors into vectors, i.e. queries Q ∈ R(N+1)×D, keys
K ∈ R(N+1)×D and values V ∈ R(N+1)×D. N donates the length of patch sequence, D indicates
the dimensions of Q and K. Then the queries and keys are matched by the inner product to have
an (N + 1)× (N + 1) matrix, which denotes the semantic relevance of the query-key pairs in the
corresponding position and applies a softmax function to obtain the weights on the values, which is
given by:

SA(Q,K,V) = softmax(
QKT

√
D

) ·V , (1)

MHSA(Q,K,V) = Concat(SA1, ..., SAk) ,

Concat here represents a concatenation operation. In our solution, we learn the representations
from the multilevel global attention fusion as detailed in the following.

2.2 AUXILIARY DOMAIN MODULE BLOCK

Owing to the inability to access the source domain data, compared to DA tasks Long et al. (2015),
the main dilemma of SFDA is the inability to obtain invariant feature representations. Therefore,
if obtaining diverse representations from the existing source domain, we can distinguish invariant
feature representations by some strategies, which can be employed to discriminate source-like easy
samples and target-specific hard samples. To obtain the diverse representations, we pay attention
to the intermediate layers, which are widely exploited in current research Dosovitskiy et al. (2021);
Chen et al. (2023); Liang et al. (2022). We exploit the ViT models as our backbone. Compared
with the CNN models, ViT models excel in addressing the long-distance dependence issue of fea-
tures, however, missing a certain inductive bias makes them require a large dataset (e.g., ImageNet
ILSVRC 2012 dataset Deng et al. (2009) or JFT-300M dataset Sun et al. (2017)) to compensate for
this. Therefore, to address the shortcoming of inductive bias and achieve diverse representations,
we introduce an extra CNN-based auxiliary domain module for AudoFormer, which allows us to
exploit the feature representations from the intermediate MHSA layers Dosovitskiy et al. (2021);
Chen et al. (2023); Liang et al. (2022). ViT model exploits the class token (i.e., [CLS] token) to
learn the global positional information of all patches and utilize it for the final classification of ob-
jects. However, some research Liang et al. (2022); Chen et al. (2023) have proven that not all layers
of attention can focus on discriminative objects. If directly achieving the feature of each layer will
lead to a weak representation. Therefore, we take the features of the multilevel MHSA into account
and aim to learn the feature representations from global self-attention. Specifically, we aggregate
the attentional features of each layer by exponential moving average (EMA) to achieve the global
attention as x̂a = λ · f̂a

l + (1− λ) · f̂a
l−1, where λ = 0.99 and l denotes the current layer of MHSA.

We follow the suggestion of Liang et al. (2022) and set l > 4-th layer to ensure the acquisition of
effective attention features. Then, our AudoFormer extracts the feature of the global attention by the
auxiliary module as

ê1 = ReLU(BN(Cov3×3(x̂a))) (2)

ê2 = ReLU(BN(Cov3×3(ê1)))

f̂a = AvP(BN(Cov3×3(ê2)))

ẑa = Linear(ReLU(Linear(f̂a)))

where ê1 and ê2 indicate the internal latent vectors of the ADM, Cov3×3 denotes the convolution
with a kernel size of 3× 3, BN, ReLU, and AvP denote the batchnormal layer, rectified linear unit,
and average pool layer, respectively. The ADM block is trained in the first stage of the source
domain and fixed for adaptation of the target domain, which can extract the feature representations
f̂a and distribution logits ẑa to construct the auxiliary domain.

2.2.1 FIRST STAGE TRAINING AND SELF-DISTILLATION

In the first stage of our framework, we train the model in the source domain with ground truth by
standard cross-entropy loss and aim to obtain the optimal ADM parameters θ∗G by minimizing the
discrepancy between ADM G and source classifier C as

θ∗G = argmin
θG

Ex[D(G(x̂a; θG),F(xs; θF ) ◦ C(fs; θC))] , (3)

where the θ∗G denotes the optimized weight of the ADM block, which is trainable in the source
domain. To realize this, we exploit the self-distillation strategy to optimize the weight θ∗G of ADM,
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which distills the knowledge from the feature f i
s and logits zis of classifier C. Therefore, in the source

domain, we train the model by the formula as follows:

Ls
kd =

1

ns

ns∑
i=1

(
∥f̂ i

a,s − f i
s∥2 + ẑia,s · log

ẑia,s
zis

)
, (4)

where f̂ i
a,s and ẑia,s denote the feature and logits mapped by ADM in the source domain. According

to our experiments in Tab 4, AudoFormer can significantly improve the performance of the source
domain. This demonstrates the ability of AudoFormer to mitigate the inductive bias. We then apply
it to the following domain adaptation in the second stage.

2.3 MULTIPLE CONSISTENCY STRATEGIES

In the domain adaptation progress, we first exploit AudoFormer to extract the feature representations
ft and f̂a,t with corresponding logits distribution zt and ẑa,t from unlabeled dataset Xt. Then, we
freeze the source classifier and ADM, i.e., C and G. If the pseudo-labels of some samples are
calculated directly, the noise may affect them. Therefore, the consistency strategies are exploited
to discriminate invariable feature representation, which can divide the samples into easy and hard
samples and ensure the pseudo-labels of samples with higher confidence.

2.3.1 DYNAMIC CENTROID EVALUATION

The centroid evaluation proposed by Liang et al. (2020) has proven to be effective in practice. How-
ever, if exploring the centroid in each iteration, we found that it was easily disturbed by noise. Thus,
differing from the traditional approaches Liang et al. (2020; 2021), we exploit the dynamic strategy
to calculate the initial centroid of each category by

cjk =

∑
xt∈Xt

exp(zjt )f
j
t∑

xt∈Xt
exp(zjt )

, (5)

cjk = λcj−1
k + (1− λ)cjk ,

where cjk is the k-th centroid of the j-steps explorations, and exp(·) is the exponential function,
λ is the coefficient of movement. Then we estimate the label of each sample by its nearest initial
centroid as Ŷt = {ŷit|ŷit = argmink D(f i

t , c
j
k)}, where the D(·, ·) is the cosine distance. While the

k-th centroid is further modified by cjk =
∑

xt∈Xt
1(ŷj

t=k)fj
t∑

xt∈Xt
1(ŷj

t=k)
, where 1 is the indicator function, and

the pseudo-labels are continuously updated in j-step iterations.

2.3.2 CONSISTENT LABELS EVALUATE EASY SAMPLES

With the pseudo-label evaluation strategy, we can obtain two individual pseudo-label sets as
{Ŷg, Ŷc}, where the Ŷg and Ŷc are the label lists obtained from the ADM block G and source
classifier C, respectively. These two pseudo-label sets come from different dimensions of the fea-
ture representation. Then, we treat the features mapped by consistent labels as invariant features.
Therefore, to define the categories of invariant features, we use the consistent pseudo-labels in the
two spaces as the final pseudo-labels of the samples by Ŷe = 1 · {Ŷg, Ŷc}, where 1 ∈ {0, 1} is
an indicator function that returns 1 if ŷig = ŷic evaluates as true. While the rest inconsistent set can
be denote as Ŷh = Ŷc \ Ŷe, where the Ŷh indicates the inconsistent hard labels. Then, we store
the corresponding feature representations by the evaluated labels to easy sample bank Me and hard
sample bank Mh. We argue that the sample discriminated by both domains is an easy sample that is
more related to the source, i.e. source-like samples, while the rest samples are hard to discriminate
or easily confused samples, which means they are closer to the target-specific situation. Therefore,
we apply further treatment to them in the following.

2.3.3 CONSISTENT NEIGHBORS RE-EVALUATE HARD SAMPLES

As shown in Fig 1 (a), although there are significant differences between the hard samples and
the source domain, a certain similarity is still between hard samples and easy samples. To further
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discriminate the inconsistent samples, we follow such a principle that samples with higher similarity
have closer clustering distributions in the common space. Therefore, we exploit the rating matrix to
measure the similarity scores of the same space to vote the consistent labels. Concretely, we divide
the feature representations ft into easy sample representations fe and hard feature representations fh
by marked consistent labels. Then, we calculate the rating matrix of the divided samples in common
space by Sn×m = {fh · f⊤

e }, where the Sn×m indicates the similarity score of the features while
n and m are count of corresponding feature representations s.t. n+m = nt. For each inconsistent
label ŷh ∈ Ŷh, we exploit consistent label of its sampled k-nearest neighbors as ỹke = Ŷargmaxk S

e ,
where k is the index of the nearest neighbors and s.t. k < m. The re-evaluated hard labels are
obtained by ŷh = ŷke . Then we combine the reconstructed pseudo-labels with the consistent labels
to obtain the final pseudo-labels ỹt ∈ Ỹt.

2.3.4 CONSISTENT SELF-SUPERVISED TRAINING

With the above strategies, we can obtain high-confidence pseudo-labels, which will benefit the train-
ing of self-supervised processes. The self-supervised loss is combined with two items as follows:

Lt
cst =

1

nb

(
nb∑
i=1

CE(ẑit, ỹ
i
t) +

nb∑
i=1

CE(zit, ỹ
i
t)

)
, (6)

where nb is batch-size of each mini-batch. The first item of CE(·, ·) is used to optimize the auxiliary
domain of G, while the second item is used to optimize the target domain of C. By self-supervised
training, this loss can align the samples of the same label in different spaces, improving consistency
discrimination from different dimensions.

2.4 ALIGN THE TARGET-SPECIFIC TO SOURCE-LIKE

Commonly in the SFDA setting, the source data cannot be accessed. Since the above consistent
strategies are being exploited, we can discriminate the easy and hard samples from the target domain.
From another perspective, easy samples are closer to the source domain, while hard samples are
specific to the target domain. Therefore, we approximate easy samples as the source domain, i.e.,
Xe ∼ X̃s and hard samples as the new target domain, i.e., Xh ∼ X̃t. All we need is to align the
new target domain with the source domain. To solve the domain shift and encourage the feature
representation to be invariant across different domains, traditional methods adopt different ways to
align the differences between the two domains Long et al. (2015); Kang et al. (2019); Flamary et al.
(2016). Among them, the kernel-based maximum mean discrepancy (MMD) Long et al. (2015) is
widely used, which needs to meet the premise that the source domain and target domain can be
accessed.

Assume that x̃i
s ∈ X̃s and x̃j

t ∈ X̃t are i.i.d., the corresponding representations are sampled from
the easy and hard samples Me and Mh as f̃ i

s and f̃ j
t , where i ∈ n, j ∈ m, and n +m = nt. The

motivation for MMD is that if two distributions are the same, all their statistics should be the same.
In general, MMD defines the discrepancy between two distributions and their mean embedding
in the reproducing kernel Hilbert space (RKHS) as DH(f̃s, f̃t) := supϕ∼H(EX̃s

[ϕ(Ft(X̃s))] −
EX̃t

[ϕ(Ft(X̃t))])H, where H is a function type.

To further obtain better domain adaptation, we adopt a new variant of MMD i.e., conditional guided
multi-kernel MMD (CMK-MMD) to flexibly capture different features. For any two domains of
feature distributions f̃s and f̃t with corresponding labels ỹs and ỹt, we define the CMK-MMD
between them as follows:

D2
K(ζis, ζ

j
t ) :=

∥∥∥Ef̃i
s

[
ϕ
(
f̃ i
s|ỹi

s

)]
− E

f̃
j
t

[
ϕ
(
f̃ j
t |ỹ

j
t

)]∥∥∥2
H
, (7)

where D2
k(ζ

i
s, ζ

j
t ) = 0 iff f̃ i

s|ỹjs = f̃ j
t |ỹ

j
t . The kernel associated with the feature maps ϕ, i.e.,

K(ζs, ζt) = ⟨ϕ(f̃s, ỹs), ϕ(f̃t, ỹt)⟩, Based on this we can explicit the multi-kernels defined as fol-
lows:

K :=

{
K =

v∑
u=1

γuKu : γu ≥ 0,∀u

}
(8)
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where v is the number of kernels, γu is the weight coefficients used to constrain the kernel function,
and K is the multi-kernels, which leverage the different kernels to enhance CMK-MMD. Therefore,
for any feature representation of two class f̃ i

s, f̃
j
t . CMK-MMD measures the discrepancy between

two feature representations of source-like and target-specific, which is defined as follows:

Lt
cmk =

1

n2

n∑
i=1

n∑
j=1

K
(
ζis, ζ

i
s

)
+

1

m2

m∑
i=1

m∑
j=1

K
(
ζjt , ζ

j
t

)
− 2

nm

n∑
i=1

m∑
j=1

K
(
ζis, ζ

j
t

)
. (9)

It is worth mentioning that although MMD has been explored in several papers Long et al. (2015);
Kang et al. (2019); Zhang et al. (2022), to date there has been no attempt to enhance the hard
feature representation via CMK-MMD in ViT-based architecture SFDA from the aspect of easy and
hard samples. Besides, to make the target outputs individually certain and globally diverse, the
common practice is to jointly perform feature learning, domain adaptation, and classifier learning
by optimizing the information maximization Liang et al. (2020) loss function as follows:

Lim = Lent(F ◦ C;Xt) + Ldiv(F ◦ C;Xt) (10)

where Lent means entropy loss to explore the possible samples while Ldiv denotes the diverse loss
to avoid the same one-hot encoding. With the above approaches, we can achieve the final total object
loss:

Ltotal = Lim + αLcst + βLcmk , (11)

where α and β are the balance factor to control each loss item.

3 EXPERIMENTS

3.1 DATASETS AND IMPLEMENTATION DETAILS

Office-31 Saenko et al. (2010) is a standard small-sized DA benchmark, which contains 4,652 im-
ages with 31 classes from three domains (Amazon (A), DSLR (D), and Webcam (W)). Office-
Home Venkateswara et al. (2017) is a challenging medium-sized benchmark, which consists of
15,500 images with 65 classes from four domains (Artistic images (Ar), Clip Art (Cl), Product im-
ages (Pr), and Real-World images (Rw)). VisDA-C Peng et al. (2017) is a challenging large-scale
Synthetic-to-Real dataset that focuses on the 12-class object recognition task. The source domain
contains 152 thousand synthetic images generated by rendering 3D models while the target domain
has 55 thousand real object images sampled from Microsoft COCO.

Our method is based on the ViT-base/16 and Deit-base/16 1, pre-trained on ImageNet-1k. The input
size of the image in our experiments is 224× 224, and each image is split into 16 patches. Besides,
the head account in each layer of our backbone is 12. The learning rate for Office-31 and Office-
Home is set to 1e-2, while for VisDA-C is 1e-3. The training epoch is set to 100 and the whole
process is optimized by stochastic gradient descent (SGD) with a momentum of 0.9 and weight
decay 1e-3. The batch size is 64 by default. The trade-off parameters α, β, and τ are set as 0.3, 0.1,
and 0.07, respectively. All experiments are conducted with PyTorch on NVIDIA 3090 GPUs.

3.2 BASELINES AND COMPARISON METHODS

We compare the proposed approach with the state-of-the-art methods mainly under the closed-set
unsupervised SFDA. For the closed-set DA, the compared methods include source-free methods of
ResNet-50 and ResNet-101 backbones: SFDA Kim et al. (2021), SHOT Liang et al. (2020), 3C-
GAN Li et al. (2020), A2Net Xia et al. (2021), G-SFDA Yang et al. (2021b), SFDA-DE Ding et al.
(2022), TransDA Yang et al. (2021a), and our source-free methods of ViT backbone: Source-only,
ViT-SHOT, ViT-base, Deit-SHOT, and Deit-base.

Our ViT-Base and Deit-base backbones are compared with the ResNet-50 He et al. (2016) backbone
on small-sized and medium-sized datasets, i.e. Office-31 and Office-Home. For the sake of fairness,
we compare with ResNet-101 on the large-scale dataset, i.e. VisDA-C. For each benchmark, we
exploit the self-supervised training loss Lself as our baseline. ‘Source-only’ represents exploiting
the whole source model for target label prediction without domain adaptation.

1https://github.com/huggingface/pytorch-image-models/tree/main/timm
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Table 1: Accuracy (%) of different methods of unsupervised SFDA in Office-31 dataset.
Method S.F. A → D A→ W D→ A D → W W →A W → D Avg.

ResNet-50 backbone
Source-only He et al. (2016) − 68.4 96.7 99.3 68.9 62.5 60.7 76.1
SHOT Liang et al. (2020) ✓ 94.0 90.1 74.7 98.4 74.3 99.9 88.6
SHOT++ Liang et al. (2021) ✓ 94.3 90.4 76.2 98.7 75.8 99.9 89.2
3C-GAN Li et al. (2020) ✓ 92.7 93.7 75.3 98.5 77.8 99.8 89.6
A2Net Xia et al. (2021) ✓ 94.5 94.0 76.7 99.2 76.1 100 90.1
SFDA-DE Ding et al. (2022) ✓ 96.0 94.2 76.6 98.5 75.5 99.8 90.1
TransDA Yang et al. (2021a) ✓ 97.2 95.0 73.7 99.3 79.3 99.6 90.7

ViT backbone
Source-only − 88.0 90.1 71.5 95.2 73.4 99.2 86.2
G-SFDA (ViT-base)∗ ✓ 95.6 96.4 79.6 98.1 78.3 99.6 91.3
SHOT++ (ViT-base)∗ ✓ 96.2 95.7 79.6 99.0 80.7 99.8 91.8
AudoFormer (ViT-base) ✓ 97.8 97.6 81.7 99.3 81.7 99.8 93.0

DeiT backbone
Source-only − 88.8 88.9 70.4 96.6 74.0 99.0 86.3
G-SFDA (DeiT-base)∗ ✓ 95.6 96.4 79.6 98.1 78.3 99.6 91.3
SHOT++ ( DeiT-base)∗ ✓ 96.4 97.2 80.8 98.7 79.8 99.6 92.1
AudoFormer (DeiT-base) ✓ 97.6 96.9 83.0 99.1 82.8 99.8 93.2
The results marked by ‘∗’ come from our re-implementations. The rows of gray background are the best performance.

3.2.1 RESULTS OF OFFICE-31

As can be seen from Table 1, For the ResNet-50 approaches in source-free settings, such as SHOT,
SHOT++, 3C-GAN, A2Net, SFDA-DE, and TransDA, the best performance of these approaches
can achieve around 90%, which demonstrates SFDA can achieve good performance even in the
scenario without source data. At the bottom of Table 1 are our AudoFormer, a variant of ViT-
base and DeiT-base models, which significantly outperform previously published state-of-the-art
approaches, advancing the average accuracy from 93.0% and 93.2%. Obviously, in the source-free
setting, AudoFormer can outperform those methods based on the ResNet backbones. For a fair
comparison, we also implemented the state-of-the-art approaches of pseudo-label evaluation (i.e.,
SHOT++) and consistent neighbor (i.e., G-SFDA) on both ViT and DeiT backbones. From the
table, our method achieved improvements of 1.2 and 1.1 percentage points, respectively.

Table 2: Accuracy (%) of different methods of unsupervised SFDA on the Office-Home dataset.
Method S.F. Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

ResNet-50 backbone
Source-only He et al. (2016) − 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
SHOT Liang et al. (2020) ✓ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
G-SFDA Yang et al. (2021b) ✓ 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
A2Net Xia et al. (2021) ✓ 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
SFDA-DE Ding et al. (2022) ✓ 59.7 79.5 82.4 69.7 78.6 79.2 66.1 57.2 82.6 73.9 60.8 85.5 72.9
SHOT++ Liang et al. (2021) ✓ 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0
TransDA Yang et al. (2021a) ✓ 67.5 83.3 85.9 74.0 83.8 84.4 77.0 68.0 87.0 80.5 69.9 90.0 79.3

ViT backbone
Source-only − 51.4 81.1 85.4 73.6 82.2 83.0 73.6 50.8 87.2 78.2 50.1 86.4 73.6
G-SFDA (ViT-base)∗ ✓ 63.9 81.0 84.5 73.3 82.3 82.5 73.6 62.6 85.1 78.1 64.7 87.2 76.6
SHOT++ (ViT-base)∗ ✓ 68.7 87.2 88.4 79.0 87.7 93.1 78.8 59.0 89.7 81.3 59.2 90.1 80.2
AudoFormer (ViT-base) ✓ 64.3 87.8 86.3 82.5 91.8 88.4 80.3 60.8 88.9 82.5 76.8 90.5 81.7

DeiT backbone
Source-only − 56.7 77.3 83.0 68.3 74.6 78.0 67.2 53.5 82.8 74.0 55.4 84.0 71.2
G-SFDA (Deit-base)∗ ✓ 65.1 82.2 85.6 73.6 80.4 82.0 75.4 62.7 85.3 79.0 65.4 87.5 77.0
SHOT++ (Deit-base)∗ ✓ 60.3 86.6 87.5 82.0 89.8 89.0 80.7 62.1 89.6 82.6 77.1 90.5 81.5
AudoFormer (DeiT-base) ✓ 70.3 88.7 90.0 83.1 90.2 89.9 80.1 62.9 90.5 81.8 74.3 92.5 82.9

3.2.2 RESULTS OF OFFICE-HOME

According to the results on the Office-Home dataset shown in Table 2, exploiting the ViT-backbone
and DeiT-backbone directly to evaluate the target domain benchmark before adaptation (i.e., Source-
only) can obtain a score of 73.6% and 71.2% respectively, while that of the ResNet-50 backbone
is only 46.1%. The best source-free result is 79.3% gotten by TransDA. In comparison, the perfor-
mance of our AudoFermor is 81.7% in the source-free setting, surpassing the TransDA by 2.4%,
which proves the necessity of exploiting the consistent strategy of global attention in domain adap-
tation. For the TransDA approach, although it combines the advantages of ResNet and Transformer,
our performance is still better than its performance in terms of average. Besides, in the same setting,
the SHOT++ and G-SFDA exploiting the ViT-base backbone can achieve an average score of 76.6%
and 80.2%. While the best performance of our AudoFormer can achieve a score of 81.7. Likewise,
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when exploiting the DeiT-backbone, the variant AudoFormer can also outperform the state-of-the-art
by 1.4%, demonstrating its effectiveness.

3.2.3 RESULTS OF VISDA-C

As shown in Table 3, we mainly compare the results of SFDA on the ResNet-101 backbones due
to its super performance. First, we notice that the source model with the ViT backbone surpasses
that with the ResNet-101 backbone by 27.5%. This shows the superiority of vision transformers on
DA. Therefore, for CNN-based methods, a more rational design is needed. The best performance of
source-free ResNet-101 approach SHOT++ on the VisDA-C dataset achieves an average accuracy
of 87.3%, which outperforms the other result of SFDA-DE and G-SFDA. However, the performance
of our AudoFormer both exploiting Deit-base and ViT-base can easily outperform those methods of
ResNet-101 backbone. For the SHOT++, if directly exploiting the settings of ViT-base and DeiT-
base, they can achieve a limited improvement, e.g., for both settings, their combination only can
improve the baseline by 0.3 and 0.6, respectively. When exploiting the AudoFormer, our approach
can improve the SHOT++ by 0.5 and 0.9 respectively, showing its performance. Therefore, we argue
that our approach can extract additional information from the auxiliary domain to compensate for
the invariable feature representation while our consistency strategy based on the auxiliary domain
can provide some improvement for the progress of domain adaptation.

Table 3: Accuracy (%) of different methods of unsupervised SFDA in VisDA-C dataset.
Method S.F. plane bicycle bus car horse knife motor person plant skate train truck Avg.

ResNet-101 backbone
Source-only He et al. (2016) − 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
SFDA Kim et al. (2021) ✓ 86.9 81.7 84.6 63.9 93.1 91.4 86.6 71.9 84.5 58.2 74.5 42.7 76.7
3C-GAN Li et al. (2020) ✓ 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
SHOT Liang et al. (2020) ✓ 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
TransDA Yang et al. (2021a) ✓ 97.2 91.1 81.0 57.5 95.3 93.3 82.7 67.2 92.0 91.8 92.5 54.7 83.0
A2Net Xia et al. (2021) ✓ 94.0 87.8 85.6 66.8 93.7 95.1 85.8 81.2 91.6 88.2 86.5 56.0 84.3
G-SFDA Yang et al. (2021b) ✓ 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
SFDA-DE Ding et al. (2022) ✓ 95.3 91.2 77.5 72.1 95.7 97.8 85.5 86.1 95.5 93.0 86.3 61.6 86.5
SHOT++ Liang et al. (2021) ✓ 97.7 88.4 90.2 86.3 97.9 98.6 92.9 84.1 97.1 92.2 93.6 28.8 87.3

ViT backbone
Source-only − 96.7 69.8 74.7 76.0 86.0 28.2 82.7 16.5 63.9 90.0 93.4 14.7 66.1
G-SFDA (ViT-base)∗ ✓ 96.5 93.7 85.9 74.9 96.4 97.0 86.0 61.1 89.6 96.3 94.3 58.9 85.8
SHOT++ (ViT-base)∗ ✓ 97.3 93.4 86.4 76.6 96.2 96.9 85.2 88.0 93.1 89.1 92.1 57.7 87.6
AudoFormer (ViT-base) ✓ 97.5 93.4 87.4 76.8 95.8 97.1 85.7 88.8 94.6 88.8 88.1 60.5 87.8

DeiT backbone
Source-only − 97.7 36.2 84.3 61.7 69.2 45.3 95.3 10.4 76.7 41.1 93.7 29.1 61.7
G-SFDA (DeiT-base)∗ ✓ 98.1 87.1 88.0 70.3 95.7 98.9 93.9 67.8 94.9 83.5 94.5 65.9 86.6
SHOT++ (DeiT-base)∗ ✓ 98.3 88.7 88.2 71.3 96.1 98.1 94.9 83.0 94.9 88.1 94.6 58.4 87.9
AudoFormer (DeiT-base) ✓ 98.9 86.6 88.6 72.3 98.1 98.1 95.9 83.0 94.1 98.1 94.6 50.4 88.2

3.3 CONCLUSION

In this paper, we propose a novel approach AudoFormer with a consistent auxiliary domain. The
main innovations of AudoFormer are attributed to three technical components: auxiliary domain,
consistency strategies, and CMK-MMD. AudoFormer with an auxiliary domain can achieve aux-
iliary discriminative representations, while multiple consistent strategies can dynamically evaluate
the pseudo labels for self-supervised learning and distinguish source-like easy samples and target-
specific hard samples for SFDA. Besides, the CMK-MMD is exploited to align the source-like do-
main and target-specific domain. The experimental results demonstrate the effectiveness of our
proposed approaches.
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