
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EQUIVARIANT CNNS VIA HYPERNETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In geometric deep learning, numerous works have been dedicated to enhancing
neural networks with the ability to preserve symmetries, a concept known as
equivariance. Group Equivariant Convolutional Networks (G-CNNs) achieve
rotation and reflection equivariance on Convolutional Neural Networks (CNNs).
While showing a significant improvement when processing rotation-augmented
datasets such as randomly rotated MNIST, training G-CNNs on a dataset with
little rotational variation, such as regular MNIST, typically leads to a performance
drop compared to a regular CNN. In this study, we first empirically observe the
performance imbalance across different variation of MNIST in G-CNNs, and
discuss how the G-CNN filters is a contributing factor to this imbalance. To avoid
such imbalance, we propose a Hypernetwork-based Equivariant CNN (HE-CNN) to
generate CNN filters that inherently exhibit rotational equivariance without altering
the main network’s CNN structure through the use of a hypernetwork. We prove
that these generated filters grant the equivariance property to a regular CNN main
network. Empirically, HE-CNN outperforms G-CNNs and achieves comparable
performance to advanced state-of-the-art G-CNN-based methods on both types of
datasets, with and without rotation augmentation.

1 INTRODUCTION

Convolutional neural networks (CNNs) are effective and prevalent tools for computer vision tasks.
When a specific area of an image is translated to a different location, the convolution operation
inherently makes the extracted feature translate similarly. This ability to comprehend and preserve
translation is known as translation equivariance, and general equivariance is highly significant in
deep learning. Wood & Shawe-Taylor (1996) emphasize that it is a central problem to design neural
networks that exhibit invariance or equivariance to representations in machine learning.

Group Equivariant Convolutional Neural Network (G-CNN), introduced by Cohen & Welling (2016),
is one of the most popular equivariant CNN structure. The convolution operation is modified to
equivariant to rotations, translations, and reflections. The equivariance property of G-CNN enables
effective handling of data with symmetries.

0

25

50

75

100

Train and Test

On MNIST

Train and Test

On R-MNIST

CNN Z4-CNN HE-CNN𝐿

Figure 1: Performance(%) of CNN,
G-CNN and HE-CNNL trained and
tested on different MNIST varia-
tions.

Despite the advantages of equivariance, the trade-off of G-
CNN is that it may underperform on datasets with minimal
rotational variation. To demonstrate this trade-off, we train a
small CNN (3k parameters) and a G-CNN (12.5k parameters)
on two datasets: the original MNIST dataset (Deng, 2012) and
a variant of MNIST augmented by random rotations, denoted
by R-MNIST (Larochelle et al., 2007). Each model is evaluated
on the test set corresponding to its training dataset, and the per-
formances are shown in Figure 1. CNN outperforms G-CNN
on the original MNIST, while G-CNN outperforms CNN on
the R-MNIST. Additionally, we observe that the performance
of G-CNN on the R-MNIST is much lower than CNN on the
original MNIST.1 This imbalance of performance across differ-
ent datasets can limit the expressive power and generalization
capability of G-CNN.

1Experimental details and more comprehensive comparisons are presented in Section 5.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To achieve equivariance without the discussed trade-offs, a novel alternative is needed that does not
rely on G-CNN filters, where achieving equivariance depends on using all rotated versions of the
same filter. Such alternative is possible when the parameters of the convolutional layers are dependent
on the inputs: if a single convolutional filter can inherently rotate as the input rotates, the extracted
feature will be equivariant to these rotations. Therefore, we propose a novel Hypernetwork-based
Equivariant CNN (HE-CNN) to achieve equivariance, generating filters that rotate as inputs rotate.
Specifically, HE-CNN consists of a dynamic hypernetwork and a main network. The main network
is chosen to be a general CNN. The dynamic hypernetwork generates input-dependent parameters
for the main network, composed of two components: a non-equivariant parameter pieces (NEP)
generator and a novel module named equivariant combiner. The NEP generator generates parameter
pieces of entire parameters. The equivariant combiner, abbreviated as equi-combiner, combines the
parameter pieces by averaging the output of all rotated versions of inputs to form full parameters with
the ability to follow rotations on the inputs.

Theoretically, we demonstrate that the proposed HE-CNN confers the equivariance property to
non-equivariant CNN main network. We also provide a light version, denoted by HE-CNNL, for
efficient implementation. Empirically, we show such equivariance without G-CNN filters enables
HE-CNN to outperform base G-CNNs on datasets with and without rotation augmentation, while
achieving performance comparable to advanced state-of-the-art G-CNN-based methods. As shown in
Figure 1, a small HE-CNN with 11.5k parameters achieves comparable performance to the CNN on
the original MNIST, while maintaining a high accuracy on the R-MNIST dataset.

Our main contribution can be summarized as follows.

1. Theoretically, we propose an alternative way to achieve equivariance: instead of constraining the
filters, equivariance is achieved through input-dependent parameters.

2. We propose the HE-CNN to achieve the equivariance via a hypernetwork, and provide a light
version HE-CNNL for more efficient implementation.

3. Extensive experiments demonstrate the effectiveness of the proposed HE-CNN over base G-CNN.

2 RELATED WORK

G-CNNs (Cohen & Welling, 2016) are introduced as one of the earliest adaptation of general
equivariance into CNN, and have been the backbone of many equivariant image processing neural
networks, including steerable CNNs (Cohen & Welling, 2017; Weiler et al., 2018) and spherical
CNNs (Cohen et al., 2018; Salihu et al., 2024), with several applications such as domain adaptation
(Zhang et al., 2022), pose estimation (Howell et al., 2023; Li et al., 2021), and so on.

One approach to make non-equivariant model equivariant is the canonicalization method (Kaba et al.,
2023; Mondal et al., 2023). The equivariance in the canonicalization method is achieved through a
G-CNN based canonicalization network, learning to rotate the input before feeding into the frozen
pretrained model.

Frame-averaging (Puny et al., 2021) approximates equivariance in models by averaging non-
equivariant models over sub-frames of a group. Partial Equivariance (Romero & Lohit, 2022)
learns beneficial symmetries from the data distribution and retains only these symmetries in G-CNN
networks. In exchange for improved efficiency, both methods lose strict equivariance.

Hypernetwork, initially introduced by Ha et al. (2016), provides an alternative approach to train a
neural network. It has been used in federated learning (Shamsian et al., 2021), few-shot learning
(Sendera et al., 2023; Yin et al., 2022), continual learning (Hemati et al., 2023) and so on, due to
its versatility and parameter-efficiency. The network designated for training is known as the main
network. The network responsible for generating the parameters of the main network is referred to as
the hypernetwork. If the hypernetwork generates input-dependent parameters for the main network,
we call it a dynamic hypernetwork, and otherwise it is static. The combination of a main network and
a hypernetwork is referred to as a full network in this paper.

For hypernetworks related to equivariance, Garrido et al. (2023) use a hypernetwork for parameter
sharing in equivariant models, not for achieving equivariance. To the best of our knowledge, there is
no work using hypernetworks to achieve the equivariance on regular CNNs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Load

generated

parameters

Dynamic Hypernetwork

NEP

generator

Parameter pieces

Equi-

Combiner

Convolutional

layers

Linear layer

Convolutional filters

Linear weight matrix

Flatten

Output

Main Network

Figure 2: An overview of the HE-CNN architecture. All learnable parameters lie in the NEP generator.

3 PRELIMINARY

In this section, we give a brief definition of groups and representations, and a comprehensive definition
can be found in Section A.1. For a set G with a operation ∗, (G, ∗) or simply G is a group if all
following properties are satisfied: ∗ is associative, G has an identity element, and every element has
an inverse. Given G and a vector space V , a representation ρ on V is a mapping on G, where every
ρ(g) is a linear map on V for g ∈ G. Furthermore, ρ(g ∗ g′) = ρ(g) ◦ ρ(g′) for any g, g′ ∈ G, where
◦ denotes function composition. A representation ρ is called a trivial representation if for any g ∈ G,
ρ(g)x = x for all x ∈ V . If ρ is fixed and clear from the context, ρ(g)x can be simply shorten to gx.

The group G and representation are fixed when designing a neural network based on the desired
symmetries for given tasks. Now we can define equivariance and invariance in deep neural networks.
Definition 1. Let f denote a deep neural network or a single layer in it. For two representations
ρ1 and ρ2, we say f is (G-)equivariant if for any input x, we have ρ2(g)f(x) = f(ρ1(g)x) for any
g ∈ G. If ρ2 is the trivial representation, then we say f is (G-)invariant. That is, f(x) = f(ρ1(g)x).

4 METHODOLOGY

Prior to the introduction of the proposed HE-CNN, we introduce the notation used in the proposed HE-
CNN and adapt the definition of equivariance in this setting. When utilizing hypernetwork on a main
neural network f , the input space is denoted by X , and the weight space in neural networks is denoted
by Ω. We denote a dynamic hypernetwork by w : X → Ω. For any input x ∈ X , the corresponding
generated weight is w(x), and fw(x) refers to the main network that loads w(x) as its parameters.
The full network is denoted by fw(·)(·), or simply fw, which maps input x to fw(x)(x). Within the
context of dynamic hypernetworks, fw(·)(·) is G-equivariant if ρ2(g)fw(x)(x) = fw(ρ1(g)x)(ρ1(g)x),
and invariant if ρ2 is the trivial representation. With the above notations, in the following sections,
we present the proposed HE-CNN model.

4.1 THE ARCHITECTURE

We assume input images are square-shaped.2 As illustrated in Figure 2, the proposed HE-CNN con-
sists of a main network f and a dynamic hypernetwork w. The main network f of HE-CNN
consists of several convolutional layers, a single flatten layer, several linear layers, and some
activation/pooling/batch-normalization layers in between. As the main network CNN is already
equivariant to translation, we only need rotational and reflectional equivariance. We first fix the group
G to be (Z4,+mod 4) , the group of 90-degree rotations. More general group of rotations, reflections
are discussed in Section 4.4. We aim to achieve equivariance on the full network fw, combining f
with the input-dependent parameters generated by a dynamic hypernetwork w. We summarize our
objectives in the following definition.
Definition 2. A neural network f is w-based equivariant or hypernetwork-based equivariant if the
following conditions hold:

1. For general parameters γ, fγ is not equivariant.

2Due to their correspondence with rotations, input images of equivariant structures are typically selected to
be square-shaped (Cohen & Welling, 2016).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2. When using w to generate input-dependent parameters, fw(·)(·) is equivariant to G.

In other words, f is w-based equivariant if w grants equivariance to non-equivariant main network.
The output of w is referred to as the equivariant parameters.

The objective of the proposed HE-CNN is to ensure that w generates equivariant parameters. To
achieve that, w consists of two components. The first component is a non-equivariant parameter
pieces generator (NEP generator). The NEP generator is responsible of generating approximately
1/4 of the total parameters, including filters in convolutional layers and weight matrices for linear
layers. The details for each case are introduced in the next two sections. The NEP generator can be
any non-equivariant neural network, and our implementation uses regular CNNs. Additionally, we
expect it to be non-equivariant to avoid collapsing to invariant filters as demonstrated in Section D.1.

When given an input image, we collect the four 90◦-rotated versions of it and send them to the NEP
generator, resulting in four parameter pieces. Then, the four parameter pieces are fed into the second
component, the equivariant combiner (equi-combiner), to assemble parameter pieces to get full
parameters that could achieve the equivariance. The design of the equi-combiner is outlined in the
following two sections, which correspond to two cases: convolutional layers and linear layers.

Recall that most G-CNN designs (Cohen & Welling, 2016; Worrall et al., 2017; Wang et al., 2022)
extracts equivariant features in the convolutional layers and aiming for invariance in the final classifi-
cation. We adapt the same design goal in HE-CNN: For the convolutional layers, the objective of the
equi-combiner is to ensure the equivariance to rotations. For linear layers, the equi-combiner is to
generate parameters so that the final output is invariant.

4.2 HYPERNETWORK FOR CONVOLUTIONAL LAYERS

𝑎1 𝑎2 𝑎3𝑎0

𝑎𝑟
1 𝑎𝑟

2 𝑎𝑟
3𝑎𝑟

0
𝑎𝑟
0 𝑎𝑟

1

𝑎𝑟
3 𝑎𝑟

2

Final Filter

Rotate ↺
Accordingly

↻

Figure 3: A visualization of the
equi-combiner for a 4×4 filter.

Without loss of generality, in the following, we present the
design of the hypernetwork that generates parameters for each
convolutional layer f .

The group Z4 has four elements: 0, 1, 2, and 3, each corre-
sponding to 0◦, 90◦, 180◦ and 270◦. The representation ρ(g) is
to perform counter-clockwise rotations corresponding to g on
input image x. For all the convolutional layers, we let both ρ1
and ρ2 in the definition of equivariance to be the same ρ. The
NEP generator is denoted by N .

For the convolutional layer in f with Cin input channels, Cout
output channels, and the filter dimension K, the weight of the
convolution filter is in a shape of (Cout, Cin,K,K) and the bias
is in shape (Cout). The output shape of the NEP generator is (Cout, Cin, ⌈K/2⌉, ⌈K/2⌉)+(Cout), where
the first part is for parameter pieces of convolution filters, the second part is for the bias, and ⌈·⌉
denotes the ceiling function. Accordingly, the NEP generator is denoted by Nfilters(x) for parameter
pieces of convolutional filters and Nbias(x) for biases.

We first study how to assemble full filters using Nfilters. We denote the input by x0, and denote its
90◦, 180◦ and 270◦ rotations as x1, x2 and x3 accordingly. Each of them is sent into Nfilters and the
corresponding outputs (i.e., parameter pieces) are denoted by ai = Nfilters(x

i) (i = 0, 1, 2, 3). The
equi-combiner takes each ai, and perform a counter-clockwise i · 90◦ rotation for each and get air.
As illustrated in Figure 3, we assemble them in a clockwise manner (i.e., a0r is on the top left, a1r is
on the top right, a2r is on the bottom right, and a3r is on the bottom left) to be the final filter.

For the case that K is odd, we follow the same process to get the final filter with size (K +
1,K + 1). Then, we average the middle ((K + 1)/2-th and (K + 3)/2-th) columns and rows into one.
Mathematically, the above generation process of weights in a filter via the NEP generator can be
formulated as

wfilters(x) =
∑
g∈Z4

g−1E
(
Nfilters(gx)

)
,

where E is the operation that places parameter pieces to the top left corner of a filter.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For the bias, we expect it to be identical for all the rotated versions of the input. To achieve that, we
simply average the outputs of {Nbias(x

i)}3i=0 as

wbias(x) =
1

4

∑
g∈Z4

Nbias(gx). (1)

For the hypernetwork designed above for convolutional layers, we show that it achieves the equivari-
ance on the full network in the following theorem.3

Theorem 1. Let f conv be a main neural network with several convolutional layers, and w be the
hypernetwork composed of the NEP generator and the equi-combiner as designed above. Then, for
all g ∈ Z4, we have

gf conv
w(x) (x) = f conv

w(gx)(gx).

For an input x, after all convolutional layers of the full network fw, we have an extracted features
{Bi}Cout

i=1 = f conv
w(x) (x). For simplicity, we study the case where Cout = 1, and consequently B =

f conv
w(x) (x). Prior to the next step in HE-CNN, B is flattened before sending into the following linear

layers of the full network. We denote the flatten operation by P , and the flattened vector is denoted
by v = P (B). If the dimension of B is d × d, the length of v is d2. For the general case where
Cout > 1, we generate linear weights for all channels with the same process, and concatenate them to
form the final linear weights.

4.3 HYPERNETWORK FOR LINEAR LAYERS

In this section, we first study the case when the main network f consists of only one linear layer. The
linear layer takes flattened vector v as the input, and output a vector of length m. In this case, the
weight matrix W of the main network f is in shape (m, d2). The hypernetwork w aims to generate
input-dependent W so that the output of fw is invariant, i.e., fw(P (B)) = fw(P (ρ(g)B)).

We adapt the rotation representation ρ for the square matrix in Section 4.2 to the flattened vectors v
using ρlin = PρP−1, where P−1 denotes the inverse of the flatten operation. The invariance property
of fw to be achieved can be rewritten as fw(v) = fw(ρlin(g)v).

Based on the following proposition, we can view ρlin as a collection of length-4 permutations,
which is illustrated on the top of Figure 4.

Proposition 2. For the representation ρlin on the vector v, the following statements hold:

1. Let v′ = ρlin(1)v be ρlin applied to v once For any entry vi of the vector v, there is a unique
permutation σ = (i, j, k, l) such that vi = v′j , vj = v′k, vk = v′l, and vl = v′i.

4

2. The representation ρlin can be viewed as a collection of all such length-4 permutations on
the indices of v.

Since v is of length d2, there are ⌈d2/4⌉ different length-4 permutations. The collection of all such
permutations is denoted by S. For any σ = (i, j, k, l) ∈ S, we denote the vector obtained after
permuting the indices of a vector v by σ(v) and the matrix obtained after permuting the column
vectors of a matrix W by σ(W). Then we have the following result.

Lemma 3. In the main network f with the input v of the linear layer and the corresponding weight
matrix W , for any given permutation σ, we have

σ(v)σ(W)⊤ = vW⊤, (2)

where superscript ⊤ denotes the transpose operation.

3Proofs of all theorems are presented in Section D.3.
4A permutation (i, j, k, l) is a circular expression, that is, (i, j, k, l) = (j, k, l, i) = (k, l, i, j) = (l, i, j, k).

Given i, the exact expressions of j, k, and l are given in Appendix D.2. The special case of an odd d is also
detailed in Appendix D.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

𝑖 𝑙

𝑗 𝑘

𝑖 𝑙 𝑗 𝑘

𝑐0 𝑐1 𝑐3 𝑐2

90∘ Rotation

on feature 𝐵

𝜎 on 𝑣

Equi-Combiner

𝑃−1𝑃

Figure 4: On the top, we visualize a permu-
tation σ = (i, j, k, l), and the correspond-
ing 90◦ rotation. On the bottom, the equi-
combiner permutes column vectors {ci}3i=0
reverse to σ.

Lemma 3 leads to a design goal for the hypernetwork
w that w should generate weight matrix W that per-
mutes its columns as v is permuted by σ and if the
linear layer in the main network f possesses a bias,
w should generate the same bias regardless of the
permutation.

With this design goal in mind, the NEP generator N
generates one column vector per permutation σ ∈ S,
and all of the bias, resulting in the output in shape
(m, ⌈d2/4⌉) + (m). We can again split the output into
Nweight(x) and Nbias(x) accordingly. Moreover, for
each σ ∈ S, the corresponding generated column
vector in Nweight(x) is denoted by Nσ(x). In the
following, we fix a σ = (i, j, k, l) ∈ S to better
illustrate the equi-combiner. We repeat the process
for all σ’s in S to form the final linear weight.

Given an input image x0, we again denote all rotated
versions by {xi}0≤i≤3. All the four versions {xi}
are fed into the NEP generator Nσ, and the output
column vectors are denoted by ci = Nσ(x

i) ∈ Rm×1

for i = 0, 1, 2, 3. The equi-combiner places {ci}3i=0
into the parameter matrix W with a direction reverse
to σ = (i, j, k, l) as

Wi = c0,Wl = c1,Wk = c2,Wj = c3, (3)

where Wn denotes the n-th column of W . The bottom of Figure 4 gives an illustration of such process.
Given four column vectors {ci}3i=0 and the corresponding length-4 permutation σ = (i, j, k, l), Eq.
(3) defines an operation Eσ−1 by placing each column vector ci into the corresponding column of
weight matrix W . The generation in the hypernetwork can be formulated as

wweight(x) =
∑
σ∈S

Eσ−1

(
{Nσ(gx)}g∈Z4

)
.

Similar to the convolutional case, we expect the bias to be the same for all inputs and so we collect
the output of the NEP generator and simply take the average as in Eq. (1).

For the above design, we prove the invariance property for the linear layer in the full network fw in
the following theorem.

Theorem 4. Let f lin be one single linear layer, and w be the hypernetwork defined above. Then,
w generates equivariant parameters that grants the invariance for f lin. That is, for all input x and
g ∈ Z4, we have f lin

w(x)(x) = f lin
w(gx)(gx).

According to Theorem 4, we show that the proposed HE-CNN could generate outputs invariant to
permutations after the first linear layer. For the rest of the linear layers (if any), all weights should be
the same regardless of the permutation to preserve the invariance of the full network fw. Therefore,
for any additional layers, the NEP generator outputs weight W for any of the rotated inputs {xi},
and then simply average all outputs to get the weight matrix.

4.4 EXTENSION TO GROUP D4n × R2

The proposed HE-CNN can achieve Z4-equivariance and CNN structure is already equivariant to
translation group R2. In this section, we extend to D4n, the group of reflections and 90/n

◦ rotations.
As discussed in Section 4 of Basu et al. (2023), given an arbitrary group G and a non-equivariant neural
network H , F (x) =

∑
g∈G ρ−1

g H(ρg(x)) is always equivariant regarding G. Based on this result,
we choose G to be the quotient group D4n/Z4. As the proposed fw(·) in previous sections is already
equivariant to Z4 and translation, it is easy to see that Fw(x)(x) =

1
n

∑
g∈D4n/Z4

g−1fw(gx)(gx) is
equivariant to D4n × R2 and it is named D4n-HE-CNN.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Testing accuracy (%) on various MNIST datasets.

Train on MNIST Train on R-MNIST

CNN Z4-CNN HE-CNNL CNN Z4-CNN HE-CNNL

MNIST 96.29 85.88 96.03 75.27 76.22 96.44
R-MNIST 34.81 50.02 76.94 73.08 75.51 96.32
90◦-MNIST 17.76 85.88 96.03 75.68 76.22 96.44
Average Performance 49.62 73.93 89.67 74.68 75.98 96.40
Equivariance difference 68.86 0.00 0.00 0.27 0.00 0.00

Parameter 3370 12522 11527 3370 12522 11527

4.5 LIGHT VERSION OF HE-CNNS

As discussed in Sec. 4.2 and 4.3, the NEP generator outputs a vector v ∈ Rl, where l is approximately
equal to a quarter of the total parameters in the main network. When the main network has a large
number of parameters, HE-CNNs could need a large NEP generator.

To reduce the size of the NEP generator, we first split v into {vi}Ti=1, where vi ∈ Rli contains
parameters for the i-th layer of the main network, and T is the total number of layers of the main
network. For the final linear decoder L in the hypernetwork w, we can replacing L with T smaller
linear layers {Li}Ti=1, each generating vi. Next, we replace each Li with two smaller linear decoders
that generate intermediate matrices ai ∈ R

√
li×r and bi ∈ Rr×

√
li ,5 where r ≪

√
li is a fixed

rank. The target vi is obtained by flattening the product of ai and bi. This approach could reduce
the parameter size of each Li from O(li) to O(

√
li). This light version of HE-CNN is denoted by

HE-CNNL, and an illustration is provided in Appendix C.1.

5 EXPERIMENT

In this section, we empirically evaluate HE-CNN. Models and datasets are outlined for each experi-
ment, with additional model and hyperparameter details specified in the Appendix C.

5.1 TRADE-OFF OF THE EQUIVARIANCE IN G-CNN

Models. To effective demonstrating HE-CNN solves the imbalanced performance of G-CNN,
models in this section are designed to be small. Specifically, (i) CNN is composed of three hidden
convolutional layers, followed with one linear classification layer. (ii) G-CNN has the same hidden
layers with G = Z4. (iii) HE-CNN’s main network is the same with CNN mentioned above. The
NEP generator has 2 convolutional layers, and the light version is used to match the parameter count.

Datasets. We conduct experiments on various MNIST datasets, including: (i) MNIST (Deng,
2012), containing 70,000 handwritten digits. (ii) R-MNIST (Larochelle et al., 2007), a variant of
the MNIST with random continuous rotations. (iii) 90◦-MNIST, which rotates every sample from
MNIST counter-clockwise by 90 degrees. Each dataset is split into a training set of 60,000 samples
and a test set of 10,000 samples. We train models separately on either MNIST or R-MNIST and
evaluate their performance across all three datasets. The average accuracy on all datasets is used to
demonstrate consistency across regular and rotated data.

Results. Table 1 shows the testing accuracy for different models. As can be seen, HE-CNNL

achieves the best accuracy in almost all settings, with the only exception when trained and tested
on MNIST, performing comparably (96.03%) to CNN. This empirically shows HE-CNNL achieves
equivariance without the discussed trade-off. To quantify equivariance, we introduce the equivariance
difference: the relative difference (difference divided by the sum) in accuracy between MNIST and
90◦-MNIST. HE-CNNL shows a 0% equivariance difference, demonstrating strict equivariance.

5If
√
li is not an integer, we use ⌈

√
li⌉ and truncate the extra from the final generated vector.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Generated

filters 𝑤(𝑥)

3-rd layer

7-th layer

0-th channel 0-th channel1-st channel 1-st channel 2-nd channel2-nd channel 3-rd channel 3-rd channel

Input Image 𝑥

Figure 5: For two images related through 90◦ rotations, we visualize some of their generated filters.

5.2 R-MNIST

Table 2: Classification Accuracy (%) on
the R-MNIST.

Model Accuracy (%)

Regular CNN(Schmidt & Roth, 2014) 96.02

Equivariance based Methods
P4-CNN (Cohen & Welling, 2016) 97.72

LieConv (Finzi et al., 2020) 98.76
Steerable-CNN (Weiler et al., 2018) 99.27

E2-CNN (Weiler & Cesa, 2019) 99.32
Sim2-CNN (Knigge et al., 2022) 99.41

Hypernetwork based Methods
Z4-HE-CNN 99.50

Z4-HE-CNNL 97.91
D8-HE-CNNL 98.01

D16-HE-CNNL 98.05

Models. We evaluate performance on R-MNIST using
regular-sized models to assess scalability and generaliza-
tion. For HE-CNN, the main CNN has seven convolutional
layers, followed by two linear layers. The NEP generator
is composed of three convolutional layers. We implement
both regular and light versions. For G-CNN, it is set to
have the same layers and channels as the main CNN of
HE-CNN, and the group is chosen to be P4 = D4 × R2.
We also include state-of-the-art steerable CNNs for com-
parison. All models are trained on the training set and eval-
uated on the testing set of R-MNIST. Results are shown
in Table 2.

Results. Based on Table 2, HE-CNN outperforms previ-
ous state-of-the-art methods, while HE-CNNL ensures better performance compared to the original
G-CNN method. However, we do not claim to be the new state-of-the-art method. Our model utilizes
9.68 million parameters, whereas Sim2-CNN uses only 864 thousand. It is a more fair comparison
between HE-CNNL with 51.9 thousand parameters and P4-CNN with 98.0 thousand parameters.
With just over half the parameters of the P4-CNN, HE-CNNL outperforms P4-CNN while utilizing
the same level of symmetry.

To verify that the generated filters rotate as the input rotates, we visualize the generated filters for a
randomly selected MNIST image x and its rotated version x′ in Figure 5. For every filter generated
from x (left), the corresponding filter from x′ (right) in the same layer and channel is precisely related
by a 90-degree rotation. Numerically, we rotate the generated filters of x′ back and compute the MSE
difference with filters generated by x. The value is negligibly small (less than 10−6).

5.3 CIFAR10/100

Models. Partial equivariance (Romero & Lohit, 2022), as discussed in Sec.2, learns additional
information about whether certain symmetries are beneficial, keeping only the beneficial symmetries
in the G-CNN filters. We use the same baseline models (Romero & Lohit, 2022), a residual network
composed of two residual blocks and a 13-layer CNN (Laine & Aila, 2017). For each baseline model,
we implement G-CNN and Partial Equivariance with two groups: Z4 and D8. For HE-CNN, we
implement both the regular and light versions, with three hidden convolutional layers. Models are
trained on the training set and evaluated on the test set.

Datasets. The CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009) consist of 60,000 labeled
32×32 color images. CIFAR-10 includes 10 object classes, with 6,000 images per class. CIFAR-100
contains 100 fine-grained classes, each with 600 images. Both datasets follow a 5:1 training-test split.

Results. As demonstrated in Table 3, HE-CNN shows comparable results with partial equivariance,
without the additional information required by partial equivariance. Both HE-CNN and HE-CNNL

exceed the performance of G-CNN, in both the residual network and the deeper CNN.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Classification Accuracy (%) on CI-
FAR10/100.

Symmetry Group Model CIFAR10 CIFAR100

R2 Residual network 83.11 47.99

Z4 ×R2 G-CNN 83.73 52.35
Partial equivariance 86.15 53.91

HE-CNN 85.99 53.56
HE-CNNL 83.92 52.80

D8×R2 G-CNN 85.55 55.55
Partial Equivariance 89.00 57.26

HE-CNN 88.67 56.95
HE-CNNL 86.34 55.73

R2 13-Layer CNN 91.21 67.14

Z4×R2 G-CNN 89.73 65.97
Partial Equivariance 92.28 69.83

HE-CNN 91.95 66.38
HE-CNNL 90.12 66.14

D8×R2 G-CNN 90.55 67.70
Partial Equivariance 91.99 70.80

HE-CNN 92.07 68.89
HE-CNNL 90.64 68.11

Table 4: Classification Accuracy (%) on STL10.

Model Accuracy (%)
Base WRN16/8 87.26

G-Equivariant Convolutions
Z4-WRN16/8 87.89
D8-WRN16/8 88.87

E(2)-Steerable Convolutions
WRN16/8-{D8D4D1} 90.20

Hypernetwork-based
Z4-HE-WRN16/8 90.08
Z4-HE-WRN16/8L 88.92
D8-HE-WRN16/8L 89.13

5.4 STL10

Models. To process larger images, we choose the base model as the wide residual network WRN16/8
by Zagoruyko & Komodakis (2016). For comparison, we replace all convolutional layers with G-
equivariant convolutions to get Z4-WRN16/8 and D8-WRN16/8. On STL10 classification, the current
state-of-the-art equivariant model is the E(2)-equivariant Steerable CNN (Weiler & Cesa, 2019).
Their model is denoted by WRN16/8-{D8D4D1}, with Dn denoting the group for steerable filters.

Datasets. The STL-10 dataset (Coates et al., 2011) is designed for unsupervised and semi-
supervised learning, featuring 13,000 labeled 96×96 color images across 10 classes and 100,000
unlabeled images. Our experiment is performed on the labeled images and splits the data into an
80-20 training-testing ratio.

Results. As demonstrated in Table 4, HE-CNN shows comparable performance with steerable
state-of-the-art models and consistently outperforms regular G-CNN, even with the light version.

5.5 ABLATION STUDY

Table 5: Classification Accuracy tested on
three different testing set. All models are
trained on the R-MNIST.

Performance (%) Z4-CNN HE-CNN Dynamic Z4-CNN

MNIST 76.22 96.44 76.19

R-MNIST 75.51 96.32 74.54

90◦-MNIST 76.22 96.44 76.03

Parameter 12522 11527 32964

In this section, we present an ablation study to eval-
uate the impact of our dynamic hypernetwork on
model performance. We train a Z4-CNN using a reg-
ular hypernetwork, directly generating its parameters.
We refer to this model as the Dynamic Z4-CNN. The
results, shown in Table 5, demonstrate that directly
applying a dynamic network shows no improvement
in accuracy. Instead, it eliminates the equivariance
property of Z4-CNN. This is caused by having dif-
ferent sets of parameters for any input and its rotated
version. Such non-equivariance hinders the effective utilization of direct dynamic hypernetworks in
equivariance studies and further highlights the significance of HE-CNN in generating dynamic filters
while preserving the equivariance property.

6 CONCLUSIONS

In this study, we propose a novel hypernetwork-based equivariant CNN as an alternative approach
to equivariance.We test HE-CNN on several benchmark datasets. Comparing to G-CNN based
state-of-the-art methods, our network showed either better or comparable results. We showed better
performance in all settings compared to the base G-CNN.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

There are no ethical concerns in this study.

REPRODUCIBILITY STATEMENT

The code is uploaded as supplementary material. Hyperparameters of all experiments are detailed in
Appendix C.3.

REFERENCES

Sourya Basu, Prasanna Sattigeri, Karthikeyan Natesan Ramamurthy, Vijil Chenthamarakshan, Kush R.
Varshney, Lav R. Varshney, and Payel Das. Equi-tuning: Group equivariant fine-tuning of pretrained
models, 2023.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudı́k (eds.), Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pp. 215–223, Fort Lauderdale, FL, USA, 11–13 Apr
2011. PMLR.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In Maria Florina Balcan
and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pp. 2990–2999, New York,
New York, USA, 20–22 Jun 2016. PMLR.

Taco S. Cohen and Max Welling. Steerable cnns. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012. doi:10.1109/MSP.2012.2211477.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 3165–3176. PMLR, 13–18 Jul
2020.

Quentin Garrido, Laurent Najman, and Yann LeCun. Self-supervised learning of split invariant
equivariant representations. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 10975–10996. PMLR, 2023.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106, 2016.

Hamed Hemati, Vincenzo Lomonaco, Davide Bacciu, and Damian Borth. Partial hypernetworks
for continual learning. In Sarath Chandar, Razvan Pascanu, Hanie Sedghi, and Doina Precup
(eds.), Conference on Lifelong Learning Agents, 22-25 August 2023, McGill University, Montréal,
Québec, Canada, volume 232 of Proceedings of Machine Learning Research, pp. 318–336. PMLR,
2023.

Owen Howell, David Klee, Ondrej Biza, Linfeng Zhao, and Robin Walters. Equivariant single view
pose prediction via induced and restriction representations. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 47251–47263. Curran Associates, Inc., 2023.

10

https://doi.org/10.1109/MSP.2012.2211477

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
Equivariance with learned canonicalization functions. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 15546–15566. PMLR, 23–29 Jul 2023.

David M. Knigge, David W. Romero, and Erik J. Bekkers. Exploiting redundancy: Separable group
convolutional networks on lie groups. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 11359–11386. PMLR, 2022.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio. An
empirical evaluation of deep architectures on problems with many factors of variation. In Pro-
ceedings of the 24th International Conference on Machine Learning, ICML ’07, pp. 473–480,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595937933.
doi:10.1145/1273496.1273556.

Xiaolong Li, Yijia Weng, Li Yi, Leonidas J Guibas, A. Abbott, Shuran Song, and He Wang. Leverag-
ing se(3) equivariance for self-supervised category-level object pose estimation from point clouds.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 15370–15381. Curran Associates, Inc.,
2021.

Arnab Kumar Mondal, Siba Smarak Panigrahi, Oumar Kaba, Sai Rajeswar Mudumba, and Siamak Ra-
vanbakhsh. Equivariant adaptation of large pretrained models. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 50293–50309. Curran Associates, Inc., 2023.

Omri Puny, Matan Atzmon, Heli Ben-Hamu, Edward James Smith, Ishan Misra, Aditya
Grover, and Yaron Lipman. Frame averaging for invariant and equivariant network design.
ArXiv, abs/2110.03336, 2021. URL https://api.semanticscholar.org/CorpusID:
238419638.

David W. Romero and Suhas Lohit. Learning partial equivariances from data. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 36466–36478. Curran Associates, Inc., 2022.

Driton Salihu, Adam Misik, Yuankai Wu, Constantin Patsch, Fabian Esteban Seguel, and Eckehard
Steinbach. DeepSPF: Spherical SO(3)-equivariant patches for scan-to-CAD estimation. In The
Twelfth International Conference on Learning Representations, 2024.

Uwe Schmidt and Stefan Roth. Shrinkage fields for effective image restoration. 2014 IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2774–2781, 2014.

Marcin Sendera, Marcin Przewieźlikowski, Jan Miksa, Mateusz Rajski, Konrad Karanowski, Maciej
Zieba, Jacek Tabor, and Przemysław Spurek. The general framework for few-shot learning by
kernel HyperNetworks. Machine Vision and Applications, 34(4):53, May 2023. ISSN 1432-1769.
doi:10.1007/s00138-023-01403-4.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
9489–9502. PMLR, 18–24 Jul 2021.

Rui Wang, Robin Walters, and Rose Yu. Data augmentation vs. equivariant networks:
A theory of generalization on dynamics forecasting. CoRR, abs/2206.09450, 2022.
doi:10.48550/ARXIV.2206.09450.

11

https://doi.org/10.1145/1273496.1273556
https://api.semanticscholar.org/CorpusID:238419638
https://api.semanticscholar.org/CorpusID:238419638
https://doi.org/10.1007/s00138-023-01403-4
https://doi.org/10.48550/ARXIV.2206.09450

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Maurice Weiler, Fred A. Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

Jeffrey Wood and John Shawe-Taylor. Representation theory and invariant neural networks. Dis-
crete Applied Mathematics, 69(1):33–60, August 1996. ISSN 0166-218X. doi:10.1016/0166-
218X(95)00075-3.

Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Harmonic
networks: Deep translation and rotation equivariance. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

Li Yin, Juan M Perez-Rua, and Kevin J Liang. Sylph: A Hypernetwork Framework for Incremental
Few-shot Object Detection. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9025–9035, New Orleans, LA, USA, June 2022. IEEE. ISBN 978-1-
66546-946-3. doi:10.1109/CVPR52688.2022.00883.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock
Richard C. Wilson and William A. P. Smith (eds.), Proceedings of the British Machine Vision
Conference (BMVC), pp. 87.1–87.12. BMVA Press, September 2016. ISBN 1-901725-59-6.
doi:10.5244/C.30.87.

Yivan Zhang, Jindong Wang, Xing Xie, and Masashi Sugiyama. Equivariant disentangled trans-
formation for domain generalization under combination shift. CoRR, abs/2208.02011, 2022.
doi:10.48550/ARXIV.2208.02011.

12

https://doi.org/10.1016/0166-218X(95)00075-3
https://doi.org/10.1016/0166-218X(95)00075-3
https://doi.org/10.1109/CVPR52688.2022.00883
https://doi.org/10.5244/C.30.87
https://doi.org/10.48550/ARXIV.2208.02011

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A ADDITIONAL DEFINITIONS

A.1 GROUPS AND REPRESENTATIONS

Definition 3. Let G be a set and ∗ be an operation. Then, (G, ∗) is a group if the following holds:

1. There exists a e ∈ G, such that for any g ∈ G, g ∗ e = e ∗ g = g. We call this e the identity.

2. For any element g ∈ G, there exists h ∈ G such that g ∗ h = h ∗ g = e. We call this the
inverse element, and denote it as −h or h−1 depending on the context of the operation.

3. G is closed under this operation. That is, for any g1, g2 ∈ G, g1 ∗ g2 is always in G.

4. For any g, h, k ∈ G, g ∗ (h ∗ k) = (g ∗ h) ∗ k.

After defining a group (G, ∗), it is common to simply refer to it as G when the operation is clear from
the context.
Definition 4. Given a group (G, ∗), a representation of G on a vector space V is a map ρ with inputs
in G. For any g ∈ G, ρ(g) is a linear map on V . Furthermore, ρ(g1 ∗ g2) = ρ(g1) ◦ ρ(g2), where ◦
denotes function composition. We denote the representation by (ρ, V) or simply ρ.

The definition of a group and representation might be a bit hard to understand without some back-
ground on abstract algebra. It is helpful to think of groups as a collection of symmetries, and
representation as an action of such symmetries on a vector space. Let us go through one example,
the cyclic group of order 4, (Z4,+mod 4). Readers with experience in group theory can skip the
following example section.

A.2 EXAMPLE CYCLIC GROUP: Z4

The group Z4 has four elements: {0, 1, 2, 3}, combined the operation of addition modulo four.
Comparing the modulo addition in Z4 with counter-clockwise rotations by multiples of 90 degrees,
one can see some similarity between them. For instance, 2+3 = 1 mod 4, and a vector ends up in the
same place after rotating 180 degrees and then 270 degrees, as it does after a 90-degree rotation. This
similarity is captured by a representation. Let V = {(x, y) | x, y ∈ R}, all 2D vectors. Our chosen ρ
maps g ∈ Z4 to a linear map on V which perform the corresponding rotation around the origin. For
instance, pick 2 ∈ Z4. For any (x, y) ∈ V , ρ(2) is a linear map that rotate (x, y) by 180 degrees, i.e.
ρ(2)(x, y) = (−x,−y). Formally, ρ(g)v =

(cos(gπ/2) − sin(gπ/2)
sin(gπ/2) cos(gπ/2)

)(x
y

)
and one can check that this

indeed satisfies the definition of a representation.

B ALTERNATIVE ATTEMPTS

In this section, we discuss several alternative designs for the hypernetwork and explain why we
choose not to implement them in our approach.

B.1 FORCING EQUIVARIANCE THROUGH NUMERICAL METHODS

Before deploying the equi-combiner, we tried to encourage equivariance on a full filter generated by
regular hypernetworks, by simply adding another rotation loss: During training, we rotate inputs and
compute their generated filters. We compute the MSE Loss between such filters and try to minimize
it. Denote the hypernetwork by w, then we can write the rotational loss as:

Lrot =
1

4

∑
g∈Z4

Lmse
(
w(gx), w((g + 1)x)

)
.

The performance is poor on 90 degree rotations even though the rotation loss dropped significantly.
The test accuracy never surpass 50% on MNIST. We hypothesize that numerical methods can

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: The classification accuracy (%) of HE-CNN and HE-CNNN .

R-MNIST CIFAR10 CIFAR100 STL10
Z4-CNN 97.72 83.73 52.35 87.89

Z4-HE-CNN 99.50 85.99 53.36 90.08
Z4-HE-CNNN 99.52 85.87 53.41 89.95

Z4-HE-CNNL 97.91 83.92 52.80 88.92

only achieve approximate equivariance in filters. However, this numerical approximation may be
insufficient due to the inherent sensitivity of the filters. This is the reason we need strict equivariance
guaranteed by our equi-combiner.

B.2 AVERAGING THE OUTPUTS OF A GENERAL HYPERNETWORK

As the name of our Equi-Combiner suggests, our initial design is to assemble smaller parameter
pieces to obtain equivariant filters. This design goal has led us to the current structure. However, it
is also a naive approach to simply average the outputs of a general hypernetwork from the rotated
inputs, and we denote such approach by Z4-HE-CNNN .

The comparison between Z4-HE-CNN and Z4-HE-CNNN is presented in Table 6. As can be seen,
the naive design did not yield better results than the current design, despite expanding the size of the
generated parameters by approximately four times. Considering the extra parameters and inference
time on the hypernetwork, we stick to our current design.

B.3 STATIC LINEAR LAYERS

After the first linear layer of the main network, the extracted feature are now invariant. Therefore,
HE-CNN can have static linear layers afterwards, while staying equivariant. However, optimizing
static layers to function effectively with dynamic parameters may pose challenges. To avoid this
potential issue and maintain a consistent network architecture, we have decided to retain the current
design.

C EXPERIMENTS DETAILS

C.1 ADDITIONAL ILLUSTRATION

Main

Network

Linear Decoder #2Linear Decoder #1

NEP Generator

… …

… …
Length

𝑟 × 𝑙𝑖

Reshape

𝑙𝑖 , 𝑟 and 𝑟, 𝑙𝑖

Length 𝑙𝑖

Multiply and Flatten

Generated

Parameters …

𝑖𝑡ℎ 𝐿𝑎𝑦𝑒𝑟

Equi-

Combiner

𝑁 Layers

Encoders

Figure 6: Visualization the light version on a single head
corresponding to the i-th layer of the main network.

Figure 6 is an illusion of the Light Ver-
sion of HE-CNNs. Instead of directly gen-
erating li amount of parameter for the i-
th layer, we utilize two smaller linear en-
coders instead.

C.2 TRAINING PROCESS

Given a fixed main network, we first ini-
tialize the NEP generator N . We choose a
CNN structure with output dimension de-
scribed in Sections 4.2 and 4.3. During
training, the original inputs are sent into the
combination of NEP generator and equiv-
ariant combiner to generate equivariant pa-
rameters. The main network f then loads
the equivariant parameters and process the
same input. We compute the chosen loss

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

between the output of fw and the label, and preform back propagation to update the learnable
parameters in the NEP generator.

When the inputs are in batch, our hypernetwork is indeed capable of generating parameters in batch.
However, for inputs in batch size b, we would have b corresponding parameters, thus b main networks.
This bijection can easily lead to GPU memories shortage when main network is large. We comprehend
this by the following: for each batch of inputs, we average them to get one single set of parameters,
used to process the batch of inputs. This significantly reduced the memory usage. However, due to
the average operation, our network is equivariant if the representation ρ(g) is applied on the whole
batch. For each experiment, we specify whether we use parameters in batch or averaged.

C.3 MODEL DETAIL FOR EACH EXPERIMENT

When expanding Z4-HE-CNN to a larger groups D4n, we only have to consider the extra angles
in the first quadrant on the unit circle {90/n ∗ i}n−1

i=0 . During training, we first train fw to be Z4

equivariant for the first half of the training process. Then, for input x, we collect all input version of
x by angles in {90/n ∗ i}n−1

i=0 , and sum their outputs by fw and take average as our final output.

During all experiments, we use the Adam optimizer. We noticed that it is common to observe
minimal change in training loss (especially in the light version) during the first 50-100 epochs,
with test accuracy typically beginning to rise after 150-250 epochs. We believe this arises from the
complexities associated with learning to generate parameters. Due to the sensitivity of the generated
parameters, we are very cautious about increasing the learning rate. If Adaptive average pooling layer
is present in the main network and the output shape is set to 1, we modify to 2 to demonstrate our
parameter generation for linear layers.

Next, we provide comprehensive details for our experiments. For the NEP generator of all cases, we
provide the detail of the convolutional layers of the generator. After all convolutional layers, features
are flatten and sent to a linear layer or several linear heads depending on whether light version is used.

For the first experiment where we compare CNN, Z4-CNN and HE-CNN, we choose a fairly small
model. Both CNN model and Z4-CNN model have 3 hidden layers with 16 hidden channels and 2 by
2 filters. We use the same CNN as our main network f . The NEP generator is chosen to 2 hidden
convolutional layers with 16 hidden channels, and the light version is utilized. We use the Adam
optimizer and choose the learning rate to be 0.001 for CNN and Z4-CNN, and 0.0002 for HE-CNN.
Batch size is set to 32.

For the second experiment on MNIST, the main network f is a CNN described in Cohen & Welling
(2016). It has seven convolutional layers, six of them has 20 channels with 3 by 3 filters, and the
last convolutional has 20 channels with 4 by 4 filter. Afterwards, f has two linear layers with
100 intermediate channels. For the NEP generator N in the hypernetwork w, we choose a 3-layer
convolution with [16,32,32] intermediate channels, [3,3,4] filter size and [2,2,1] stride. We set the
learning rate as 0.000075 and the batch size is set to 32. If the light version is utilized, our intermediate
rank r is set to 4.

For the experiment on CIFAR10/100, the residual main network is composed with 2 residual blocks of
32 channels, each with filter sizes 3, with additional pooling and batch normalizing layers. The main
13-layer CNN is exactly the same as in Laine & Aila (2017). In both scenarios, learning rates are set
to 0.000025. Since we average batch of inputs to get one set of parameters, we choose a smaller batch
size as 64 to lower the negative impact. When the light version is used, the intermediate rank r is set
to be 14. The NEP generator N is composed of 3-layer convolution with [32,64,64] intermediate
channels, with all filter sizes as 3 and stride as 2 for the last layer. ReLu, Batch normalization and
Max pooling layers with filter dimension as 2 and stride as 2 are inserted between convolutional
layers.

For the experiment on STL10, the main network is the wide residual network architecture. The
hypernetwork generates the convolutional and linear layer, keeping the others unchanged. The
learning rate is set to 0.000015 and batch size is 64. If the light version is used, the intermediate rank
r is chosen to be 20. The NEP generator N is composed of 4-layer convolution with [64,128,128,64]
intermediate channels, with all filter sizes as 3 and stride as 2 for the last layer. ReLu and Batch
normalization are inserted between convolutional layers. Additionally, we perform pooling after first
three convolutional layers, with kernel size as 2 and stride as 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D THEORY DETAILS AND PROOFS

D.1 REQUIRING NON-EQUIVARIANCE IN OUR PARAMETER GENERATOR

Generated

filters

0-th layer

3-rd layer

7-th layer

0-th channel 0-th channel 1-st channel

Non-Equivariant

Partial parameter

generator

Equivariant

Partial parameter

generator

1-st channel

Input:

Figure 7: Visualizing generated filters using different parameter generator. Filters on the left are ideal.
On the right it collapsed to invariance, i.e., all filters are equal to their rotated versions.

The requirement of non-equivariance is we do not want relations among generated air. If the parameter
generator is chosen to be equivariant, filters are rotational invariant as demonstrated on the right of
Figure 7, which significantly reduce the expressive power.

D.2 PERMUTATION DETAILS OF FLATTENED VECTORS

In this section, we provide the proof of Prop.2 and details of the length-4 permutations.

Proposition 2. For the representation ρlin on the vector v, the following statements hold:

1. Let v′ = ρlin(1)v be ρlin applied on v once. For any entry vi of the vector v, there is a unique
permutation σ = (i, j, k, l) such that vi = v′j , vj = v′k, vk = v′l, and vl = v′i.

2. The representation ρlin can be viewed as a collection of all such length-4 permutations on
the index of v.

Proof. Z4 is cyclic (i.e. generated by one element), so we only have to show our claim holds for
ρlin(1). For vi as i-th component in v, denote c = ⌊i/d⌋ and r as the remainder. These two corresponds
to the column and row pre-flatten accordingly. Let j = d(d− 1)− dc+ r. Then, v′j = vi. We repeat
this computation on j to get k and l.

From the properties of permutations, it is well-known that (i, j, k, l) = (j, k, l, i). This means the
starting at i or j ends up with the same permutation. Therefore, we prove the uniqueness.

When the length of v is not divisible by 4 (corresponding to an odd dimension d), the middle point
vz of v is unchanged. By a slight abuse of notation, we can also view the unchanged point as a
permutation (z, z, z, z). Based on Eq. (3), all generated column vectors ci are assigned into Wz . For
consistency, all four column vectors are averaged into one.

This allow us to say there is (d2 − 1)/4 + 1 amount of length-4 permutations. Therefore, the amount
of such permutations is d2/4 in general.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

𝑎0

𝜌 1 𝑎3 𝜌 1 𝑎0

𝐾𝑥 𝜌 1 𝐾𝑥 𝐾𝑦

𝜌 1 𝑏3

Same Equi-Combiner

Figure 8: If the 0-th piece is assigned to the top left, the assignment of the bottom left corner is fixed.

D.3 PROOFS OF THE MAIN THEOREMS

Theorem 1. Let f conv be a main neural network with several convolutional layers, and let w be the
hypernetwork composed of the NEP generator and the equi-combiner. Then, for all g ∈ Z4, we have

gf conv
w(x) (x) = f conv

w(gx)(gx).

Proof. In the first step of the proof, we show that the designed equi-combiner offers a unique method
for combining parameters that rotate as inputs rotates, up to the choice of placing the first piece a0.
Let {ai}{0,1,2,3} be the generated parameter pieces mentioned in Section 4.2.

We can assume the dimension of target filter d is even, as the odd case can be achieved by merging
the middle rows and columns of the even case.

Since Z4 is a cyclic group generated by 1, it suffice to prove the case of ρ(1), the 90-degree rotation.

Given an input image x0, let y0 = ρ(1)x0 = x1 be the 90-degree rotated version of x0. For each
input x0 and y0, we want to generate a filter for each, denoted by Kx and Ky. Our assumption is
Ky = ρ(1)Kx.

For x0, we denote all rotated version of input by x1, x2 and x3. Similarly, we denote rotated version
of y0 as yi for i = 1, 2, 3. Since y0 = x1, we know yi+1 = xi for all i = 1, 2, 3.

Given NEP generator N , denoted the output ai = N(xi) and bi = N(yi). Due to the relationship
between x and y, we also have bi = ai+1.

Now for the equi-combiner E, recall that it assigns the parameter pieces ai and bi to the filter Kx

and Ky accordingly, based on the index. Assume E assigns the 0-th parameter pieces on the top left
corner. Therefore, a0 is on the top left of Kx. By the assumption Ky = ρ(1)Kx, we know that the
bottom left corner is ρ(1)a0 = ρ(1)b3. Since E performs the same action based on index regardless
of a and b, we know that ρ(1)a3 goes to the bottom left corner as well. The process can be visualized
in 8.

If we keep repeating this process, we get that ρ(2)a2 goes to bottom left, ρ(3)a1 goes to the top right
corner. This is exactly the equi-combiner that we described, finishing the first part.

Combining the fact that the element-wise multiplication of two equal-sized square matrices remains
unchanged when both matrices are subjected to 90-degree rotations, we finish the proof of the
theorem.

For linear case, we have a fairly similar proof.
Theorem 4. Let f lin be one single linear layer and w be the hypernetwork in HE-CNN. Then, w
generate equivariant parameters that grants invariance to f lin. That is, for all input x and g ∈ Z4, we
have

f lin
w(x)(x) = f lin

w(gx)(gx).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. The proof is structured into three sub-statements:

Let {ci}{0,1,2,3} be the generated column vectors mentioned in Section 4.3. The following properties
hold:

1. Our equi-combiner guarantees filter rotation as the inputs rotate.

2. The order of combining is unique up to the choice of placing the first piece c0.

3. Let ρlin be the representation in Section 4.3. If f is a linear layer with input vector v, for any
g ∈ G, we have

f(v) = fw(ρlin(g)v)(ρlin(g)v).

The proof of the first and second statement is similar to the case of convolutional filters. For an input
x0 and a second input y0 = ρ(1)x0, we track the assignment of their generated column vectors.

The third statement directly follows from adding the same bias to both side of Eq. (2).

18

	Introduction
	Related Work
	Preliminary
	Methodology
	The Architecture
	Hypernetwork for Convolutional Layers
	Hypernetwork for Linear Layers
	Extension to General Cases
	Light Version of HE-CNNs

	Experiment
	Trade-off of the Equivariance in G-CNN
	R-MNIST
	CIFAR10/100
	STL10
	Ablation Study

	Conclusions
	Additional Definitions
	Groups and representations
	Example Group: Z4

	Alternative Attempts
	Forcing equivariance through numerical methods
	Averaging the outputs of a general hypernetwork
	Static Linear Layers

	Experiments Details
	Additional illustration
	Training process
	Model detail For each experiment

	Theory details and proofs
	Requiring Non-Equivariance in our Parameter generator
	Permutation details of flattened vectors
	Proofs of the main theorems

