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ABSTRACT

In geometric deep learning, numerous works have been dedicated to enhancing
neural networks with the ability to preserve symmetries, a concept known as
equivariance. Group Equivariant Convolutional Networks (G-CNNs) achieve
rotation and reflection equivariance on Convolutional Neural Networks (CNNG).
While showing a significant improvement when processing rotation-augmented
datasets such as randomly rotated MNIST, training G-CNNs on a dataset with
little rotational variation, such as regular MNIST, typically leads to a performance
drop compared to a regular CNN. In this study, we first empirically observe the
performance imbalance across different variation of MNIST in G-CNNs, and
discuss how the G-CNN filters is a contributing factor to this imbalance. To avoid
such imbalance, we propose a Hypernetwork-based Equivariant CNN (HE-CNN) to
generate CNN filters that inherently exhibit rotational equivariance without altering
the main network’s CNN structure through the use of a hypernetwork. We prove
that these generated filters grant the equivariance property to a regular CNN main
network. Empirically, HE-CNN outperforms G-CNNs and achieves comparable
performance to advanced state-of-the-art G-CNN-based methods on both types of
datasets, with and without rotation augmentation.

1 INTRODUCTION

Convolutional neural networks (CNNs) are effective and prevalent tools for computer vision tasks.
When a specific area of an image is translated to a different location, the convolution operation
inherently makes the extracted feature translate similarly. This ability to comprehend and preserve
translation is known as translation equivariance, and general equivariance is highly significant in
deep learning. |[Wood & Shawe-Taylor| (1996) emphasize that it is a central problem to design neural
networks that exhibit invariance or equivariance to representations in machine learning.

Group Equivariant Convolutional Neural Network (G-CNN), introduced by [Cohen & Welling| (2016)),
is one of the most popular equivariant CNN structure. The convolution operation is modified to
equivariant to rotations, translations, and reflections. The equivariance property of G-CNN enables

effective handling of data with symmetries.
100

Despite the advantages of equivariance, the trade-off of G-
CNN is that it may underperform on datasets with minimal
rotational variation. To demonstrate this trade-off, we train a

small CNN (3k parameters) and a G-CNN (12.5k parameters) s

on two datasets: the original MNIST dataset (Deng},2012)) and

a variant of MNIST augmented by random rotations, denoted %
by R-MNIST (Larochelle et al.|[2007)). Each model is evaluated

on the test set corresponding to its training dataset, and the per-  ° Train and Test Train and Test
formances are shown in Figure[I] CNN outperforms G-CNN OnMNIST OnRMNIST
on the original MNIST, while G-CNN outperforms CNN on SN FZ4-CNN = HE-CNN,

the R-MNIST. Additionally, we observe that the performance
of G-CNN on the R-MNIST is much lower than CNN on the
original MNISTE| This imbalance of performance across differ-
ent datasets can limit the expressive power and generalization
capability of G-CNN.

Figure 1: Performance(%) of CNN,
G-CNN and HE-CNN/, trained and
tested on different MNIST varia-
tions.

"Experimental details and more comprehensive comparisons are presented in Section
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To achieve equivariance without the discussed trade-offs, a novel alternative is needed that does not
rely on G-CNN filters, where achieving equivariance depends on using all rotated versions of the
same filter. Such alternative is possible when the parameters of the convolutional layers are dependent
on the inputs: if a single convolutional filter can inherently rotate as the input rotates, the extracted
feature will be equivariant to these rotations. Therefore, we propose a novel Hypernetwork-based
Equivariant CNN (HE-CNN) to achieve equivariance, generating filters that rotate as inputs rotate.
Specifically, HE-CNN consists of a dynamic hypernetwork and a main network. The main network
is chosen to be a general CNN. The dynamic hypernetwork generates input-dependent parameters
for the main network, composed of two components: a non-equivariant parameter pieces (NEP)
generator and a novel module named equivariant combiner. The NEP generator generates parameter
pieces of entire parameters. The equivariant combiner, abbreviated as equi-combiner, combines the
parameter pieces by averaging the output of all rotated versions of inputs to form full parameters with
the ability to follow rotations on the inputs.

Theoretically, we demonstrate that the proposed HE-CNN confers the equivariance property to
non-equivariant CNN main network. We also provide a light version, denoted by HE-CNN, for
efficient implementation. Empirically, we show such equivariance without G-CNN filters enables
HE-CNN to outperform base G-CNNs on datasets with and without rotation augmentation, while
achieving performance comparable to advanced state-of-the-art G-CNN-based methods. As shown in
Figure[T] a small HE-CNN with 11.5k parameters achieves comparable performance to the CNN on
the original MNIST, while maintaining a high accuracy on the R-MNIST dataset.

Our main contribution can be summarized as follows.

1. Theoretically, we propose an alternative way to achieve equivariance: instead of constraining the
filters, equivariance is achieved through input-dependent parameters.

2. We propose the HE-CNN to achieve the equivariance via a hypernetwork, and provide a light
version HE-CNN, for more efficient implementation.

3. Extensive experiments demonstrate the effectiveness of the proposed HE-CNN over base G-CNN.

2 RELATED WORK

G-CNNs (Cohen & Welling, 2016) are introduced as one of the earliest adaptation of general
equivariance into CNN, and have been the backbone of many equivariant image processing neural
networks, including steerable CNNs (Cohen & Welling|, 2017 Weiler et al., |2018)) and spherical
CNNs (Cohen et al., 2018 Salihu et al., [2024])), with several applications such as domain adaptation
(Zhang et al., 2022), pose estimation (Howell et al.| 2023} |Li et al., [2021)), and so on.

One approach to make non-equivariant model equivariant is the canonicalization method (Kaba et al.|
2023 [Mondal et al., |2023)). The equivariance in the canonicalization method is achieved through a
G-CNN based canonicalization network, learning to rotate the input before feeding into the frozen
pretrained model.

Frame-averaging (Puny et al., [2021)) approximates equivariance in models by averaging non-
equivariant models over sub-frames of a group. Partial Equivariance (Romero & Lohit, 2022)
learns beneficial symmetries from the data distribution and retains only these symmetries in G-CNN
networks. In exchange for improved efficiency, both methods lose strict equivariance.

Hypernetwork, initially introduced by |Ha et al.|(2016), provides an alternative approach to train a
neural network. It has been used in federated learning (Shamsian et al., [2021), few-shot learning
(Sendera et al.| 2023} Yin et al., [2022), continual learning (Hemati et al., 2023)) and so on, due to
its versatility and parameter-efficiency. The network designated for training is known as the main
network. The network responsible for generating the parameters of the main network is referred to as
the hypernetwork. If the hypernetwork generates input-dependent parameters for the main network,
we call it a dynamic hypernetwork, and otherwise it is static. The combination of a main network and
a hypernetwork is referred to as a full network in this paper.

For hypernetworks related to equivariance, |Garrido et al|(2023) use a hypernetwork for parameter
sharing in equivariant models, not for achieving equivariance. To the best of our knowledge, there is
no work using hypernetworks to achieve the equivariance on regular CNNs.
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Figure 2: An overview of the HE-CNN architecture. All learnable parameters lie in the NEP generator.

generator

3 PRELIMINARY

In this section, we give a brief definition of groups and representations, and a comprehensive definition
can be found in Section For a set G with a operation *, (G, x) or simply G is a group if all
following properties are satisfied: * is associative, G has an identity element, and every element has
an inverse. Given G and a vector space V, a representation p on V is a mapping on GG, where every
p(g) is a linear map on V for g € G. Furthermore, p(g x ¢') = p(g) o p(g’) for any g, ¢’ € G, where
o denotes function composition. A representation p is called a trivial representation if for any g € G,
p(g)x = x forall z € V. If p is fixed and clear from the context, p(g)z can be simply shorten to gz.

The group G and representation are fixed when designing a neural network based on the desired
symmetries for given tasks. Now we can define equivariance and invariance in deep neural networks.

Definition 1. Let f denote a deep neural network or a single layer in it. For two representations
p1 and po, we say f is (G-)equivariant if for any input z, we have pa(g) f(z) = f(p1(g)x) for any
g € G. If py is the trivial representation, then we say f is (G- )invariant. That is, f(z) = f(p1(g)z).

4 METHODOLOGY

Prior to the introduction of the proposed HE-CNN, we introduce the notation used in the proposed HE-
CNN and adapt the definition of equivariance in this setting. When utilizing hypernetwork on a main
neural network f, the input space is denoted by X, and the weight space in neural networks is denoted
by 2. We denote a dynamic hypernetwork by w : X — €. For any input x € X, the corresponding
generated weight is w(z), and fy,(,) refers to the main network that loads w(x) as its parameters.
The full network is denoted by fy,(.)(-), or simply f,,, which maps input z to fy,()(z). Within the
context of dynamic hypernetworks, f,,(.)(-) is G-equivariant if p2(9) fu(2) (%) = fu(p, (g)2) (P1(9)T),
and invariant if ps is the trivial representation. With the above notations, in the following sections,
we present the proposed HE-CNN model.

4.1 THE ARCHITECTURE

We assume input images are square-shapedﬂ As illustrated in Figure 2| the proposed HE-CNN con-
sists of a main network f and a dynamic hypernetwork w. The main network f of HE-CNN
consists of several convolutional layers, a single flatten layer, several linear layers, and some
activation/pooling/batch-normalization layers in between. As the main network CNN is already
equivariant to translation, we only need rotational and reflectional equivariance. We first fix the group
G tobe (Z4,+mod 4) » the group of 90-degree rotations. More general group of rotations, reflections
are discussed in Section We aim to achieve equivariance on the full network f,,, combining f
with the input-dependent parameters generated by a dynamic hypernetwork w. We summarize our
objectives in the following definition.

Definition 2. A neural network f is w-based equivariant or hypernetwork-based equivariant if the
following conditions hold:

1. For general parameters -, f., is not equivariant.

Due to their correspondence with rotations, input images of equivariant structures are typically selected to
be square-shaped (Cohen & Welling} 2016).
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2. When using w to generate input-dependent parameters, f,,(.)(-) is equivariant to G.

In other words, f is w-based equivariant if w grants equivariance to non-equivariant main network.
The output of w is referred to as the equivariant parameters.

The objective of the proposed HE-CNN is to ensure that w generates equivariant parameters. To
achieve that, w consists of two components. The first component is a non-equivariant parameter
pieces generator (NEP generator). The NEP generator is responsible of generating approximately
1/4 of the total parameters, including filters in convolutional layers and weight matrices for linear
layers. The details for each case are introduced in the next two sections. The NEP generator can be
any non-equivariant neural network, and our implementation uses regular CNNs. Additionally, we
expect it to be non-equivariant to avoid collapsing to invariant filters as demonstrated in Section[D.1]

When given an input image, we collect the four 90°-rotated versions of it and send them to the NEP
generator, resulting in four parameter pieces. Then, the four parameter pieces are fed into the second
component, the equivariant combiner (equi-combiner), to assemble parameter pieces to get full
parameters that could achieve the equivariance. The design of the equi-combiner is outlined in the
following two sections, which correspond to two cases: convolutional layers and linear layers.

Recall that most G-CNN designs (Cohen & Welling| [2016; [Worrall et al.| [2017; Wang et al.,[2022])
extracts equivariant features in the convolutional layers and aiming for invariance in the final classifi-
cation. We adapt the same design goal in HE-CNN: For the convolutional layers, the objective of the
equi-combiner is to ensure the equivariance to rotations. For linear layers, the equi-combiner is to
generate parameters so that the final output is invariant.

4.2 HYPERNETWORK FOR CONVOLUTIONAL LAYERS

Without loss of generality, in the following, we present the P — Final Filter
design of the hypernetwork that generates parameters for each @ e aa L
convolutional layer f. "N ol | -‘
The group Z4 has four elements: 0, 1, 2, and 3, each corre- o

sponding to 0°, 90°, 180° and 270°. The representation p(g) is

to perform counter-clockwise rotations corresponding to g on
input image x. For all the convolutional layers, we let both p;
and ps in the definition of equivariance to be the same p. The R ailat
NEP generator is denoted by V.

ay  ar
o

For the convolutional layer in f with C}, input channels, Cy,, Figure 3: A visualization of the
output channels, and the filter dimension K, the weight of the equi-combiner for a 4 x4 filter.
convolution filter is in a shape of (Coy, Cin, K, K) and the bias

is in shape (Coy). The output shape of the NEP generator is (Coy, Cin, [£/2], [%£/2]) + (Cout), where
the first part is for parameter pieces of convolution filters, the second part is for the bias, and [-]
denotes the ceiling function. Accordingly, the NEP generator is denoted by Npjers () for parameter
pieces of convolutional filters and Ny;,s(z) for biases.

We first study how to assemble full filters using Ngyers. We denote the input by z9, and denote its
90°, 180° and 270° rotations as z', 2% and 2> accordingly. Each of them is sent into Nyjers and the
corresponding outputs (i.e., parameter pieces) are denoted by a’ = Nﬁhm(at") (t=0,1,2,3). The
equi-combiner takes each a', and perform a counter-clockwise i - 90° rotation for each and get a’.
As illustrated in Figure|3| we assemble them in a clockwise manner (i.e., ag is on the top left, a}, is
on the top right, a2 is on the bottom right, and a? is on the bottom left) to be the final filter.

For the case that K is odd, we follow the same process to get the final filter with size (K +
1, K + 1). Then, we average the middle ((K +1)/2-th and (K + 3)/2-th) columns and rows into one.
Mathematically, the above generation process of weights in a filter via the NEP generator can be
formulated as

wﬁlters(x) = Z gilE(Nﬁllers(gx))v
gEZ4

where F is the operation that places parameter pieces to the top left corner of a filter.
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For the bias, we expect it to be identical for all the rotated versions of the input. To achieve that, we
simply average the outputs of { Npias(z)}3_ as

1
wbias(x) = Z Z Nbias(gx)- (nH

gE€EZa

For the hypernetwork designed above for convolutional layers, we show that it achieves the equivari-
ance on the full network in the following theorem[]

Theorem 1. Let f°°™" be a main neural network with several convolutional layers, and w be the
hypernetwork composed of the NEP generator and the equi-combiner as designed above. Then, for
all g € Z4, we have

conv (x) — conv

g w(z) w(gx) (gl‘)

For an input x, after all convolutional layers of the full network f,,, we have an extracted features
{Bi}ic:‘“{ = ;?Z?(x) For simplicity, we study the case where Co,, = 1, and consequently B =

conv

(@) (z). Prior to the next step in HE-CNN, B is flattened before sending into the following linear
layers of the full network. We denote the flatten operation by P, and the flattened vector is denoted
by v = P(B). If the dimension of B is d x d, the length of v is d2. For the general case where
Cou > 1, we generate linear weights for all channels with the same process, and concatenate them to
form the final linear weights.

4.3 HYPERNETWORK FOR LINEAR LAYERS

In this section, we first study the case when the main network f consists of only one linear layer. The
linear layer takes flattened vector v as the input, and output a vector of length m. In this case, the
weight matrix W of the main network f is in shape (m, d?). The hypernetwork w aims to generate
input-dependent TV so that the output of f, is invariant, i.e., f,,(P(B)) = fu(P(p(g9)B)).

We adapt the rotation representation p for the square matrix in Section[4.2]to the flattened vectors v
using p;i, = PpP~!, where P~! denotes the inverse of the flatten operation. The invariance property
of f,, to be achieved can be rewritten as f,, (v) = fu (p1n(g)v).

Based on the following proposition, we can view py, as a collection of length-4 permutations,
which is illustrated on the top of Figure 4]

Proposition 2. For the representation pj;, on the vector v, the following statements hold:
1. Let v' = pyn(1)v be pyin applied to v once For any entry v; of the vector v, there is a unique
permutation o = (i, j, k, 1) such that v; = v;-, vj = v}, v =), and v; = v;ﬂ
2. The representation py;,, can be viewed as a collection of all such length-4 permutations on
the indices of v.

Since v is of length d?, there are [d*/4] different length-4 permutations. The collection of all such
permutations is denoted by S. For any o = (4,4, k,1) € S, we denote the vector obtained after
permuting the indices of a vector v by o(v) and the matrix obtained after permuting the column
vectors of a matrix W by o(W). Then we have the following result.

Lemma 3. In the main network f with the input v of the linear layer and the corresponding weight
matrix W, for any given permutation o, we have

c()e(W)T =oWT, 2

where superscript | denotes the transpose operation.

3Proofs of all theorems are presented in Section

*A permutation (4, 7, k, 1) is a circular expression, that is, (3, 7, k, 1) = (j, k, 1, 1) = (k,1,4,§) = (1,4, §, k).
Given ¢, the exact expressions of j, k, and [ are given in Appendix [D.2] The special case of an odd d is also
detailed in Appendix
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Lemma 3]leads to a design goal for the hypernetwork
w that w should generate weight matrix W that per-
mutes its columns as v is permuted by o and if the
linear layer in the main network f possesses a bias,

w should generate the same bias regardless of the P H P~
permutation. TN

With this design goal in mind, the NEP generator N 90° Rotation < >
generates one column vector per permutation o € S, on feature 5

and all of the bias, resulting in the output in shape ~
(m, [4*/4]) + (m). We can again split the output into
Nieighi(x) and Nyias () accordingly. Moreover, for _ el -
each o0 € 9, the corresponding generated column :
vector in Nyeign () is denoted by N, (z). In the Equi-Combiner | ¢, | ¢, o o
following, we fix a ¢ = (4,4,k,1) € S to better
illustrate the equi-combiner. We repeat the process ~~ o~
for all o’s in S to form the final linear weight. o

Given an input image z°, we again denote all rotated Figure 4: On the top, we visualize a permu-
versions by {27 }o<;<3. All the four versions {2?} tation o = (i,j,k,!), and the correspond-
are fed into the NEP generator N, and the output ing 90° rotation. On the bottom, the equi-
column vectors are denoted by ¢; = N, (z?) € R™*! combiner permutes column vectors {eitizo
fori = 0,1,2,3. The equi-combiner places {c;}3_, Teversetoo.

into the parameter matrix W with a direction reverse

too = (i,4,k,l) as

eov [ [l | [ W0 [

Wi =co, Wiy = c1, Wi, = c2, W = c3, 3)

where ,, denotes the n-th column of W. The bottom of Figure[d gives an illustration of such process.
Given four column vectors {c; }3_, and the corresponding length-4 permutation o = (i, j, k, 1), Eq.
(3) defines an operation E, -1 by placing each column vector ¢; into the corresponding column of
weight matrix 1. The generation in the hypernetwork can be formulated as

wweight(x) = Z E, ({Na(gm)}9624)'

oces

Similar to the convolutional case, we expect the bias to be the same for all inputs and so we collect
the output of the NEP generator and simply take the average as in Eq. ().

For the above design, we prove the invariance property for the linear layer in the full network f, in
the following theorem.

Theorem 4. Let f“" be one single linear layer, and w be the hypernetwork defined above. Then,
w generates equivariant parameters that grants the invariance for fin. That is, for all input x and
g € Zy, we have fjg‘x)(x) = fif&m) (g).

According to Theorem[d] we show that the proposed HE-CNN could generate outputs invariant to
permutations after the first linear layer. For the rest of the linear layers (if any), all weights should be
the same regardless of the permutation to preserve the invariance of the full network f,,. Therefore,
for any additional layers, the NEP generator outputs weight W for any of the rotated inputs {z"},
and then simply average all outputs to get the weight matrix.

4.4 EXTENSION TO GROUP Dy,, x R?

The proposed HE-CNN can achieve Z,-equivariance and CNN structure is already equivariant to
translation group R2. In this section, we extend to Dy,,, the group of reflections and 90/»° rotations.
As discussed in Section 4 of[Basu et al.|(2023)), given an arbitrary group G and a non-equivariant neural
network H, F'(z) =3 ¢ py H(pg(x)) is always equivariant regarding G. Based on this result,
we choose G to be the quotient group Dy, /Z4. As the proposed f,,(.) in previous sections is already
equivariant to Z, and translation, it is easy to see that Fj, ;) (z) = L > g€Dan )74 9 fu(ge)(gz) is
equivariant to Dy4,, x R? and it is named D,,-HE-CNN.
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Table 1: Testing accuracy (%) on various MNIST datasets.

Train on MNIST Train on R-MNIST
CNN Z,-CNN HE-CNN; CNN Z;-CNN HE-CNNj

MNIST 96.29 85.88 96.03 75.27 76.22 96.44
R-MNIST 34.81 50.02 76.94 73.08 75.51 96.32
90°-MNIST 17.76 85.88 96.03 75.68 76.22 96.44
Average Performance 49.62 73.93 89.67 74.68 75.98 96.40
Equivariance difference  68.86 0.00 0.00 0.27 0.00 0.00

# Parameter 3370 12522 11527 3370 12522 11527

4.5 LIGHT VERSION OF HE-CNNSs

As discussed in Sec. and the NEP generator outputs a vector v € R, where [ is approximately
equal to a quarter of the total parameters in the main network. When the main network has a large
number of parameters, HE-CNNs could need a large NEP generator.

To reduce the size of the NEP generator, we first split v into {v;}~ ,, where v; € RY contains
parameters for the ¢-th layer of the main network, and T is the total number of layers of the main
network. For the final linear decoder L in the hypernetwork w, we can replacing L with T" smaller
linear layers {L;}7_,, each generating v;. Next, we replace each L; with two smaller linear decoders

that generate intermediate matrices a; € RVEXT and b; € R”\m where r < +/1; is a fixed
rank. The target v; is obtained by flattening the product of a; and b;. This approach could reduce
the parameter size of each L; from O(l;) to O(v/1;). This light version of HE-CNN is denoted by
HE-CNN,, and an illustration is provided in Appendix

5 EXPERIMENT

In this section, we empirically evaluate HE-CNN. Models and datasets are outlined for each experi-
ment, with additional model and hyperparameter details specified in the Appendix

5.1 TRADE-OFF OF THE EQUIVARIANCE IN G-CNN

Models. To effective demonstrating HE-CNN solves the imbalanced performance of G-CNN,
models in this section are designed to be small. Specifically, (i) CNN is composed of three hidden
convolutional layers, followed with one linear classification layer. (ii) G-CNN has the same hidden
layers with G = Z4. (iii) HE-CNN’s main network is the same with CNN mentioned above. The
NEP generator has 2 convolutional layers, and the light version is used to match the parameter count.

Datasets. We conduct experiments on various MNIST datasets, including: (i) MNIST (Deng,
2012), containing 70,000 handwritten digits. (ii) R-MNIST (Larochelle et al., [2007)), a variant of
the MNIST with random continuous rotations. (iii) 90°-MNIST, which rotates every sample from
MNIST counter-clockwise by 90 degrees. Each dataset is split into a training set of 60,000 samples
and a test set of 10,000 samples. We train models separately on either MNIST or R-MNIST and
evaluate their performance across all three datasets. The average accuracy on all datasets is used to
demonstrate consistency across regular and rotated data.

Results. Table |1| shows the testing accuracy for different models. As can be seen, HE-CNNy,
achieves the best accuracy in almost all settings, with the only exception when trained and tested
on MNIST, performing comparably (96.03%) to CNN. This empirically shows HE-CNN, achieves
equivariance without the discussed trade-off. To quantify equivariance, we introduce the equivariance
difference: the relative difference (difference divided by the sum) in accuracy between MNIST and
90°-MNIST. HE-CNN/, shows a 0% equivariance difference, demonstrating strict equivariance.

>If v/, is not an integer, we use [v/I;] and truncate the extra from the final generated vector.
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Figure 5: For two images related through 90° rotations, we visualize some of their generated filters.
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5.2 R-MNIST

Models. We evaluate performance on R-MNIST using

regular-sized models to assess scalability and generaliza- Table 2: Classification Accuracy (%) on

. . . the R-MNIST.
tion. For HE-CNN, the main CNN has seven convolutional
layers, followed by two linear layers. The NEP generator Model | Accuracy (%)
is composed of three convolutional layers. We implement Regular CNN(Schmidt & Roth|2014) | 96.02
both regular and light versions. For G-CNN, it is set to Equivariance based Methods
have the same layers and channels as the main CNN of P4-CNN (Cohen & Welling}2016) 97.72
. 2 LieConv (Finzi et al./[2020) 98.76
HE-CNN, and the group is chosen to be P, = D4 x R~. Steerable-CNN (Weiler et al.| 2018) 99.27
; _of-the _ E2-CNN (Weiler & Cesal[2019) 99.32
We also include state-of-the-art steerable CNNs for com Sz NI Rfeas et 303 o
parison. All models are trained on the training set and eval- Hypernetwork based Methods
uated on the testing set of R-MNIST. Results are shown Z4-HE-CNN 99.50
in Table ZA-HE-CNN,, 97.91
D8-HE-CNN,, 98.01
D16-HE-CNN, 98.05

Results. Based on Table 2] HE-CNN outperforms previ-
ous state-of-the-art methods, while HE-CNN, ensures better performance compared to the original
G-CNN method. However, we do not claim to be the new state-of-the-art method. Our model utilizes
9.68 million parameters, whereas Sim2-CNN uses only 864 thousand. It is a more fair comparison
between HE-CNN, with 51.9 thousand parameters and P,-CNN with 98.0 thousand parameters.
With just over half the parameters of the P4-CNN, HE-CNN, outperforms P,-CNN while utilizing
the same level of symmetry.

To verify that the generated filters rotate as the input rotates, we visualize the generated filters for a
randomly selected MNIST image x and its rotated version z’ in Figure|5| For every filter generated
from x (left), the corresponding filter from z’ (right) in the same layer and channel is precisely related
by a 90-degree rotation. Numerically, we rotate the generated filters of =’ back and compute the MSE
difference with filters generated by x. The value is negligibly small (less than 10~°).

5.3 CIFAR10/100

Models. Partial equivariance (Romero & Lohit, [2022), as discussed in Sech[, learns additional
information about whether certain symmetries are beneficial, keeping only the beneficial symmetries
in the G-CNN filters. We use the same baseline models (Romero & Lohit, [2022)), a residual network
composed of two residual blocks and a 13-layer CNN (Laine & Aila, [2017)). For each baseline model,
we implement G-CNN and Partial Equivariance with two groups: Z4 and Dg. For HE-CNN, we
implement both the regular and light versions, with three hidden convolutional layers. Models are
trained on the training set and evaluated on the test set.

Datasets. The CIFAR-10 and CIFAR-100 datasets (Krizhevsky| [2009)) consist of 60,000 labeled
32x%32 color images. CIFAR-10 includes 10 object classes, with 6,000 images per class. CIFAR-100
contains 100 fine-grained classes, each with 600 images. Both datasets follow a 5:1 training-test split.

Results. As demonstrated in Table 3] HE-CNN shows comparable results with partial equivariance,
without the additional information required by partial equivariance. Both HE-CNN and HE-CNN,
exceed the performance of G-CNN, in both the residual network and the deeper CNN.
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Table 3: Classification Accuracy (%) on CI-  Table 4: Classification Accuracy (%) on STL10.
FAR10/100.

Symmetry Group | Model | CIFARIO  CIFARI100 Model ‘ Accuracy (%)
R2 | Residual network | 83.11 47.99 Base WRN16/8 ‘ 87.26
74 xR2 G-CNN 83.73 52.35 — -
Partial equivariance |  86.15 53.91 G-Equivariant Convolutions
HE-CNN 85.99 53.56
HE-CNN, 83.92 52.80 Z,-WRN16/8 87.89
D8xR? G-CNN 85.55 55.55
Partial Equivariance 89.00 57.26 D8 -WRN16/8 88.87
HE-CNN 88.67 56.95 .
HE-CNN, 86.34 55.73 E(2)-Steerable Convolutions
R? | 13-Layer CNN | 9121 67.14 WRN16/8-{D8D4D1} ‘ 90.20
Z4xR2 G-CNN 89.73 65.97
Partial Equivariance |  92.28 69.83 Hypernetwork-based
HE-CNN 91.95 66.38
HE-CNNj, 90.12 66.14 Z4-HE-WRN16/8 90.08
D8xR? G-CNN 90.55 67.70
Partial Equivariance |  91.99 70.80 Z4-HE-WRN16/8, 88.92
HE-CNN 92.07 68.89 Dg-HE-WRN16/8 1, 89.13
HE-CNN[, 90.64 68.11
5.4 STL10

Models. To process larger images, we choose the base model as the wide residual network WRN16/8
by |[Zagoruyko & Komodakis| (2016). For comparison, we replace all convolutional layers with G-
equivariant convolutions to get Z,-WRN16/8 and Dg-WRN16/8. On STL10 classification, the current
state-of-the-art equivariant model is the F/(2)-equivariant Steerable CNN (Weiler & Cesa, [2019).
Their model is denoted by WRN16/8-{ Ds D4 D, }, with D,, denoting the group for steerable filters.

Datasets. The STL-10 dataset (Coates et al. 2011) is designed for unsupervised and semi-
supervised learning, featuring 13,000 labeled 9696 color images across 10 classes and 100,000
unlabeled images. Our experiment is performed on the labeled images and splits the data into an
80-20 training-testing ratio.

Results. As demonstrated in Table ] HE-CNN shows comparable performance with steerable
state-of-the-art models and consistently outperforms regular G-CNN, even with the light version.

5.5 ABLATION STUDY

In this section, we present an ablation study to eval- Typle 5: Classification Accuracy tested on

uate the impact of our dynamic hypernetwork on  three different testing set. All models are
model performance. We train a Z4,-CNN using a reg-  trained on the R-MNIST.

ular hypernetwork, directly generating its parameters.
We refer to this model as the Dynamic Z4-CNN. The  “performance (%) | Z&-CNN HE-CNN Dynamic Z4-CNN

results, shown in Table 5] demonstrate that directly MNIST | 7622 9644 76.19
applying a dynamic network shows no improvement R-MNIST | 7551 9632 74.54
in accuracy. Instead, it eliminates the equivariance 90°-MNIST | 7622  96.44 76.03
property of Z4-CNN. This is caused by having dif- Parameter | 12522 11527 32964

ferent sets of parameters for any input and its rotated

version. Such non-equivariance hinders the effective utilization of direct dynamic hypernetworks in
equivariance studies and further highlights the significance of HE-CNN in generating dynamic filters
while preserving the equivariance property.

6 CONCLUSIONS

In this study, we propose a novel hypernetwork-based equivariant CNN as an alternative approach
to equivariance.We test HE-CNN on several benchmark datasets. Comparing to G-CNN based
state-of-the-art methods, our network showed either better or comparable results. We showed better
performance in all settings compared to the base G-CNN.
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APPENDIX

A  ADDITIONAL DEFINITIONS

A.1  GROUPS AND REPRESENTATIONS
Definition 3. Let G be a set and * be an operation. Then, (G, *) is a group if the following holds:

1. There exists a e € G, such that for any g € G, g x e = e x g = g. We call this e the identity.

2. For any element g € G, there exists h € G such that g x h = h x g = e. We call this the
inverse element, and denote it as —h or h~! depending on the context of the operation.

3. G is closed under this operation. That is, for any g1, g2 € G, g1 * g2 is always in G.

4. Forany g,h,k € G,g* (hxk) = (g*h)xk.

After defining a group (G, *), it is common to simply refer to it as G when the operation is clear from
the context.

Definition 4. Given a group (G, *), a representation of G on a vector space V' is a map p with inputs
in G. For any g € G, p(g) is a linear map on V. Furthermore, p(g1 * g2) = p(g1) © p(g2), where o
denotes function composition. We denote the representation by (p, V') or simply p.

The definition of a group and representation might be a bit hard to understand without some back-
ground on abstract algebra. It is helpful to think of groups as a collection of symmetries, and
representation as an action of such symmetries on a vector space. Let us go through one example,
the cyclic group of order 4, (Z4, +moq 4). Readers with experience in group theory can skip the
following example section.

A.2 EXAMPLE CYCLIC GROUP: Z,

The group Z4 has four elements: {0, 1,2,3}, combined the operation of addition modulo four.
Comparing the modulo addition in Z4 with counter-clockwise rotations by multiples of 90 degrees,
one can see some similarity between them. For instance, 243 = 1 mod 4, and a vector ends up in the
same place after rotating 180 degrees and then 270 degrees, as it does after a 90-degree rotation. This
similarity is captured by a representation. Let V' = {(z,y) | 2,y € R}, all 2D vectors. Our chosen p
maps g € Z, to a linear map on V' which perform the corresponding rotation around the origin. For
instance, pick 2 € Z4. For any (z,y) € V, p(2) is a linear map that rotate (x, y) by 180 degrees, i.e.
p(2)(z,y) = (—z,—y). Formally, p(g)v = (:?j((g:g)) _C(S)lsr(l;fr%?) ) () and one can check that this

indeed satisfies the definition of a representation.

B ALTERNATIVE ATTEMPTS

In this section, we discuss several alternative designs for the hypernetwork and explain why we
choose not to implement them in our approach.

B.1 FORCING EQUIVARIANCE THROUGH NUMERICAL METHODS

Before deploying the equi-combiner, we tried to encourage equivariance on a full filter generated by
regular hypernetworks, by simply adding another rotation loss: During training, we rotate inputs and
compute their generated filters. We compute the MSE Loss between such filters and try to minimize
it. Denote the hypernetwork by w, then we can write the rotational loss as:

Low =7 3 Lne(w(ge),w((g + 1)),

ISV

The performance is poor on 90 degree rotations even though the rotation loss dropped significantly.
The test accuracy never surpass 50% on MNIST. We hypothesize that numerical methods can

13



Under review as a conference paper at ICLR 2026

Table 6: The classification accuracy (%) of HE-CNN and HE-CNN .

| R-MNIST | CIFAR10 | CIFAR100 | STL10

Z4-CNN | 9772 | 8373 | 5235 | 87.89
ZA-HE-CNN |  99.50 85.99 53.36 90.08

| | |
ZA-HE-CNNy | 9952 | 8587 | 5341 | 89.95
ZA-HE-CNN; | 9791 | 8392 | 5280 | 8892

only achieve approximate equivariance in filters. However, this numerical approximation may be
insufficient due to the inherent sensitivity of the filters. This is the reason we need strict equivariance
guaranteed by our equi-combiner.

B.2 AVERAGING THE OUTPUTS OF A GENERAL HYPERNETWORK

As the name of our Equi-Combiner suggests, our initial design is to assemble smaller parameter
pieces to obtain equivariant filters. This design goal has led us to the current structure. However, it
is also a naive approach to simply average the outputs of a general hypernetwork from the rotated
inputs, and we denote such approach by Z4-HE-CNN .

The comparison between Z4-HE-CNN and Z4-HE-CNN y is presented in Table[6] As can be seen,
the naive design did not yield better results than the current design, despite expanding the size of the
generated parameters by approximately four times. Considering the extra parameters and inference
time on the hypernetwork, we stick to our current design.

B.3 STATIC LINEAR LAYERS

After the first linear layer of the main network, the extracted feature are now invariant. Therefore,
HE-CNN can have static linear layers afterwards, while staying equivariant. However, optimizing
static layers to function effectively with dynamic parameters may pose challenges. To avoid this
potential issue and maintain a consistent network architecture, we have decided to retain the current
design.

C EXPERIMENTS DETAILS

C.1 ADDITIONAL ILLUSTRATION

Figure [6] is an illusion of the Light Ver-
sion of HE-CNNs. Instead of directly gen- KM I L
erating /; amount of parameter for the - | NEPGenerator l ENeatlwnork

th layer, we utilize two smaller linear en- |

coders instead. .
i ‘ H ; N Layers |

Linear Decoder #1 Linear Decoder #2 i
C.2 TRAINING PROCESS i L Leng v i ;

P ORI 2 L g :
Given a fixed main network, we first ini- | Resepe
tialize the NEP generator N. We choose a | ﬁ(ﬁ” RIEUEEEE |
CNN structure with output dimension de- | Muliply and Flaten
scribed in Sections .2 and 3] During ..., m‘
training, the original inputs are sent into the =~ | ™™ > i

combination of NEP generator and equiv- e 5
ariant combiner to generate equivariant pa-
rameters. The main network f then loads
the equivariant parameters and process the
same input. We compute the chosen loss

Figure 6: Visualization the light version on a single head
corresponding to the ¢-th layer of the main network.
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between the output of f,, and the label, and preform back propagation to update the learnable
parameters in the NEP generator.

When the inputs are in batch, our hypernetwork is indeed capable of generating parameters in batch.
However, for inputs in batch size b, we would have b corresponding parameters, thus b main networks.
This bijection can easily lead to GPU memories shortage when main network is large. We comprehend
this by the following: for each batch of inputs, we average them to get one single set of parameters,
used to process the batch of inputs. This significantly reduced the memory usage. However, due to
the average operation, our network is equivariant if the representation p(g) is applied on the whole
batch. For each experiment, we specify whether we use parameters in batch or averaged.

C.3 MODEL DETAIL FOR EACH EXPERIMENT

When expanding Z,-HE-CNN to a larger groups D,,,, we only have to consider the extra angles
in the first quadrant on the unit circle {90/n i}?;ol. During training, we first train f,, to be Z4
equivariant for the first half of the training process. Then, for input z, we collect all input version of
2 by angles in {90/n * i ;‘:_01, and sum their outputs by f,, and take average as our final output.
During all experiments, we use the Adam optimizer. We noticed that it is common to observe
minimal change in training loss (especially in the light version) during the first 50-100 epochs,
with test accuracy typically beginning to rise after 150-250 epochs. We believe this arises from the
complexities associated with learning to generate parameters. Due to the sensitivity of the generated
parameters, we are very cautious about increasing the learning rate. If Adaptive average pooling layer
is present in the main network and the output shape is set to 1, we modify to 2 to demonstrate our
parameter generation for linear layers.

Next, we provide comprehensive details for our experiments. For the NEP generator of all cases, we
provide the detail of the convolutional layers of the generator. After all convolutional layers, features
are flatten and sent to a linear layer or several linear heads depending on whether light version is used.

For the first experiment where we compare CNN, Z,-CNN and HE-CNN, we choose a fairly small
model. Both CNN model and Z4-CNN model have 3 hidden layers with 16 hidden channels and 2 by
2 filters. We use the same CNN as our main network f. The NEP generator is chosen to 2 hidden
convolutional layers with 16 hidden channels, and the light version is utilized. We use the Adam
optimizer and choose the learning rate to be 0.001 for CNN and Z,4-CNN, and 0.0002 for HE-CNN.
Batch size is set to 32.

For the second experiment on MNIST, the main network f is a CNN described in|Cohen & Welling
(2016). It has seven convolutional layers, six of them has 20 channels with 3 by 3 filters, and the
last convolutional has 20 channels with 4 by 4 filter. Afterwards, f has two linear layers with
100 intermediate channels. For the NEP generator IV in the hypernetwork w, we choose a 3-layer
convolution with [16,32,32] intermediate channels, [3,3,4] filter size and [2,2,1] stride. We set the
learning rate as 0.000075 and the batch size is set to 32. If the light version is utilized, our intermediate
rank r is set to 4.

For the experiment on CIFAR10/100, the residual main network is composed with 2 residual blocks of
32 channels, each with filter sizes 3, with additional pooling and batch normalizing layers. The main
13-layer CNN is exactly the same as in|Laine & Aila/(2017). In both scenarios, learning rates are set
to 0.000025. Since we average batch of inputs to get one set of parameters, we choose a smaller batch
size as 64 to lower the negative impact. When the light version is used, the intermediate rank 7 is set
to be 14. The NEP generator N is composed of 3-layer convolution with [32,64,64] intermediate
channels, with all filter sizes as 3 and stride as 2 for the last layer. ReLu, Batch normalization and
Max pooling layers with filter dimension as 2 and stride as 2 are inserted between convolutional
layers.

For the experiment on STL10, the main network is the wide residual network architecture. The
hypernetwork generates the convolutional and linear layer, keeping the others unchanged. The
learning rate is set to 0.000015 and batch size is 64. If the light version is used, the intermediate rank
r is chosen to be 20. The NEP generator [V is composed of 4-layer convolution with [64,128,128,64]
intermediate channels, with all filter sizes as 3 and stride as 2 for the last layer. ReLu and Batch
normalization are inserted between convolutional layers. Additionally, we perform pooling after first
three convolutional layers, with kernel size as 2 and stride as 2.
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D THEORY DETAILS AND PROOFS

D.1 REQUIRING NON-EQUIVARIANCE IN OUR PARAMETER GENERATOR

Non-Equivariant Equivariant
Input: 2 Partial parameter Partial parameter
generator generator
Qenerated 0-th channel 1-st channel 0-th channel 1-st channel
filters
mE H N
0-th layer EE
3-rd layer . . ] :.:
SN - - e

Figure 7: Visualizing generated filters using different parameter generator. Filters on the left are ideal.
On the right it collapsed to invariance, i.e., all filters are equal to their rotated versions.

The requirement of non-equivariance is we do not want relations among generated a’. If the parameter
generator is chosen to be equivariant, filters are rotational invariant as demonstrated on the right of
Figure[7] which significantly reduce the expressive power.

D.2 PERMUTATION DETAILS OF FLATTENED VECTORS

In this section, we provide the proof of Prop[2]and details of the length-4 permutations.

Proposition 2. For the representation pji, on the vector v, the following statements hold:

1. Letv' = pjin(1)v be pyin applied on v once. For any entry v; of the vector v, there is a unique
permutation o = (4, j, k, 1) such that v; = v;-, vj = v}, v = vj, and v} = V.

2. The representation py;, can be viewed as a collection of all such length-4 permutations on
the index of v.

Proof. Z, is cyclic (i.e. generated by one element), so we only have to show our claim holds for
piin(1). For v; as i-th component in v, denote ¢ = |%/d| and r as the remainder. These two corresponds
to the column and row pre-flatten accordingly. Let j = d(d — 1) — dc + 7. Then, v = v;. We repeat
this computation on j to get k and /.

From the properties of permutations, it is well-known that (i, j, k,1) = (4, k, [, 7). This means the
starting at ¢ or j ends up with the same permutation. Therefore, we prove the uniqueness. O

When the length of v is not divisible by 4 (corresponding to an odd dimension d), the middle point
v, of v is unchanged. By a slight abuse of notation, we can also view the unchanged point as a
permutation (z, z, z, z). Based on Eq. , all generated column vectors c; are assigned into W,. For
consistency, all four column vectors are averaged into one.

This allow us to say there is (d> — 1)/4 + 1 amount of length-4 permutations. Therefore, the amount
of such permutations is d°/4 in general.
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Ky p(DK, K,

p(D)a? \

Same Equi-Combiner

Figure 8: If the O-th piece is assigned to the top left, the assignment of the bottom left corner is fixed.

I p(Da’ p(Db?

D.3 PROOFS OF THE MAIN THEOREMS

Theorem 1. Let f°°"" be a main neural network with several convolutional layers, and let w be the
hypernetwork composed of the NEP generator and the equi-combiner. Then, for all g € Z,, we have

conv conv
(z) =

g w(z) w(gz) (gl‘)

Proof. In the first step of the proof, we show that the designed equi-combiner offers a unique method
for combining parameters that rotate as inputs rotates, up to the choice of placing the first piece ag.
Let {a;}{0,1,2,3) be the generated parameter pieces mentioned in Section

We can assume the dimension of target filter d is even, as the odd case can be achieved by merging
the middle rows and columns of the even case.

Since Z, is a cyclic group generated by 1, it suffice to prove the case of p(1), the 90-degree rotation.

Given an input image 29, let 4 = p(1)2° = 2! be the 90-degree rotated version of 2. For each
input 2° and y°, we want to generate a filter for each, denoted by K, and K,. Our assumption is
Ky = p(1)Ky.

For 2°, we denote all rotated version of input by z*, z* and x*. Similarly, we denote rotated version
of y® as 3 fori = 1,2, 3. Since y° = x!, we know 3t = 2% foralli = 1,2, 3.

Given NEP generator N, denoted the output a* = N (z*) and b* = N(y"). Due to the relationship
between x and y, we also have b* = a'*1.

Now for the equi-combiner E, recall that it assigns the parameter pieces a’ and b’ to the filter K,
and K, accordingly, based on the index. Assume E assigns the 0-th parameter pieces on the top left
corner. Therefore, a” is on the top left of K. By the assumption K, = p(1) K, we know that the
bottom left corner is p(1)a® = p(1)b>. Since E performs the same action based on index regardless
of a and b, we know that p(1)a® goes to the bottom left corner as well. The process can be visualized
in[8

If we keep repeating this process, we get that p(2)a? goes to bottom left, p(3)a' goes to the top right
corner. This is exactly the equi-combiner that we described, finishing the first part.

Combining the fact that the element-wise multiplication of two equal-sized square matrices remains
unchanged when both matrices are subjected to 90-degree rotations, we finish the proof of the
theorem.

O

For linear case, we have a fairly similar proof.

Theorem 4. Let f“" be one single linear layer and w be the hypernetwork in HE-CNN. Then, w
generate equivariant parameters that grants invariance to f*. That is, for all input  and g € Zy4, we
have

lin
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Proof. The proof is structured into three sub-statements:

Let {ci}{0,1,2,3) be the generated column vectors mentioned in Section The following properties
hold:

1. Our equi-combiner guarantees filter rotation as the inputs rotate.
2. The order of combining is unique up to the choice of placing the first piece cg.

3. Let pii be the representation in Section[d.3] If f is a linear layer with input vector v, for any
g € G, we have

F(0) = Furoungyv) (Plin(a)V)-

The proof of the first and second statement is similar to the case of convolutional filters. For an input
20 and a second input ° = p(1)2°, we track the assignment of their generated column vectors.

The third statement directly follows from adding the same bias to both side of Eq. (2). [
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