
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLORING EDGE PROBABILITY GRAPH MODELS BE-
YOND EDGE INDEPENDENCY: CONCEPTS, ANALYSES,
AND ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Desirable random graph models (RGMs) should (i) reproduce common patterns
in real-world graphs (e.g., high clustering), (ii) generate variable (i.e., not overly
similar) graphs, and (iii) remain tractable to compute and control graph statistics.
A common class of RGMs (e.g., Erdős-Rényi and stochastic Kronecker) outputs
edge probabilities, and we need to realize (i.e., sample from) the edge probabil-
ities to generate graphs. Typically, each edge’s existence is assumed to be de-
termined independently for simplicity and tractability. However, with edge inde-
pendency, RGMs theoretically cannot produce high subgraph densities and high
output variability simultaneously. In this work, we explore realization beyond
edge independence that can better reproduce common patterns while maintain-
ing high tractability and variability. Theoretically, we propose an edge-dependent
realization framework called binding that provably preserves output variability,
and derive closed-form tractability results on subgraph (e.g., triangle) densities in
generated graphs. Practically, we propose algorithms for graph generation with
binding and parameter fitting of binding. Our empirical results demonstrate that
binding exhibits high tractability and well reproduce patterns such as high cluster-
ing, significantly improving upon existing RGMs assuming edge independency.

1 INTRODUCTION

Random graph models (RGMs) help us understand, analyze, and predict real-world systems (Droby-
shevskiy & Turdakov, 2019), with various practical applications, e.g., graph algorithm testing (Mur-
phy et al., 2010), statistical testing (Ghoshdastidar et al., 2017), and graph anonymization (Back-
strom et al., 2007). Desirable RGMs should generate graphs with common patterns in real-world
graphs, such as high clustering,1 power-law degrees, and small diameters (Chakrabarti & Faloutsos,
2006). At the same time, the generated graphs should be variable, i.e., not highly-similar or even
near-identical, and the RGMs should be tractable, i.e., we can compute and control graph statistics.2
Many RGMs output individual edge probabilities and generate graphs accordingly, e.g., the Erdős-
Rényi model (Erdős & Rényi, 1959), the Chung-Lu model (Chung & Lu, 2002), the stochastic block
model (Holland et al., 1983), and the stochastic Kronecker model (Leskovec et al., 2010). To gen-
erate graphs from edge probabilities, we need realization (i.e., sampling), where edge independency
(i.e., the edge existences are determined mutually independently) is widely assumed for the sake of
simplicity and tractability. Although edge-independent RGMs have high tractability and they may
reproduce some common patterns (e.g., power-law degrees and small diameters), they empirically
fail to preserve some other patterns, especially high clustering (Moreno et al., 2018; Seshadhri et al.,
2013). Moreover, edge-independent RGMs theoretically cannot generate graphs with high triangle
density and high output variability at the same time (Chanpuriya et al., 2021).
Naturally, we ask: Can we apply realization without assuming edge independency so that we can
improve upon such RGMs to generate graphs with common patterns and high variability, while still
ensuring high tractability? To address this question, we propose and explore the concept of edge
probability graph models (EPGMs), i.e., RGMs that are still based on edge probabilities but do
not assume edge independency, from theoretical and practical perspectives. Our key message is a
positive answer to the question. Specifically, our novel contributions are four-fold:

1High clustering means high subgraph densities, as used by, e.g., Newman (2003) and Pfeiffer et al. (2012).
2In this work, tractability refers to the feasibility of deriving graph statistics, rather than the ability to handle

large-scale graphs (which we refer to as scalability).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1. Concepts (Section 4): We formally define EPGMs with related concepts, and theoretically show
some basic properties of EPGMs, e.g., even with edge dependency introduced, the variability is
maintained in the generated graphs as the corresponding edge-independent model.

2. Analyses (Section 5): We propose pattern-reproducing, tractable, and flexible realization
schemes called binding to construct EPGMs with different levels of edge dependency, and derive
tractability results on the closed-form subgraph (e.g., triangle) densities.

3. Algorithms (Section 5): We propose practical algorithms for graph generation with binding, and
for efficient parameter fitting to control the graph statistics generated by EPGMs with binding.

4. Experiments (Section 6): We use our binding and fitting algorithms to generate graphs. Via
experiments on real-world graphs, we show the power of edge dependency to reproduce common
graph patterns and validate the correctness of our theoretical analyses and practical algorithms.

Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility. The code and datasets are available in the online appendix (Anonymous, 2024).

2 PRELIMINARIES

Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs. A node-labelled graph G = (V,E) is defined by a node set V = V (G) and an edge set
E = E(G) ⊆

(
V
2

)
:= {V ′ ⊆ V : |V ′| = 2}.3 For a node v ∈ V , the set of neighbors of v is

N(v;G) = {u ∈ V : (u, v) ∈ E(G)}. The degree d(v;G) of v is the number of its neighbors, i.e.,
d(v;G) = |N(v;G)|. Given V ′ ⊆ V , the induced subgraph of G on V ′ is G[V ′] = (V ′, E ∩

(
V ′

2

)
).

Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs). Fix a node set V = [n] = {1, 2, . . . , n} with n ∈ N. Let
G(V) = {G = (V,E) : E ⊆

(
V
2

)
} denote the set of all 2(

n
2) possible node-labelled graphs on

V . A random graph model (RGM) is defined as a probability distribution f : G(V) → [0, 1] with∑
G∈G(V) f(G) = 1. For each graph G ∈ G(V), f(G) is the probability of G being generated by

the RGM f . For each node pair (u, v) with u, v ∈ V , the (marginal) edge probability of (u, v) under
the RGM f is Prf [(u, v)] :=

∑
G∈G(V) f(G)1[(u, v) ∈ E(G)], where 1[·] is the indicator function.

Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs). Given edge probabilities, edge independency is
widely assumed in many existing RGMs, resulting in the concept of edge independent graph models
(EIGMs; also known as inhomogeneous Erdős-Rényi graphs (Klopp et al., 2017)).

Definition 2.1 (EIGMs (Chanpuriya et al., 2021)). Given edge probabilities p :
(
V
2

)
→ [0, 1],

the edge independent graph model (EIGM) w.r.t. p is the RGM fEI
p defined by fEI

p (G) =∏
(u,v)∈E(G) p(u, v)

∏
(u′,v′)/∈E(G)(1− p(u′, v′)),∀G ∈ G(V).

3 RELATED WORK AND BACKGROUND

3.1 LIMITATIONS OF EIGMS

This work is motivated by the theoretical findings of Chanpuriya et al. (2021) on the limitations
of EIGMs and the power of edge (in)dependency. They defined the concept of overlap to measure
the variability of RGMs, where a high overlap value implies low variability. Roughly speaking, the
overlap of an RGM is the expected proportion of edges co-existing in two generated graphs.

Definition 3.1 (Overlap (Chanpuriya et al., 2021)). Given an RGM f : G(V) → [0, 1], the overlap

of f is defined as Ov(f) =
Ef |E(G′)∩E(G′′)|

Ef |E(G)| , where G, G′, and G′′ are three mutually independent
random graphs generated by f .

Remark 3.2. High variability (i.e., low overlap) is important for RGMs (De Cao & Kipf, 2018),
as generating overly similar graphs undermines RGMs’ effectiveness in their common applications,
e.g., graph algorithm testing, statistical testing, and graph anonymization (see Section 1).
Chanpuriya et al. (2021) showed that EIGMs are unable to generate graphs with high triangle density
(i.e., with many triangles) unless EIGMs memorize a whole input graph (i.e., have high overlap).

Theorem 3.3 (Limited triangles by EIGMs (Chanpuriya et al., 2021)). For any p :
(
V
2

)
→ [0, 1],

EfEI
p
[△(G)] ≤

√
2
3

(
Ov(fEI

p)
∑

(u,v)∈(V2)
p(u, v)

)3/2
, where △(G) is the number of triangles in G.

3In this work, we consider undirected unweighted graphs without self-loops following common settings for
random graph models. See Appendix D.1 for discussions on more general graphs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Chanpuriya et al. (2024) recently extended their theoretical results, showing triangle-density upper
bounds w.r.t. overlap in different types of edge-dependent RGMs.4 However, they did not provide
practical graph generation algorithms5 or detailed tractability results, while tractability results and
practical graph generation are part of our focus in this work.
Some methods shift edge probabilities by accept-reject (Mussmann et al., 2015) or mixing different
EIGMs (Kolda et al., 2014b; Lancichinetti et al., 2008), in order to improve upon existing EIGMs.
Such methods are essentially still EIGMs, and by Theorem 3.3, they inevitably have high overlap
(i.e., low variability). See Appendix E.6 for more discussion and evaluation on such methods.

3.2 EDGE DEPENDENCY IN RGMS

Despite the popularity of EIGMs, edge dependency also widely exists in various RGMs, e.g., prefer-
ential attachment models (Barabási & Albert, 1999), small-world graphs (Watts & Strogatz, 1998),
copying network models (Kleinberg et al., 1999), random geometric graphs (Penrose, 2003), and ex-
ponential random graph models (Lusher et al., 2013). Some other models use additional mechanisms
on top of existing models to introduce edge dependency by, e.g., directly forming triangles (Pfeiffer
et al., 2012; Wegner & Olhede, 2021). Exchangeable network models (ENMs) (Lovász & Szegedy,
2006; Diaconis & Janson, 2007) also involve edge dependency, where isomorphic graphs are gener-
ated with the same probability (i.e., all nodes are treated probabilistically in symmetry). However,
ENMs cannot generate graphs with sparsity and power-law degrees, which are common patterns
in real-world graphs (Crane & Dempsey, 2016). Recent efforts have introduced asymmetry among
nodes to enhance expressiveness (Crane & Dempsey, 2018; Wu et al., 2025). In the same spirit but
from a different perspective, we aim to improve expressiveness by introducing dependence among
edges upon EIGMs. Since we build RGMs based on edge-probability models, the nodes are asym-
metric (i.e., non-exchangeable), except for the Erdős-Rényi model with uniform edge probabilities.
Notably, the closed-form tractability results on subgraph densities derived by us (Theorems 5.8
and B.5) are usually unavailable for existing RGMs with edge dependency (Drobyshevskiy & Tur-
dakov, 2019). Usually, only asymptotic results, as the number of nodes approaches infinity, are
available for such models (Ostroumova Prokhorenkova, 2017; Gu et al., 2013; Bhat et al., 2016).
In this work, we propose novel edge-dependent RGMs with the following desirable properties:
• Reproducing common patterns observed in real-world graphs across different domains, e.g., high

clustering, power-law degrees, and small diameters (Chakrabarti & Faloutsos, 2006).
• Having high variability, generating graphs with low overlap (see Definition 3.1).
• Having high tractability, with the feasibility to obtain closed-form results of graph statistics.

4 EDGE PROBABILITY GRAPH MODELS: CONCEPTS AND BASIC PROPERTIES

Given edge probabilities, EIGMs generate graphs assuming edge independency. In contrast, we ex-
plore a broader class of edge probability graph models (EPGMs) going beyond edge independency.

Definition 4.1 (EPGMs). Given edge probabilities p :
(
V
2

)
→ [0, 1], the set F(p) of edge proba-

bility graph models (EPGMs) w.r.t. p consists of all the RGMs satisfying the given marginal edge
probabilities, i.e., F(p) := {f : Prf [(u, v)] = p(u, v),∀u, v ∈ V }.
The concept of EPGMs decomposes each RGM into two factors: (F1) the marginal probability
of each edge and (F2) how the edge probabilities are realized (i.e., sampled), where (F2) has been
overlooked by EIGMs and this decomposition introduces a novel way of imposing edge dependency.
Below, we show some basic properties of EPGMs and discuss their meanings and implications.
Property 4.2. EIGMs are special cases of EPGMs w.r.t. the same edge probabilities.

Proof. See Appendix B for all the formal statements and proofs not covered in the main text.

Property 4.3. Each RGM can be represented as an EPGM (w.r.t its marginal edge probabilities).
While Property 4.3 is an immediate result following the definition of EPGMs, it shows the generality
of the concept of EPGMs, yet also implies the impossibility of exploring all possible EPGMs, which
motivates us to find good subsets of EPGMs. Specifically, Property 4.3 tells us that each RGM can
be represented as an EPGM w.r.t. some edge probabilities. What can we obtain for given edge

4In EPGMs, the overlap is constant yet we can have different triangle densities. See Property 4.7.
5Their graph generation algorithm is not practical since it relies on maximal clique enumeration, which is

time-consuming (Eblen et al., 2012). See Appendix D.2 for more discussions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

probabilities? For this, in Property 4.4, we obtain the upper bounds of expected subgraph densities
in the graphs generated by EPGMs with given edge probabilities.

Property 4.4 (Upper bound of edge-group probabilities in EPGMs). For any p :
(
V
2

)
→ [0, 1] and

any P ⊆
(
V
2

)
, Prf [P ⊆ E(G)] ≤ min(u,v)∈P p(u, v),∀f ∈ F(p).

Remark 4.5. Later, we shall show that the upper bound in Property 4.4 is tight, i.e., we can find
EPGMs achieving the upper bound (see Lemma B.2).
Property 4.4 can be applied to obtain the upper bounds of the expected number of specific subgraphs,
e.g., cliques and cycles. Below is an example on the number of triangles (i.e., △(G)).
Corollary 4.6. For any p, Ef [△(G)] ≤

∑
{u,v,w}∈(V3)

min(p(u, v), p(u,w), p(v, w)),∀f ∈ F(p).

Property 4.7 (EPGMs have constant expected degrees and overlap). For any p :
(
V
2

)
→ [0, 1], the

expected node degrees and overlap (see Definition 3.1) of all the EPGMs w.r.t. p are constant.
Property 4.7 implies that, for given edge probabilities, compared to EIGMs, considering more gen-
eral EPGMs neither changes expected degrees nor impairs the variability of the generated graphs.
Many EIGMs (e.g., Chung-Lu and Kronecker) can generate graphs with desirable degrees, and this
property ensures that EPGMs can inherit such strengths (see Figure 1 for empirical evidence). As
discussed in Remark 3.2, high variability is important and desirable for RGMs.
In this work, we explore EPGMs from both theoretical and practical perspectives, aiming to answer
two research questions inspired by the basic properties of EPGMs above:
• (RQ1; Theory) What good subsets of EPGMs are pattern-reproducing, flexible, and tractable?
• (RQ2; Practice) How to generate graphs using such EPGMs and fit the parameters of EPGMs?

5 BINDING: PATTERN-REPRODUCING, FLEXIBLE, AND TRACTABLE EPGMS

We aim to construct EPGMs that reproduce common patterns (specifically, high clustering) and are
flexible (i.e., different levels of dependency), in a tractable (i.e., controllable graph statistics) way.

5.1 BINDING: A GENERAL FRAMEWORK FOR EPGMS WITH HIGH CLUSTERING

As discussed in Section 1, desirable RGMs should generate graphs with common patterns, e.g.,
high clustering, power-law degrees, and small diameters (Chakrabarti & Faloutsos, 2006). We focus
on the bottleneck of EIGMs and aim to construct EPGMs with high clustering (i.e., subgraph densi-
ties).6 To this end, we study and propose binding, a general mathematical framework that introduces
positive dependency among edges, where multiple edge existences are determined together.

Algorithm 1: General Binding

Input : (1) p :
(
V
2

)
→ [0, 1]: edge probabilities;

(2) P s.t.
(
V
2

)
=

⋃
P∈P P and

P ∩ P ′ = ∅, ∀P ̸= P ′ ∈ P: pair partition
Output: G: generated graph

1 E ← ∅
2 for P ∈ P do
3 E ← E ∪ binding(p, P)

4 return G = (V,E)

5 Procedure binding(p̂, P̂)
6 sample a random variable s ∼ U(0, 1)
7 Ê ← ∅
8 for (u, v) ∈ P̂ do
9 if s ≤ p̂(u, v) then

10 Ê ← Ê ∪ {(u, v)}

11 return Ê

Binding is the probabilistic process in Algo-
rithm 1, where edge dependence is imposed in
each group of pairs. Specifically, in each group,
if a node pair is sampled as an edge, all the pairs
with higher edge probabilities must be sampled
too. Note that, Algorithm 1 describes a gen-
eral framework, while our practical algorithms
(Algorithms 2 and 3) do not need to choose an
explicit partition P beforehand.
Definition 5.1 (Binding). Given edge proba-
bilities p and a partition P , binding gives the
RGM fBD

p;P as follows. For each Pi ∈ P , write
Pi = {(ui1, vi1), . . . , (ui|Pi|, vi|Pi|)} such that
p(ui1, vi1) ≥ · · · ≥ p(ui|Pi|, vi|Pi|), and let
Pi;k := {(ui1, vi1), . . . , (uik, vik)} for each
k ∈ [|Pi|]. Then, for each k ∈ [|Pi|] and
the graph G with edges

⋃
i Pi;k, fBD

p;P(G) =∏
i(p(uik, vik) − p(ui,k+1, vi,k+1)), where we

take p(ui,|Pi|+1, vi,|Pi|+1) = 0. For any other graph G, fBD
p;P(G) = 0.

There are two basic properties of binding: (i) binding is correct, i.e., generates EPGMs, and (ii)
binding improves subgraph densities upon EIGMs.

6Notably, we shall also empirically show that binding maintains (or even improves) the generation quality
w.r.t. several different graph metrics, including but not limited to degrees and diameters (see Section 6.3).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Proposition 5.2. Algorithm 1 with input p (and any P) produces an EPGM w.r.t. p.

Proposition 5.3. Binding produces higher or equal subgraph densities, compared to the corre-
sponding EIGMs.

Remark 5.4. There are EPGMs with lower subgraph densities, which are against our motivation to
improve upon EIGMs w.r.t. subgraph densities and are out of this work’s scope. That said, they may
be useful in scenarios where dense subgraphs are unwanted, e.g., disease control.
With binding, we can construct EPGMs with different levels of edge dependency by different ways
of binding the node pairs. Let us first study two extreme cases.
Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding. EIGMs are the case with minimal binding, i.e., without binding, where the parti-
tion contains only sets of a single pair, i.e., P = {{(u, v)} : u, v ∈ V }.
Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding. Maximal binding corresponds to the case with P = {

(
V
2

)
}, i.e., all the pairs are

bound together. It achieves the upper bound of subgraph densities, i.e., the maximal edge-group
probabilities in Property 4.4 (see Lemma B.2), as mentioned in Remark 4.5.

5.2 LOCAL BINDING: FLEXIBLE AND TRACTABLE SPECTRUM BETWEEN TWO EXTREMES

Building upon the general framework introduced in Section 5.1, we propose practical binding algo-
rithms. Intuitively, the more pairs we bind together, the higher subgraph densities we have. Between
minimal binding (i.e., EIGMs) and maximal binding that achieves the upper bound of subgraph den-
sities, we can have a flexible spectrum. However, the number of possible partitions of node pairs(
V
2

)
grows exponentially w.r.t. |V |. Hence, we propose to introduce edge dependency without ex-

plicit partitions. Specifically, we propose local binding, where we repeatedly sample node groups,7
and bind pairs between each sampled node group together. Pairs between the same node group are
structurally related, compared to pairs sharing no common nodes.
Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation. In social networks, each group “bound together” can represent a group in-
teraction, e.g., an offline social event (meeting, conference, party) or an online social event (group
chat, Internet forum, online game). In such social events, people gather together, and the commu-
nications/relations between them likely co-occur. At the same time, not all people in such events
would necessarily communicate with each other, e.g., some people are more familiar with each
other. This is the point of considering binding with various edge probabilities (instead of just in-
serting cliques). In general, group interactions widely exist in graphs in different domains, e.g.,
social networks (Felmlee & Faris, 2013), biological networks (Naoumkina et al., 2010), and web
graphs (Dourisboure et al., 2009). See Appendix D.4 for more discussions.

Algorithm 2: Local binding

Input : (1) p :
(
V
2

)
→ [0, 1]: edge probabilities;

(2) g : V → [0, 1]: node-sampling probabilities;
(3) R: maximum number of rounds for binding

Output: G: generated graph
1 P ← ∅; iround ← 0;Prem ←

(
V
2

)
▷ Initialization

2 for iround = 1, 2, . . . , R do
3 if Prem = ∅ then
4 break ▷ Pairs exhausted

5 iround ← iround + 1
6 sample Vs ⊆ V with Pr[v ∈ Vs] = g(v)

independently
7 Ps ←

(
Vs
2

)
∩ Prem

8 if Ps ̸= ∅ then
9 P ← P ∪ {Ps}

10 Prem ← Prem \ Ps

11 P ← P ∪ {{(u, v)} : (u, v) ∈ Prem}
12 return the output of Algorithm 1 with inputs p and P

In Algorithm 2, we repeatedly sample a
subset of nodes (Line 6) and group the
ungrouped pairs between the sampled
nodes (Line 9). We maintain Prem to en-
sure disjoint partitions (Lines 7 and 10).
For practical usage, we consider a lim-
ited number (i.e., R) of rounds for bind-
ing (Line 2) otherwise it may take a
long time to exhaust all the pairs. Al-
gorithm 2 is also a probabilistic pro-
cess, and we use fLB

p;g,R to denote the
corresponding RGM, i.e., fLB

p;g,R(G) =

Pr[Algorithm 2 outputs G with inputs p,
g, and R]. As a special case of binding,
local binding is also correct, i.e., gener-
ates EPGMs.

Proposition 5.5. Algorithm 2 with input
p (and any g and R) produces an EPGM
w.r.t. p.

Remark 5.6. We introduce node-sampling probabilities (i.e., g) to sample node groups with better
tractability, without explicit partitions. With higher node-sampling probabilities, larger node groups

7We use independent node sampling (yet still with edge dependency), which is simple, tractable, and works
empirically well in our experiments. See Appendix D.3 for more discussions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

are bound together, and the generated graphs are expected to have higher subgraph densities. Specif-
ically, local binding forms a spectrum between the two extreme cases. When g(v) ≡ 0, local binding
reduces to minimal binding, i.e., EIGMs. When g(v) ≡ 1, it reduces to maximal binding.

Theorem 5.7 (Time complexity of graph generation with local binding). Given p :
(
V
2

)
→ [0, 1],

g : V → [0, 1], and R ∈ N, fLB
p;g,R generates a graph in O(R

(∑
v∈V g(v)

)2
+ |V |2) time with high

probability,8 with the worst case O(R |V |2).
We derive tractability results of local binding on the closed-form expected number of motifs (i.e.,
induced subgraphs; see Section 2). For this, we derive the probabilities of all the possible motifs for
each node group, then we can compute the expected number of motifs by taking the summation over
all different node groups, which can be later used for parameter fitting (see Section 5.4).

Theorem 5.8 (Tractable motif probabilities with local binding). For any p :
(
V
2

)
→ [0, 1], g : V →

[0, 1], R ∈ N, and V ′ = {u, v, w} ∈
(
V
3

)
, we can compute the closed-form PrfLB

p;g,R
[E(G[V ′]) =

E∗],∀E∗ ⊆
(
V ′

2

)
, as a function w.r.t. p, g, and R (the detailed formulae are in Appendix B.3).

Proof sketch. See Appendix B.3 for the full proof and the detailed formulae. Higher p and g values
give higher clustering. The choice of R is mainly for controlling the running time.

Remark 5.9. Having closed-form formulae of motif probabilities allows us to estimate the output
and fit the parameters of RGMs (see Section 5.4). Theorem 5.8 can be extended to larger |V ′| with
practical difficulties from the increasing sub-cases as motif size increases. See Appendix B.3.

Theorem 5.10 (Time complexity of computing motif probabilities with local binding). Computing
PrfLB

p;g,R
[E(G[V ′]) = E∗] takes O(|V |3) in total for all E∗ ⊆

(
V ′

2

)
and V ′ ∈

(
V
3

)
.

5.3 PARALLEL BINDING: THE PARALLELIZABLE ICING ON THE CAKE

In local binding, the sampling order matters, i.e., later rounds are affected by earlier rounds. Specif-
ically, if one pair is already determined in an early round, even if it is sampled again in later rounds,
its (in)existence cannot be changed. This property hinders the parallelization of the binding process
and the derivation of tractability analyses. This property also implies that each pair can only be
bound together once, entailing less flexibility in the group interactions.
We thus propose a more flexible and naturally parallelizable binding algorithm, parallel binding.
Specifically, we consider the probabilistic process in Algorithm 3, and let fPB

p;g,R denote the corre-
sponding RGM defined by fPB

p;g,R(G) = Pr[Algorithm 3 outputs G with inputs p, g, and R].

Algorithm 3: Parallel binding

Input : (1) p :
(
V
2

)
→ [0, 1]: edge probabilities;

(2) g : V → [0, 1]: node-sampling probabilities;
(3) R: the number of rounds for binding

Output: G: generated graph
1 E ← ∅ ▷ Initialization

2 r(u, v)← min(1−(1−p(u,v))1/R

g(u)g(v)
, 1),∀u, v ∈ V

3 prem(u, v)← max(1− 1−p(u,v)

(1−g(u)g(v))R
, 0), ∀u, v ∈ V

4 for iround = 1, 2, . . . , R do
5 sample Vs ⊆ V with Pr[v ∈ Vs] = g(v)

independently
6 E ← E ∪ binding(r,

(
Vs
2

)
) ▷ See Alg. 1

7 for (u, v) ∈
(
V
2

)
s.t. prem(u, v) > 0 do

8 sample a random variable s ∼ U(0, 1)
9 if s ≤ prem(u, v) then

10 E ← E ∪ {(u, v)}

11 return G = (V,E)

The high-level idea is to make each
round of binding probabilistically equiv-
alent (see Lines 4 to 6). Specifically,
in each round, we insert edges with low
probabilities (compared to the ones in
p) while maintaining the final individual
edge probabilities, by the calculation of
r and prem at Lines 2 and 3. We can
straightforwardly parallelize the rounds
by, e.g., multi-threading.
Although parallel binding is algorithmi-
cally different from (local) binding (e.g.,
no partition is used), it shares many
theoretical properties with local bind-
ing. Specifically, Proposition 5.5, Re-
mark 5.6, Theorem 5.7, Theorem 5.8,
Remark 5.9, and Theorem 5.10 also ap-
ply to parallel binding. This implies that
we maintain (or even improve; see Re-

mark 5.11) correctness, tractability, flexibility, and efficiency when using parallel binding instead of
local binding. See Appendix B.4 for the formal statements and proofs.

8That is, lim|V |→∞ Pr[it takes O(R
(∑

v∈V g(v)
)2

+ |V |2)] = 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Remark 5.11. We also derive tractability results of parallel binding on the expected number of (non-
)isolated nodes. It is much more challenging to derive such results for local binding due to the
properties mentioned above, i.e., later rounds are affected by earlier rounds. Since our main focus is
on subgraph densities, see Appendix C for all the analysis regarding (non-)isolated nodes.

5.4 EFFICIENT PARAMETER FITTING WITH NODE EQUIVALENCE

Efficient evaluation of the fitting objective is important. A key challenge is that the naive computa-
tion takes O(|V |3) time in total by considering all O(|V |3) different possible node groups V ′ (see
Theorems 5.8 and B.5)). We aim to improve the speed of computing the tractability results by con-
sidering node equivalence w.r.t. motif probabilities in various edge-probability models. Equivalent
nodes form equivalent node groups, which reduces the number of distinct node groups to calculate.
Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model. The ER model (Erdős & Rényi, 1959) outputs uniform edge probabili-
ties, and all the nodes are equivalent. Hence, we set all the node-sampling probabilities identical,
i.e., g(v) = g0,∀v ∈ V for a single parameter g0 ∈ [0, 1]. As mentioned in Section 3.2, the ER
model is the only case with node exchangeability, and the exchangeability is preserved with binding
since the nodes are also treated symmetrically for binding.

Lemma 5.12 (Reduced time complexity with ER). For ER, the time complexities of computing
3-motif probabilities can be reduced from O(|V |3) to O(1).

Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model. The CL model (Chung & Lu, 2002) outputs edge probabilities with ex-
pected degrees D = (d1, d2, . . . , dn), and nodes with the same degree are equivalent. We
set node-sampling probabilities as a function of degree with kdeg parameters, where kdeg :=
|{d1, d2, . . . , dn}|.
Lemma 5.13 (Reduced time complexity with CL). For CL, the time complexities of computing
3-motif probabilities can be reduced from O(|V |3) to O(k3deg).

Stochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) model The SB model (Holland et al., 1983) outputs edge probabilities with
each node assigned to a block (i.e., a group), and nodes partitioned in the same block are equivalent.
Hence, we set the node-sampling probabilities as a function of the block index, with the number of
parameters equal to the number of blocks.

Lemma 5.14 (Reduced time complexity with SB). For SB, the time complexities of computing 3-
motif probabilities can be reduced from O(|V |3) to O(c3), where c is the total number of blocks.

Stochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) model With a (commonly used 2-by-2) seed matrix θ ∈ [0, 1]2×2 and
kKR ∈ N, the KR model (Leskovec et al., 2010) outputs edge probabilities as the kKR-th Kronecker
power of θ. In KR, each node i ∈ [2kKR] is associated with a binary node label of length kKR, i.e.,
the binary representation of i − 1. Nodes with the same number of ones in their binary node labels
are equivalent.9 Hence, we set node-sampling probabilities as a function of the number of ones in
the binary representation, with kKR + 1 parameters.

Lemma 5.15 (Reduced time complexity with KR). For KR, the time complexities of computing
3-motif probabilities can be reduced from O(|V |3) to O(k7KR).

Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note. See Appendix B.5 for more details about parameter fitting, e.g., formal definitions of the
models and the details of node equivalence.

6 EXPERIMENTS

In this section, we empirically evaluate EPGMs with our binding schemes and show the superiority
of realization schemes beyond edge independency. Specifically, we show the following two points:

• (P1) When we use our tractability results to fit the parameters of EPGMs, we improve upon EIGMs
and reproduce high triangle densities, and thus produce high clustering, which is a common pattern
in real-world graphs; this also validates the correctness of our tractability results and algorithms.

• (P2) We can reproduce other common patterns, e.g., power-law degrees and small diameters,
especially when the corresponding EIGMs are able to do so; this shows that improving EIGMs
w.r.t. clustering by binding does not harm the generation quality w.r.t. other common patterns.

9The equivalence in KR is slightly weaker than that in the other three models. This is why the reduced time
complexity is O(k7

KR) instead of O(k3
KR). See Appendix B.5.4 for more details.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: The clustering metrics of generated graphs. The number of triangles (△) is normalized. For each
dataset and each model, the best result is in bold and the second best is underlined. AR represents average
ranking. The statistics are averaged over 100 random trails. See Table 7 in Appendix E.2 for the full results
with standard deviations. Our binding schemes (LOCLBDG and PARABDG) are consistently and clearly
beneficial for improving clustering, and generating graphs with close-to-ground-truth clustering metrics.

dataset Hams Fcbk Polb Spam Cepg Scht AR over dataset

metric △ GCC ALCC △ GCC ALCC △ GCC ALCC △ GCC ALCC △ GCC ALCC △ GCC ALCC △ GCC ALCC

model GROUNDT 1.00 0.23 0.54 1.00 0.52 0.61 1.00 0.23 0.32 1.00 0.14 0.29 1.00 0.32 0.45 1.00 0.38 0.35 N/A N/A N/A

ER
EDGEIND 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.02 0.02 0.01 0.00 0.00 0.04 0.03 0.03 0.03 0.03 0.03 3.0 2.7 2.5
LOCLBDG 1.00 0.32 0.24 1.01 0.45 0.22 0.95 0.34 0.25 0.99 0.34 0.23 1.02 0.40 0.26 1.01 0.42 0.25 1.7 1.3 1.3
PARABDG 0.99 0.39 0.64 1.00 0.57 0.81 1.02 0.41 0.66 0.99 0.40 0.66 0.97 0.51 0.75 0.99 0.56 0.79 1.3 2.0 2.2

CL
EDGEIND 0.30 0.07 0.06 0.12 0.06 0.06 0.79 0.18 0.17 0.50 0.07 0.06 0.68 0.23 0.22 0.64 0.24 0.23 3.0 3.0 2.5
LOCLBDG 0.99 0.17 0.26 1.03 0.26 0.30 1.00 0.21 0.34 1.03 0.12 0.26 1.00 0.29 0.43 1.04 0.32 0.47 1.7 1.8 1.5
PARABDG 1.00 0.18 0.47 1.01 0.34 0.63 1.01 0.22 0.47 1.01 0.13 0.44 1.00 0.31 0.58 1.14 0.29 0.61 1.3 1.2 2.0

SB
EDGEIND 0.26 0.08 0.04 0.15 0.14 0.08 0.48 0.14 0.16 0.53 0.09 0.04 0.66 0.26 0.20 0.64 0.27 0.13 3.0 3.0 3.0
LOCLBDG 1.04 0.22 0.24 0.93 0.43 0.33 0.99 0.24 0.35 0.98 0.15 0.22 0.99 0.32 0.41 1.03 0.35 0.39 1.7 1.2 1.3
PARABDG 0.99 0.24 0.52 1.03 0.53 0.56 1.01 0.18 0.25 0.99 0.16 0.36 1.05 0.33 0.36 0.97 0.34 0.44 1.3 1.8 1.7

KR
EDGEIND 0.18 0.04 0.06 0.05 0.04 0.04 0.10 0.04 0.07 0.06 0.01 0.03 0.13 0.07 0.12 0.03 0.03 0.05 3.0 3.0 3.0
LOCLBDG 1.09 0.15 0.23 0.93 0.24 0.27 1.06 0.14 0.23 0.94 0.12 0.19 0.99 0.17 0.31 1.44 0.18 0.28 2.0 2.0 1.7
PARABDG 1.00 0.17 0.39 0.97 0.35 0.60 0.94 0.22 0.42 1.05 0.16 0.38 1.00 0.28 0.46 1.07 0.35 0.58 1.0 1.0 1.3

AR
over

models

EDGEIND 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 3.0 2.5 2.8 3.0 3.0 3.0 3.0 3.0 2.3 3.0 2.9 2.8
LOCLBDG 1.8 1.5 2.0 2.0 2.0 2.0 1.5 1.5 1.0 2.0 1.8 1.3 1.5 1.5 1.3 1.8 1.3 1.3 1.8 1.6 1.5
PARABDG 1.3 1.5 1.0 1.0 1.0 1.0 1.5 1.5 2.5 1.0 1.8 2.0 1.5 1.5 1.8 1.3 1.8 2.5 1.3 1.5 1.8

6.1 EXPERIMENTAL SETTINGS
Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets. We use six real-world datasets: (1) social networks hamsterster (Hams) and facebook
(Fcbk), (2) web graphs polblogs (Polb) and spam (Spam), and (3) biological graphs CE-PG (Cepg)
and SC-HT (Scht). See Table 6 in Appendix E.1 for the statistics of the datasets.
Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models. We consider the four edge-probability models analyzed in Section 5.4: the Erdős-Rényi
(ER) model, the Chung-Lu (CL) model, the stochastic block (SB) model, and the stochastic Kro-
necker (KR) model. Given an input graph, we fit each model to the graph and obtain the output edge
probabilities (see Appendix B.5 for more details).
Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods. We compare three realization methods: EIGMs (EDGEIND), and EPGMs
with local binding (LOCLBDG) and with parallel binding (PARABDG).
Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting. Since our main focus is to improve clustering, in our main experiments, we use the number
of triangles, an important indicator of clustering (Tsourakakis et al., 2009; Kolda et al., 2014a), as
the objective of the fitting algorithms. We use gradient descent to optimize parameters. In the main
experiments, the edge probabilities are fixed as those output by the edge-probability models, while
we also consider joint optimization of edge probabilities and node-sampling probabilities (see Sec-
tion 6.5). See Appendix E.1 for the detailed experimental settings. Instead of fitting specific graphs,
it is also possible to use EPGMs with binding to generate graphs “from scratch” with different levels
of clustering by directly setting the parameters. See Appendix E.7 for more discussions and results.
6.2 P1: EPGMS REPRODUCE HIGH CLUSTERING (TABLE 1)
EPGMs with binding reproduce high clustering in real-world graphs. In Table 1, for each dataset and
each model, we compare three clustering-related metrics, the number of triangles (△), the global
clustering coefficient (GCC), and the average local clustering coefficient (ALCC), in the ground-
truth (GROUNDT) graph and the graphs generated with each realization method. For each dataset
and each model, we compute the ranking of each method according to the absolute error w.r.t. each
metric. We also show the average rankings (ARs) over datasets and models. The statistics are
averaged over 100 generated graphs. See Appendix E.2 for the full results with standard deviations.
The number of triangles, which is the objective of our fitting algorithms, can be almost perfectly
preserved by both LOCLBDG and PARABDG, showing the correctness and effectiveness of our algo-
rithms. Notably, as Theorem 3.3 imply, EIGMs often fail to generate graphs with enough triangles.
GCC and ALCC are also significantly improved (upon EIGMs) in most cases, while PARABDG has
noticeably higher ALCC than LOCLBDG. In some rare cases, PARABDG generates graphs with
exceedingly high GCC and/or ALCC and have higher absolute errors compared to EIGMs.
6.3 P2: EPGMS REPRODUCE REAL-WORLD DEGREES AND DISTANCES (FIGURE 1)
EPGMs with binding (LOCLBDG and PARABDG) also reproduce other common patterns in real-
world graphs. In Figure 1, for each dataset (each column) and each model (each row), we compare
the degree distributions and distance distributions in the ground-truth graph and the graphs generated
with each realization method. Specifically, for each realization method, we count the number of
nodes with degree at least k for each k ∈ N and count the number of pairs in the largest connected
component with distance at least d for each d ∈ N in each generated graph, and take the average
number over 100 generated graphs. See Appendix E.3 for the formal definitions and full results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

GROUNDT LOCLBDGEDGEIND PARABDG

Hams Fcbk

ER

CL

SB

KR

Hams Fcbk

Figure 1: The degree (left) and distance (right) distributions of generated graphs. Each shaded
area represents one standard deviation. The plots are in a log-log scale. Our binding schemes
(LOCLBDG and PARABDG) do not negatively affect degree or distance distributions, and pro-
vide improvements sometimes (e.g., for the ER model).
EPGMs with binding generate graphs with common patterns: power-law degrees and small diam-
eters (i.e., small distances). Both schemes (LOCLBDG and PARABDG) perform comparably well
while LOCLBDG performs noticeably better with ER and PARABDG performs noticeably better
with KR. Importantly, when the edge probabilities output power-law expected degrees (e.g., CL
and KR), the degree distributions are well preserved with binding. Edge-independent ER cannot
generate power-law degrees (Bollobás & Riordan, 2003), and binding alleviates this problem.
Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics. Notably, with binding, the generated graphs are overall closer to the ground
truth w.r.t. some other graph metrics: modularity, core numbers, conductance, average vertex/edge
betweenness, and natural connectivity. See Appendix E.3 for more details.
6.4 GRAPH GENERATION SPEED (TABLE 2)

Table 2: The time (in seconds)
for graph generation with dif-
ferent realization methods.

Hams Fcbk

EDGEIND 0.1 0.1
LOCLBDG 4.7 49.0
PARABDG 0.3 1.7
PARABDG-S 3.2 12.6

In Table 2, we compare the running time of graph genera-
tion (averaged over 100 random trials) using EDGEIND,10 LO-
CLBDG, PARABDG, and serialized PARABDG without paralleliza-
tion (PARABDG-s) with the stochastic Kronecker (KR) model.
Among the competitors, EDGEIND is the fastest with the simplest
algorithmic nature. Between the two binding schemes, PARABDG
is noticeably faster than LOCLBDG, and is even faster with paral-
lelization. Fitting the same number of triangles, PARABDG usually
requires lower node-sampling probabilities and thus deals with fewer
pairs in each round, and is thus faster even when serialized. We also conduct scalability experiments
by upscaling the input graph. With 32GB RAM, all the proposed algorithms can run with 128,000
nodes. See Appendix E.4 for more detailed discussions and results.
6.5 JOINT OPTIMIZATION OF EDGE AND NODE-SAMPLING PROBABILITIES (TABLE 3)

Table 3: The clustering metrics of the graphs generated by
three variants of parallel binding. The number of triangles
(△) is normalized. For each dataset and each model, the best
result is in bold, and the second best is underlined. Joint
optimization further enhances the power of our binding
scheme PARABDG to reproduce graph patterns.

dataset Hams Fcbk

metric △ GCC ALCC △ GCC ALCC

GROUNDT 1.000 0.229 0.540 1.000 0.519 0.606

PARABDG 0.997 0.165 0.394 0.971 0.347 0.605
PARABDG-W 0.964 0.176 0.260 1.021 0.408 0.458
PARABDG-JW 0.999 0.230 0.448 1.018 0.521 0.644

In addition to optimizing node-sampling
probabilities for given edge probabilities,
we can also jointly optimize both kinds
of probabilities. In Table 3, we compare
the ground-truth clustering and that gen-
erated by EPGMs using three variants of
parallel binding: (1) PARABDG with the
number of triangles as the objective (the
one used in Table 1), (2) PARABDG-W
with the numbers of triangles and wedges
as the objective (given edge probabilities),
(3) PARABDG-JW jointly optimizing both
kinds of probabilities, with the numbers of triangles and wedges as the objective.
On both Hams and Fcbk, PARABDG and PARABDG-W can well fit the number of triangles but
have noticeable errors w.r.t. the number of wedges (and thus GCC), while PARABDG-JW with joint

10We use krongen in SNAP (Leskovec & Sosič, 2016), which is parallelized and optimized for KR.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

optimization accurately fits both triangles and wedges. On the other datasets, the three variants
perform similarly well because PARABDG already preserves both triangles and wedges well, and
there is not much room for improvement. Notably, with joint optimization, the degree and distance
distributions are still well preserved (see Appendix E.5 for more details).
6.6 COMPARISON WITH EDGE-DEPENDENT RGMS AND ADVANCED EIGMS (TABLE 4)

Table 4: The clustering metrics and overlap (lower the better) of
the graphs generated by binding and other models. For each dataset
and each model, the best result is in bold, and the second best is
underlined. Overall, binding achieves promising performance
in generating high-clustering graphs, with high variability.

dataset Hams Fcbk

metric △ GCC ALCC overlap △ GCC ALCC overlap

GROUNDT 1.000 0.229 0.540 N/A 1.000 0.519 0.606 N/A

LOCLBDG-CL 0.992 0.165 0.255 5.8% 1.026 0.255 0.305 6.3%
PARABDG-CL 1.000 0.185 0.471 5.9% 1.006 0.336 0.626 6.2%
PA 0.198 0.049 0.049 4.7% 0.120 0.061 0.061 6.2%
RGG (d = 1) 1.252 0.751 0.751 0.8% 0.607 0.751 0.752 1.1%
RGG (d = 2) 1.011 0.595 0.604 0.8% 0.492 0.596 0.607 1.1%
RGG (d = 3) 0.856 0.491 0.513 0.8% 0.421 0.494 0.518 1.1%
BTER 0.991 0.290 0.558 53.8% 0.880 0.525 0.605 68.0%
LFR (µ = 0.0) 1.140 0.262 0.546 43.5% N/A N/A N/A N/A
LFR (µ = 0.5) 0.296 0.068 0.081 13.4% 0.161 0.084 0.120 17.0%
LFR (µ = 1.0) 0.197 0.045 0.047 7.0% 0.105 0.055 0.059 6.7%

We test other edge-dependent RGMs:
preferential attachment models (PA;
Barabási & Albert (1999)) and ran-
dom geometric graphs (RGG; Pen-
rose (2003)). We fit them to the num-
bers of nodes and edges of each input
graph. PA fails to generate high clus-
tering. For RGG, we often need di-
mension d = 1 (the smallest dimen-
sion gives the highest clustering) to
generate enough triangles, while the
GCC and ALCC are too high (they
are only determined by the dimen-
sion d). Also, as discussed in Sec-
tion 3.2, closed-form tractability re-
sults on subgraph densities are not unavailable for PA and RGG. See Appendix E.2 for more details.
As discussed in Section 3.1, some existing methods shift edge probabilities, and they are essentially
EIGMs with an inevitable trade-off between variability and the ability to generate high clustering
(see Theorem 3.3). We test the block two-level Erdős-Rényi (BTER) model (Kolda et al., 2014b)
that essentially uses a mixture of multiple Chung-Lu models to generate high clustering. Similarly,
the Lancichinetti-Fortunato-Radicchi (LFR) model (Lancichinetti et al., 2008) generates graphs with
community structures by shifting edge probabilities to intra-community pairs on top of Chung-Lu.
We empirically validate that EPGMs with binding (we report the results based on Chung-Lu; one
may achieve even better performance with binding based on other edge-probability models, as shown
in Table 1) achieve comparable performance in generating high-clustering graphs, with much higher
variability (i.e., low overlap; recall that high variability is important for RGMs; see Definition 3.1
and Remark 3.2). See Table 4 for the results on Hams and Fcbk, and see Appendix E.6 for more
details with full results and discussions on deep graph generative models (Rendsburg et al., 2020;
Simonovsky & Komodakis, 2018; You et al., 2018).
Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results. Due to the page limit, the full results are in Appendix E. Our fitting
algorithms also assign different node-sampling probabilities to different nodes (See Appendix E.1).
Moreover, as mentioned in Remark 5.11, for parallel binding, we can fit and control the number of
(non-)isolated nodes; see Appendix C for the theoretical analyses and experimental results.

7 CONCLUSION AND DISCUSSIONS

In this work, we show that realization beyond edge independence can better reproduce common
patterns while ensuring high tractability and variability. We formally define EPGMs and show their
basic properties (Section 4). Notably, even with edge dependency, EPGMs maintain the same vari-
ability (Property 4.7). We propose a pattern-reproducing, tractable, and flexible realization frame-
work called binding (Algorithm 1) with two practical variants: local binding (Algorithm 2) and
parallel binding (Algorithm 3). We derive tractability results (Theorems 5.8 and B.5) on the closed-
form subgraph densities, and propose efficient parameter fitting (Section 5.4; Lemmas 5.12-5.15).
We conduct extensive experiments to show the empirical power of EPGMs with binding (Section 6).
Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions. EPGMs with binding generate more isolated nodes than EIGMs
due to higher variance. Fortunately, we can address the limitation by fitting and controlling the num-
ber of isolated nodes with the tractability results, as mentioned in Remark 5.11. The performance
of EPGMs depends on both the underlying edge probabilities and the way to realize (i.e., sample
from) them. In this work, we focus on the latter, while finding valuable edge probabilities is an
independent problem. Notably, as shown in Section 6.5, it is possible to jointly optimize both edge
probabilities and their realization. As discussed in Remark 5.4, binding only covers a subset of
EPGMs, and we will explore the other types of EPGMs (e.g., EPGMs with lower subgraph densi-
ties) in the future. Combining binding with other mechanisms in existing edge-dependent RGMs to
create even stronger RGMs is another interesting future direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided
they blog. In LinkKDD workshop, 2005.

Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. SIMPLE: A gradient esti-
mator for k-subset sampling. In ICLR, 2023.

Dimitris Anastassiou. Computational analysis of the synergy among multiple interacting genes.
Molecular systems biology, 3(1):83, 2007.

Anonymous. Exploring edge probability graph models beyond edge independency: Code and
datasets. https://anonymous.4open.science/r/epgm-7EBE, 2024.

Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou r3579x? anonymized
social networks, hidden patterns, and structural steganography. In theWebConf (WWW), 2007.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

U Bhat, PL Krapivsky, R Lambiotte, and S Redner. Densification and structural transitions in net-
works that grow by node copying. Physical Review E, 94(6):062302, 2016.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008
(10):P10008, 2008.

Béla Bollobás and Oliver M Riordan. Mathematical results on scale-free random graphs. Handbook
of graphs and networks: from the genome to the internet, pp. 1–34, 2003.

Ulrik Brandes. On variants of shortest-path betweenness centrality and their generic computation.
Social networks, 30(2):136–145, 2008.

Christopher Brissette and George M. Slota. Limitations of chung lu random graph generation. In
International Workshop on Complex Networks and Their Applications, 2021.

Christopher Brissette, David Liu, and George M Slota. Correcting output degree sequences in chung-
lu random graph generation. In International Conference on Complex Networks and Their Appli-
cations, 2022.

Fanchen Bu, Shinhwan Kang, and Kijung Shin. Interplay between topology and edge weights in
real-world graphs: concepts, patterns, and an algorithm. Data Mining and Knowledge Discovery,
37:2139 – 2191, 2023.

Carlos Castillo, Kumar Chellapilla, and Ludovic Denoyer. Web spam challenge 2008. In AIRWeb
workshop, 2008.

Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and algorithms.
ACM computing surveys, 38(1):2–es, 2006.

Hau Chan, Leman Akoglu, and Hanghang Tong. Make it or break it: Manipulating robustness in
large networks. In SDM, 2014.

Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Charalampos
Tsourakakis. On the power of edge independent graph models. In NeurIPS, 2021.

Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Charalampos
Tsourakakis. On the role of edge dependency in graph generative models. In ICML, 2024.

Ara Cho, Junha Shin, Sohyun Hwang, Chanyoung Kim, Hongseok Shim, Hyojin Kim, Hanhae Kim,
and Insuk Lee. Wormnet v3: a network-assisted hypothesis-generating server for caenorhabditis
elegans. Nucleic acids research, 42(W1):W76–W82, 2014.

Fan Chung and Linyuan Lu. Connected components in random graphs with given expected degree
sequences. Annals of combinatorics, 6(2):125–145, 2002.

11

https://anonymous.4open.science/r/epgm-7EBE

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jaewon Chung, Benjamin D Pedigo, Eric W Bridgeford, Bijan K Varjavand, Hayden S Helm, and
Joshua T Vogelstein. Graspy: Graph statistics in python. Journal of Machine Learning Research,
20:1–7, 2019.

Harry Crane and Walter Dempsey. Edge exchangeable models for network data. arXiv:1603.04571,
2016.

Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. Journal of
the American Statistical Association, 113(523):1311–1326, 2018.

Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-memory pro-
gramming. IEEE computational science and engineering, 5(1):46–55, 1998.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Persi Diaconis and Svante Janson. Graph limits and exchangeable random graphs. arXiv:0712.2749,
2007.

Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and classification of dense im-
plicit communities in the web graph. ACM Transactions on the Web, 3(2):1–36, 2009.

Mikhail Drobyshevskiy and Denis Turdakov. Random graph modeling: A survey of the concepts.
ACM computing surveys, 52(6):1–36, 2019.

John D Eblen, Charles A Phillips, Gary L Rogers, and Michael A Langston. The maximum clique
enumeration problem: algorithms, applications, and implementations. In BMC bioinformatics,
volume 13, pp. 1–11, 2012.

P Erdős and A Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290–297,
1959.

Diane Felmlee and Robert Faris. Interaction in social networks. In Handbook of social psychology,
pp. 439–464. Springer, 2013.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

LC Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35–41, 1977.

Debarghya Ghoshdastidar, Maurilio Gutzeit, Alexandra Carpentier, and Ulrike von Luxburg. Two-
sample tests for large random graphs using network statistics. In COLT, 2017.

David Gleich. Hierarchical directed spectral graph partitioning. Information Networks, 443, 2006.

Irving I Gottesman and Daniel R Hanson. Human development: Biological and genetic processes.
Annual review of psychology, 56:263–286, 2005.

Lei Gu, Hui Lin Huang, and Xiao Dong Zhang. The clustering coefficient and the diameter of
small-world networks. Acta Mathematica Sinica, English Series, 29(1):199–208, 2013.

Hamsterster. Hamsterster social network. http://www.hamsterster.com.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Iacopo Iacopini, Giovanni Petri, Andrea Baronchelli, and Alain Barrat. Group interactions modulate
critical mass dynamics in social convention. Communications Physics, 5(1):64, 2022.

Hyukjae Jang, Sungwon P Choe, Simon NB Gunkel, Seungwoo Kang, and Junehwa Song. A system
to analyze group socializing behaviors in social parties. IEEE Transactions on Human-Machine
Systems, 47(6):801–813, 2016.

Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs. The Bell
system technical journal, 49(2):291–307, 1970.

12

http://www.hamsterster.com

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Jon M Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew S Tomkins.
The web as a graph: Measurements, models, and methods. In COCOON, 1999.

Olga Klopp, Alexandre B Tsybakov, and Nicolas Verzelen. Oracle inequalities for network models
and sparse graphon estimation. Annals of Statistics, 45(1):316–354, 2017.

Tamara G Kolda, Ali Pinar, Todd Plantenga, C Seshadhri, and Christine Task. Counting triangles in
massive graphs with mapreduce. SIAM Journal on Scientific Computing, 36(5):S48–S77, 2014a.

Tamara G Kolda, Ali Pinar, Todd Plantenga, and Comandur Seshadhri. A scalable generative graph
model with community structure. SIAM Journal on Scientific Computing, 36(5):C424–C452,
2014b.

Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing com-
munity detection algorithms. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics,
78(4):046110, 2008.

Timothy LaRock and Renaud Lambiotte. Encapsulation structure and dynamics in hypergraphs.
Journal of Physics: Complexity, 4(4):045007, 2023.

Geon Lee, Minyoung Choe, and Kijung Shin. How do hyperedges overlap in real-world
hypergraphs?-patterns, measures, and generators. In theWebConf (WWW), 2021.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. In NeurIPS,
2012.

Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology, 8(1):1–20, 2016.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: an approach to modeling networks. Journal of Machine Learning Research,
11(2), 2010.

Vincent Levorato. Group measures and modeling for social networks. Journal of Complex Systems,
2014, 2014.

Aming Li, Lei Zhou, Qi Su, Sean P Cornelius, Yang-Yu Liu, Long Wang, and Simon A Levin.
Evolution of cooperation on temporal networks. Nature communications, 11(1):2259, 2020.

László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial
Theory, Series B, 96(6):933–957, 2006.

Dean Lusher, Johan Koskinen, and Garry Robins. Exponential random graph models for social
networks: Theory, methods, and applications. Cambridge University Press, 2013.

Mohammad Mahdian and Ying Xu. Stochastic kronecker graphs. In WAW, 2007.

Guy Melancon. Just how dense are dense graphs in the real world? a methodological note. In
BELIV, 2006.

Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. Net-
work motifs: simple building blocks of complex networks. Science, 298(5594):824–827, 2002.

Sebastian Moreno, Jennifer Neville, and Sergey Kirshner. Tied kronecker product graph models to
capture variance in network populations. ACM Transactions on Knowledge Discovery from Data,
12(3):1–40, 2018.

Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. Introducing the graph 500.
Cray Users Group, 19:45–74, 2010.

13

http://snap.stanford.edu/data
http://snap.stanford.edu/data

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Stephen Mussmann, John Moore, Joseph Pfeiffer, and Jennifer Neville. Incorporating assortativity
and degree dependence into scalable network models. In AAAI, 2015.

Marina A Naoumkina, Luzia V Modolo, David V Huhman, Ewa Urbanczyk-Wochniak, Yuhong
Tang, Lloyd W Sumner, and Richard A Dixon. Genomic and coexpression analyses predict
multiple genes involved in triterpene saponin biosynthesis in medicago truncatula. The Plant
Cell, 22(3):850–866, 2010.

Mark EJ Newman. Properties of highly clustered networks. Physical Review E, 68(2):026121, 2003.

Mark EJ Newman. Modularity and community structure in networks. Proceedings of the national
academy of sciences, 103(23):8577–8582, 2006.

Liudmila Ostroumova Prokhorenkova. General results on preferential attachment and clustering
coefficient. Optimization Letters, 11:279–298, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

Mathew Penrose. Random geometric graphs, volume 5. OUP Oxford, 2003.

Adeel Pervez, Phillip Lippe, and Efstratios Gavves. Scalable subset sampling with neural condi-
tional poisson networks. In ICLR, 2023.

Joseph J Pfeiffer, Timothy La Fond, Sebastian Moreno, and Jennifer Neville. Fast generation of
large scale social networks while incorporating transitive closures. In PASSAT-SocialCom, 2012.

Robert Plomin. The role of inheritance in behavior. Science, 248(4952):183–188, 1990.

Yuri Pritykin, Dario Ghersi, and Mona Singh. Genome-wide detection and analysis of multifunc-
tional genes. PLoS computational biology, 11(10):e1004467, 2015.

Sanjay Purushotham and C C Jay Kuo. Modeling group dynamics for personalized group-event
recommendation. In SBP, 2015.

Luca Rendsburg, Holger Heidrich, and Ulrike Von Luxburg. Netgan without gan: From random
walks to low-rank approximations. In ICML, 2020.

Douglas A Reynolds et al. Gaussian mixture models. Encyclopedia of biometrics, 741(659-663),
2009.

Karl Rohe, Sourav Chatterjee, and Bin Yu. Spectral clustering and the high-dimensional stochastic
blockmodel. The Annals of Statistics, pp. 1878–1915, 2011.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015.

Stephen B Seidman. Network structure and minimum degree. Social networks, 5(3):269–287, 1983.

Gadiel Seroussi and Fai Ma. On the arithmetic complexity of matrix kronecker powers. Information
processing letters, 17(3):145–148, 1983.

Comandur Seshadhri, Ali Pinar, and Tamara G Kolda. An in-depth analysis of stochastic kronecker
graphs. Journal of the ACM, 60(2):1–32, 2013.

Jeremy G Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User Guide and
Reference Manual. Pearson Education, 2001.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using
variational autoencoders. In ICANN, 2018.

Felix I Stamm, Michael Scholkemper, Markus Strohmaier, and Michael T Schaub. Neighborhood
structure configuration models. In WWW, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool suite for large-
scale complex network analysis. Network Science, 4(4):508–530, 2016.

John D Storey, Jennifer Madeoy, Jeanna L Strout, Mark Wurfel, James Ronald, and Joshua M Akey.
Gene-expression variation within and among human populations. The American Journal of Hu-
man Genetics, 80(3):502–509, 2007.

Daniel L Sussman, Minh Tang, Donniell E Fishkind, and Carey E Priebe. A consistent adjacency
spectral embedding for stochastic blockmodel graphs. Journal of the American Statistical Asso-
ciation, 107(499):1119–1128, 2012.

Thomas M Sutter, Alain Ryser, Joram Liebeskind, and Julia E Vogt. Differentiable random partition
models. arXiv 2305.16841, 2023.

Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. Doulion: counting
triangles in massive graphs with a coin. In KDD, 2009.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

Duncan J Watts and Steven H Strogatz. Collective dynamics of small-world networks. nature, 393
(6684):440–442, 1998.

Anatol E Wegner and Sofia Olhede. Atomic subgraphs and the statistical mechanics of networks.
Physical Review E, 103(4):042311, 2021.

Weichi Wu, Sofia Olhede, and Patrick Wolfe. Tractably modelling dependence in networks beyond
exchangeability. Bernoulli, 31(1):584–608, 2025.

Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling via continuous relax-
ations. In IJCAI, 2019.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
realistic graphs with deep auto-regressive models. In ICML, 2018.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A FLOWCHART

Below, we provide a flowchart of this work, summarizing the main ideas and contents.

Target: To find random graph models that have high tractability and
generate graphs with common patterns in real-world graphs and high variability

Background: EIGMs with edge-independent realization methods have high tractability
but cannot generate graphs with high triangle densities

Idea: To consider edge-dependent realization methods

We define the concept of EPGMs (Section 4)
but considering all the possible cases is impractical

Idea: To find sub-cases with meaningful realization methods, specifically aiming to improve triangle densities

We propose specific realization schemes called binding
and derive the tractability results on motif probabilities (Section 5)

but we want to further improve the efficiency of computing motif probabilities in practice

Idea: To reduce the number of distinct node groups for calculation by considering node equivalence

We analyze the node equivalence in various edge-probabilities models
and derive the reduced time complexities for computing motif probabilities (Section 5.4)

B PROOFS

In this section, we show the proofs of our theoretical results.

B.1 EPGMS

Proposition 4.2 (EIGMs are special EPGMs). For any p, the EIGM w.r.t. p is an EPGM w.r.t. p,
i.e., fEI

p ∈ F(p).

Proof. By the definition of EIGMs,

PrfEI
p
[(u, v)]

=
∑

G∈G(V)

fEI
p (G)1[(u, v) ∈ G]

=
∑

(u,v)∈G∈G(V)

fEI
p (G)

=
∑

(u,v)∈G∈G(V)

p(u, v)
∏

(u,v)̸=(u+,v+)∈G

p(u+, v+)
∏

(u−,v−)/∈G

(1− p(u−, v−))

= p(u, v),∀u, v,

completing the proof.

Proposition 4.3 (EPGMs are general). For any f : G(V) → [0, 1], there exists p :
(
V
2

)
→ [0, 1] such

that f ∈ F(p).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. Let p :
(
V
2

)
→ [0, 1] be that p(u, v) = Prf [(u, v)],∀u, v ∈ V , then by Definition 4.1,

f ∈ F(p).

Proposition 4.4 (Upper bound of edge-group probabilities). For any p :
(
V
2

)
→ [0, 1] and any edge

group P ⊆
(
V
2

)
, Prf [P ⊆ E(G)] ≤ min(u,v)∈P p(u, v),∀f ∈ F(p).

Proof. By definition, Prf [(u, v)] = p(u, v),∀(u, v). Hence,

Prf [P ⊆ E(G)] = Prf [
∧

(u,v)∈P

(u, v) ∈ G]

≤ min
(u,v)∈P

Prf [(u, v)]

= min
(u,v)∈P

p(u, v),

where we have used the fact that
∧

(u,v)∈P (u, v) ∈ G is a subevent of (u, v) ∈ G for any (u, v) ∈
P .

Proposition 4.7 (EPGMs have constant expected degrees and overlap). For any p :
(
V
2

)
→ [0, 1],

the expected degree of each node and the overlap of all the EPGMs w.r.t. p are constant. Specifically,

Ef [d(v;G)] =
∑

u∈V p(u, v) and Ov(f) =
∑

u,v∈V p2(u,v)∑
u,v∈V p(u,v) ,∀f ∈ F(p).

Proof. By linearity of expectation,

Ef [d(v;G)] =
∑
u∈V

Pr[u ∈ N(v)] =
∑
u∈V

Pr[(u, v) ∈ G] =
∑
u∈V

p(u, v),

which does not depend on anything else but p.
By Definition 3.1,

Ov(f)

=
EG′,G′′∼f |E(G′) ∩ E(G′′)|

Ef |E(G)|

=

∑
u,v Pr[(u, v) ∈ G′ ∧ (u, v) ∈ G′′]∑

u,v Pr[(u, v) ∈ G]

=

∑
u,v Pr[(u, v) ∈ G′] Pr[(u, v) ∈ G′′]∑

u,v Pr[(u, v) ∈ G]

=

∑
u,v∈V p2(u, v)∑
u,v∈V p(u, v)

,∀f ∈ F(p),

where we have used linearity of expectation and the independence between G′ and G′′, completing
the proof.

Corollary 4.6. For any p :
(
V
2

)
→ [0, 1], Ef [△(G)] ≤∑

{u,v,w}∈(V3)
min(p(u, v), p(u,w), p(v, w)),∀f ∈ F(p), where △(G) is the number of tri-

angles in G.

Proof. By linearity of expectation and Property 4.4,

Ef [△(G)] =
∑

{u,v,w}∈(V3)

Prf [{(u, v), (u,w), (v, w) ∈ E(G)}]

≤
∑

{u,v,w}∈(V3)

min(p(u, v), p(u,w), p(v, w)).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proposition 5.2 (Binding produces EPGMs). For any p :
(
V
2

)
→ [0, 1] and any pair partition P ,

fBD
p;P ∈ F(p).

Proof. For each pair (u, v), the existence of the corresponding edge is determined in the “binding”
procedure on the group P such that (u, v) ∈ P (Lines 2 and 3), where (u, v) is added into Ê and
thus E if and only if s ≤ p̂(u, v) = p(u, v) (Line 9), which happens with probability p(u, v) since
s ∼ U(0, 1).

Proposition 5.3 (Binding produces higher edge-group probabilities). For any p :
(
V
2

)
→ [0, 1], any

pair partition P , and any P ⊆
(
V
2

)
, PrfBD

p;P
[P ⊆ E(G)] ≥ PrfEI

p
[P ⊆ E(G)].

Proof. Let P ′ be a partition of P such that P ′ := {P0 ∩ P : P0 ∈ P, P0 ∩ P ̸= ∅}. Then

PrfBD
p;P

[P ⊆ E(G)] =
∏

P ′∈P′

min
(u,v)∈P ′

p(u, v)

=
∏

(u,v)∈P : ∃P ′∈P′,(u,v)=argmin(u′,v′)∈P ′ p(u,v)

p(u, v)

≥
∏

(u,v)∈P

p(u, v),

since each p(u, v) ≤ 1.

B.2 MAXIMAL BINDING

As mentioned in Remark 4.5, the upper bound in Property 4.4 is tight, i.e., we can find EPGMs
achieving the upper bound.
Indeed, we shall show below in Lemma B.2 that, as mentioned in Section 5.1, maximal binding (i.e.,
binding with all the pairs bound together P = {

(
V
2

)
}) achieves the upper bound.

In order to prove Lemma B.2, let us prove the following lemma first.

Lemma B.1 (The graph distribution with maximal binding). For any p :
(
V
2

)
→ [0, 1], we first index

the pairs (i.e., assign each pair a number) in
(
V
2

)
in the descending order w.r.t. probabilities, i.e.,(

V

2

)
= {(u1, v1), (u2, v2), . . . , (uM , vM)}

with M =
(|V |

2

)
such that

p(u1, v1) ≥ p(u2, v2) ≥ · · · ≥ p(uM , VM),

then the graph distribution with maximal binding is

fBD
p;{(V2)}

(G) =

1− p(u1, v1), if G = (V, ∅),
p(uM , vM), if G = (V,

(
V
2

)
),

p(ui, vi)− p(ui+1, vi+1), if G = (V, {(uj , vj) : 1 ≤ j ≤ i}),∀i ∈ [M − 1],

0, otherwise.

Proof. With P = {
(
V
2

)
}, all the edge existences are determined by the same random variable s.

Hence, if a pair (u, v) exists, then all the pairs (u′, v′) with p(u′, v′) ≥ p(u, v) must exist. The pos-
sible outputs are either G = (V, ∅) or G = (V, {(uj , vj) : 1 ≤ j ≤ i}) for some i ∈ [M]. The case
G = (V, ∅) happens when s > maxu,v∈V p(u, v) = p(u1, v1) with probability 1 − p(u1, v1). The
case G = (V,

(
V
2

)
) happens when s ≤ minu,v∈V p(u, v) = p(uM , vM) with probability p(P(|V |

2)
).

For each remaining case G = (V, {(uj , vj) : 1 ≤ j ≤ i} with i ∈ [M − 1], it happens when
p(ui+1, vi+1) < s ≤ p(ui, vi) with probability p(ui, vi)− p(ui+1, vi+1).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma B.2 (Maximal binding achieves maximum edge-group probabilities). For any p :
(
V
2

)
→

[0, 1] and any edge-group P ⊆
(
V
2

)
, we have

Pr
fBD

p;{(V2)}

[P ⊆ E(G)] = min
(u,v)∈P

p(u, v),∀f ∈ F(p),

where fBD
p;P denotes the RGM defined by fBD

p;P(G) = Pr[Algorithm 1 outputs G with inputs p and P].

Proof. By Lemma B.1, in a graph G generated by fBD
p;{(V2)}

, P ⊆ E(G) if and only if

argmin(u,v)∈P p(u, v) ∈ G., which happens with probability min(u,v)∈P p(u, v).

B.3 LOCAL BINDING

Proposition 5.5 (Local binding produces EPGMs). For any p :
(
V
2

)
→ [0, 1], g : V → [0, 1] and

R ∈ N, fLB
p;g,R ∈ F(p).

Proof. For each pair (u, v), PrfLB
p;g,R

[(u, v)] =
∑

P PrP∼g[P] PrfBD
p;P

[(u, v)]. By Proposition 5.2,
PrfBD

p;P
[(u, v)] = p(u, v),∀P . Hence, PrfLB

p;g,R
[(u, v)] =

∑
P PrP∼g[P]p(u, v) = p(u, v).

Theorem 5.7 (Time complexities of graph generation with local binding). Given p :
(
V
2

)
→ [0, 1],

g : V → [0, 1], and R ∈ N, fLB
p;g,R generates a graph in O(R

(∑
v∈V g(v)

)2
+ |V |2) time with high

probability, with the worst case O(R |V |2).

Proof. We have at most R rounds of sampling and binding, where each round samples at most
|V | nodes and thus at most

(|V |
2

)
pairs. More specifically, the number of nodes sampled in each

round is
∑

v∈V g(v) in expectation, and thus O(
∑

v∈V g(v)) with high probability (e.g., you can
use a Chernoff bound). Hence, it takes O(R

∑
v∈V g(v)) time with high probability, and at most

O(
(|V |

2

)
R) time for the R rounds. The number of remaining pairs is at most

(|V |
2

)
so dealing with

them takes O(
(|V |

2

)
) time. For the generation, we need to enumerate all the node groups and each

pair in each group. Since the partition is disjoint, i.e., each pair is in exactly one group, each
pair is visited exactly once, which takes O(

(|V |
2

)
) time. In conclusion, generating a graph takes

O(R
∑

v∈V g(v) + |V |2) with high probability, and O(
(|V |

2

)
R) time in the worst case.

Theorem 5.8 (Tractable motif probabilities with local binding). For any p :
(
V
2

)
→ [0, 1], g : V →

[0, 1], R ∈ N, and V ′ = {u, v, w} ∈
(
V
3

)
, we can compute the closed-form PrfLB

p;g,R
[E(G[V ′]) =

E∗],∀E∗ ⊆
(
V ′

2

)
as a function w.r.t. p, g, and R.

Proof. The overall idea is that we (1) consider all the sub-cases of how all the pairs
(
V ′

2

)
are par-

titioned and grouped during the whole process, (2) compute the motif probabilities conditioned on
each sub-case, and (3) finally take the summation of the motif probabilities in all the sub-cases.

We first consider all the cases of how all the pairs are sampled and grouped until
(
V ′

2

)
are fully

determined. We divided the cases w.r.t. how the pairs in
(
V ′

2

)
are eventually grouped by the sampled

node sets. First let us define some “short-cut” variables:

• the probability that among V ′, exactly V ∗ is sampled together in a round

pg(V
∗) := Prg[{u, v, w} ∩ Vs = V ∗] =

∏
v∈V ∗

g(v)
∏

v′ /∈V ∗

(1− g(v)),∀V ∗ ⊆ V ′

• the probability that among V ′, at least two nodes (and thus at least one pair) are sampled together
in a round

pg(V≥2) :=
∑

V ∗ : |V ∗|≥2

pg(V
∗) = pg({u, v}) + pg({u,w}) + pg({v, w}) + pg({u, v, w})

= g(u)g(v)(1− g(w)) + g(u)g(w)(1− g(v))

+ g(v)g(w)(1− g(u)) + g(u)g(v)g(w)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• the probability that among V ′, at most one node (and thus no pair) is sampled together in a round

pg(V<2) := 1− pg(V≥2)

WLOG, we assume that p(u, v) ≥ p(u,w) ≥ p(v, w).

{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}. The first time any pair in
(
V ′

2

)
is sampled in the R rounds is when u, v, and w are

sampled by g together, which happens with probability

q({u, v, w}) = pg(V
′) + pg(V<2)pg(V

′) + p2g(V<2)pg(V
′) + · · ·+ pR−1

g (V<2)pg(V
′)

=

R−1∏
i=0

pig(V<2)pg(V
′) =

1− pRg (V<2)

1− pg(V<2)
pg(V

′),

where each term pig(V<2)pg(V
′) is the probability that in the first i rounds at most one node among

V ′ is sampled and V ′ is sampled altogether in the (i+1)-th round. Conditioned on that, it generates

• {(u, v), (u,w), (v, w)} with probability p(v, w); when the random variable s in binding satisfies
s ≤ p(v, w),

• {(u, v), (u,w)} with probability p(u,w)− p(v, w); when p(v, w) < s ≤ p(u,w),
• {(u, v)} with probability p(u, v)− p(u,w); when p(u,w) < s ≤ p(u, v), and
• ∅ with probability 1− p(u, v); when s > p(u, v).

{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}. All the pairs in
(
V ′

2

)
are covered in twice in the R rounds. At the first time,

u and v are sampled together by g but not w. At the second time, u, v, and w are sampled together
by g. This happens with probability

q({u, v} → {u, v, w}) = pg(V
′) + (pg(V<2) + pg({u, v})) pg(V ′) + · · ·

+ (pg(V<2) + pg({u, v}))R−1
pg(V

′)− q({u, v, w})

=

R−1∑
i=0

(pg(V<2) + pg({u, v}))i pg(V ′)− q({u, v, w})

=

(
1− (pg(V<2) + pg({u, v}))R

1− (pg(V<2) + pg({u, v}))
−

1− pRg (V<2)

1− pg(V<2)

)
pg(V

′),

where (pg(V<2) + pg({u, v}))i pg(V ′) is the probability that in the first i rounds we either sam-
ple no pair between V ′ or just (u, v), and we sample V ′ altogether in the (i + 1)-th round, and
q({u, v, w}) is subtracted to exclude the cases where (u, v) is not sampled in the first i rounds. In
such cases, when (u, v) is sampled for the first time, we decide the existence of (u, v), and then after
that, when V ′ is sampled altogether for the first time, we decide the existences of the remaining two
pair (u,w) and (v, w). Hence, conditioned on that, it generates

• {(u, v), (u,w), (v, w)} with probability p(u, v)p(v, w); when s1 ≤ p(u, v) in the round (u, v) is
sampled for the first time and s2 ≤ p(v, w) in the round V ′ is sampled altogether for the first time,

• {(u, v), (u,w)} with probability p(u, v) (p(u,w)− p(v, w)); when s1 ≤ p(u, v) and p(v, w) <
s2 ≤ p(u,w),

• {(u, v)} with probability p(u, v) (1− p(u,w)); when s1 ≤ p(u, v) and s2 > p(u,w),
• {(u,w), (v, w)} with probability (1− p(u, v)) p(v, w); when s1 > p(u, v) and s2 ≤ p(v, w),
• {(u,w)} with probability (1− p(u, v)) (p(u,w)− (v, w)); when s1 > p(u, v) and p(v, w) <
s2 ≤ p(u,w), and

• ∅ with probability (1− p(u, v)) (1− p(u,w)); when s1 > p(u, v) and s2 > p(u,w).

{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}. Similarly, this happens with probability

q({u,w} → {u, v, w}) =

(
1− (pg(V<2) + pg({u,w}))R

1− (pg(V<2) + pg({u,w}))
−

1− pRg (V<2)

1− pg(V<2)

)
pg(V

′)

Conditioned on that, it generates

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• {(u, v), (u,w), (v, w)} with probability p(u,w)p(v, w); when s1 ≤ p(u,w) and s2 ≤ p(v, w),
• {(u, v), (u,w)} with probability p(u,w) (p(u, v)− p(v, w)); when s1 ≤ p(u,w) and p(v, w) <
s2 ≤ p(u, v),

• {(u,w)} with probability p(u,w) (1− p(u, v)); when s1 ≤ p(u,w) and s2 > p(u, v),
• {(u, v), (v, w)} with probability (1− p(u,w)) p(v, w); when s1 > p(u,w) and s2 ≤ p(v, w),
• {(u, v)} with probability (1− p(u,w)) (p(u, v)− (v, w)); when s1 > p(u,w) and p(v, w) <
s2 ≤ p(u, v), and

• ∅ with probability (1− p(u,w)) (1− p(u, v)); when s1 > p(u,w) and s2 > p(u, v).

{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}. Similarly, this happens with probability

q({v, w} → {u, v, w}) =

(
1− (pg(V<2) + pg({v, w}))R

1− (pg(V<2) + pg({v, w}))
−

1− pRg (V<2)

1− pg(V<2)

)
pg(V

′)

Conditioned on that, it generates

• {(u, v), (u,w), (v, w)} with probability p(v, w)p(u,w); when s1 ≤ p(v, w) and s2 ≤ p(u,w),
• {(u, v), (v, w)} with probability p(v, w) (p(u, v)− p(u,w)); when s1 ≤ p(v, w) and p(u,w) <
s2 ≤ p(u, v),

• {(v, w)} with probability p(v, w) (1− p(u, v)); when s1 ≤ p(v, w) and s2 > p(u, v),
• {(u, v), (u,w)} with probability (1− p(v, w)) p(u,w); when s1 > p(v, w) and s2 ≤ p(u,w),
• {(u, v)} with probability (1− p(v, w)) (p(u, v)− (u,w)); when s1 > p(v, w) and p(u,w) <
s2 ≤ p(u, v), and

• ∅ with probability (1− p(v, w)) (1− p(u, v)); when s1 > p(v, w) and s2 > p(u, v).

The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases. Three edges are determined independently. This happens with the remaining
probability
qindep = 1−q({u, v, w})−q({u, v} → {u, v, w})−q({u,w} → {u, v, w})−q({v, w} → {u, v, w})

Conditioned on that, it generates each E∗ ⊆
(
V ′

2

)
with probability∏

(x,y)∈E∗

p(x, y)
∏

(x′,y′)∈(V
′

2)\E∗

(1− p(x′, y′)).

Taking the summation of all the sub-cases gives the results as follows.
E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}

PrfLB
p;g,R

[E(G[V ′]) = {(u, v), (u,w), (v, w)}] = q({u, v, w})p(v, w)+

q({u, v} → {u, v, w})p(u, v)p(v, w)+
q({u,w} → {u, v, w})p(u,w)p(v, w)+
q({v, w} → {u, v, w})p(v, w)p(u,w)+
qindepp(u, v)p(u,w)p(v, w)

E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}
PrfLB

p;g,R
[E(G[V ′]) = {(u, v), (u,w)}] = q({u, v, w}) (p(u,w)− p(v, w))+

q({u, v} → {u, v, w})p(u, v) (p(u,w)− p(v, w))+

q({u,w} → {u, v, w})p(u,w) (p(u, v)− p(v, w))+

q({v, w} → {u, v, w}) (1− p(v, w)) p(u,w)+

qindepp(u, v)p(u,w) (1− p(v, w))

E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}
PrfLB

p;g,R
[E(G[V ′]) = {(u, v), (v, w)}] = q({u,w} → {u, v, w}) (1− p(u,w)) p(v, w)+

q({v, w} → {u, v, w})p(v, w) (p(u, v)− p(u,w))+

qindepp(u, v)p(v, w) (1− p(u,w))

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}

PrfLB
p;g,R

[E(G[V ′]) = {(u,w), (v, w)}] = q({u, v} → {u, v, w}) (1− p(u, v)) p(v, w)+

qindepp(u,w)p(v, w) (1− p(u, v))

E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}

PrfLB
p;g,R

[E(G[V ′]) = {(u, v)}] = q({u, v, w}) (p(u, v)− p(u,w))+

q({u, v} → {u, v, w})p(u, v) (1− p(u,w))+

q({u,w} → {u, v, w}) (1− p(u,w)) (p(u, v)− p(v, w))+

q({v, w} → {u, v, w}) (1− p(v, w)) (p(u, v)− p(u,w))+

qindepp(u, v) (1− p(u,w)) (1− p(v, w))

E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}

PrfLB
p;g,R

[E(G[V ′]) = {(u,w)}] = q({u, v} → {u, v, w}) (1− p(u, v)) (p(u,w)− p(v, w))+

q({u,w} → {u, v, w})p(u,w) (1− p(u, v))+

qindepp(u,w) (1− p(u, v)) (1− p(v, w))

E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}

PrfLB
p;g,R

[E(G[V ′]) = {(u,w)}] = q({v, w} → {u, v, w})p(v, w) (1− p(u, v))+

qindepp(v, w) (1− p(u, v)) (1− p(u,w))

E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅
PrfLB

p;g,R
[E(G[V ′]) = {(u,w)}] = q({u, v, w}) (1− p(u, v))+

q({u, v} → {u, v, w}) (1− p(u, v)) (1− p(u,w))+

q({u,w} → {u, v, w}) (1− p(u,w)) (1− p(u, v))+

q({v, w} → {u, v, w}) (1− p(v, w)) (1− p(u, v))+

qindep (1− p(u, v)) (1− p(u,w)) (1− p(v, w))

Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders. As mentioned in Remark 5.9, the reasoning in the proof above can be
extended to higher orders. When the order of motifs increases, enumerating the cases of how all the
pairs are sampled and grouped becomes more and more challenging. When considering 3-motifs, we
are essentially considering the possible sequences of subsets up to order 3, where (1) each sequence
should cover all the node pairs, and (2) each subset in the sequence should cover at least one pair
that has not been covered by the subsets before it. The high-level idea would be similar, but the
number increases exponentially:

• for 3-motifs, we need to consider 16 cases, 4 of which involve edge dependency, as shown above;
• for 4-motifs, we need to consider 16205 cases, 5261 of which involve edge dependency.

The above numbers are obtained using a recursive search. In principle, we can also derive the
variance of the number of 3-motif by considering the probabilities of 6-motifs, since the co-existence
of two 3-motifs involves motifs up to order 6. We leave the efficient computation for higher-order
motifs as a future direction.
Theorem 5.10 (Time complexity of computing motif probabilities with local binding). Given
p :
(
V
2

)
→ [0, 1], g : V → [0, 1], and R ∈ N, computing PrfLB

p;g,R
[E(G[V ′]) = E∗] takes O(|V |3)

time in total for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
V
3

)
.

Proof. For computing motif probabilities, we need to enumerate all triplets V ′ = {u, v, w} ∈
(
V
3

)
and compute the motif probability for each 3-motif. For each motif, the calculation only involves
arithmetic operations, which takes O(1) time since the formulae are fixed. In conclusion, computing
3-motif probabilities takes O(

(|V |
3

)
) time.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.4 PARALLEL BINDING

Proposition B.3 (Parallel binding produces EPGMs). For any p :
(
V
2

)
→ [0, 1], g : V → [0, 1], and

R ∈ N, fPB
p;g,R ∈ F(p).

Proof. For each pair (u, v), if 1−(1−p(u,v))1/R

g(u)g(v) ≤ 1, i.e., p(u, v) ≤ 1 − (1 − g(u)g(v))R, then
prem(u, v) = 0 and

PrfPB
p;g,R

[(u, v)] = 1− Pr[(u, v) not inserted in the R rounds] Pr[(u, v) not inserted when dealing with prem]

= 1− (1− g(u)g(v)r(u, v))R(1− prem)

= 1− (1− p(u, v))

= p(u, v).

Otherwise, if p(u, v) > 1− (1− g(u)g(v))R, then r(u, v) = 1 and

PrfPB
p;g,R

[(u, v)] = 1− Pr[(u, v) not inserted in the R rounds] Pr[(u, v) not inserted when dealing with prem]

= 1− (1− g(u)g(v)r(u, v))R(1− prem)

= 1− (1− g(u)g(v))R
1− p(u, v)

(1− g(u)g(v))R

= 1− (1− p(u, v))

= p(u, v).

Theorem B.4 (Time complexities of graph generation with parallel binding). Given p :
(
V
2

)
→

[0, 1], g : V → [0, 1], and R ∈ N, fPB
p;g,R generates a graph in O(R

(∑
v∈V g(v)

)2
+ |V |2) time

with high probability, with the worst case O(R |V |2).

Proof. We have at most R rounds of sampling and binding, where each round samples at most
|V | nodes and thus at most

(|V |
2

)
pairs. More specifically, the number of nodes sampled in each

round is
∑

v∈V g(v) in expectation, and thus O(
∑

v∈V g(v)) with high probability (e.g., one can
use a Chernoff bound). Hence, it takes O(R

∑
v∈V g(v)) time with high probability, and at most

O(
(|V |

2

)
R) time for the R rounds. The number of pairs with prem > 0 is at most

(|V |
2

)
so dealing

with them takes O(
(|V |

2

)
) time. In conclusion, generating a graph takes O(R

∑
v∈V g(v) + |V |2)

with high probability, and O(
(|V |

2

)
R) time in the worst case.

Theorem B.5 (Tractable motif probabilities with parallel binding). For any p :
(
V
2

)
→ [0, 1],

g : V → [0, 1], R ∈ N, and V ′ = {u, v, w} ∈
(
V
3

)
, we can compute the closed-form

PrfPB
p;g,R

[E(G[V ′]) = E∗],∀E∗ ⊆
(
V ′

2

)
as a function w.r.t. p, g, and R.

Proof. The overall idea is that we (1) compute the probabilities of each subset of
(
V ′

2

)
being inserted

in each round and (2) accumulate the probabilities in R rounds to obtain the final motif probabilities.

We first compute the probability of each subset of
(
V
2

)
being inserted in each round. We divide the

cases w.r.t. different sets of sampled nodes Vs ∩ V ′. First, let us define some “short-cut” variables:

• the probability that among V ′, exactly V ∗ is sampled together in a round

pg(V
∗) := Prg[{u, v, w} ∩ Vs = V ∗] =

∏
v∈V ∗

g(v)
∏

v′ /∈V ∗

(1− g(v)),∀V ∗ ⊆ V ′

• the probability that among V ′, at least two nodes (and thus at least one pair) are sampled together
in a round

pg(V≥2) :=
∑

V ∗ : |V ∗|≥2

pg(V
∗) = pg({u, v}) + pg({u,w}) + pg({v, w}) + pg({u, v, w})

= g(u)g(v)(1− g(w)) + g(u)g(w)(1− g(v)) + g(v)g(w)(1− g(u))

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• the probability that among V ′, at most one node (and thus no pair) is sampled together in a round

pg(V<2) := 1− pg(V≥2)

• the variables r and prem are defined as in Algorithm 3.

WLGO, we assume that p(u, v) ≥ p(u,w) ≥ p(v, w).
Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}. This happens with probability pg(V

′). Conditioned on that, it generates

• {(u, v), (u,w), (v, w)} with probability r(v, w); when s ≤ r(v, w),
• {(u, v), (u,w)} with probability r(u,w)− r(v, w); when r(v, w) < s ≤ r(u,w),
• {(u, v)} with probability r(u, v)− r(u,w); when r(u,w) < s ≤ r(u, v), and
• ∅ with probability 1− r(u, v); when s > r(u, v).

Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}. This happens with probability pg({u, v}). Conditioned on that, it generates

• {(u, v)} with probability r(u, v); when s ≤ r(u, v), and
• ∅ with probability 1− r(u, v)l when s > r(u, v).

Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}. This happens with probability pg({u,w}). Conditioned on that, it generates

• {(u,w)} with probability r(u,w); when s ≤ r(u,w),
• ∅ with probability 1− r(u,w); when s > r(u,w).

Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}. This happens with probability pg({v, w}). Conditioned on that, it generates

• {(v, w)} with probability r(v, w); when s ≤ r(v, w),
• ∅ with probability 1− r(v, w); when s > r(v, w).

The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1). This happens with probability pg(V<2). Conditioned
on that, it generates

• ∅ with probability 1.

Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round. Let pround(E∗) denote the probability of E∗ being generated in each
round, for each E∗ ⊆

(
V ′

2

)
. We have

• pround({(u, v), (u,w), (v, w)}) = pg(V
′)r(v, w),

• pround({(u, v), (u,w)}) = pg(V
′)(r(u,w)− r(v, w)),

• pround({(u, v)}) = pg(V
′) (r(u, v)− r(u,w)) + pg({u, v})r(u, v),

• pround({(u,w)}) = pg({u,w})r(u,w),
• pround({(v, w)}) = pg({v, w})r(v, w), and
• pround(∅) = 1− pg(V

′)r(u, v)− pg({u, v})r(u, v)− pg({u,w})r(u,w)− pg({v, w})r(v, w).

We are now ready to compute the motif probabilities.
E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅. This happens when ∅ is generated in all R rounds and for the remaining probabilities prem,
with probability

PrfPB
p;g,R

[E(G[V ′]) = ∅] = (pround(∅))R(1− prem(u, v))(1− prem(u,w))(1− prem(v, w)).

E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}. This happens when either ∅ or {(u, v)} is generated in all R rounds and for prem,
and (u, v) is generated in at least one round, which has probability

PrfPB
p;g,R

[E(G[V ′]) = {(u, v)}]

= (pround(∅))Rprem(u, v)(1− prem(u,w))(1− prem(v, w))+

((pround(∅) + pround({(u, v)}))R − (pround(∅))R)(1− prem(u,w))(1− prem(v, w)),

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where ((pround(∅) + pround({(u, v)}))R − (pround(∅))R) is the probability that in the R rounds,
only (u, v) is inserted.
E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}. Similarly, this happens with probability

PrfPB
p;g,R

[E(G[V ′]) = {(u,w)}]

= (pround(∅))Rprem(u,w)(1− prem(u, v))(1− prem(v, w))+

((pround(∅) + pround({(u,w)}))R − (pround(∅))R)(1− prem(u, v))(1− prem(v, w)).

E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}. Similarly, this happens with probability

PrfPB
p;g,R

[E(G[v′]) = {(u,w)}]

= (pround(∅))Rprem(v, w)(1− prem(u, v))(1− prem(u,w))+

((pround(∅) + pround({(v, w)}))R − (pround(∅))R)(1− prem(u, v))(1− prem(u,w)).

E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}. This happens when one among ∅, {(u, v)}, {(u,w)}, and {(u, v), (u,w)}
is generated in all R rounds and for Rrem, while excluding the cases ending up with ∅, {(u, v)}, or
{(u,w)}. This happens with probability

PrfPB
p;g,R

[E(G[V ′]) = {(u, v), (u,w)}]

= (pround(∅))Rprem(u, v)prem(u,w)(1− prem(v, w))+

((pround(∅) + pround({(u, v)}))R − (pround(∅))R)prem(u,w)(1− prem(v, w))+

((pround(∅) + pround({(u,w)}))R − (pround(∅))R)prem(u, v)(1− prem(v, w))+

p̃({(u, v), (u,w)};R)(1− prem(v, w)),

where

p̃({(u, v), (u,w)};R)

= (pround(∅) + pround({(u, v)}) + pround({(u,w)}) + pround({(u, v), (u,w)}))R−
(pround(∅) + pround({(u, v)}))R−
(pround(∅) + pround({(u,w)}))R+
(pround(∅))R

is the probability that exactly (u, v) and (u,w) are inserted in the R rounds, using the inclusion-
exclusion principle.
E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}. Similarly, this happens with probability

PrfPB
p;g,R

[E(G[V ′]) = {(u, v), (v, w)}]

= (pround(∅))Rprem(u, v)prem(v, w)(1− prem(u,w))+

((pround(∅) + pround({(u, v)}))R − (pround(∅))R)prem(v, w)(1− prem(u,w))+

((pround(∅) + pround({(v, w)}))R − (pround(∅))R)prem(u, v)(1− prem(u,w))+

p̃({(u, v), (v, w)};R)(1− prem(u,w)),

where

p̃({(u, v), (v, w)};R) = (pround(∅) + pround({(u, v)}) + pround({(v, w)}))R−
(pround(∅) + pround({(u, v)}))R−
(pround(∅) + pround({(v, w)}))R+
(pround(∅))R.

Note that pround({(u, v), (v, w)}) = 0.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}. Similarly, this happens with probability

PrfPB
p;g,R

[E(G[V ′]) = {(u,w), (v, w)}]

= (pround(∅))Rprem(u,w)prem(v, w)(1− prem(u, v))+

((pround(∅) + pround({(u,w)}))R − (pround(∅))R)prem(v, w)(1− prem(u, v))+

((pround(∅) + pround({(v, w)}))R − (pround(∅))R)prem(u,w)(1− prem(u, v))+

p̃({(u,w), (v, w)};R)(1− prem(u, v)),

where

p̃({(u,w), (v, w)};R) = ((pround(∅) + pround({(u,w)}) + pround({(v, w)}))R−
(pround(∅) + pround({(u,w)}))R−
(pround(∅) + pround({(v, w)}))R+
(pround(∅))R)

Note that pround({(u,w), (v, w)}) = 0.
E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}. This happens with the remaining probability, i.e.,

PrfPB
p;g,R

[E(G[V ′]) = {(u, v), (u,w), (v, w)}] = 1−
∑

E′⊊(V
′

2)

PrfPB
p;g,R

[E(G[V ′]) = E′].

Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders. Similar to the counterpart for local binding, the reasoning in the proof
above can be extended to higher orders. When the order of motifs increases, both considering the
cases in each round and accumulating them in multiple rounds become increasingly challenging.
For the cases in each round, we first need to consider more cases of Vs, i.e., all the subsets of V ′.
For accumulating the probabilities, for each E∗, we first need to consider all the cases (i.e., all the
subsets of E∗) in each round that can accumulate to E∗, and we need to use the inclusion-exclusion
principle to avoid counting some sub-motifs multiple times, where again all the subsets of E∗ need
to be considered. Hence, for motifs of order k, the number of cases is at least O(2(

k
2)).

Theorem B.6 (Time complexity of computing motif probabilities with parallel binding). Given
p :
(
V
2

)
→ [0, 1], g : V → [0, 1], and R ∈ N, computing PrfPB

p;g,R
[E(G[V ′]) = E∗] takes O(|V |3)

time in total for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
V
3

)
.

Proof. For computing motif probabilities, we need to enumerate all triplets V ′ = {u, v, w} ∈
(
V
3

)
and compute the motif probability for each 3-motif. For each motif, the calculation only involves
arithmetic operations, which takes O(1) time since the formulae are fixed. In conclusion, computing
3-motif probabilities takes O(

(|V |
3

)
) time.

B.5 FITTING

B.5.1 THE ERDŐS-RÉNYI (ER) MODEL

Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition. The Erdős-Rényi (ER) model (Erdős & Rényi, 1959) outputs edge probabilities with two
parameters: n0 and p0, and the output is pER

n0,p0
with pER

n0,p0
(u, v) = p0,∀u, v ∈

(
V
2

)
with V = [n0].

Given a graph G = (V = [n], E), ER outputs n0 = n and p0 = 2|E|
n(n−1) .

Lemma 5.12 (Reduced time complexity with ER). Given n0 ∈ N, p0 ∈ [0, 1], g0 ∈ [0, 1], and
R ∈ N, computing both PrfLB

p;g,R
[E(G[V ′]) = E∗] and PrfPB

p;g,R
[E(G[V ′]) = E∗] takes O(1) times

in total for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
V
3

)
with p = pER

n0,p0
and g(v) = g0,∀v ∈ V = [n0].

Proof. When p(u, v) ≡ v0 and g(v) ≡ g0, both PrfLB
p;g,R

[E(G[V ′]) = E∗] and

PrfPB
p;g,R

[E(G[V ′]) = E∗] become the same functions for all V ′ ∈
(
V
3

)
, which only involve arith-

metic operations on p0 and g0 and thus take O(1) time for computation. Since the functions are the

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

same for all V ′ ∈
(
V
3

)
, we only need to calculate for a single V ′. Hence, the total time complexity

is still O(1). The detailed formulae are as follows.
Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding. Fix any V ′ ∈

(
V
3

)
, we have

pg(V
∗) = g

|V ∗|
0 (1− g0)

3−|V ∗|,∀V ∗ ⊆ V ′,

pg(V≥2) = 3g20(1− g0) + g30 ,

and
pg(V<2) = 3g0(1− g0)

2 + (1− g0)
3.

Hence

q({u, v, w}) =
1−

(
3g0(1− g0)

2 + (1− g0)
3
)R

3g20(1− g0) + g30
g30 ,

q2 := q({u, v} → {u, v, w}) = q({u,w} → {u, v, w}) = q({v, w} → {u, v, w})

=

(
1−

(
3g0(1− g0)

2 + (1− g0)
3 + g20(1− g0)

)R
2g20(1− g0) + g30

−
1−

(
3g0(1− g0)

2 + (1− g0)
3
)R

3g20(1− g0) + g30

)
,

and
qindep = 1− q({u, v, w})− 3q2.

E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}

PrfLB
p;g,R

[E(G[V ′]) = {(u, v), (u,w), (v, w)}] = q({u, v, w})p0 + 3q2p
2
0 + qindepp

3
0

|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2

For each E∗ with |E∗| = 2, i.e., E∗ = {(u, v), (u,w)} or {(u, v), (v, w)} or (u,w), (v, w), we have

PrfLB
p;g,R

[E(G[V ′]) = E∗] = q2p0(1− p0) + qindepp
2
0(1− p0)

|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1

For each E∗ with |E∗| = 1, i.e., E∗ = {(u, v)} or {(u,w)} or (v, w), we have

PrfLB
p;g,R

[E(G[V ′]) = E∗] = q2p0(1− p0) + qindepp0(1− p0)
2

E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅

PrfLB
p;g,R

[E(G[V ′]) = {(u,w)}] = q({u, v, w})(1− p0) + 3q2(1− p0)
2 + qindep(1− p0)

3

B.5.2 THE CHUNG-LU (CL) MODEL

Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition. The Chung-Lu (CL) model (Chung & Lu, 2002) outputs edge probabilities with a
sequence of expected degrees D = (d1, d2, . . . , dn), and the output is pCL

D with pCL
D (u, v) =

min(dudv∑n
i=1 di

, 1),∀u, v ∈
(
V
2

)
with V = [n]. Given a graph G = (V = [n], E), CL outputs

di = d(i;G) for each node i ∈ V .
Lemma 5.13 (Reduced time complexity with CL). Given D = (d1, d2, . . . , dn), gd for d ∈
{d1, d2, . . . , dn}, and R ∈ N, computing both PrfLB

p;g,R
[E(G[V ′]) = E∗] and PrfPB

p;g,R
[E(G[V ′]) =

E∗] for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
[n]
3

)
takes O(k3deg) times with p = pCL

D and g(i) = gdi
,∀i ∈ [n].

Proof. The key idea is that given V ′ = {i, j, k} ∈
(
V
3

)
, both the three edge probabilities (i.e., p(i, j),

p(i, k), and p(j, k)) and the three node-sampling probabilities (i.e., g(i), g(j), and g(k)) are fully
determined by the degrees of the three nodes.
Hence, we only need to calculate motif probabilities for each degree combination instead of each
node combination. Since we have kdeg different degrees, the total number of degree combinations of

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

size 3 is O(k3deg), and the calculation for each combination takes O(1) time on arithmetic operations
with fixed formulae. In conclusion, the total time complexity is O(k3deg).

Some details are as follows. Let kdeg = {d1, d2, . . . , dn} = {d̃1, d̃2, . . . , d̃kdeg
}, and let ni denote

the number of nodes with degree d̃i, for i ∈ [kdeg]. Given three degrees d̃i, d̃j , and d̃k, we have

• ninjnk such combinations, when i ̸= j, i ̸= k, and j ̸= k

•
(
ni

2

)
nk such combinations, when i = j and i ̸= k; similarly for i = k and i ̸= j or j = k and

i ̸= j

•
(
ni

3

)
such combinations, when i = j = k.

B.5.3 THE STOCHASTIC BLOCK (SB) MODEL

Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition. Given a graph G = (V = [n], E) and a node partition fB : [n] → [c] with c ∈ N, let
Vi = {v ∈ V : fB(v) = i} denote the set of nodes partitioned in the i-th group for i ∈ [c]. The
fitting of the edge probabilities in the stochastic block (SB) model gives pB : [c]× [c] → [0, 1] with

pB(i, i) =
|E(G[Vi])|

(|Vi|
2)

and pB(i, j) =
|E∩{(v,v′) : v∈Vi,v

′∈Vj}|
|Vi||Vj | , for i ̸= j ∈ [c].

Lemma 5.14 (Reduced time complexity with SB). Given fB : [n0] → [c], fB : [n0] → [c], gi for
i ∈ [c], and R ∈ N, computing both PrfLB

p;g,R
[E(G[V ′]) = E∗] and PrfPB

p;g,R
[E(G[V ′]) = E∗] takes

O(c3) times in total for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
[n]
3

)
with p = pSB

fB ,pB
and g(v) = gfB(v) for each

v ∈ V = [n].

Proof. The key idea is that given V ′ = {i, j, k} ∈
(
V
3

)
, both the three edge probabilities (i.e., p(i, j),

p(i, k), and p(j, k)) and the three node-sampling probabilities (i.e., g(i), g(j), and g(k)) are fully
determined by the membership the three nodes, i.e., fB(i), fB(j), and fB(k).
Hence, we only need to calculate motif probabilities for each membership combination instead of
each node combination. Since we have c different groups, the total number of degree combinations
of size 3 is O(c3), and the calculation for each combination takes O(1) time on arithmetic operations
with fixed formulae. In conclusion, the total time complexity is O(c3).
Some details are as follows. Let ni = |Vi| denote the number of nodes in the i-th group. Given three
group membership indicators i, j, and k, we have

• ninjnk such combinations, when i ̸= j, i ̸= k, and j ̸= k

•
(
ni

2

)
nk such combinations, when i = j and i ̸= k; similarly for i = k and i ̸= j or j = k and

i ̸= j

•
(
ni

3

)
such combinations, when i = j = k.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

B.5.4 THE STOCHASTIC KRONECKER (KR) MODEL

Definition B.7 (Kronecker product and Kronecker power). Given two matrices A ∈ Rm×n and
B ∈ Rp×q , the Kronecker product between A and B is

A⊗B =

a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q
a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q

...
...

. . .
...

...
...

. . .
...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q
am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q

...
...

. . .
...

...
...

. . .
...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq.

Given k ∈ N, the k Kronecker power of A is

A⊗ (A · · · (A⊗ (A⊗A)))︸ ︷︷ ︸
k − 1 times of Kronecker products

.

Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition. The stochastic Kronecker (KR) model (Leskovec et al., 2010) outputs edge probabilities
with a seed matrix θ ∈ [0, 1]2×2 and kKR ∈ N,11, and the output pKR

θ,kKR
is the kKR-th Kronecker

power of θ.

Lemma B.8 (Node equivalence in KR). Given θ ∈ [0, 1]2×2, kKR ∈ N, gi for 0 ≤ i ≤ kKR, and
R ∈ N, computing both PrfLB

p;g,R
[E(G[V ′]) = E∗] and PrfPB

p;g,R
[E(G[V ′]) = E∗] takes O(k7KR)

times in total for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
[n]
3

)
with p = pKR

θ,kKR
and g(v) = gi with i being the

number of ones in the binary representation of v − 1, for each v ∈ [2kKR].

Proof. A square binary matrix P ∈ {0, 1}n×n for some n ∈ N is a permutation matrix if exactly
one entry in each row or column of P is 1, i.e.,

∑
k Pik =

∑
k Pkj = 1,∀i, j ∈ [n].

With binary node labels, given two nodes

u = (u1u2 · · ·ukKR
)2

and
v = (v1v2 · · · vkKR

)2,

we have

θ(kKR)
uv =

kKR∏
i=1

θuivi ,

which implies that for any permutation π ∈ SkKR
,

θ(kKR)
uv = θ

(kKR)
π(u)π(v),∀u, v,

where with a slight abuse of notation,

π(u) = (uπ(1)uπ(2) · · ·uπ(kKR))2

and
π(v) = (vπ(1)vπ(2) · · · vπ(kKR))2.

On the other hand, for any two nodes with the same number of ones in the binary representations,
we can find a permutation π between the two binary representations by seeing them as sequences.
Let P = Pπ ∈ {0, 1}2kKR×2kKR with Pij = 1 if and only if π converts the binary presentation of
i− 1 to that of j − 1, and we have P⊤θ

(kKR)
uv P = θ

(kKR)
uv .

11We consider the commonly used 2-by-2 seed matrices.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 2: The node combinations in KR.

Remark B.9. The equivalence in KR is slightly weaker than that in the other three models (ER,
CL, and SB). Specifically, in the other three models, “two nodes i and j are equivalent” means that,
when you swap i and j while keeping the other nodes unchanged, the RGM is kept unchanged. For
KR, the equivalence is weaker in that you have to swap i and j together with all the other nodes
w.r.t. a permutation. This is also why the reduced time complexity is O(k7KR) instead of O(k3KR)
in Lemma 5.15.

Lemma 5.15 (Reduced time complexity with KR). Given θ ∈ [0, 1]2×2, kKR ∈ N, gi for 0 ≤ i ≤
kKR, and R ∈ N, computing both PrfLB

p;g,R
[E(G[V ′]) = E∗] and PrfPB

p;g,R
[E(G[V ′]) = E∗] for all

E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
[n]
3

)
takes O(k7KR) times with p = pKR

θ,kKR
and g(v) = gi with i being the

number of ones in the binary representation of v − 1, for each v ∈ [2kKR].

Proof. We divide node combinations w.r.t the binary node labels. As shown in the proof of
Lemma B.8, node combinations are equivalent with permutations on the binary node labels. Hence,
in each equivalent class of node combinations, we can consider only the one with the form as shown
in Figure 2, where each number (x0, x1, x00, etc.) represents the number of zeros and ones. Here,

• the first node v1 (more precisely, its binary node representation) has x0 zeros first and then x1

ones,
• the second node v2 has x00 zeros, then x01 ones, then x10 zeros, and finally x11 ones, and
• the third node v3 has x000 zeros, then x001 ones, then x010 zeros, then x011 ones, then x100 zeros,

then x101 ones, then x110 zeros, and finally x111 ones.

As indicated in the figure, we have

• x0 + x1 = kKR

• x00 + x01 = x0, x10 + x11 = x1

• x000 + x001 = x00, x010 + x011 = x01, x100 + x101 = x10, and x110 + x111 = x11.

The number of different equivalent classes is upper-bounded by
kKR∑
x0=0

x0∑
x00=0

kKR−x0∑
x10=0

x00∑
x0000

x0−x00∑
x010=0

x10∑
x100=0

kKR−x0−x10∑
x110=0

1

=
(kKR + 1)(kKR + 2)(kKR + 3)(kKR + 4)(kKR + 5)(kKR + 6)(kKR + 7)

5040
= O(k7KR).

For each equivalent class, the calculation only involves arithmetic with a fixed formula and thus
takes O(1) time. Note that the Kronecker power can be computed beforehand with much lower
time complexity, i.e., o(k7KR) (Seroussi & Ma, 1983). In conclusion, the total time complexity is
O(k7KR).

C ON (NON-)ISOLATED NODES

C.1 TRACTABLE NUMBER OF (NON-)ISOLATED NODES WITH PARALLEL BINDING

Theorem C.1 (Tractable number of (non-)isolated nodes with parallel binding). For any p :
(
V
2

)
→

[0, 1], g : V → [0, 1], R ∈ N, we can compute the closed-form (w.r.t. p, g, and R)
EfPB

p;g,R
[|{v ∈ G : d(v;G) ≥ 1}|].

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Proof. By the linearity of expectation,

EfPB
p;g,R

[|{v ∈ G : d(v;G) ≥ 1}|] =
∑
v∈V

PrfPB
p;g,R

[d(v;G) ≥ 1].

Hence, we only need to compute the probability of each node v being (non-)isolated. A node v is
isolated if and only if no edge incident to v is inserted in each round. In each round, when v is
sampled, i.e., v ∈ Vs, the probability that no edge incident to v is inserted is 1 −maxu∈Vs p(u, v).
Let piso(v) denote the aforementioned probability and sort V \ {v} = {u1, u2, . . . , un−1} with
n = |V | and p(u1, v) ≥ p(u2, v) ≥ · · · ≥ p(un−1, v). We have

piso(v) = (1−Pr[v ∈ Vs])+Pr[v ∈ Vs](1−EfPB
p;g,R

[max
u∈Vs

p(u, v)]) = 1−g(v)EfPB
p;g,R

[max
u∈Vs

p(u, v)],

where

EfPB
p;g,R

[max
u∈Vs

p(u, v)]

= Pr[u1 ∈ Vs]p(u1, v) + Pr[u1 /∈ Vs ∧ u2 ∈ Vs]p(u2, v) + · · ·+ Pr[(

n−2∧
i=1

ui /∈ Vs) ∧ un−1 ∈ Vs]p(un−1, v)

= g(u1)p(u1, v) + (1− g(u1))g(u2)p(u2, v) + · · ·+
n−2∏
i=1

(1− g(ui))g(un−1)p(un−1, v).

Finally, the probability that v is isolated after R rounds and dealing with prem is

p̃iso(v) = (piso(v))
R(1− prem(v)),

and thus the expected number of non-isolated nodes is

EfPB
p;g,R

[|{v ∈ G : d(v;G) ≥ 1}|] =
∑
v∈V

(1− p̃iso(v)).

The expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodes We can extend the reasoning above to compute the ex-
pected number of degree-1 nodes. Fix a node v, for each node uk, we shall compute the probability
that no other (uk′ , v) with k′ ̸= k is inserted, denoted by ps(v;uk), which is the probability of v
being isolated plus the probability of v being only adjacent to uk. In other words, we compute the
probability of v being isolated while ignoring uk. We have

ps(v;uk) = (1− g(v)) + g(v)p̃s(v;uk),

where

p̃s(v;uk) = g(u1)(1− p(u1, v))+

(1− g(u1))g(u2)(1− p(u2, v)) + · · ·+
k−2∏
i=1

(1− g(ui))g(uk−1)(1− p(uk−1, v))+

k−1∏
i=1

(1− g(ui))g(uk)p̂s(v;uk)+

k+1∏
i=1

(1− g(ui))g(uk+1)(1− p(uk+1, v)) + · · ·+

n−2∏
i=1

(1− g(ui))g(un−1)p(un−1, v)+

n−1∏
i=1

(1− g(ui))

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

with

p̂s(v;uk) = g(uk+1)(1− p(uk+1, v))+

(1− g(uk+1))g(uk+2)(1− p(uk+2, v)) + · · ·+
n−2∏

i=k+1

(1− g(ui))g(un−1)(1− p(un−1, v))+

n−1∏
i=k+1

(1− g(ui)).

Finally, the probability of v being degree-1 is

n−1∑
i=1

(ps(v;ui)− piso(v)).

Theorem C.2 (Time complexity of computing the expected number of (non-)isolated nodes
with parallel binding). Given p :

(
V
2

)
→ [0, 1], g : V → [0, 1], and R ∈ N, computing

EfPB
p;g,R

[|{v ∈ G : d(v;G) ≥ 1}|] takes O(|V |2 log |V |) time.

Proof. For computing the expected number of non-isolated nodes, for each node v, we need to
first sort the other nodes u ∈ V \ {v} w.r.t. p(u, v), which takes O(|V | log |V |) times. After
that, the calculation only arithmetic operations, which takes O(1) time since the formulae are fixed.
Hence, for each node v it takes O(log |V |) times. In conclusion, for all the nodes in V , it takes
O(|V | log |V |) time in total.

Remark C.3. Considering node equivalence (see Section 5.4) can also be used to reduce the time
complexity of computing the number of (non-)isolated nodes.

C.2 EXPERIMENTAL RESULTS

Since we have the tractability results on the number of (non-)isolated nodes, we can also fit and
control the number of (non-)isolated nodes with our binding schemes. Specifically, in our main
experiments, the objective of fitting is merely the number of triangles. Here, we further consider
variants with the fitting objective including both the number of triangles and the number of (non-
)isolated nodes, trying to preserve both numbers as the ground truth.
In Table 5, for each dataset and each model, we compare the ground-truth graph, the corresponding
EIGM, and the following two variants of EPGMs:

1. PARABDG: parallel binding with the number of triangles as the objective
2. PARABDG-N: parallel binding with both the number of triangles and the number of (non-)isolated

nodes12

and report the following statistics of the generated graphs:

1. nni: the number of non-isolated nodes
2. △: the number of triangles
3. GCC: the global clustering coefficient
4. ALCC: the average clustering coefficient

As in the main text, the statistics are averaged on 100 random trials, i.e., 100 generated graphs.
For ER, we relax both the number of total nodes and the uniform edge probability, i.e., n0 and p0,
for fitting. For the other three models (CL, SB, and KR), we still use the edge probabilities obtained
from the original model and only add an additional term to the objective.
As shown in the results, in most cases, PARABDG generates graphs with fewer non-isolated nodes
compared to the ground truth, and PARABDG-n well fits the number of non-isolated nodes while still
improving clustering compared to EIGMs. Notably, since the total number of nodes for KR can only

12We only have tractability results with parallel binding.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 5: The number of non-isolated nodes and clustering metrics of graphs generated by different realization
methods. The number of non-isoalted nodes nni and the number of triangles (△) are normalized. For each
dataset and each model, the best result is in bold and the second best is underlined.

dataset Hams Fcbk Polb

metric nni △ GCC ALCC nni △ GCC ALCC nni △ GCC ALCC

model GROUNDT 1.000 1.000 0.229 0.540 1.000 1.000 0.519 0.606 1.000 1.000 0.226 0.320

ER
EDGEIND 1.000 0.013 0.008 0.008 1.000 0.009 0.011 0.011 1.000 0.034 0.022 0.022
PARABDG 0.812 0.988 0.385 0.640 0.555 1.002 0.574 0.815 0.801 1.025 0.412 0.659

PARABDG-N 0.996 0.990 0.481 0.748 1.007 0.584 0.594 0.835 1.007 1.012 0.532 0.787

CL
EDGEIND 0.964 0.299 0.067 0.058 0.988 0.124 0.064 0.063 0.944 0.792 0.183 0.173
PARABDG 0.771 1.000 0.185 0.471 0.656 1.006 0.336 0.626 0.789 1.010 0.221 0.468

PARABDG-N 0.959 0.257 0.027 0.069 0.969 1.098 0.125 0.151 0.935 0.794 0.135 0.219

SB
EDGEIND 0.996 0.263 0.080 0.038 1.000 0.153 0.145 0.080 0.975 0.478 0.145 0.164
PARABDG 0.719 0.993 0.241 0.521 0.608 1.035 0.529 0.557 0.899 1.010 0.183 0.251

PARABDG-N 0.991 1.168 0.154 0.092 1.000 1.036 0.423 0.204 0.953 0.475 0.094 0.217

KR
EDGEIND 0.996 0.185 0.039 0.060 1.014 0.052 0.035 0.042 1.598 0.101 0.040 0.075
PARABDG 0.856 0.997 0.165 0.394 0.781 0.971 0.347 0.605 1.194 0.942 0.219 0.420

PARABDG-N 0.996 0.301 0.028 0.099 1.000 0.953 0.254 0.262 0.987 0.976 0.268 0.368

dataset Spam Cepg Scht

metric nni △ GCC ALCC nni △ GCC ALCC nni △ GCC ALCC

model GROUNDT 1.000 1.000 0.145 0.286 1.000 1.000 0.321 0.447 1.000 1.000 0.377 0.350

ER
EDGEIND 1.000 0.005 0.003 0.003 1.000 0.037 0.033 0.033 1.000 0.027 0.029 0.029
PARABDG 0.783 0.993 0.401 0.663 0.688 0.968 0.508 0.750 0.617 0.991 0.559 0.794

PARABDG-N 1.006 1.009 0.526 0.787 1.008 0.832 0.606 0.839 1.002 0.669 0.604 0.839

CL
EDGEIND 0.906 0.496 0.072 0.060 0.953 0.683 0.230 0.223 0.964 0.644 0.245 0.234
PARABDG 0.700 1.007 0.131 0.436 0.698 0.999 0.310 0.578 0.866 1.135 0.294 0.610

PARABDG-N 0.908 0.445 0.033 0.071 0.927 0.725 0.198 0.334 0.932 0.639 0.200 0.347

SB
EDGEIND 0.982 0.528 0.094 0.036 0.994 0.662 0.258 0.200 0.992 0.644 0.272 0.128
PARABDG 0.685 0.994 0.158 0.356 0.911 1.047 0.333 0.363 0.792 0.975 0.340 0.437

PARABDG-N 0.957 0.537 0.070 0.109 0.990 1.056 0.329 0.202 0.972 0.956 0.292 0.205

KR
EDGEIND 1.438 0.061 0.014 0.025 1.210 0.132 0.069 0.120 1.953 0.032 0.033 0.052
PARABDG 1.024 1.049 0.161 0.378 1.043 1.001 0.279 0.461 1.211 1.069 0.346 0.581

PARABDG-N 0.995 0.981 0.161 0.385 0.996 1.118 0.296 0.478 0.997 1.030 0.370 0.640

be a power of the seed-matrix size (i.e., a power of 2 in our experiments), the corresponding EIGM
generates graphs with too many non-isolated nodes in many cases, while PARABDG-n generates
graphs with a more similar number of non-isolated nodes (i.e., closer to the ground truth). Moreover,
it is also known that even without binding, some models may suffer from the problem of isolated
nodes, e.g., CL (Brissette & Slota, 2021; Brissette et al., 2022) and KR (Mahdian & Xu, 2007;
Seshadhri et al., 2013).
Overall, the results validate that, our tractability results allow practitioners to fit the number of non-
isolated nodes (if that is one of their main concerns) while improving other aspects, e.g., clustering.

D ADDITIONAL DISCUSSIONS

D.1 GENERAL GRAPHS

As mentioned in Section 2, we focus on undirected unweighted graphs without self-loops following
common settings for random graph models in the main text. Below, we shall discuss different more
general cases.
Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops. In our binding schemes (Algorithms 1 to 3), if we consider directed
edges and/or self-loops, we can further consider them after sampling a group of nodes. Regard-
ing theoretical analysis, we can further consider subgraphs (motifs) with directed edges and self-
loops (Milo et al., 2002) and the high-level ideas still apply.
Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges. Our graph generation algorithms only determine the (in)existence of edges and
we may need additional schemes to generate edge weights. For example, we can use algorithms
that generate proper edge weights when given graph topology (Bu et al., 2023). Since in our graph
generation algorithms, nodes (and thus edges) can be sampled multiple times, an alternative way to

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

have edge weights is to allow each edge to be inserted multiple times and use the times of repetition
as edge weights.

D.2 OVERLAP-RELATED TRIANGLE-DENSITY RESULTS

As mentioned in Section 3.1, Chanpuriya et al. (2024) have recently extended their theoretical
analysis to other categories of RGMs. In addition to EIGMs, they further considered two other
categories: node independent graph models (NIGMs) and fully dependent graph models (FDGMs).
Between the two, FDGMs means any distribution of graphs, i.e., any RGM, is allowed.
They only discussed general overlap-related triangle-density upper bounds in those categories of
RGMs, without detailed tractability results for practical graph generations. Specifically, their graph
generation algorithm is based on maximal clique enumeration (MCE). However, given a graph,
MCE itself can take exponential time (Eblen et al., 2012).
Also, what we focus on in this work, i.e., the category of binding-based EPGMs, is a subset of
EPGMs and are not “fully general” as FDGMs. On the other hand, NIGMs are associated with
node embeddings, where we have a node embedding space (i.e., a distribution) E and a symmetric
function e : E × E → [0, 1], and each node i has a node embedding xi sampled from E i.i.d., and
each edge (i, j) exists with probability e(xi,xj) independently. Our binding-based EPGMs do not
fall in this category either.

D.3 SUBSET SAMPLING

As mentioned in Footnote 7 in Section 5.2, we use independent node sampling (yet still with edge
dependency) which is simple, tractable, and works well. Specifically, independent node sampling
allows us to easily compute the marginal probability of each node binding sampled in each round,
which is involved in the derivation of our tractability results. Also, as shown in our experiments,
with binding schemes using independent node sampling, we still achieve significant empirical im-
provement over EIGMs. In the most general case, considering the sampling probabilities of all 2|V |

subsets would be intractable. Recently, a line of works has been proposed for tractable and differ-
entiable subset sampling (Xie & Ermon, 2019; Pervez et al., 2023; Ahmed et al., 2023; Sutter et al.,
2023), and exploring more flexible node sampling schemes is an interesting future direction to be
explored.

D.4 PRACTICAL MEANING OF BINDING

As we mentioned in Section 5.2, local binding (and parallel binding as a parallel version) binds
node pairs locally among a group of nodes (instead of some irrelevant node pairs). Such node pairs
are structurally related, and are expected to be meaningfully related in the corresponding real-world
systems. We shall discuss two specific real-world scenarios below.
Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks. In typical social networks, nodes represent people, and
edges represent social communications/relations between people. Each group “bound together”
by our binding algorithms can represent a group interaction, e.g., an offline social event (meeting,
conference, party) or an online social event (group chat, Internet forum, online game). In such so-
cial events, people gather together and the communications/relations between them likely co-occur.
Certainly, not necessarily all people in such events would communicate with each other, e.g., some
people are more familiar with each other. This is exactly the point of considering binding with
various edge probabilities (instead of just inserting cliques).
Specifically, the random variable s represents the overall “social power” of an event, while individual
edge probabilities p(u, v)’s represent some local factors (e.g., their personal relationship) between
each pair of people. A line of research studies group interactions in social networks (Felmlee &
Faris, 2013; Levorato, 2014; Purushotham & Jay Kuo, 2015; Jang et al., 2016; Li et al., 2020;
Iacopini et al., 2022).
Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks. In typical gene networks, nodes represent genes,
and edges represent gene functional associations, i.e., connections between genes that contribute
jointly to a biological function. Each group “bound together” by our binding algorithms can
represent a biological function, since typically (1) a single biological function involves multiple
genes (Plomin, 1990; Anastassiou, 2007; Naoumkina et al., 2010) (represented by a group of nodes
bound together), and (2) the same biological function may involve different genes in different

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 6: The basic statistics of the datasets.

dataset |V | |E| # triangles GCC ALCC

Hams 2,000 16,097 157,953 0.229 0.540
Fcbk 4,039 88,234 4,836,030 0.519 0.606
Polb 1,222 16,717 303,129 0.226 0.320
Spam 4,767 37,375 387,051 0.145 0.286
Cepg 1,692 47,309 2,353,812 0.321 0.447
Scht 2,077 63,023 4,192,980 0.377 0.350

cases (Gottesman & Hanson, 2005; Pritykin et al., 2015; Storey et al., 2007) (represented by the
probabilistic nature of binding).
On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding. Specifically, as mentioned in Section 5.3, compared to local binding where
each pair can only participate in a single group, parallel binding allows each pair to participate
in multiple groups (in different rounds). This is also true for real-world group interactions, where
different groups overlap and intersect with each other (Lee et al., 2021; LaRock & Lambiotte, 2023).

E ADDITIONAL DETAILS OF THE EXPERIMENTS

E.1 EXPERIMENTAL SETTINGS

Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets. We use six real-world datasets from three different domains: (1) social networks ham-
sterster (Hams) and facebook (Fcbk), (2) web graphs polblogs (Polb) and spam (Spam), and (3)
biological graphs CE-PG (Cepg) and SC-HT (Scht).
The datasets are available online (Rossi & Ahmed, 2015; Leskovec & Krevl, 2014):

• hamsterster (Hams) (Hamsterster) is available at https://networkrepository.com/
soc-hamsterster.php

• facebook (Fcbk) (Leskovec & Mcauley, 2012) is available at https://snap.stanford.
edu/data/ego-Facebook.html

• polblogs (Polb) (Adamic & Glance, 2005) is available at https://networks.skewed.de/
net/polblogs

• spam (Spam) (Castillo et al., 2008) is available at https://networkrepository.com/
web-spam.php

• CE-PG (Cepg) (Cho et al., 2014) is available at https://networkrepository.com/
bio-CE-PG.php

• SC-HT (Scht) (Cho et al., 2014) is available at https://networkrepository.com/
bio-SC-HT.php

In Table 6, we show the basic statistics (e.g., the numbers of nodes and edges) of the datasets.
We provide the formal definitions of some basic statistics below.
Definition E.1 (Clustering coefficients). Given G = (V,E), the number of wedges (i.e., open
triangles) is nw(G) =

∑
v∈V

(
d(v)
2

)
. The global clustering coefficient (GCC) of G is defined as

GCC(G) =
3△(G)

nw(G)
,

where △(G) is the number of triangles in G and it is multiplied by 3 because each triangle corre-
sponds to three wedges (consider three different nodes as the center of the wedge). The average
local clustering coefficient (ALCC) of G is defined as

ALCC(G) =
∑

v : d(v)≥2

△(v;G)(
d(v)
2

) ,

where △(v;G) is the number of triangles involving v in G.

Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models. The Erdős-Rényi (ER) model outputs edge probabilities with two parameters: n0 and p0,
and the output is pER

n0,p0
with pER

n0,p0
(u, v) = p0,∀u, v ∈

(
V
2

)
with V = [n0]. Given a graph

G = (V = [n], E), the standard fitting of ER gives n0 = n and p0 = |E|
(|V |

2)
.

35

https://networkrepository.com/soc-hamsterster.php
https://networkrepository.com/soc-hamsterster.php
https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ego-Facebook.html
https://networks.skewed.de/net/polblogs
https://networks.skewed.de/net/polblogs
https://networkrepository.com/web-spam.php
https://networkrepository.com/web-spam.php
https://networkrepository.com/bio-CE-PG.php
https://networkrepository.com/bio-CE-PG.php
https://networkrepository.com/bio-SC-HT.php
https://networkrepository.com/bio-SC-HT.php

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

The Chung-Lu (CL) model outputs edge probabilities with a sequence of expected degrees D =
(d1, d2, . . . , dn), and the output is pCL

D with pCL
D (u, v) = min(dudv∑n

i=1 di
, 1),∀u, v ∈

(
V
2

)
with V =

[n]. Given a graph G = (V = [n], E), the standard fitting of CL gives di = d(i;G) for each node
i ∈ V .
The stochastic block (SB) model outputs edge probabilities with (1) a partition of nodes which
can be represented by an assignment function fB : [n0] → [c] with n0 nodes and c blocks and
(2) the edge probability between each pair of blocks (including between two identical blocks),
which can be represented by pB : [c] × [c] → [0, 1], and the output is pSB

fB ,pB
with pSB

fB ,pB
(u, v) =

pB(fB(u), fB(v)),∀u, v ∈ [n0]. In our experiments, we use the Python library Graspologic (Chung
et al., 2019) which contains a fitting algorithm for SB. Specifically, it uses spectral embed-
ding (Von Luxburg, 2007; Sussman et al., 2012; Rohe et al., 2011) and a Gaussian mixture
model (Reynolds et al., 2009) to obtain node partitions.
The stochastic Kronecker (KR) model outputs edge probabilities with a seed matrix θ ∈ [0, 1]2×2

and a Kronecker power kKR ∈ N, and the output is pKR
θ,kKR

with pKR
θ,kKR

(u, v) = θ
(kKR)
uv ,∀u, v ∈

(
V
2

)
with V = [2kKR], where θ(kKR) ∈ [0, 1]2

kKR×2kKR is the kKR-th Kronecker power of θ. In our
experiments, we use kronfit (Leskovec et al., 2010) proposed by the original authors of KR.
Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting. For fitting the parameters for our binding schemes, we use the Adam optimizer (Kingma &
Ba, 2015) with learning rate η = 0.001 and nep = 10, 000 epochs for training. In our experiments,
we consistently use R = 100, 000 rounds for both of our binding schemes. By default, the input
edge probabilities p are provided and fixed as described above. By default, the objective is the
expected number of triangles. More specifically, it is

(1−
EfX

p;g,R
[△(G)]

△(Ginput)
)2

where

EfX
p;g,R

[△(G)] =
∑

V ′∈(V3)

Pr
fX
p;g,R

[E(G[V ′]) =

(
V ′

2

)
]

is the expected number of triangles in a generated graph with X ∈ {LOCLBDG, PARABDG} in-
dicating the binding scheme, and △(Ginput) is the ground-truth number of triangles in the input
graph.
We observe that our fitting algorithms assign different node-sampling probabilities to different
nodes, which implies that different nodes have different levels of importance in binding. In Fig-
ure 3, for the CL model and for each dataset, we show the relations between nodes’ degrees and
their node-sampling probabilities in LOCLBDG and PARABDG. For LOCLBDG, we observe strong
positive correlations between node degrees and node-sampling probabilities. For PARABDG, similar
trends are observed, but the patterns are quite different. Also, we can observe that the node-sampling
probabilities for PARABDG are overall lower than those for LOCLBDG, as mentioned in Section 6.4.
Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software. All the experiments of fitting are run on a machine with two Intel Xeon®

Silver 4210R (10 cores, 20 threads) processors, a 512GB RAM, and RTX A6000 (48GB) GPUs.
A single GPU is used for each fitting process. The code for fitting is written in Python, using
Pytorch (Paszke et al., 2019). All the experiments of graph generation are run on a machine with
one Intel i9-10900K (10 cores, 20 threads) processor, a 64GB RAM. The code for generation is
written in C++, compiled with G++ with O2 optimization and OpenMP (Dagum & Menon, 1998)
parallelization.

E.2 P1: CLUSTERING

As mentioned in Section 6.2, the results in Table 1 are averaged on 100 random trials. In Table 7,
we show the full results with standard deviations. With binding, the variance is higher since the
covariances between edges are higher with dependency. We also compute the mean squared errors
w.r.t. each metric. The results are in Table 8. Notably, for graph generators, variability is desirable
in many cases (Moreno et al., 2018; Stamm et al., 2023).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

LOCLBDG

Fcbk PolbHams

PARABDG

LOCLBDG

Cepg SchtSpam

PARABDG

Figure 3: The relations between node degrees and node-sampling probabilities.

E.3 P2: DEGREES, DISTANCES, AND OTHER GRAPH STATISTICS

Definition E.2 (Paths and distance). Given a graph G = (V,E), a sequences of nodes
(v1, v2, . . . , vt) consisting of t distinct nodes is a path between v1 and vt, if (vi, vi+1) ∈ E,∀i ∈
[t− 1], and t is called the length of the path. Given two nodes u, v ∈ V , the distance between u and
v is the length of the shortest path between u and v.

Definition E.3 (Connected components). Given a graph G = (V,E), and two nodes u, v ∈ V , we
say u and v are in the same connected component, if and only if there exists at least one path between
u and v. This relation of “being in the same connected component” forms equivalent classes among
the nodes, and each equivalent class is a connected component. A largest connected component is a
connected component with the largest size (i.e., the number of nodes in it).13

In Figure 4, for each dataset (each column) and each model (each row), we compare the degree
distributions and distance distributions in the ground-truth graph and the graphs generated with each
realization method, supplementing Figure 1.
In Table 9, we provide the detailed numerical results w.r.t. degrees and distances. Specifically, for
each dataset, each mode, and each realization method, we report the following statistics:

• the results of the linear regression of node degrees k and the number of nodes with each degree k
on a log-log scale: the fit slope (the exponent α in the corresponding power-law fitting) and the r
value (the strength of a power law)

• the average path length (APL) and the 90%-effective diameter (deff) in the largest connected
component14

With binding, the generated graphs are overall closer to ground truth w.r.t. some other graph metrics:
modularity (Newman, 2006), conductance (Gleich, 2006), core numbers (Seidman, 1983), average
vertex betweenness (Freeman, 1977), average edge betweenness (Brandes, 2008), and natural con-
nectivity (Chan et al., 2014). See Tables 11 to 16 for the detailed results. Modularity is computed

13A graph may contain several equal-size largest connected components, but it rarely happens for real-world
graphs.

14The average path length is the average distance of the pairs in the largest connected component, and the
90%-effective diameter is the minimum distance d such that at least 90% of the pairs in the largest connected
component have distances at most d.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 7: The clustering metrics of graphs generated by different realization methods, with the standard devia-
tions. The number of triangles (△) is normalized.

dataset Hams Fcbk Polb

metric △ GCC ALCC △ GCC ALCC △ GCC ALCC
model GROUNDT 1.000 0.229 0.540 1.000 0.519 0.606 1.000 0.226 0.320

ER

EDGEIND 0.013 0.008 0.008 0.009 0.011 0.011 0.034 0.022 0.022
(std) 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

LOCLBDG 0.997 0.321 0.236 1.010 0.448 0.223 0.955 0.336 0.247
(std) 0.279 0.028 0.022 0.445 0.077 0.042 0.320 0.038 0.032

PARABDG 0.988 0.385 0.640 1.002 0.574 0.815 1.025 0.412 0.659
(std) 0.081 0.014 0.018 0.155 0.036 0.026 0.135 0.022 0.028

CL

EDGEIND 0.299 0.067 0.058 0.124 0.064 0.063 0.792 0.183 0.173
(std) 0.010 0.002 0.002 0.002 0.001 0.001 0.017 0.002 0.005

LOCLBDG 0.992 0.165 0.255 1.026 0.255 0.305 1.002 0.214 0.341
(std) 0.353 0.030 0.026 1.033 0.095 0.050 0.132 0.008 0.021

PARABDG 1.000 0.185 0.471 1.006 0.336 0.626 1.010 0.221 0.468
(std) 0.144 0.013 0.013 0.261 0.035 0.018 0.068 0.003 0.009

SB

EDGEIND 0.263 0.080 0.038 0.153 0.145 0.080 0.478 0.145 0.164
(std) 0.007 0.001 0.001 0.002 0.001 0.000 0.012 0.002 0.004

LOCLBDG 1.039 0.219 0.240 0.934 0.429 0.331 0.994 0.237 0.355
(std) 0.419 0.042 0.026 0.732 0.086 0.074 0.386 0.025 0.037

PARABDG 0.993 0.241 0.521 1.035 0.529 0.557 1.010 0.183 0.251
(std) 0.118 0.013 0.012 0.504 0.064 0.042 1.819 0.076 0.054

KR

EDGEIND 0.185 0.039 0.060 0.052 0.035 0.042 0.101 0.040 0.075
(std) 0.006 0.001 0.002 0.001 0.000 0.001 0.003 0.001 0.003

LOCLBDG 1.095 0.152 0.230 0.927 0.239 0.270 1.061 0.141 0.234
(std) 0.580 0.047 0.028 1.090 0.117 0.048 2.234 0.106 0.054

PARABDG 0.997 0.165 0.394 0.971 0.347 0.605 0.942 0.219 0.420
(std) 0.210 0.021 0.016 0.395 0.055 0.017 0.601 0.075 0.035

dataset Spam Cepg Scht

metric △ GCC ALCC △ GCC ALCC △ GCC ALCC

model GROUNDT 1.000 0.145 0.286 1.000 0.321 0.447 1.000 0.377 0.350

ER

EDGEIND 0.005 0.003 0.003 0.037 0.033 0.033 0.027 0.029 0.029
(std) 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

LOCLBDG 0.993 0.336 0.234 1.016 0.397 0.258 1.012 0.420 0.251
(std) 0.158 0.022 0.013 0.557 0.083 0.057 0.687 0.094 0.063

PARABDG 0.993 0.401 0.663 0.968 0.508 0.750 0.991 0.559 0.794
(std) 0.047 0.010 0.011 0.183 0.039 0.038 0.198 0.043 0.035

CL

EDGEIND 0.496 0.072 0.060 0.683 0.230 0.223 0.644 0.245 0.234
(std) 0.010 0.001 0.002 0.008 0.001 0.004 0.006 0.001 0.003

LOCLBDG 1.028 0.124 0.260 0.996 0.293 0.430 1.036 0.318 0.469
(std) 0.214 0.016 0.019 0.241 0.018 0.033 0.367 0.028 0.042

PARABDG 1.007 0.131 0.436 0.999 0.310 0.578 1.135 0.294 0.610
(std) 0.074 0.006 0.011 0.107 0.004 0.010 1.290 0.079 0.033

SB

EDGEIND 0.528 0.094 0.036 0.662 0.258 0.200 0.644 0.272 0.128
(std) 0.013 0.002 0.001 0.008 0.002 0.002 0.006 0.001 0.001

LOCLBDG 0.985 0.152 0.223 0.986 0.323 0.415 1.034 0.354 0.386
(std) 0.171 0.018 0.017 0.450 0.037 0.046 0.368 0.034 0.042

PARABDG 0.994 0.158 0.356 1.047 0.333 0.363 0.975 0.340 0.437
(std) 0.110 0.013 0.017 0.541 0.085 0.056 0.298 0.045 0.030

KR

EDGEIND 0.061 0.014 0.025 0.132 0.069 0.120 0.032 0.033 0.052
(std) 0.002 0.000 0.001 0.002 0.001 0.002 0.001 0.000 0.001

LOCLBDG 0.943 0.118 0.187 0.990 0.175 0.312 1.444 0.181 0.277
(std) 0.759 0.055 0.028 2.112 0.098 0.077 3.610 0.132 0.079

PARABDG 1.049 0.161 0.378 1.001 0.279 0.461 1.069 0.346 0.581
(std) 0.319 0.032 0.017 0.757 0.098 0.044 1.165 0.152 0.035

after obtaining partitions using the Louvain algorithm (Blondel et al., 2008). Conductance is com-
puted after obtaining bi-partitions using the Kernighan-Lin bisection algorithm (Kernighan & Lin,

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 8: The mean squared errors w.r.t. clustering metrics of graphs generated by different realization methods.
The number of triangles (△) is normalized.

dataset Hams Fcbk Polb

metric △ GCC ALCC △ GCC ALCC △ GCC ALCC

model GROUNDT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ER
EDGEIND 0.974 0.049 0.283 0.983 0.258 0.354 0.934 0.042 0.089
LOCLBDG 0.078 0.009 0.093 0.199 0.011 0.148 0.104 0.013 0.007
PARABDG 0.007 0.024 0.010 0.024 0.004 0.044 0.019 0.035 0.115

CL
EDGEIND 0.492 0.026 0.233 0.767 0.207 0.295 0.044 0.002 0.022
LOCLBDG 0.125 0.005 0.082 1.068 0.079 0.093 0.017 0.000 0.001
PARABDG 0.021 0.002 0.005 0.068 0.035 0.001 0.005 0.000 0.022

SB
EDGEIND 0.544 0.022 0.252 0.718 0.140 0.276 0.273 0.007 0.025
LOCLBDG 0.177 0.002 0.091 0.539 0.015 0.081 0.149 0.001 0.002
PARABDG 0.014 0.000 0.001 0.255 0.004 0.004 3.303 0.008 0.008

KR
EDGEIND 0.664 0.036 0.230 0.898 0.234 0.317 0.809 0.034 0.060
LOCLBDG 0.346 0.008 0.097 1.194 0.092 0.115 4.989 0.018 0.010
PARABDG 0.044 0.005 0.022 0.157 0.033 0.000 0.364 0.006 0.011

dataset Spam Cepg Scht

metric △ GCC ALCC △ GCC ALCC △ GCC ALCC

model GROUNDT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ER
EDGEIND 0.990 0.020 0.080 0.927 0.083 0.171 0.947 0.121 0.103
LOCLBDG 0.025 0.037 0.003 0.310 0.013 0.039 0.473 0.011 0.014
PARABDG 0.002 0.066 0.143 0.035 0.037 0.093 0.039 0.035 0.198

CL
EDGEIND 0.254 0.005 0.051 0.100 0.008 0.050 0.126 0.017 0.014
LOCLBDG 0.046 0.001 0.001 0.058 0.001 0.001 0.136 0.004 0.016
PARABDG 0.006 0.000 0.023 0.012 0.000 0.017 1.682 0.013 0.069

SB
EDGEIND 0.223 0.003 0.062 0.114 0.004 0.061 0.127 0.011 0.049
LOCLBDG 0.030 0.000 0.004 0.202 0.001 0.003 0.136 0.002 0.003
PARABDG 0.012 0.000 0.005 0.295 0.007 0.010 0.089 0.003 0.008

KR
EDGEIND 0.882 0.017 0.068 0.754 0.064 0.107 0.936 0.118 0.089
LOCLBDG 0.579 0.004 0.011 4.462 0.031 0.024 13.233 0.056 0.012
PARABDG 0.104 0.001 0.009 0.573 0.011 0.002 1.361 0.024 0.054

1970). In most cases, the metrics in the graphs generated with binding are closer to the ground truth,
indicating that binding improves the generation quality in various aspects.

E.4 GRAPH GENERATION SPEED

In Table 10, for each dataset and each model, we report the running time of graph generation (av-
eraged on 100 random trials) using EDGEIND, LOCLBDG, PARABDG, and serialized PARABDG
without parallelization (PARABDG-S). The algorithmic details of EDGEIND for each model are as
follows:

• We try to find an optimized and fast algorithm for each model in C++
• For ER, we use the Boost Graph Library (Siek et al., 2001)
• For CL, we use NetworKit (Staudt et al., 2016)
• For SB, we use online code in a GitHub repo15

• For KR, we use krongen in SNAP (Leskovec & Sosič, 2016)

Consistent with our observation in Section 6.4, EDGEIND is fastest with the simplest algorithmic
nature, and between the two binding schemes, PARABDG is noticeably faster than LOCLBDG, and
is even faster with parallelization.

15https://github.com/ntamas/blockmodel

39

https://github.com/ntamas/blockmodel

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

GROUNDT LOCLBDGEDGEIND PARABDG

Fcbk

Polb

Spam

Cepg

Scht

Hams

ER CL SB KR

Fcbk

Polb

Spam

Cepg

Scht

Hams

ER CL SB KR

Figure 4: The degree (top) and distance (bottom) distributions of graphs generated by different
realization methods. All the plots are in a log-log scale. Each shaded area represents one standard
deviation.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 9: The numerical results regarding degrees and distances of graphs generated by different realization
methods.

dataset Hams Fcbk Polb

metric α r APL deff α r APL deff α r APL deff

model GROUNDT -1.432 -0.934 3.589 5.000 -1.180 -0.900 3.693 5.000 -1.069 -0.921 2.738 4.000

ER
EDGEIND -0.058 -0.008 3.004 4.000 -0.046 -0.005 2.606 3.000 0.009 0.007 2.507 3.000
LOCLBDG -1.301 -0.850 3.254 4.060 -1.076 -0.869 2.892 3.950 -0.978 -0.828 2.703 3.570
PARABDG -0.958 -0.553 2.996 4.000 -2.338 -0.797 2.262 3.000 -1.136 -0.663 2.416 3.000

CL
EDGEIND -1.414 -0.927 2.938 4.000 -1.185 -0.898 2.608 3.000 -1.055 -0.920 2.585 3.000
LOCLBDG -1.262 -0.935 2.772 3.390 -1.058 -0.917 2.493 3.000 -0.974 -0.906 2.414 3.000
PARABDG -1.282 -0.924 2.713 3.000 -0.980 -0.877 2.331 3.000 -0.968 -0.900 2.373 3.000

SB
EDGEIND -1.211 -0.853 3.309 4.000 -0.600 -0.399 3.507 5.000 -0.967 -0.766 2.717 4.000
LOCLBDG -1.263 -0.905 3.193 4.420 -1.028 -0.823 4.276 6.480 -0.959 -0.884 2.525 3.020
PARABDG -1.209 -0.872 3.000 4.070 -0.409 -0.294 3.429 5.190 -0.954 -0.824 2.595 3.430

KR
EDGEIND -1.359 -0.909 2.856 3.990 -1.185 -0.806 2.566 3.000 -1.332 -0.912 2.848 3.940
LOCLBDG -1.272 -0.937 2.764 3.320 -1.134 -0.924 2.613 3.090 -1.174 -0.924 2.715 3.300
PARABDG -1.301 -0.934 2.742 3.010 -1.104 -0.915 2.499 3.000 -1.164 -0.928 2.661 3.050

dataset Spam Cepg Scht

metric α r APL deff α r APL deff α r APL deff

model GROUNDT -1.495 -0.947 3.794 5.000 -0.917 -0.907 2.711 4.000 -0.950 -0.860 2.772 4.000

ER
EDGEIND -0.054 -0.008 3.384 4.000 -0.067 -0.009 2.119 3.000 -0.078 -0.011 2.135 3.000
LOCLBDG -1.551 -0.856 3.601 4.840 -0.843 -0.821 2.482 3.210 -0.848 -0.825 2.532 3.340
PARABDG -1.069 -0.541 3.312 4.000 -1.858 -0.765 2.033 2.490 -2.274 -0.800 1.981 2.000

CL
EDGEIND -1.477 -0.943 3.119 4.000 -0.918 -0.897 2.415 3.000 -0.964 -0.905 2.430 3.000
LOCLBDG -1.364 -0.944 2.850 3.440 -0.789 -0.866 2.195 3.000 -0.802 -0.875 2.215 3.000
PARABDG -1.389 -0.940 2.811 3.000 -0.715 -0.809 2.096 3.000 -0.779 -0.825 2.201 3.000

SB
EDGEIND -1.448 -0.893 3.729 5.000 -0.715 -0.644 2.650 4.000 -0.790 -0.749 2.661 4.000
LOCLBDG -1.441 -0.938 3.274 4.550 -0.718 -0.803 2.318 3.030 -0.713 -0.814 2.289 3.000
PARABDG -1.445 -0.931 3.021 4.000 -0.713 -0.661 2.397 3.000 -0.756 -0.793 2.307 3.000

KR
EDGEIND -1.602 -0.929 3.466 4.000 -0.976 -0.807 2.303 3.000 -1.338 -0.882 2.747 3.000
LOCLBDG -1.457 -0.951 3.177 4.000 -1.010 -0.909 2.343 3.000 -1.100 -0.912 2.649 3.300
PARABDG -1.498 -0.953 3.126 4.000 -0.978 -0.904 2.313 3.000 -1.023 -0.891 2.522 3.000

Table 10: The time (in seconds) for graph generation with different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

ER

EDGEIND <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
LOCLBDG 3.2 7.9 2.2 7.7 3.7 4.9
PARABDG <0.05 <0.05 <0.05 0.1 <0.05 <0.05
PARABDG-S 0.2 0.1 <0.05 0.8 <0.05 <0.05

CL

EDGEIND <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
LOCLBDG 4.0 48.2 2.4 9.3 6.3 11.5
PARABDG 0.3 1.1 0.2 0.7 0.3 1.5
PARABDG-S 3.0 9.4 1.8 6.8 2.6 13.9

SB

EDGEIND 0.1 0.1 0.1 0.1 0.1 0.1
LOCLBDG 4.0 177.6 4.0 8.9 10.3 10.6
PARABDG 0.3 6.2 0.9 0.7 1.0 0.7
PARABDG-S 3.1 33.7 8.6 7.2 9.8 6.6

KR

EDGEIND 0.1 0.1 <0.05 0.1 <0.05 0.1
LOCLBDG 4.7 49.0 16.6 28.5 81.0 200.1
PARABDG 0.3 1.7 0.5 1.6 0.9 6.8
PARABDG-S 3.2 12.6 5.2 14.2 10.5 31.3

We upscale the hamsterster (Hams) dataset by duplicating the whole graphs multiple times.

• The original dataset contains |V | = 2000 nodes.
• With 32GB RAM, all the proposed methods can run with |V | = 128000 (64× of the original

graph).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

GROUNDT PARABDGEDGEIND PARABDG-JW

Hams Fcbk

Hams Fcbk

Figure 5: The degree (top) and distance (bottom) distributions of graphs generated by different
realization methods. Each shaded area represents one standard deviation.

Table 11: The modularity in the graphs generated by different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 0.474 0.777 0.427 0.462 0.434 0.253

ER
EDGEIND 0.210 0.120 0.155 0.205 0.104 0.099
LOCLBDG 0.394 0.443 0.353 0.440 0.321 0.369
PARABDG 0.365 0.517 0.323 0.394 0.392 0.430

CL
EDGEIND 0.193 0.107 0.127 0.180 0.082 0.078
LOCLBDG 0.325 0.343 0.184 0.303 0.184 0.205
PARABDG 0.301 0.332 0.152 0.271 0.118 0.262

SB
EDGEIND 0.317 0.756 0.423 0.370 0.407 0.208
LOCLBDG 0.386 0.751 0.422 0.396 0.417 0.235
PARABDG 0.375 0.741 0.482 0.432 0.466 0.263

KR
EDGEIND 0.190 0.114 0.193 0.254 0.107 0.142
LOCLBDG 0.322 0.357 0.335 0.424 0.248 0.313
PARABDG 0.314 0.367 0.420 0.411 0.304 0.385

See Table 17 for the detailed results.
To handle even large graphs, we further provide an alternative implementation with parallel binding
(PARABDG), where we

• Save the memory usage by considering the classes of node pairs with the same probability.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Table 12: The conductance in the graphs generated by different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 0.131 0.012 0.079 0.147 0.075 0.556

ER
EDGEIND 0.330 0.394 0.369 0.327 0.407 0.411
LOCLBDG 0.235 0.181 0.271 0.201 0.311 0.251
PARABDG 0.226 0.188 0.253 0.212 0.241 0.226

CL
EDGEIND 0.744 0.830 0.869 0.831 0.901 0.911
LOCLBDG 0.444 0.265 0.816 0.492 0.813 0.809
PARABDG 0.540 0.453 0.826 0.687 0.847 0.326

SB
EDGEIND 0.261 0.067 0.081 0.207 0.090 0.615
LOCLBDG 0.222 0.017 0.080 0.186 0.083 0.597
PARABDG 0.228 0.021 0.086 0.245 0.067 0.472

KR
EDGEIND 0.814 0.776 0.863 0.828 0.883 0.853
LOCLBDG 0.411 0.406 0.420 0.265 0.474 0.216
PARABDG 0.432 0.282 0.211 0.288 0.359 0.208

Table 13: The max core number in the graphs generated by different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 24.0 115.0 36.0 35.0 80.0 100.0

ER
EDGEIND 11.0 32.7 19.5 10.9 42.9 46.9
LOCLBDG 29.5 120.9 42.6 33.9 94.3 117.3
PARABDG 18.7 70.4 28.1 20.9 61.7 79.8

CL
EDGEIND 16.9 43.7 33.5 25.6 66.7 79.4
LOCLBDG 30.6 104.3 35.9 35.3 76.6 96.2
PARABDG 24.4 105.7 35.3 27.1 73.1 96.9

SB
EDGEIND 21.4 71.8 33.9 37.6 99.8 96.4
LOCLBDG 31.4 88.7 34.8 40.4 85.1 98.4
PARABDG 26.3 121.3 37.4 38.4 107.8 109.0

KR
EDGEIND 15.5 32.0 15.9 13.0 36.2 25.0
LOCLBDG 31.6 98.4 33.7 37.9 68.8 84.9
PARABDG 26.3 107.6 38.5 37.7 86.1 109.4

Table 14: The average vertex betweenness (normalized w.r.t. the ground-truth value) in the graphs generated
by different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 1.000 1.000 1.000 1.000 1.000 1.000

ER
EDGEIND 0.794 0.610 0.863 0.876 0.666 0.647
LOCLBDG 0.975 0.888 1.065 1.078 0.938 1.103
PARABDG 0.954 0.945 1.038 1.089 0.944 0.954

CL
EDGEIND 0.790 0.605 0.940 0.835 0.893 0.817
LOCLBDG 0.903 0.808 0.998 0.965 0.983 0.919
PARABDG 0.873 0.755 0.985 0.946 0.929 0.792

SB
EDGEIND 0.898 0.961 0.999 1.024 0.976 0.929
LOCLBDG 1.084 1.234 1.133 1.202 1.064 1.169
PARABDG 1.126 1.446 1.000 1.081 0.917 0.945

KR
EDGEIND 0.730 0.582 0.654 0.626 0.628 0.503
LOCLBDG 0.809 0.751 0.817 0.754 0.715 0.668
PARABDG 0.818 0.757 0.815 0.762 0.804 0.715

– For ER, it would be all the pairs.
– For CL, each class contains node pairs with the same node degrees.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 15: The average edge betweenness (normalized w.r.t. the ground-truth value) in the graphs generated by
different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 1.000 1.000 1.000 1.000 1.000 1.000

ER
EDGEIND 0.863 0.719 0.995 0.911 0.962 0.902
LOCLBDG 1.062 1.159 1.122 1.090 1.186 1.050
PARABDG 0.983 0.970 1.090 1.073 1.138 0.877

CL
EDGEIND 0.790 0.605 0.940 0.835 0.893 0.817
LOCLBDG 0.903 0.808 0.998 0.965 0.983 0.919
PARABDG 0.873 0.755 0.985 0.946 0.929 0.792

SB
EDGEIND 0.927 0.972 1.009 1.023 0.985 0.958
LOCLBDG 1.055 2.142 1.358 1.297 1.274 1.480
PARABDG 1.233 1.406 1.029 1.170 0.935 1.129

KR
EDGEIND 0.770 0.704 0.689 0.666 0.742 0.566
LOCLBDG 0.886 1.141 0.952 0.807 1.089 1.088
PARABDG 0.897 1.151 0.913 0.850 1.191 1.095

Table 16: The natural connectivity (normalized w.r.t. the ground-truth value) in the graphs generated by differ-
ent realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 1.000 1.000 1.000 1.000 1.000 1.000

ER
EDGEIND 0.863 0.719 0.995 0.911 0.962 0.902
LOCLBDG 1.062 1.159 1.122 1.090 1.186 1.050
PARABDG 0.983 0.970 1.090 1.073 1.138 0.877

CL
EDGEIND 0.878 0.633 1.050 0.884 0.960 0.895
LOCLBDG 1.090 1.074 1.093 0.971 1.042 1.017
PARABDG 0.993 0.900 1.095 0.930 1.032 1.003

SB
EDGEIND 0.771 0.523 0.787 0.912 0.872 0.890
LOCLBDG 1.119 0.716 0.892 0.951 0.933 0.936
PARABDG 0.869 0.864 1.070 0.926 1.000 0.924

KR
EDGEIND 0.789 0.475 0.518 0.427 0.561 0.316
LOCLBDG 1.160 0.923 0.971 1.000 1.288 0.966
PARABDG 0.947 0.807 1.024 0.684 0.889 0.837

Table 17: The results of the scalability experiments when upscaling the input graph (time: seconds).

model |V | 2k 4k 8k 16k 32k 64k 128k

ER LOCLBDG 3.194 6.505 16.365 45.648 143.394 494.536 1859.232
PARABDG 0.034 0.058 0.113 0.232 0.601 1.705 5.381

CL LOCLBDG 3.962 9.595 35.364 123.902 472.281 2162.315 8402.245
PARABDG 0.302 0.495 1.027 2.114 4.404 11.184 31.129

SB LOCLBDG 3.989 9.493 29.557 99.167 362.930 1648.392 8398.062
PARABDG 0.266 0.489 0.994 2.132 5.335 14.861 45.983

KR LOCLBDG 8.611 31.241 124.453 506.921 2097.190 8680.988 33918.420
PARABDG 0.428 1.209 4.277 20.339 113.452 705.571 4351.573

– For SB, each class contains node pairs from the same blocks.
– For KR, each class contains node pairs with the same binary node labels up to permutation.

• Directly save the generated edges on the hard disk instead of in the RAM.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Table 18: The results of the scalability experiments when upscaling the input graph (time: seconds) using
parallel binding (PARABDG) with additional optimization for large graphs.

model |V | 1m 2m 4m 8m 16m 32m 64m

ER PARABDG 5.942 12.449 28.174 60.975 121.889 262.736 490.985

CL PARABDG 102.150 220.177 423.836 815.883 1685.561 3135.217 6179.357

SB PARABDG 106.026 213.722 428.980 869.002 1798.333 3829.563 8638.938

KR PARABDG 105.062 219.351 439.110 875.381 1751.339 3504.719 7014.911

Table 19: Additional empirical evaluation on other models.
dataset Hams Fcbk Polb

metric △ GCC ALCC overlap △ GCC ALCC overlap △ GCC ALCC overlap

GROUNDT 1.000 0.229 0.540 N/A 1.000 0.519 0.606 N/A 1.000 0.226 0.320 N/A
EDGEIND-CL 0.299 0.067 0.058 0.059 0.124 0.064 0.063 0.063 0.792 0.183 0.173 0.182
LOCLBDG-CL 0.992 0.165 0.255 0.058 1.026 0.255 0.305 0.063 1.002 0.214 0.341 0.181
PARABDG-CL 1.000 0.185 0.471 0.059 1.006 0.336 0.626 0.062 1.010 0.221 0.468 0.181
PA 0.198 0.049 0.049 0.047 0.120 0.061 0.061 0.062 0.324 0.100 0.101 0.097
RGG (d = 1) 1.252 0.751 0.751 0.008 0.607 0.751 0.752 0.011 1.127 0.751 0.753 0.022
RGG (d = 2) 1.011 0.595 0.604 0.003 0.492 0.596 0.607 0.033 0.933 0.601 0.615 0.029
RGG (d = 3) 0.856 0.491 0.513 0.003 0.421 0.494 0.518 0.033 0.807 0.503 0.534 0.029
BTER 0.991 0.290 0.558 0.538 0.880 0.525 0.605 0.680 1.028 0.342 0.375 0.501
TCL 0.280 0.075 0.126 0.223 0.223 0.117 0.094 0.192 0.490 0.138 0.160 0.411
LFR (µ = 0.0) 1.140 0.262 0.546 0.435 N/A N/A N/A N/A 1.114 0.252 0.414 0.336
LFR (µ = 0.5) 0.296 0.068 0.081 0.175 0.161 0.084 0.120 0.170 0.571 0.145 0.170 0.170
LFR (µ = 1.0) 0.197 0.045 0.047 0.070 0.105 0.055 0.059 0.067 0.019 0.005 0.040 0.281

dataset Spam Cepg Scht

metric △ GCC ALCC overlap △ GCC ALCC overlap △ GCC ALCC overlap

GROUNDT 1.000 0.145 0.286 N/A 1.000 0.321 0.447 N/A 1.000 0.377 0.350 N/A
EDGEIND-CL 0.496 0.072 0.060 0.067 0.683 0.230 0.223 0.232 0.644 0.245 0.234 0.243
LOCLBDG-CL 1.028 0.124 0.260 0.067 0.996 0.293 0.430 0.231 1.036 0.318 0.469 0.241
PARABDG-CL 1.007 0.131 0.436 0.067 0.999 0.310 0.578 0.231 1.135 0.294 0.610 0.237
PA 0.112 0.027 0.026 0.025 0.288 0.130 0.130 0.129 0.226 0.121 0.123 0.116
RGG (d = 1) 1.144 0.750 0.750 0.003 0.834 0.752 0.754 0.033 0.678 0.752 0.754 0.029
RGG (d = 2) 0.899 0.592 0.597 0.003 0.704 0.604 0.622 0.033 0.567 0.603 0.620 0.029
RGG (d = 3) 0.772 0.485 0.501 0.003 0.611 0.509 0.544 0.033 0.492 0.507 0.541 0.029
BTER 1.003 0.194 0.325 0.402 0.991 0.484 0.504 0.631 0.658 0.397 0.383 0.544
TCL 0.201 0.044 0.087 0.223 0.356 0.166 0.165 0.362 0.218 0.130 0.146 0.312
LFR (µ = 0.0) 1.283 0.187 0.406 0.370 N/A N/A N/A N/A 1.081 0.506 0.850 0.977
LFR (µ = 0.5) 0.426 0.062 0.072 0.120 0.649 0.209 0.294 0.337 0.596 0.224 0.291 0.332
LFR (µ = 1.0) 0.332 0.048 0.042 0.081 0.516 0.166 0.217 0.303 0.476 0.179 0.212 0.292

By doing so, we are able to scale to even large graphs. See Table 18 for the detailed results. Notably,
parallel binding (PARABDG) is easily parallelizable. We can distribute the generation to multiple
machines and finally merge the generated edges, which allows us to handle even larger graphs.

E.5 JOINT OPTIMIZATION

As shown in Section 6.5, in some “difficult” cases where PARABDG well preserves the number of
triangles but not the number of wedges, with joint optimization, PARABDG-JW does better, well
preserving both the number of triangles and the number of wedges. In Figure 5, for both Hams and
Fcbk, we compare the degree and distance distributions in the ground-truth graph and in the graphs
generated by EDGEIND, PARABDG, and PARABDG-JW. With joint optimization, both degree and
distance distributions do not change much (compare PARABDG and PARABDG-JW in Figure 5).

E.6 ON HIGH-OVERLAP EIGMS, OTHER EDGE-DEPENDENT RGMS, AND MORE

As discussed in Section 3.1, there exist methods that shift edge probabilities by various mechanisms,
while they are still essentially EIGMs. Hence, by Theorem 3.3, they inevitably trade-off between
variability and the ability to generate high-clustering graphs. Such methods include Binning Chung
Lu (BCL) proposed by Mussmann et al. (2015) that uses accept-reject and Block Two-level Erdos-
Renyi (BTER) proposed by Kolda et al. (2014b) that uses a mixture of different EIGMs (specifically,

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Table 20: The ρ values (i.e., the probability of taking the triangle-forming step) used by TCL for each dataset.

dataset Hams Fcbk Polb Spam Cepg Scht

TCL ρ 0.877 0.986 0.035 0.652 0.263 0.411

Erdos-Renyi and Chung-Lu). Also, as discussed in Section 3.2, there are also existing methods that
use additional mechanisms to improve upon existing EIGMs. For example, Pfeiffer et al. (2012)
proposed Transitive Chung-Lu (TCL) that uses an additional mechanism to directly insert triangles
on top of the original edge-independent Chung-Lu.
Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences. In this work, we aim to improve upon EIGMs by further exploring models without as-
suming edge independency. The key point is to preserve individual edge probabilities and thus have
high tractability, but the existing methods usually use mixed models and thus change the underlying
edge probabilities. The consequence is that they either have less tractability or less variability (i.e.,
high overlap; see Theorems 3.2 and 4.7).

• TCL uses an additional mechanism to directly form triangles and is thus less tractable;
• BTER forms many small dense communities and has very high overlap.

As shown in Property 4.7, EPGMs have the same overlap as the corresponding EIGM, i.e., the
variability is perfectly maintained even though we introduce edge dependency.
Below, we compare the performance of (1) the original edge-independent Chung-Lu, (2) Chung-Lu
with local binding, (3) Chung-Lu with parallel binding, (4) TCL, and (5) BTER.
Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation. In addition to the clustering-related metrics (the number of triangles, global clustering
coefficient, and the average local clustering coefficient) we used in our main experiments, we further
compare the “overlap” (see Definition 3.1) of the generated graphs. Roughly, the overlap of a ran-
dom graph model is the expected proportion of overlapping edges between two randomly generated
graphs (i.e., the edges that exist in both randomly generated graphs). Higher overlap values imply
lower variability; when overlap approaches 1, the generated graphs are almost identical.
Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.

• For TCL, we use online Python code;16

• For BTER, we use the official MATLAB implementation.17

Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results. In Table 19, we show the detailed results. Overall, we have the following observations.

• For some datasets (e.g., facebook), TCL almost-always (i.e., ρ ≈ 1) uses the mechanism that
directly forms triangles. Even so, TCL often fails to well preserve the clustering-related metrics
in real-world graphs.

– TCL mixes two types of steps: (1) original Chung-Lu with probability (1−ρ) and (2) a triangle-
forming step with probability ρ.

– See Table 20 for the ρ values used by TCL for each dataset.

• As expected, although BTER generates graphs with high clustering as intended, it has very high
overlap, which implies that it well reproduces high-clustering graphs by largely duplicating the
input graphs.

• Our methods with binding schemes have the same overlap as the corresponding EIGM, while well
preserving clustering-related metrics in real-world graphs.

Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs. For the experiments on other edge-dependent RMGs in Section 6.6,
we provide more details here.

• For random geometric graphs (RGG), we tried dimensions d ∈ {1, 2, 3}, while setting the number
of nodes as that in the input graph, and setting the diameter to fit the number of edges in the input
graph. Note that the clustering in the generated graph is only determined by the dimension, and
smaller dimensions give higher clustering.

16https://github.com/pdsteele/socialNetworksProject/blob/master/
proj-TransChungLu.py

17https://www.mathsci.ai/feastpack

46

https://github.com/pdsteele/socialNetworksProject/blob/master/proj-TransChungLu.py
https://github.com/pdsteele/socialNetworksProject/blob/master/proj-TransChungLu.py
https://www.mathsci.ai/feastpack

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

average g(v) △ GCC ALCC

0 (EIGM) 179.21 0.010 0.010
0.001 1957.88 0.100 0.119
0.002 3721.49 0.177 0.249
0.003 5499.17 0.240 0.379
0.004 7323.14 0.296 0.489
0.005 9489.65 0.344 0.568
0.006 10796.54 0.386 0.635
0.007 12742.98 0.422 0.681
0.008 14342.90 0.464 0.723
0.009 16122.18 0.491 0.749
0.01 18116.62 0.514 0.772

(a) ER + PARABDG

average g(v) △ GCC ALCC

0 (EIGM) 179.21 0.010 0.010
0.001 338.67 0.019 0.018
0.002 1006.9 0.054 0.047
0.003 1864.64 0.092 0.088
0.004 2567.84 0.121 0.125
0.005 3178.68 0.143 0.151
0.006 3797.42 0.165 0.171
0.007 4301.58 0.183 0.187
0.008 5080.94 0.202 0.200
0.009 5542.13 0.218 0.210
0.01 6441.86 0.236 0.222

(b) ER + LOCLBDG

Table 21: The clustering metrics of generated graphs without fitting specific graphs using ER as the underlying
edge-probability model.

• For preferential attachment (PA), we tried the extended Barabási-Albert model.18 We set the
number of nodes as that in the input graph, and set the parameter m to fit the number of edges
in the input graph. We tried p, q ∈ {0, 0.1, 0.2, 0.3}. We report the variant that gives the highest
clustering.

• For the Lancichinetti-Fortunato-Radicchi (LFR) model, we set the degrees as the ground-truth
degrees, set the community sizes as the sizes of the communities detected using the Louvain
algorithm, and tried different mixing parameters µ ∈ {0, 0.5, 1.0}.

Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models. Recently, deep graph generative models have be-
come more and more popular. Typically, deep graph generative models aim to fit a population of
small graphs, while this work focuses on fitting random graph models to individual input graphs.
We empirically tested three deep graph generative models: CELL (Rendsburg et al., 2020), Graph-
VAE (Simonovsky & Komodakis, 2018), and GrpahRNN (You et al., 2018).
We summarize our empirical observations as follows:

• CELL often fails to generate high clustering, and also generates high overlap (i.e., low variability).
CELL is essentially an EIGM. See also the discussions by Chanpuriya et al. (2021).

• GraphVAE learns to duplicate the training graph (i.e., 100% overlap). This is likely because
GraphVAE was designed to learn from a population of graphs instead of a single graph, as dis-
cussed above.

• GraphRNN often generates graphs with far more edges but still low clustering. This is likely be-
cause GraphRNN was designed mainly for relatively small graphs and cannot fit well to individual
large graphs.

As discussed by Chanpuriya et al. (2021), several deep graph generative models also output edge
probabilities (e.g., CELL), and this work provides a new perspective to potentially enhance them
with edge dependency.

E.7 ON GRAPH GENERATION WITHOUT FITTING SPECIFIC GRAPHS

Instead of fitting specific graphs as done in our main experiments, one can also use the proposed
models to generate graphs “from scratch” without specific graphs as references by freely choosing
the parameters.
First, one needs to choose the underlying edge probabilities. Typically, one can use an underlying
edge-probability model and choose it according to the required properties. For example, if one
wants to generate graphs with power-law degree distributions, Chung-Lu with a prescribed power-
law degree sequence can be used. Or, if one wants to generate a graph with community structures,
the stochastic block model can be used.

18See, e.g., https://networkx.org/documentation/stable/reference/generated/
networkx.generators.random_graphs.extended_barabasi_albert_graph.html.

47

https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.extended_barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.extended_barabasi_albert_graph.html

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

α average g(v) △ GCC ALCC

-0.3

0 (EIGM) 13668.59 0.167 0.337
0.01 12506.14 0.153 0.493
0.02 13160.15 0.156 0.536
0.03 13844.84 0.161 0.559
0.04 15182.06 0.172 0.568
0.05 15610.28 0.168 0.584
0.06 17647.33 0.179 0.588
0.07 16757.68 0.172 0.588
0.08 16119.25 0.173 0.593
0.09 15417.53 0.160 0.594
0.1 18102.03 0.176 0.605

0

0 (EIGM) 13668.59 0.167 0.337
0.01 13051.15 0.159 0.539
0.02 14274.04 0.171 0.585
0.03 15724.32 0.181 0.602
0.04 16188.49 0.182 0.614
0.05 19404.04 0.200 0.622
0.06 20993.48 0.209 0.634
0.07 19845.02 0.198 0.639
0.08 23823.32 0.215 0.634
0.09 30700.56 0.232 0.644
0.1 26477.88 0.215 0.646

0.3

0 (EIGM) 13668.59 0.167 0.337
0.01 14245.14 0.173 0.598
0.02 17062.43 0.195 0.643
0.03 19329.61 0.215 0.660
0.04 22821.36 0.232 0.673
0.05 23128.39 0.238 0.684
0.06 28266.25 0.250 0.697
0.07 30571.88 0.265 0.703
0.08 27047.89 0.250 0.717
0.09 38293.91 0.286 0.728
0.1 34335.56 0.278 0.731

(a) CL + PARABDG

α average g(v) △ GCC ALCC

-0.3

0 (EIGM) 13668.59 0.167 0.337
0.01 11962.88 0.148 0.426
0.02 12417.21 0.149 0.462
0.03 12688.25 0.153 0.475
0.04 12847.39 0.151 0.486
0.05 13543.07 0.159 0.495
0.06 14457.40 0.163 0.504
0.07 13856.21 0.155 0.511
0.08 14942.73 0.156 0.530
0.09 15551.34 0.163 0.524
0.1 14264.12 0.154 0.532

0

0 (EIGM) 13668.59 0.167 0.337
0.01 12155.44 0.152 0.433
0.02 12651.05 0.154 0.463
0.03 13348.38 0.160 0.480
0.04 13249.86 0.157 0.495
0.05 14450.43 0.167 0.503
0.06 15668.08 0.171 0.518
0.07 14949.55 0.169 0.519
0.08 14733.55 0.164 0.525
0.09 19401.58 0.182 0.528
0.1 18072.88 0.182 0.529

0.3

0 (EIGM) 13668.59 0.167 0.337
0.01 12544.92 0.154 0.433
0.02 13383.98 0.160 0.461
0.03 13901.56 0.166 0.476
0.04 15005.39 0.175 0.493
0.05 16448.43 0.181 0.506
0.06 16623.27 0.182 0.503
0.07 18159.03 0.186 0.523
0.08 16835.26 0.185 0.522
0.09 18177.49 0.188 0.538
0.1 18459.21 0.195 0.546

(b) CL + LOCLBDG

Table 22: The clustering metrics of generated graphs without fitting specific graphs using CL as the underlying
edge-probability model.

Below, we shall discuss the graph statistics of random graphs generated by EPGMs using binding
with varying parameters. Let us first provide the parameter ranges.
For the Erdős-Rényi (ER) model:

• The number n of nodes is fixed as 1024.
• The edge probability p(u, v) is 0.01, the same for all the node pairs. The value 0.01 is chosen in

the typical range of real-world graphs (Melancon, 2006).
• The node-sampling probability g(v) is the same for all the nodes (as discussed in Section 5.4),

with varying values.
• The number R of rounds is 100000, as in our main experiments.

For the Chung-Lu (CL) model:

• The number n of nodes is fixed as 1024.
• The degree sequence dv’s are generated as a power-law sequence with power-law exponent 2, so

that the average edge probability p(u, v) is around 0.01. The exponent 2 is chosen in the typical
range of real-world graphs (Chakrabarti & Faloutsos, 2006).

• The node-sampling probability g(v) is the same for nodes with the same degree (as discussed in
Section 5.4), with varying mean values and varying correlation with degrees. Specifically, for each
node v, we set the node-sampling probability g(v) proportional to d(v)α with different α values
(-0.3, 0, and 0.3), where d(v) is the degree of node v. The α values are chosen so that no node has
a node-sampling probability exceeding 1. The node-sampling probabilities are positively (resp.,
negatively) correlated with node degrees with a positive (resp., negative) α value. When α = 0,
the node-sampling probability is the same for all the nodes.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

α average g(v) △ GCC ALCC

-0.5

0 (EIGM) 297.15 0.167 0.337
0.01 1070.80 0.153 0.493
0.02 1857.45 0.156 0.536
0.03 2587.32 0.161 0.559
0.04 3393.55 0.172 0.568
0.05 4140.39 0.168 0.584
0.06 4980.47 0.179 0.588
0.07 5662.74 0.172 0.588
0.08 6440.77 0.173 0.593
0.09 7169.38 0.160 0.594
0.1 7949.71 0.176 0.605

0

0 (EIGM) 297.15 0.167 0.337
0.01 1460.17 0.159 0.539
0.02 2656.48 0.171 0.585
0.03 3821.19 0.181 0.602
0.04 4995.17 0.182 0.614
0.05 6135.86 0.200 0.622
0.06 7271.69 0.209 0.634
0.07 8458.58 0.198 0.639
0.08 9924.68 0.215 0.634
0.09 10945.15 0.232 0.644
0.1 12061.47 0.215 0.646

0.5

0 (EIGM) 297.15 0.167 0.337
0.01 1527.10 0.173 0.598
0.02 2746.08 0.195 0.643
0.03 3989.85 0.215 0.660
0.04 5209.86 0.232 0.673
0.05 6516.78 0.238 0.684
0.06 7707.59 0.250 0.697
0.07 8833.38 0.265 0.703
0.08 10119.58 0.250 0.717
0.09 11197.86 0.286 0.728
0.1 12589.62 0.278 0.731

(a) SB + PARABDG

α average g(v) △ GCC ALCC

-0.5

0 (EIGM) 297.15 0.015 0.014
0.01 3139.06 0.133 0.147
0.02 6016.54 0.215 0.208
0.03 8872.29 0.272 0.239
0.04 11101.77 0.313 0.256
0.05 13093.51 0.331 0.261
0.06 19008.57 0.368 0.274
0.07 18992.58 0.378 0.270
0.08 23138.66 0.412 0.276
0.09 24280.39 0.412 0.271
0.1 30652.89 0.432 0.280

0

0 (EIGM) 297.15 0.015 0.014
0.01 4257.22 0.172 0.170
0.02 7764.28 0.265 0.221
0.03 11887.79 0.327 0.247
0.04 16886.04 0.379 0.253
0.05 20868.18 0.405 0.257
0.06 23889.00 0.436 0.256
0.07 29247.06 0.451 0.264
0.08 30123.19 0.450 0.253
0.09 36971.23 0.451 0.254
0.1 45597.38 0.468 0.264

0.5

0 (EIGM) 297.15 0.015 0.014
0.01 4348.57 0.170 0.156
0.02 8368.21 0.269 0.215
0.03 12679.81 0.331 0.235
0.04 17480.57 0.380 0.246
0.05 19396.23 0.412 0.242
0.06 24362.75 0.418 0.247
0.07 30949.97 0.453 0.250
0.08 33129.43 0.437 0.252
0.09 36050.41 0.463 0.253
0.1 41233.18 0.458 0.260

(b) SB + LOCLBDG

Table 23: The clustering metrics of generated graphs without fitting specific graphs using SB as the underlying
edge-probability model.

• The number R of rounds is 100000, as in our main experiments.

For the stochastic block (SB) model:

• The number n of nodes is fixed as 1024.
• The number of communities (i.e., blocks) is fixed as 10.
• The community sizes are generated as a power-law with power-law exponent 1.5. The exponent

1.5 is chosen in the typical range of real-world graphs (Fortunato, 2010).
• The intra-community edge probability and inter-community edge probability are the same for

different communities, and are chosen so that the average edge probability p(u, v) is around 0.01.
• The node-sampling probability g(v) is the same for nodes with the same community (as discussed

in Section 5.4), with varying mean values and varying correlation with community sizes. Specif-
ically, for each node v, we set the node-sampling probability g(v) proportional to s(v)α with
different α values (-0.5, 0, and 0.5), where s(v) is the size of the community v is in. The α values
are chosen so that no node has a node-sampling probability exceeding 1. The node-sampling prob-
abilities are positively (resp., negatively) correlated with community sizes with a positive (resp.,
negative) α value. When α = 0, the node-sampling probability is the same for all the nodes.

• The number R of rounds is 100000, as in our main experiments.

For the stochastic Kronecker (KR) model:

• The number n of nodes is fixed as 1024. Specifically, the seed matrix is two-by-two, and we take
the order-10 Kronecker power of the seed matrix.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

α average g(v) △ GCC ALCC

-1

0 (EIGM) 1044.88 0.031 0.033
0.01 6586.23 0.157 0.327
0.02 11809.86 0.240 0.422
0.03 17238.21 0.305 0.471
0.04 22369.54 0.334 0.508
0.05 27207.33 0.361 0.530
0.06 37717.33 0.409 0.556
0.07 38131.85 0.418 0.559
0.08 46682.81 0.432 0.580
0.09 52381.99 0.435 0.595
0.1 56996.55 0.439 0.604

0

0 (EIGM) 1044.88 0.031 0.033
0.01 8860.73 0.198 0.402
0.02 16677.24 0.307 0.499
0.03 23927.22 0.373 0.549
0.04 33434.06 0.430 0.582
0.05 33908.84 0.436 0.600
0.06 51113.67 0.488 0.624
0.07 56890.50 0.503 0.631
0.08 57262.88 0.492 0.637
0.09 73944.66 0.517 0.656
0.1 71084.79 0.486 0.642

1

0 (EIGM) 1044.88 0.031 0.033
0.01 11202.40 0.242 0.472
0.02 21129.53 0.360 0.572
0.03 30490.92 0.443 0.619
0.04 42543.89 0.501 0.648
0.05 48769.38 0.535 0.664
0.06 57292.62 0.562 0.665
0.07 62270.76 0.558 0.682
0.08 68569.86 0.522 0.689
0.09 99628.36 0.565 0.708
0.1 109134.19 0.547 0.702

(a) KR + PARABDG

α average g(v) △ GCC ALCC

-1

0 (EIGM) 1044.88 0.031 0.033
0.01 3086.48 0.081 0.147
0.02 5166.20 0.122 0.188
0.03 7636.03 0.158 0.211
0.04 9707.45 0.180 0.227
0.05 10435.17 0.189 0.232
0.06 13325.55 0.207 0.243
0.07 16207.68 0.225 0.250
0.08 18169.74 0.236 0.261
0.09 21601.60 0.234 0.267
0.1 23594.77 0.241 0.270

0

0 (EIGM) 1044.88 0.031 0.033
0.01 3726.94 0.094 0.154
0.02 6239.78 0.141 0.187
0.03 8729.61 0.176 0.209
0.04 11659.48 0.209 0.218
0.05 15550.88 0.238 0.230
0.06 17557.07 0.241 0.232
0.07 22365.64 0.271 0.243
0.08 20931.69 0.266 0.237
0.09 20406.49 0.240 0.237
0.1 26693.30 0.254 0.249

1

0 (EIGM) 1044.88 0.031 0.033
0.01 4118.72 0.103 0.152
0.02 7056.13 0.155 0.181
0.03 10525.82 0.196 0.201
0.04 12531.47 0.217 0.198
0.05 16213.98 0.245 0.207
0.06 22050.84 0.276 0.221
0.07 19337.29 0.256 0.212
0.08 25260.46 0.276 0.220
0.09 24525.96 0.263 0.213
0.1 33226.16 0.276 0.236

(b) KR + LOCLBDG

Table 24: The clustering metrics of generated graphs without fitting specific graphs using KR as the underlying
edge-probability model.

• The seed matrix is [0.95, 0.63; 0.63, 0.32]. The values in the seed matrix are chosen so that the
average edge probability p(u, v) is around 0.01, and the value distribution is similar to those in
the original paper of Kronecker Leskovec et al. (2010).

• The node-sampling probability g(v) is the same for nodes with the same number of ones in their
binary node labels (as discussed in Section 5.4), with varying mean values and varying correlation
with the number of ones. Specifically, for each node v, we set the node-sampling probability g(v)
proportional to (i(v)+1)α with different α values (-1, 0, and 1), where i(v) is the number of ones
in the binary node label of v. The α values are chosen so that no node has a node-sampling prob-
ability exceeding 1. The node-sampling probabilities are positively (resp., negatively) correlated
with the number of ones with a positive (resp., negative) α value. When α = 0, the node-sampling
probability is the same for all the nodes.

In Tables 21 to 24, we show the clustering metrics of graphs generated without fitting specific graphs
as described above, with different underlying edge-probability models.
Below, let us discuss the insights we have based on the results. Overall, in line with our theoretical
analysis, in most cases, when we increase node-sampling probabilities, the generated graphs have
higher clustering. By varying node-sampling probabilities, one can generate graphs with different
levels of clustering. Also, with the same node-sampling probabilities, PARABDG generates graphs
with higher clustering than LOCLBDG.
There are also interesting observations on the correlation between node-sampling probabilities and
some parameters in the underlying edge-probability models, indicated by the value of α. For CL,
with the same average node-sampling probability, when we make node-sampling probabilities pos-
itively correlated to the node degrees, the generated graphs have higher clustering. For SB, with

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

the same average node-sampling probability, when we make node-sampling probabilities negatively
correlated to the node degrees, the generated graphs have relatively lower clustering, while positive
correlation and no correlation give similar results. For KR, with the same average node-sampling
probability, when we make node-sampling probabilities positively correlated to the number of ones,
the generated graphs have higher clustering.

51

	Introduction
	Preliminaries
	Related work and background
	Limitations of EIGMs
	Edge dependency in RGMs

	Edge probability graph models: Concepts and basic properties
	Binding: Pattern-reproducing, flexible, and tractable EPGMs
	Binding: A general framework for EPGMs with high clustering
	Local binding: Flexible and tractable spectrum between two extremes
	Parallel binding: The parallelizable icing on the cake
	Efficient parameter fitting with node equivalence

	Experiments
	Experimental settings
	P1: EPGMs reproduce high clustering (tab:maincluster)
	P2: EPGMs reproduce real-world degrees and distances (fig:mainfig)
	Graph generation speed (Table 2)
	Joint optimization of edge and node-sampling probabilities (Table 3)
	Comparison with edge-dependent RGMs and advanced EIGMs (tab:btermainpaper)

	Conclusion and discussions
	Flowchart
	Proofs
	EPGMs
	Maximal binding
	Local binding
	Parallel binding
	Fitting
	The Erdős-Rényi (ER) model
	The Chung-Lu (CL) model
	The stochastic block (SB) model
	The stochastic Kronecker (KR) model

	On (non-)isolated nodes
	Tractable number of (non-)isolated nodes with parallel binding
	Experimental results

	Additional discussions
	General graphs
	Overlap-related triangle-density results
	Subset sampling
	Practical meaning of binding

	Additional details of the experiments
	Experimental settings
	P1: clustering
	P2: degrees, distances, and other graph statistics
	Graph generation speed
	Joint optimization
	On high-overlap EIGMs, other edge-dependent RGMs, and more
	On graph generation without fitting specific graphs

