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ABSTRACT

Desirable random graph models (RGMs) should (i) reproduce common patterns
in real-world graphs (e.g., high clustering), (ii) generate variable (i.e., not overly
similar) graphs, and (iii) remain tractable to compute and control graph statistics.
A common class of RGMs (e.g., Erdős-Rényi and stochastic Kronecker) outputs
edge probabilities, and we need to realize (i.e., sample from) the edge probabil-
ities to generate graphs. Typically, each edge’s existence is assumed to be de-
termined independently for simplicity and tractability. However, with edge inde-
pendency, RGMs theoretically cannot produce high subgraph densities and high
output variability simultaneously. In this work, we explore realization beyond
edge independence that can better reproduce common patterns while maintain-
ing high tractability and variability. Theoretically, we propose an edge-dependent
realization framework called binding that provably preserves output variability,
and derive closed-form tractability results on subgraph (e.g., triangle) densities in
generated graphs. Practically, we propose algorithms for graph generation with
binding and parameter fitting of binding. Our empirical results demonstrate that
binding exhibits high tractability and well reproduce patterns such as high cluster-
ing, significantly improving upon existing RGMs assuming edge independency.

1 INTRODUCTION

Random graph models (RGMs) help us understand, analyze, and predict real-world systems (Droby-
shevskiy & Turdakov, 2019), with various practical applications, e.g., graph algorithm testing (Mur-
phy et al., 2010), statistical testing (Ghoshdastidar et al., 2017), and graph anonymization (Back-
strom et al., 2007). Desirable RGMs should generate graphs with common patterns in real-world
graphs, such as high clustering,1 power-law degrees, and small diameters (Chakrabarti & Faloutsos,
2006). At the same time, the generated graphs should be variable, i.e., not highly-similar or even
near-identical, and the RGMs should be tractable, i.e., we can compute and control graph statistics.2
Many RGMs output individual edge probabilities and generate graphs accordingly, e.g., the Erdős-
Rényi model (Erdős & Rényi, 1959), the Chung-Lu model (Chung & Lu, 2002), the stochastic block
model (Holland et al., 1983), and the stochastic Kronecker model (Leskovec et al., 2010). To gen-
erate graphs from edge probabilities, we need realization (i.e., sampling), where edge independency
(i.e., the edge existences are determined mutually independently) is widely assumed for the sake of
simplicity and tractability. Although edge-independent RGMs have high tractability and they may
reproduce some common patterns (e.g., power-law degrees and small diameters), they empirically
fail to preserve some other patterns, especially high clustering (Moreno et al., 2018; Seshadhri et al.,
2013). Moreover, edge-independent RGMs theoretically cannot generate graphs with high triangle
density and high output variability at the same time (Chanpuriya et al., 2021).
Naturally, we ask: Can we apply realization without assuming edge independency so that we can
improve upon such RGMs to generate graphs with common patterns and high variability, while still
ensuring high tractability? To address this question, we propose and explore the concept of edge
probability graph models (EPGMs), i.e., RGMs that are still based on edge probabilities but do
not assume edge independency, from theoretical and practical perspectives. Our key message is a
positive answer to the question. Specifically, our novel contributions are four-fold:

1High clustering means high subgraph densities, as used by, e.g., Newman (2003) and Pfeiffer et al. (2012).
2In this work, tractability refers to the feasibility of deriving graph statistics, rather than the ability to handle

large-scale graphs (which we refer to as scalability).
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1. Concepts (Section 4): We formally define EPGMs with related concepts, and theoretically show
some basic properties of EPGMs, e.g., even with edge dependency introduced, the variability is
maintained in the generated graphs as the corresponding edge-independent model.

2. Analyses (Section 5): We propose pattern-reproducing, tractable, and flexible realization
schemes called binding to construct EPGMs with different levels of edge dependency, and derive
tractability results on the closed-form subgraph (e.g., triangle) densities.

3. Algorithms (Section 5): We propose practical algorithms for graph generation with binding, and
for efficient parameter fitting to control the graph statistics generated by EPGMs with binding.

4. Experiments (Section 6): We use our binding and fitting algorithms to generate graphs. Via
experiments on real-world graphs, we show the power of edge dependency to reproduce common
graph patterns and validate the correctness of our theoretical analyses and practical algorithms.

Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility.Reproducibility. The code and datasets are available in the online appendix (Anonymous, 2024).

2 PRELIMINARIES

Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs.Graphs. A node-labelled graph G = (V,E) is defined by a node set V = V (G) and an edge set
E = E(G) ⊆

(
V
2

)
:= {V ′ ⊆ V : |V ′| = 2}.3 For a node v ∈ V , the set of neighbors of v is

N(v;G) = {u ∈ V : (u, v) ∈ E(G)}. The degree d(v;G) of v is the number of its neighbors, i.e.,
d(v;G) = |N(v;G)|. Given V ′ ⊆ V , the induced subgraph of G on V ′ is G[V ′] = (V ′, E ∩

(
V ′

2

)
).

Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs).Random graph models (RGMs). Fix a node set V = [n] = {1, 2, . . . , n} with n ∈ N. Let
G(V ) = {G = (V,E) : E ⊆

(
V
2

)
} denote the set of all 2(

n
2) possible node-labelled graphs on

V . A random graph model (RGM) is defined as a probability distribution f : G(V ) → [0, 1] with∑
G∈G(V ) f(G) = 1. For each graph G ∈ G(V ), f(G) is the probability of G being generated by

the RGM f . For each node pair (u, v) with u, v ∈ V , the (marginal) edge probability of (u, v) under
the RGM f is Prf [(u, v)] :=

∑
G∈G(V ) f(G)1[(u, v) ∈ E(G)], where 1[·] is the indicator function.

Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs).Edge independent graph models (EIGMs). Given edge probabilities, edge independency is
widely assumed in many existing RGMs, resulting in the concept of edge independent graph models
(EIGMs; also known as inhomogeneous Erdős-Rényi graphs (Klopp et al., 2017)).

Definition 2.1 (EIGMs (Chanpuriya et al., 2021)). Given edge probabilities p :
(
V
2

)
→ [0, 1],

the edge independent graph model (EIGM) w.r.t. p is the RGM fEI
p defined by fEI

p (G) =∏
(u,v)∈E(G) p(u, v)

∏
(u′,v′)/∈E(G)(1− p(u′, v′)),∀G ∈ G(V ).

3 RELATED WORK AND BACKGROUND

3.1 LIMITATIONS OF EIGMS

This work is motivated by the theoretical findings of Chanpuriya et al. (2021) on the limitations
of EIGMs and the power of edge (in)dependency. They defined the concept of overlap to measure
the variability of RGMs, where a high overlap value implies low variability. Roughly speaking, the
overlap of an RGM is the expected proportion of edges co-existing in two generated graphs.

Definition 3.1 (Overlap (Chanpuriya et al., 2021)). Given an RGM f : G(V ) → [0, 1], the overlap

of f is defined as Ov(f) =
Ef |E(G′)∩E(G′′)|

Ef |E(G)| , where G, G′, and G′′ are three mutually independent
random graphs generated by f .

Remark 3.2. High variability (i.e., low overlap) is important for RGMs (De Cao & Kipf, 2018),
as generating overly similar graphs undermines RGMs’ effectiveness in their common applications,
e.g., graph algorithm testing, statistical testing, and graph anonymization (see Section 1).
Chanpuriya et al. (2021) showed that EIGMs are unable to generate graphs with high triangle density
(i.e., with many triangles) unless EIGMs memorize a whole input graph (i.e., have high overlap).

Theorem 3.3 (Limited triangles by EIGMs (Chanpuriya et al., 2021)). For any p :
(
V
2

)
→ [0, 1],

EfEI
p
[△(G)] ≤

√
2
3

(
Ov(fEI

p )
∑

(u,v)∈(V2)
p(u, v)

)3/2
, where △(G) is the number of triangles in G.

3In this work, we consider undirected unweighted graphs without self-loops following common settings for
random graph models. See Appendix D.1 for discussions on more general graphs.
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Chanpuriya et al. (2024) recently extended their theoretical results, showing triangle-density upper
bounds w.r.t. overlap in different types of edge-dependent RGMs.4 However, they did not provide
practical graph generation algorithms5 or detailed tractability results, while tractability results and
practical graph generation are part of our focus in this work.
Some methods shift edge probabilities by accept-reject (Mussmann et al., 2015) or mixing different
EIGMs (Kolda et al., 2014b; Lancichinetti et al., 2008), in order to improve upon existing EIGMs.
Such methods are essentially still EIGMs, and by Theorem 3.3, they inevitably have high overlap
(i.e., low variability). See Appendix E.6 for more discussion and evaluation on such methods.

3.2 EDGE DEPENDENCY IN RGMS

Despite the popularity of EIGMs, edge dependency also widely exists in various RGMs, e.g., prefer-
ential attachment models (Barabási & Albert, 1999), small-world graphs (Watts & Strogatz, 1998),
copying network models (Kleinberg et al., 1999), random geometric graphs (Penrose, 2003), and ex-
ponential random graph models (Lusher et al., 2013). Some other models use additional mechanisms
on top of existing models to introduce edge dependency by, e.g., directly forming triangles (Pfeiffer
et al., 2012; Wegner & Olhede, 2021). Exchangeable network models (ENMs) (Lovász & Szegedy,
2006; Diaconis & Janson, 2007) also involve edge dependency, where isomorphic graphs are gener-
ated with the same probability (i.e., all nodes are treated probabilistically in symmetry). However,
ENMs cannot generate graphs with sparsity and power-law degrees, which are common patterns
in real-world graphs (Crane & Dempsey, 2016). Recent efforts have introduced asymmetry among
nodes to enhance expressiveness (Crane & Dempsey, 2018; Wu et al., 2025). In the same spirit but
from a different perspective, we aim to improve expressiveness by introducing dependence among
edges upon EIGMs. Since we build RGMs based on edge-probability models, the nodes are asym-
metric (i.e., non-exchangeable), except for the Erdős-Rényi model with uniform edge probabilities.
Notably, the closed-form tractability results on subgraph densities derived by us (Theorems 5.8
and B.5) are usually unavailable for existing RGMs with edge dependency (Drobyshevskiy & Tur-
dakov, 2019). Usually, only asymptotic results, as the number of nodes approaches infinity, are
available for such models (Ostroumova Prokhorenkova, 2017; Gu et al., 2013; Bhat et al., 2016).
In this work, we propose novel edge-dependent RGMs with the following desirable properties:
• Reproducing common patterns observed in real-world graphs across different domains, e.g., high

clustering, power-law degrees, and small diameters (Chakrabarti & Faloutsos, 2006).
• Having high variability, generating graphs with low overlap (see Definition 3.1).
• Having high tractability, with the feasibility to obtain closed-form results of graph statistics.

4 EDGE PROBABILITY GRAPH MODELS: CONCEPTS AND BASIC PROPERTIES

Given edge probabilities, EIGMs generate graphs assuming edge independency. In contrast, we ex-
plore a broader class of edge probability graph models (EPGMs) going beyond edge independency.

Definition 4.1 (EPGMs). Given edge probabilities p :
(
V
2

)
→ [0, 1], the set F(p) of edge proba-

bility graph models (EPGMs) w.r.t. p consists of all the RGMs satisfying the given marginal edge
probabilities, i.e., F(p) := {f : Prf [(u, v)] = p(u, v),∀u, v ∈ V }.
The concept of EPGMs decomposes each RGM into two factors: (F1) the marginal probability
of each edge and (F2) how the edge probabilities are realized (i.e., sampled), where (F2) has been
overlooked by EIGMs and this decomposition introduces a novel way of imposing edge dependency.
Below, we show some basic properties of EPGMs and discuss their meanings and implications.
Property 4.2. EIGMs are special cases of EPGMs w.r.t. the same edge probabilities.

Proof. See Appendix B for all the formal statements and proofs not covered in the main text.

Property 4.3. Each RGM can be represented as an EPGM (w.r.t its marginal edge probabilities).
While Property 4.3 is an immediate result following the definition of EPGMs, it shows the generality
of the concept of EPGMs, yet also implies the impossibility of exploring all possible EPGMs, which
motivates us to find good subsets of EPGMs. Specifically, Property 4.3 tells us that each RGM can
be represented as an EPGM w.r.t. some edge probabilities. What can we obtain for given edge

4In EPGMs, the overlap is constant yet we can have different triangle densities. See Property 4.7.
5Their graph generation algorithm is not practical since it relies on maximal clique enumeration, which is

time-consuming (Eblen et al., 2012). See Appendix D.2 for more discussions.
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probabilities? For this, in Property 4.4, we obtain the upper bounds of expected subgraph densities
in the graphs generated by EPGMs with given edge probabilities.

Property 4.4 (Upper bound of edge-group probabilities in EPGMs). For any p :
(
V
2

)
→ [0, 1] and

any P ⊆
(
V
2

)
, Prf [P ⊆ E(G)] ≤ min(u,v)∈P p(u, v),∀f ∈ F(p).

Remark 4.5. Later, we shall show that the upper bound in Property 4.4 is tight, i.e., we can find
EPGMs achieving the upper bound (see Lemma B.2).
Property 4.4 can be applied to obtain the upper bounds of the expected number of specific subgraphs,
e.g., cliques and cycles. Below is an example on the number of triangles (i.e., △(G)).
Corollary 4.6. For any p, Ef [△(G)] ≤

∑
{u,v,w}∈(V3)

min(p(u, v), p(u,w), p(v, w)),∀f ∈ F(p).

Property 4.7 (EPGMs have constant expected degrees and overlap). For any p :
(
V
2

)
→ [0, 1], the

expected node degrees and overlap (see Definition 3.1) of all the EPGMs w.r.t. p are constant.
Property 4.7 implies that, for given edge probabilities, compared to EIGMs, considering more gen-
eral EPGMs neither changes expected degrees nor impairs the variability of the generated graphs.
Many EIGMs (e.g., Chung-Lu and Kronecker) can generate graphs with desirable degrees, and this
property ensures that EPGMs can inherit such strengths (see Figure 1 for empirical evidence). As
discussed in Remark 3.2, high variability is important and desirable for RGMs.
In this work, we explore EPGMs from both theoretical and practical perspectives, aiming to answer
two research questions inspired by the basic properties of EPGMs above:
• (RQ1; Theory) What good subsets of EPGMs are pattern-reproducing, flexible, and tractable?
• (RQ2; Practice) How to generate graphs using such EPGMs and fit the parameters of EPGMs?

5 BINDING: PATTERN-REPRODUCING, FLEXIBLE, AND TRACTABLE EPGMS

We aim to construct EPGMs that reproduce common patterns (specifically, high clustering) and are
flexible (i.e., different levels of dependency), in a tractable (i.e., controllable graph statistics) way.

5.1 BINDING: A GENERAL FRAMEWORK FOR EPGMS WITH HIGH CLUSTERING

As discussed in Section 1, desirable RGMs should generate graphs with common patterns, e.g.,
high clustering, power-law degrees, and small diameters (Chakrabarti & Faloutsos, 2006). We focus
on the bottleneck of EIGMs and aim to construct EPGMs with high clustering (i.e., subgraph densi-
ties).6 To this end, we study and propose binding, a general mathematical framework that introduces
positive dependency among edges, where multiple edge existences are determined together.

Algorithm 1: General Binding

Input : (1) p :
(
V
2

)
→ [0, 1]: edge probabilities;

(2) P s.t.
(
V
2

)
=

⋃
P∈P P and

P ∩ P ′ = ∅, ∀P ̸= P ′ ∈ P: pair partition
Output: G: generated graph

1 E ← ∅
2 for P ∈ P do
3 E ← E ∪ binding(p, P)

4 return G = (V,E)

5 Procedure binding(p̂, P̂)
6 sample a random variable s ∼ U(0, 1)
7 Ê ← ∅
8 for (u, v) ∈ P̂ do
9 if s ≤ p̂(u, v) then

10 Ê ← Ê ∪ {(u, v)}

11 return Ê

Binding is the probabilistic process in Algo-
rithm 1, where edge dependence is imposed in
each group of pairs. Specifically, in each group,
if a node pair is sampled as an edge, all the pairs
with higher edge probabilities must be sampled
too. Note that, Algorithm 1 describes a gen-
eral framework, while our practical algorithms
(Algorithms 2 and 3) do not need to choose an
explicit partition P beforehand.
Definition 5.1 (Binding). Given edge proba-
bilities p and a partition P , binding gives the
RGM fBD

p;P as follows. For each Pi ∈ P , write
Pi = {(ui1, vi1), . . . , (ui|Pi|, vi|Pi|)} such that
p(ui1, vi1) ≥ · · · ≥ p(ui|Pi|, vi|Pi|), and let
Pi;k := {(ui1, vi1), . . . , (uik, vik)} for each
k ∈ [|Pi|]. Then, for each k ∈ [|Pi|] and
the graph G with edges

⋃
i Pi;k, fBD

p;P(G) =∏
i(p(uik, vik) − p(ui,k+1, vi,k+1)), where we

take p(ui,|Pi|+1, vi,|Pi|+1) = 0. For any other graph G, fBD
p;P(G) = 0.

There are two basic properties of binding: (i) binding is correct, i.e., generates EPGMs, and (ii)
binding improves subgraph densities upon EIGMs.

6Notably, we shall also empirically show that binding maintains (or even improves) the generation quality
w.r.t. several different graph metrics, including but not limited to degrees and diameters (see Section 6.3).
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Proposition 5.2. Algorithm 1 with input p (and any P) produces an EPGM w.r.t. p.

Proposition 5.3. Binding produces higher or equal subgraph densities, compared to the corre-
sponding EIGMs.

Remark 5.4. There are EPGMs with lower subgraph densities, which are against our motivation to
improve upon EIGMs w.r.t. subgraph densities and are out of this work’s scope. That said, they may
be useful in scenarios where dense subgraphs are unwanted, e.g., disease control.
With binding, we can construct EPGMs with different levels of edge dependency by different ways
of binding the node pairs. Let us first study two extreme cases.
Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding.Minimal binding. EIGMs are the case with minimal binding, i.e., without binding, where the parti-
tion contains only sets of a single pair, i.e., P = {{(u, v)} : u, v ∈ V }.
Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding.Maximal binding. Maximal binding corresponds to the case with P = {

(
V
2

)
}, i.e., all the pairs are

bound together. It achieves the upper bound of subgraph densities, i.e., the maximal edge-group
probabilities in Property 4.4 (see Lemma B.2), as mentioned in Remark 4.5.

5.2 LOCAL BINDING: FLEXIBLE AND TRACTABLE SPECTRUM BETWEEN TWO EXTREMES

Building upon the general framework introduced in Section 5.1, we propose practical binding algo-
rithms. Intuitively, the more pairs we bind together, the higher subgraph densities we have. Between
minimal binding (i.e., EIGMs) and maximal binding that achieves the upper bound of subgraph den-
sities, we can have a flexible spectrum. However, the number of possible partitions of node pairs(
V
2

)
grows exponentially w.r.t. |V |. Hence, we propose to introduce edge dependency without ex-

plicit partitions. Specifically, we propose local binding, where we repeatedly sample node groups,7
and bind pairs between each sampled node group together. Pairs between the same node group are
structurally related, compared to pairs sharing no common nodes.
Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation.Real-world motivation. In social networks, each group “bound together” can represent a group in-
teraction, e.g., an offline social event (meeting, conference, party) or an online social event (group
chat, Internet forum, online game). In such social events, people gather together, and the commu-
nications/relations between them likely co-occur. At the same time, not all people in such events
would necessarily communicate with each other, e.g., some people are more familiar with each
other. This is the point of considering binding with various edge probabilities (instead of just in-
serting cliques). In general, group interactions widely exist in graphs in different domains, e.g.,
social networks (Felmlee & Faris, 2013), biological networks (Naoumkina et al., 2010), and web
graphs (Dourisboure et al., 2009). See Appendix D.4 for more discussions.

Algorithm 2: Local binding

Input : (1) p :
(
V
2

)
→ [0, 1]: edge probabilities;

(2) g : V → [0, 1]: node-sampling probabilities;
(3) R: maximum number of rounds for binding

Output: G: generated graph
1 P ← ∅; iround ← 0;Prem ←

(
V
2

)
▷ Initialization

2 for iround = 1, 2, . . . , R do
3 if Prem = ∅ then
4 break ▷ Pairs exhausted

5 iround ← iround + 1
6 sample Vs ⊆ V with Pr[v ∈ Vs] = g(v)

independently
7 Ps ←

(
Vs
2

)
∩ Prem

8 if Ps ̸= ∅ then
9 P ← P ∪ {Ps}

10 Prem ← Prem \ Ps

11 P ← P ∪ {{(u, v)} : (u, v) ∈ Prem}
12 return the output of Algorithm 1 with inputs p and P

In Algorithm 2, we repeatedly sample a
subset of nodes (Line 6) and group the
ungrouped pairs between the sampled
nodes (Line 9). We maintain Prem to en-
sure disjoint partitions (Lines 7 and 10).
For practical usage, we consider a lim-
ited number (i.e., R) of rounds for bind-
ing (Line 2) otherwise it may take a
long time to exhaust all the pairs. Al-
gorithm 2 is also a probabilistic pro-
cess, and we use fLB

p;g,R to denote the
corresponding RGM, i.e., fLB

p;g,R(G) =

Pr[Algorithm 2 outputs G with inputs p,
g, and R]. As a special case of binding,
local binding is also correct, i.e., gener-
ates EPGMs.

Proposition 5.5. Algorithm 2 with input
p (and any g and R) produces an EPGM
w.r.t. p.

Remark 5.6. We introduce node-sampling probabilities (i.e., g) to sample node groups with better
tractability, without explicit partitions. With higher node-sampling probabilities, larger node groups

7We use independent node sampling (yet still with edge dependency), which is simple, tractable, and works
empirically well in our experiments. See Appendix D.3 for more discussions.
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are bound together, and the generated graphs are expected to have higher subgraph densities. Specif-
ically, local binding forms a spectrum between the two extreme cases. When g(v) ≡ 0, local binding
reduces to minimal binding, i.e., EIGMs. When g(v) ≡ 1, it reduces to maximal binding.

Theorem 5.7 (Time complexity of graph generation with local binding). Given p :
(
V
2

)
→ [0, 1],

g : V → [0, 1], and R ∈ N, fLB
p;g,R generates a graph in O(R

(∑
v∈V g(v)

)2
+ |V |2) time with high

probability,8 with the worst case O(R |V |2).
We derive tractability results of local binding on the closed-form expected number of motifs (i.e.,
induced subgraphs; see Section 2). For this, we derive the probabilities of all the possible motifs for
each node group, then we can compute the expected number of motifs by taking the summation over
all different node groups, which can be later used for parameter fitting (see Section 5.4).

Theorem 5.8 (Tractable motif probabilities with local binding). For any p :
(
V
2

)
→ [0, 1], g : V →

[0, 1], R ∈ N, and V ′ = {u, v, w} ∈
(
V
3

)
, we can compute the closed-form PrfLB

p;g,R
[E(G[V ′]) =

E∗],∀E∗ ⊆
(
V ′

2

)
, as a function w.r.t. p, g, and R (the detailed formulae are in Appendix B.3).

Proof sketch. See Appendix B.3 for the full proof and the detailed formulae. Higher p and g values
give higher clustering. The choice of R is mainly for controlling the running time.

Remark 5.9. Having closed-form formulae of motif probabilities allows us to estimate the output
and fit the parameters of RGMs (see Section 5.4). Theorem 5.8 can be extended to larger |V ′| with
practical difficulties from the increasing sub-cases as motif size increases. See Appendix B.3.

Theorem 5.10 (Time complexity of computing motif probabilities with local binding). Computing
PrfLB

p;g,R
[E(G[V ′]) = E∗] takes O(|V |3) in total for all E∗ ⊆

(
V ′

2

)
and V ′ ∈

(
V
3

)
.

5.3 PARALLEL BINDING: THE PARALLELIZABLE ICING ON THE CAKE

In local binding, the sampling order matters, i.e., later rounds are affected by earlier rounds. Specif-
ically, if one pair is already determined in an early round, even if it is sampled again in later rounds,
its (in)existence cannot be changed. This property hinders the parallelization of the binding process
and the derivation of tractability analyses. This property also implies that each pair can only be
bound together once, entailing less flexibility in the group interactions.
We thus propose a more flexible and naturally parallelizable binding algorithm, parallel binding.
Specifically, we consider the probabilistic process in Algorithm 3, and let fPB

p;g,R denote the corre-
sponding RGM defined by fPB

p;g,R(G) = Pr[Algorithm 3 outputs G with inputs p, g, and R].

Algorithm 3: Parallel binding

Input : (1) p :
(
V
2

)
→ [0, 1]: edge probabilities;

(2) g : V → [0, 1]: node-sampling probabilities;
(3) R: the number of rounds for binding

Output: G: generated graph
1 E ← ∅ ▷ Initialization

2 r(u, v)← min( 1−(1−p(u,v))1/R

g(u)g(v)
, 1),∀u, v ∈ V

3 prem(u, v)← max(1− 1−p(u,v)

(1−g(u)g(v))R
, 0), ∀u, v ∈ V

4 for iround = 1, 2, . . . , R do
5 sample Vs ⊆ V with Pr[v ∈ Vs] = g(v)

independently
6 E ← E ∪ binding(r,

(
Vs
2

)
) ▷ See Alg. 1

7 for (u, v) ∈
(
V
2

)
s.t. prem(u, v) > 0 do

8 sample a random variable s ∼ U(0, 1)
9 if s ≤ prem(u, v) then

10 E ← E ∪ {(u, v)}

11 return G = (V,E)

The high-level idea is to make each
round of binding probabilistically equiv-
alent (see Lines 4 to 6). Specifically,
in each round, we insert edges with low
probabilities (compared to the ones in
p) while maintaining the final individual
edge probabilities, by the calculation of
r and prem at Lines 2 and 3. We can
straightforwardly parallelize the rounds
by, e.g., multi-threading.
Although parallel binding is algorithmi-
cally different from (local) binding (e.g.,
no partition is used), it shares many
theoretical properties with local bind-
ing. Specifically, Proposition 5.5, Re-
mark 5.6, Theorem 5.7, Theorem 5.8,
Remark 5.9, and Theorem 5.10 also ap-
ply to parallel binding. This implies that
we maintain (or even improve; see Re-

mark 5.11) correctness, tractability, flexibility, and efficiency when using parallel binding instead of
local binding. See Appendix B.4 for the formal statements and proofs.

8That is, lim|V |→∞ Pr[it takes O(R
(∑

v∈V g(v)
)2

+ |V |2)] = 1.
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Remark 5.11. We also derive tractability results of parallel binding on the expected number of (non-
)isolated nodes. It is much more challenging to derive such results for local binding due to the
properties mentioned above, i.e., later rounds are affected by earlier rounds. Since our main focus is
on subgraph densities, see Appendix C for all the analysis regarding (non-)isolated nodes.

5.4 EFFICIENT PARAMETER FITTING WITH NODE EQUIVALENCE

Efficient evaluation of the fitting objective is important. A key challenge is that the naive computa-
tion takes O(|V |3) time in total by considering all O(|V |3) different possible node groups V ′ (see
Theorems 5.8 and B.5)). We aim to improve the speed of computing the tractability results by con-
sidering node equivalence w.r.t. motif probabilities in various edge-probability models. Equivalent
nodes form equivalent node groups, which reduces the number of distinct node groups to calculate.
Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model.Erdős-Rényi (ER) model. The ER model (Erdős & Rényi, 1959) outputs uniform edge probabili-
ties, and all the nodes are equivalent. Hence, we set all the node-sampling probabilities identical,
i.e., g(v) = g0,∀v ∈ V for a single parameter g0 ∈ [0, 1]. As mentioned in Section 3.2, the ER
model is the only case with node exchangeability, and the exchangeability is preserved with binding
since the nodes are also treated symmetrically for binding.

Lemma 5.12 (Reduced time complexity with ER). For ER, the time complexities of computing
3-motif probabilities can be reduced from O(|V |3) to O(1).

Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model.Chung-Lu (CL) model. The CL model (Chung & Lu, 2002) outputs edge probabilities with ex-
pected degrees D = (d1, d2, . . . , dn), and nodes with the same degree are equivalent. We
set node-sampling probabilities as a function of degree with kdeg parameters, where kdeg :=
|{d1, d2, . . . , dn}|.
Lemma 5.13 (Reduced time complexity with CL). For CL, the time complexities of computing
3-motif probabilities can be reduced from O(|V |3) to O(k3deg).

Stochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) modelStochastic block (SB) model The SB model (Holland et al., 1983) outputs edge probabilities with
each node assigned to a block (i.e., a group), and nodes partitioned in the same block are equivalent.
Hence, we set the node-sampling probabilities as a function of the block index, with the number of
parameters equal to the number of blocks.

Lemma 5.14 (Reduced time complexity with SB). For SB, the time complexities of computing 3-
motif probabilities can be reduced from O(|V |3) to O(c3), where c is the total number of blocks.

Stochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) modelStochastic Kronecker (KR) model With a (commonly used 2-by-2) seed matrix θ ∈ [0, 1]2×2 and
kKR ∈ N, the KR model (Leskovec et al., 2010) outputs edge probabilities as the kKR-th Kronecker
power of θ. In KR, each node i ∈ [2kKR ] is associated with a binary node label of length kKR, i.e.,
the binary representation of i − 1. Nodes with the same number of ones in their binary node labels
are equivalent.9 Hence, we set node-sampling probabilities as a function of the number of ones in
the binary representation, with kKR + 1 parameters.

Lemma 5.15 (Reduced time complexity with KR). For KR, the time complexities of computing
3-motif probabilities can be reduced from O(|V |3) to O(k7KR).

Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note.Note. See Appendix B.5 for more details about parameter fitting, e.g., formal definitions of the
models and the details of node equivalence.

6 EXPERIMENTS

In this section, we empirically evaluate EPGMs with our binding schemes and show the superiority
of realization schemes beyond edge independency. Specifically, we show the following two points:

• (P1) When we use our tractability results to fit the parameters of EPGMs, we improve upon EIGMs
and reproduce high triangle densities, and thus produce high clustering, which is a common pattern
in real-world graphs; this also validates the correctness of our tractability results and algorithms.

• (P2) We can reproduce other common patterns, e.g., power-law degrees and small diameters,
especially when the corresponding EIGMs are able to do so; this shows that improving EIGMs
w.r.t. clustering by binding does not harm the generation quality w.r.t. other common patterns.

9The equivalence in KR is slightly weaker than that in the other three models. This is why the reduced time
complexity is O(k7

KR) instead of O(k3
KR). See Appendix B.5.4 for more details.
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Table 1: The clustering metrics of generated graphs. The number of triangles (△) is normalized. For each
dataset and each model, the best result is in bold and the second best is underlined. AR represents average
ranking. The statistics are averaged over 100 random trails. See Table 7 in Appendix E.2 for the full results
with standard deviations. Our binding schemes (LOCLBDG and PARABDG) are consistently and clearly
beneficial for improving clustering, and generating graphs with close-to-ground-truth clustering metrics.

dataset Hams Fcbk Polb Spam Cepg Scht AR over dataset

metric △ GCC ALCC △ GCC ALCC △ GCC ALCC △ GCC ALCC △ GCC ALCC △ GCC ALCC △ GCC ALCC

model GROUNDT 1.00 0.23 0.54 1.00 0.52 0.61 1.00 0.23 0.32 1.00 0.14 0.29 1.00 0.32 0.45 1.00 0.38 0.35 N/A N/A N/A

ER
EDGEIND 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.02 0.02 0.01 0.00 0.00 0.04 0.03 0.03 0.03 0.03 0.03 3.0 2.7 2.5
LOCLBDG 1.00 0.32 0.24 1.01 0.45 0.22 0.95 0.34 0.25 0.99 0.34 0.23 1.02 0.40 0.26 1.01 0.42 0.25 1.7 1.3 1.3
PARABDG 0.99 0.39 0.64 1.00 0.57 0.81 1.02 0.41 0.66 0.99 0.40 0.66 0.97 0.51 0.75 0.99 0.56 0.79 1.3 2.0 2.2

CL
EDGEIND 0.30 0.07 0.06 0.12 0.06 0.06 0.79 0.18 0.17 0.50 0.07 0.06 0.68 0.23 0.22 0.64 0.24 0.23 3.0 3.0 2.5
LOCLBDG 0.99 0.17 0.26 1.03 0.26 0.30 1.00 0.21 0.34 1.03 0.12 0.26 1.00 0.29 0.43 1.04 0.32 0.47 1.7 1.8 1.5
PARABDG 1.00 0.18 0.47 1.01 0.34 0.63 1.01 0.22 0.47 1.01 0.13 0.44 1.00 0.31 0.58 1.14 0.29 0.61 1.3 1.2 2.0

SB
EDGEIND 0.26 0.08 0.04 0.15 0.14 0.08 0.48 0.14 0.16 0.53 0.09 0.04 0.66 0.26 0.20 0.64 0.27 0.13 3.0 3.0 3.0
LOCLBDG 1.04 0.22 0.24 0.93 0.43 0.33 0.99 0.24 0.35 0.98 0.15 0.22 0.99 0.32 0.41 1.03 0.35 0.39 1.7 1.2 1.3
PARABDG 0.99 0.24 0.52 1.03 0.53 0.56 1.01 0.18 0.25 0.99 0.16 0.36 1.05 0.33 0.36 0.97 0.34 0.44 1.3 1.8 1.7

KR
EDGEIND 0.18 0.04 0.06 0.05 0.04 0.04 0.10 0.04 0.07 0.06 0.01 0.03 0.13 0.07 0.12 0.03 0.03 0.05 3.0 3.0 3.0
LOCLBDG 1.09 0.15 0.23 0.93 0.24 0.27 1.06 0.14 0.23 0.94 0.12 0.19 0.99 0.17 0.31 1.44 0.18 0.28 2.0 2.0 1.7
PARABDG 1.00 0.17 0.39 0.97 0.35 0.60 0.94 0.22 0.42 1.05 0.16 0.38 1.00 0.28 0.46 1.07 0.35 0.58 1.0 1.0 1.3

AR
over

models

EDGEIND 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 3.0 2.5 2.8 3.0 3.0 3.0 3.0 3.0 2.3 3.0 2.9 2.8
LOCLBDG 1.8 1.5 2.0 2.0 2.0 2.0 1.5 1.5 1.0 2.0 1.8 1.3 1.5 1.5 1.3 1.8 1.3 1.3 1.8 1.6 1.5
PARABDG 1.3 1.5 1.0 1.0 1.0 1.0 1.5 1.5 2.5 1.0 1.8 2.0 1.5 1.5 1.8 1.3 1.8 2.5 1.3 1.5 1.8

6.1 EXPERIMENTAL SETTINGS
Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets. We use six real-world datasets: (1) social networks hamsterster (Hams) and facebook
(Fcbk), (2) web graphs polblogs (Polb) and spam (Spam), and (3) biological graphs CE-PG (Cepg)
and SC-HT (Scht). See Table 6 in Appendix E.1 for the statistics of the datasets.
Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models. We consider the four edge-probability models analyzed in Section 5.4: the Erdős-Rényi
(ER) model, the Chung-Lu (CL) model, the stochastic block (SB) model, and the stochastic Kro-
necker (KR) model. Given an input graph, we fit each model to the graph and obtain the output edge
probabilities (see Appendix B.5 for more details).
Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods.Realization methods. We compare three realization methods: EIGMs (EDGEIND), and EPGMs
with local binding (LOCLBDG) and with parallel binding (PARABDG).
Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting. Since our main focus is to improve clustering, in our main experiments, we use the number
of triangles, an important indicator of clustering (Tsourakakis et al., 2009; Kolda et al., 2014a), as
the objective of the fitting algorithms. We use gradient descent to optimize parameters. In the main
experiments, the edge probabilities are fixed as those output by the edge-probability models, while
we also consider joint optimization of edge probabilities and node-sampling probabilities (see Sec-
tion 6.5). See Appendix E.1 for the detailed experimental settings. Instead of fitting specific graphs,
it is also possible to use EPGMs with binding to generate graphs “from scratch” with different levels
of clustering by directly setting the parameters. See Appendix E.7 for more discussions and results.
6.2 P1: EPGMS REPRODUCE HIGH CLUSTERING (TABLE 1)
EPGMs with binding reproduce high clustering in real-world graphs. In Table 1, for each dataset and
each model, we compare three clustering-related metrics, the number of triangles (△), the global
clustering coefficient (GCC), and the average local clustering coefficient (ALCC), in the ground-
truth (GROUNDT) graph and the graphs generated with each realization method. For each dataset
and each model, we compute the ranking of each method according to the absolute error w.r.t. each
metric. We also show the average rankings (ARs) over datasets and models. The statistics are
averaged over 100 generated graphs. See Appendix E.2 for the full results with standard deviations.
The number of triangles, which is the objective of our fitting algorithms, can be almost perfectly
preserved by both LOCLBDG and PARABDG, showing the correctness and effectiveness of our algo-
rithms. Notably, as Theorem 3.3 imply, EIGMs often fail to generate graphs with enough triangles.
GCC and ALCC are also significantly improved (upon EIGMs) in most cases, while PARABDG has
noticeably higher ALCC than LOCLBDG. In some rare cases, PARABDG generates graphs with
exceedingly high GCC and/or ALCC and have higher absolute errors compared to EIGMs.
6.3 P2: EPGMS REPRODUCE REAL-WORLD DEGREES AND DISTANCES (FIGURE 1)
EPGMs with binding (LOCLBDG and PARABDG) also reproduce other common patterns in real-
world graphs. In Figure 1, for each dataset (each column) and each model (each row), we compare
the degree distributions and distance distributions in the ground-truth graph and the graphs generated
with each realization method. Specifically, for each realization method, we count the number of
nodes with degree at least k for each k ∈ N and count the number of pairs in the largest connected
component with distance at least d for each d ∈ N in each generated graph, and take the average
number over 100 generated graphs. See Appendix E.3 for the formal definitions and full results.
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GROUNDT LOCLBDGEDGEIND PARABDG

Hams Fcbk

ER

CL

SB

KR

Hams Fcbk

Figure 1: The degree (left) and distance (right) distributions of generated graphs. Each shaded
area represents one standard deviation. The plots are in a log-log scale. Our binding schemes
(LOCLBDG and PARABDG) do not negatively affect degree or distance distributions, and pro-
vide improvements sometimes (e.g., for the ER model).
EPGMs with binding generate graphs with common patterns: power-law degrees and small diam-
eters (i.e., small distances). Both schemes (LOCLBDG and PARABDG) perform comparably well
while LOCLBDG performs noticeably better with ER and PARABDG performs noticeably better
with KR. Importantly, when the edge probabilities output power-law expected degrees (e.g., CL
and KR), the degree distributions are well preserved with binding. Edge-independent ER cannot
generate power-law degrees (Bollobás & Riordan, 2003), and binding alleviates this problem.
Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics.Other graph metrics. Notably, with binding, the generated graphs are overall closer to the ground
truth w.r.t. some other graph metrics: modularity, core numbers, conductance, average vertex/edge
betweenness, and natural connectivity. See Appendix E.3 for more details.
6.4 GRAPH GENERATION SPEED (TABLE 2)

Table 2: The time (in seconds)
for graph generation with dif-
ferent realization methods.

Hams Fcbk

EDGEIND 0.1 0.1
LOCLBDG 4.7 49.0
PARABDG 0.3 1.7
PARABDG-S 3.2 12.6

In Table 2, we compare the running time of graph genera-
tion (averaged over 100 random trials) using EDGEIND,10 LO-
CLBDG, PARABDG, and serialized PARABDG without paralleliza-
tion (PARABDG-s) with the stochastic Kronecker (KR) model.
Among the competitors, EDGEIND is the fastest with the simplest
algorithmic nature. Between the two binding schemes, PARABDG
is noticeably faster than LOCLBDG, and is even faster with paral-
lelization. Fitting the same number of triangles, PARABDG usually
requires lower node-sampling probabilities and thus deals with fewer
pairs in each round, and is thus faster even when serialized. We also conduct scalability experiments
by upscaling the input graph. With 32GB RAM, all the proposed algorithms can run with 128,000
nodes. See Appendix E.4 for more detailed discussions and results.
6.5 JOINT OPTIMIZATION OF EDGE AND NODE-SAMPLING PROBABILITIES (TABLE 3)

Table 3: The clustering metrics of the graphs generated by
three variants of parallel binding. The number of triangles
(△) is normalized. For each dataset and each model, the best
result is in bold, and the second best is underlined. Joint
optimization further enhances the power of our binding
scheme PARABDG to reproduce graph patterns.

dataset Hams Fcbk

metric △ GCC ALCC △ GCC ALCC

GROUNDT 1.000 0.229 0.540 1.000 0.519 0.606

PARABDG 0.997 0.165 0.394 0.971 0.347 0.605
PARABDG-W 0.964 0.176 0.260 1.021 0.408 0.458
PARABDG-JW 0.999 0.230 0.448 1.018 0.521 0.644

In addition to optimizing node-sampling
probabilities for given edge probabilities,
we can also jointly optimize both kinds
of probabilities. In Table 3, we compare
the ground-truth clustering and that gen-
erated by EPGMs using three variants of
parallel binding: (1) PARABDG with the
number of triangles as the objective (the
one used in Table 1), (2) PARABDG-W
with the numbers of triangles and wedges
as the objective (given edge probabilities),
(3) PARABDG-JW jointly optimizing both
kinds of probabilities, with the numbers of triangles and wedges as the objective.
On both Hams and Fcbk, PARABDG and PARABDG-W can well fit the number of triangles but
have noticeable errors w.r.t. the number of wedges (and thus GCC), while PARABDG-JW with joint

10We use krongen in SNAP (Leskovec & Sosič, 2016), which is parallelized and optimized for KR.
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optimization accurately fits both triangles and wedges. On the other datasets, the three variants
perform similarly well because PARABDG already preserves both triangles and wedges well, and
there is not much room for improvement. Notably, with joint optimization, the degree and distance
distributions are still well preserved (see Appendix E.5 for more details).
6.6 COMPARISON WITH EDGE-DEPENDENT RGMS AND ADVANCED EIGMS (TABLE 4)

Table 4: The clustering metrics and overlap (lower the better) of
the graphs generated by binding and other models. For each dataset
and each model, the best result is in bold, and the second best is
underlined. Overall, binding achieves promising performance
in generating high-clustering graphs, with high variability.

dataset Hams Fcbk

metric △ GCC ALCC overlap △ GCC ALCC overlap

GROUNDT 1.000 0.229 0.540 N/A 1.000 0.519 0.606 N/A

LOCLBDG-CL 0.992 0.165 0.255 5.8% 1.026 0.255 0.305 6.3%
PARABDG-CL 1.000 0.185 0.471 5.9% 1.006 0.336 0.626 6.2%
PA 0.198 0.049 0.049 4.7% 0.120 0.061 0.061 6.2%
RGG (d = 1) 1.252 0.751 0.751 0.8% 0.607 0.751 0.752 1.1%
RGG (d = 2) 1.011 0.595 0.604 0.8% 0.492 0.596 0.607 1.1%
RGG (d = 3) 0.856 0.491 0.513 0.8% 0.421 0.494 0.518 1.1%
BTER 0.991 0.290 0.558 53.8% 0.880 0.525 0.605 68.0%
LFR (µ = 0.0) 1.140 0.262 0.546 43.5% N/A N/A N/A N/A
LFR (µ = 0.5) 0.296 0.068 0.081 13.4% 0.161 0.084 0.120 17.0%
LFR (µ = 1.0) 0.197 0.045 0.047 7.0% 0.105 0.055 0.059 6.7%

We test other edge-dependent RGMs:
preferential attachment models (PA;
Barabási & Albert (1999)) and ran-
dom geometric graphs (RGG; Pen-
rose (2003)). We fit them to the num-
bers of nodes and edges of each input
graph. PA fails to generate high clus-
tering. For RGG, we often need di-
mension d = 1 (the smallest dimen-
sion gives the highest clustering) to
generate enough triangles, while the
GCC and ALCC are too high (they
are only determined by the dimen-
sion d). Also, as discussed in Sec-
tion 3.2, closed-form tractability re-
sults on subgraph densities are not unavailable for PA and RGG. See Appendix E.2 for more details.
As discussed in Section 3.1, some existing methods shift edge probabilities, and they are essentially
EIGMs with an inevitable trade-off between variability and the ability to generate high clustering
(see Theorem 3.3). We test the block two-level Erdős-Rényi (BTER) model (Kolda et al., 2014b)
that essentially uses a mixture of multiple Chung-Lu models to generate high clustering. Similarly,
the Lancichinetti-Fortunato-Radicchi (LFR) model (Lancichinetti et al., 2008) generates graphs with
community structures by shifting edge probabilities to intra-community pairs on top of Chung-Lu.
We empirically validate that EPGMs with binding (we report the results based on Chung-Lu; one
may achieve even better performance with binding based on other edge-probability models, as shown
in Table 1) achieve comparable performance in generating high-clustering graphs, with much higher
variability (i.e., low overlap; recall that high variability is important for RGMs; see Definition 3.1
and Remark 3.2). See Table 4 for the results on Hams and Fcbk, and see Appendix E.6 for more
details with full results and discussions on deep graph generative models (Rendsburg et al., 2020;
Simonovsky & Komodakis, 2018; You et al., 2018).
Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results.Extra experimental results. Due to the page limit, the full results are in Appendix E. Our fitting
algorithms also assign different node-sampling probabilities to different nodes (See Appendix E.1).
Moreover, as mentioned in Remark 5.11, for parallel binding, we can fit and control the number of
(non-)isolated nodes; see Appendix C for the theoretical analyses and experimental results.

7 CONCLUSION AND DISCUSSIONS

In this work, we show that realization beyond edge independence can better reproduce common
patterns while ensuring high tractability and variability. We formally define EPGMs and show their
basic properties (Section 4). Notably, even with edge dependency, EPGMs maintain the same vari-
ability (Property 4.7). We propose a pattern-reproducing, tractable, and flexible realization frame-
work called binding (Algorithm 1) with two practical variants: local binding (Algorithm 2) and
parallel binding (Algorithm 3). We derive tractability results (Theorems 5.8 and B.5) on the closed-
form subgraph densities, and propose efficient parameter fitting (Section 5.4; Lemmas 5.12-5.15).
We conduct extensive experiments to show the empirical power of EPGMs with binding (Section 6).
Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions.Limitations and future directions. EPGMs with binding generate more isolated nodes than EIGMs
due to higher variance. Fortunately, we can address the limitation by fitting and controlling the num-
ber of isolated nodes with the tractability results, as mentioned in Remark 5.11. The performance
of EPGMs depends on both the underlying edge probabilities and the way to realize (i.e., sample
from) them. In this work, we focus on the latter, while finding valuable edge probabilities is an
independent problem. Notably, as shown in Section 6.5, it is possible to jointly optimize both edge
probabilities and their realization. As discussed in Remark 5.4, binding only covers a subset of
EPGMs, and we will explore the other types of EPGMs (e.g., EPGMs with lower subgraph densi-
ties) in the future. Combining binding with other mechanisms in existing edge-dependent RGMs to
create even stronger RGMs is another interesting future direction.
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A FLOWCHART

Below, we provide a flowchart of this work, summarizing the main ideas and contents.

Target: To find random graph models that have high tractability and
generate graphs with common patterns in real-world graphs and high variability

Background: EIGMs with edge-independent realization methods have high tractability
but cannot generate graphs with high triangle densities

Idea: To consider edge-dependent realization methods

We define the concept of EPGMs (Section 4)
but considering all the possible cases is impractical

Idea: To find sub-cases with meaningful realization methods, specifically aiming to improve triangle densities

We propose specific realization schemes called binding
and derive the tractability results on motif probabilities (Section 5)

but we want to further improve the efficiency of computing motif probabilities in practice

Idea: To reduce the number of distinct node groups for calculation by considering node equivalence

We analyze the node equivalence in various edge-probabilities models
and derive the reduced time complexities for computing motif probabilities (Section 5.4)

B PROOFS

In this section, we show the proofs of our theoretical results.

B.1 EPGMS

Proposition 4.2 (EIGMs are special EPGMs). For any p, the EIGM w.r.t. p is an EPGM w.r.t. p,
i.e., fEI

p ∈ F(p).

Proof. By the definition of EIGMs,

PrfEI
p
[(u, v)]

=
∑

G∈G(V )

fEI
p (G)1[(u, v) ∈ G]

=
∑

(u,v)∈G∈G(V )

fEI
p (G)

=
∑

(u,v)∈G∈G(V )

p(u, v)
∏

(u,v)̸=(u+,v+)∈G

p(u+, v+)
∏

(u−,v−)/∈G

(1− p(u−, v−))

= p(u, v),∀u, v,

completing the proof.

Proposition 4.3 (EPGMs are general). For any f : G(V ) → [0, 1], there exists p :
(
V
2

)
→ [0, 1] such

that f ∈ F(p).
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Proof. Let p :
(
V
2

)
→ [0, 1] be that p(u, v) = Prf [(u, v)],∀u, v ∈ V , then by Definition 4.1,

f ∈ F(p).

Proposition 4.4 (Upper bound of edge-group probabilities). For any p :
(
V
2

)
→ [0, 1] and any edge

group P ⊆
(
V
2

)
, Prf [P ⊆ E(G)] ≤ min(u,v)∈P p(u, v),∀f ∈ F(p).

Proof. By definition, Prf [(u, v)] = p(u, v),∀(u, v). Hence,

Prf [P ⊆ E(G)] = Prf [
∧

(u,v)∈P

(u, v) ∈ G]

≤ min
(u,v)∈P

Prf [(u, v)]

= min
(u,v)∈P

p(u, v),

where we have used the fact that
∧

(u,v)∈P (u, v) ∈ G is a subevent of (u, v) ∈ G for any (u, v) ∈
P .

Proposition 4.7 (EPGMs have constant expected degrees and overlap). For any p :
(
V
2

)
→ [0, 1],

the expected degree of each node and the overlap of all the EPGMs w.r.t. p are constant. Specifically,

Ef [d(v;G)] =
∑

u∈V p(u, v) and Ov(f) =
∑

u,v∈V p2(u,v)∑
u,v∈V p(u,v) ,∀f ∈ F(p).

Proof. By linearity of expectation,

Ef [d(v;G)] =
∑
u∈V

Pr[u ∈ N(v)] =
∑
u∈V

Pr[(u, v) ∈ G] =
∑
u∈V

p(u, v),

which does not depend on anything else but p.
By Definition 3.1,

Ov(f)

=
EG′,G′′∼f |E(G′) ∩ E(G′′)|

Ef |E(G)|

=

∑
u,v Pr[(u, v) ∈ G′ ∧ (u, v) ∈ G′′]∑

u,v Pr[(u, v) ∈ G]

=

∑
u,v Pr[(u, v) ∈ G′] Pr[(u, v) ∈ G′′]∑

u,v Pr[(u, v) ∈ G]

=

∑
u,v∈V p2(u, v)∑
u,v∈V p(u, v)

,∀f ∈ F(p),

where we have used linearity of expectation and the independence between G′ and G′′, completing
the proof.

Corollary 4.6. For any p :
(
V
2

)
→ [0, 1], Ef [△(G)] ≤∑

{u,v,w}∈(V3)
min(p(u, v), p(u,w), p(v, w)),∀f ∈ F(p), where △(G) is the number of tri-

angles in G.

Proof. By linearity of expectation and Property 4.4,

Ef [△(G)] =
∑

{u,v,w}∈(V3)

Prf [{(u, v), (u,w), (v, w) ∈ E(G)}]

≤
∑

{u,v,w}∈(V3)

min(p(u, v), p(u,w), p(v, w)).
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Proposition 5.2 (Binding produces EPGMs). For any p :
(
V
2

)
→ [0, 1] and any pair partition P ,

fBD
p;P ∈ F(p).

Proof. For each pair (u, v), the existence of the corresponding edge is determined in the “binding”
procedure on the group P such that (u, v) ∈ P (Lines 2 and 3), where (u, v) is added into Ê and
thus E if and only if s ≤ p̂(u, v) = p(u, v) (Line 9), which happens with probability p(u, v) since
s ∼ U(0, 1).

Proposition 5.3 (Binding produces higher edge-group probabilities). For any p :
(
V
2

)
→ [0, 1], any

pair partition P , and any P ⊆
(
V
2

)
, PrfBD

p;P
[P ⊆ E(G)] ≥ PrfEI

p
[P ⊆ E(G)].

Proof. Let P ′ be a partition of P such that P ′ := {P0 ∩ P : P0 ∈ P, P0 ∩ P ̸= ∅}. Then

PrfBD
p;P

[P ⊆ E(G)] =
∏

P ′∈P′

min
(u,v)∈P ′

p(u, v)

=
∏

(u,v)∈P : ∃P ′∈P′,(u,v)=argmin(u′,v′)∈P ′ p(u,v)

p(u, v)

≥
∏

(u,v)∈P

p(u, v),

since each p(u, v) ≤ 1.

B.2 MAXIMAL BINDING

As mentioned in Remark 4.5, the upper bound in Property 4.4 is tight, i.e., we can find EPGMs
achieving the upper bound.
Indeed, we shall show below in Lemma B.2 that, as mentioned in Section 5.1, maximal binding (i.e.,
binding with all the pairs bound together P = {

(
V
2

)
}) achieves the upper bound.

In order to prove Lemma B.2, let us prove the following lemma first.

Lemma B.1 (The graph distribution with maximal binding). For any p :
(
V
2

)
→ [0, 1], we first index

the pairs (i.e., assign each pair a number) in
(
V
2

)
in the descending order w.r.t. probabilities, i.e.,(

V

2

)
= {(u1, v1), (u2, v2), . . . , (uM , vM )}

with M =
(|V |

2

)
such that

p(u1, v1) ≥ p(u2, v2) ≥ · · · ≥ p(uM , VM ),

then the graph distribution with maximal binding is

fBD
p;{(V2)}

(G) =


1− p(u1, v1), if G = (V, ∅),
p(uM , vM ), if G = (V,

(
V
2

)
),

p(ui, vi)− p(ui+1, vi+1), if G = (V, {(uj , vj) : 1 ≤ j ≤ i}),∀i ∈ [M − 1],

0, otherwise.

Proof. With P = {
(
V
2

)
}, all the edge existences are determined by the same random variable s.

Hence, if a pair (u, v) exists, then all the pairs (u′, v′) with p(u′, v′) ≥ p(u, v) must exist. The pos-
sible outputs are either G = (V, ∅) or G = (V, {(uj , vj) : 1 ≤ j ≤ i}) for some i ∈ [M ]. The case
G = (V, ∅) happens when s > maxu,v∈V p(u, v) = p(u1, v1) with probability 1 − p(u1, v1). The
case G = (V,

(
V
2

)
) happens when s ≤ minu,v∈V p(u, v) = p(uM , vM ) with probability p(P(|V |

2 )
).

For each remaining case G = (V, {(uj , vj) : 1 ≤ j ≤ i} with i ∈ [M − 1], it happens when
p(ui+1, vi+1) < s ≤ p(ui, vi) with probability p(ui, vi)− p(ui+1, vi+1).

18
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Lemma B.2 (Maximal binding achieves maximum edge-group probabilities). For any p :
(
V
2

)
→

[0, 1] and any edge-group P ⊆
(
V
2

)
, we have

Pr
fBD

p;{(V2)}

[P ⊆ E(G)] = min
(u,v)∈P

p(u, v),∀f ∈ F(p),

where fBD
p;P denotes the RGM defined by fBD

p;P(G) = Pr[Algorithm 1 outputs G with inputs p and P].

Proof. By Lemma B.1, in a graph G generated by fBD
p;{(V2)}

, P ⊆ E(G) if and only if

argmin(u,v)∈P p(u, v) ∈ G., which happens with probability min(u,v)∈P p(u, v).

B.3 LOCAL BINDING

Proposition 5.5 (Local binding produces EPGMs). For any p :
(
V
2

)
→ [0, 1], g : V → [0, 1] and

R ∈ N, fLB
p;g,R ∈ F(p).

Proof. For each pair (u, v), PrfLB
p;g,R

[(u, v)] =
∑

P PrP∼g[P] PrfBD
p;P

[(u, v)]. By Proposition 5.2,
PrfBD

p;P
[(u, v)] = p(u, v),∀P . Hence, PrfLB

p;g,R
[(u, v)] =

∑
P PrP∼g[P]p(u, v) = p(u, v).

Theorem 5.7 (Time complexities of graph generation with local binding). Given p :
(
V
2

)
→ [0, 1],

g : V → [0, 1], and R ∈ N, fLB
p;g,R generates a graph in O(R

(∑
v∈V g(v)

)2
+ |V |2) time with high

probability, with the worst case O(R |V |2).

Proof. We have at most R rounds of sampling and binding, where each round samples at most
|V | nodes and thus at most

(|V |
2

)
pairs. More specifically, the number of nodes sampled in each

round is
∑

v∈V g(v) in expectation, and thus O(
∑

v∈V g(v)) with high probability (e.g., you can
use a Chernoff bound). Hence, it takes O(R

∑
v∈V g(v)) time with high probability, and at most

O(
(|V |

2

)
R) time for the R rounds. The number of remaining pairs is at most

(|V |
2

)
so dealing with

them takes O(
(|V |

2

)
) time. For the generation, we need to enumerate all the node groups and each

pair in each group. Since the partition is disjoint, i.e., each pair is in exactly one group, each
pair is visited exactly once, which takes O(

(|V |
2

)
) time. In conclusion, generating a graph takes

O(R
∑

v∈V g(v) + |V |2) with high probability, and O(
(|V |

2

)
R) time in the worst case.

Theorem 5.8 (Tractable motif probabilities with local binding). For any p :
(
V
2

)
→ [0, 1], g : V →

[0, 1], R ∈ N, and V ′ = {u, v, w} ∈
(
V
3

)
, we can compute the closed-form PrfLB

p;g,R
[E(G[V ′]) =

E∗],∀E∗ ⊆
(
V ′

2

)
as a function w.r.t. p, g, and R.

Proof. The overall idea is that we (1) consider all the sub-cases of how all the pairs
(
V ′

2

)
are par-

titioned and grouped during the whole process, (2) compute the motif probabilities conditioned on
each sub-case, and (3) finally take the summation of the motif probabilities in all the sub-cases.

We first consider all the cases of how all the pairs are sampled and grouped until
(
V ′

2

)
are fully

determined. We divided the cases w.r.t. how the pairs in
(
V ′

2

)
are eventually grouped by the sampled

node sets. First let us define some “short-cut” variables:

• the probability that among V ′, exactly V ∗ is sampled together in a round

pg(V
∗) := Prg[{u, v, w} ∩ Vs = V ∗] =

∏
v∈V ∗

g(v)
∏

v′ /∈V ∗

(1− g(v)),∀V ∗ ⊆ V ′

• the probability that among V ′, at least two nodes (and thus at least one pair) are sampled together
in a round

pg(V≥2) :=
∑

V ∗ : |V ∗|≥2

pg(V
∗) = pg({u, v}) + pg({u,w}) + pg({v, w}) + pg({u, v, w})

= g(u)g(v)(1− g(w)) + g(u)g(w)(1− g(v))

+ g(v)g(w)(1− g(u)) + g(u)g(v)g(w)
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• the probability that among V ′, at most one node (and thus no pair) is sampled together in a round

pg(V<2) := 1− pg(V≥2)

WLOG, we assume that p(u, v) ≥ p(u,w) ≥ p(v, w).

{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}.{u, v, w}. The first time any pair in
(
V ′

2

)
is sampled in the R rounds is when u, v, and w are

sampled by g together, which happens with probability

q({u, v, w}) = pg(V
′) + pg(V<2)pg(V

′) + p2g(V<2)pg(V
′) + · · ·+ pR−1

g (V<2)pg(V
′)

=

R−1∏
i=0

pig(V<2)pg(V
′) =

1− pRg (V<2)

1− pg(V<2)
pg(V

′),

where each term pig(V<2)pg(V
′) is the probability that in the first i rounds at most one node among

V ′ is sampled and V ′ is sampled altogether in the (i+1)-th round. Conditioned on that, it generates

• {(u, v), (u,w), (v, w)} with probability p(v, w); when the random variable s in binding satisfies
s ≤ p(v, w),

• {(u, v), (u,w)} with probability p(u,w)− p(v, w); when p(v, w) < s ≤ p(u,w),
• {(u, v)} with probability p(u, v)− p(u,w); when p(u,w) < s ≤ p(u, v), and
• ∅ with probability 1− p(u, v); when s > p(u, v).

{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}.{u, v} → {u, v, w}. All the pairs in
(
V ′

2

)
are covered in twice in the R rounds. At the first time,

u and v are sampled together by g but not w. At the second time, u, v, and w are sampled together
by g. This happens with probability

q({u, v} → {u, v, w}) = pg(V
′) + (pg(V<2) + pg({u, v})) pg(V ′) + · · ·

+ (pg(V<2) + pg({u, v}))R−1
pg(V

′)− q({u, v, w})

=

R−1∑
i=0

(pg(V<2) + pg({u, v}))i pg(V ′)− q({u, v, w})

=

(
1− (pg(V<2) + pg({u, v}))R

1− (pg(V<2) + pg({u, v}))
−

1− pRg (V<2)

1− pg(V<2)

)
pg(V

′),

where (pg(V<2) + pg({u, v}))i pg(V ′) is the probability that in the first i rounds we either sam-
ple no pair between V ′ or just (u, v), and we sample V ′ altogether in the (i + 1)-th round, and
q({u, v, w}) is subtracted to exclude the cases where (u, v) is not sampled in the first i rounds. In
such cases, when (u, v) is sampled for the first time, we decide the existence of (u, v), and then after
that, when V ′ is sampled altogether for the first time, we decide the existences of the remaining two
pair (u,w) and (v, w). Hence, conditioned on that, it generates

• {(u, v), (u,w), (v, w)} with probability p(u, v)p(v, w); when s1 ≤ p(u, v) in the round (u, v) is
sampled for the first time and s2 ≤ p(v, w) in the round V ′ is sampled altogether for the first time,

• {(u, v), (u,w)} with probability p(u, v) (p(u,w)− p(v, w)); when s1 ≤ p(u, v) and p(v, w) <
s2 ≤ p(u,w),

• {(u, v)} with probability p(u, v) (1− p(u,w)); when s1 ≤ p(u, v) and s2 > p(u,w),
• {(u,w), (v, w)} with probability (1− p(u, v)) p(v, w); when s1 > p(u, v) and s2 ≤ p(v, w),
• {(u,w)} with probability (1− p(u, v)) (p(u,w)− (v, w)); when s1 > p(u, v) and p(v, w) <
s2 ≤ p(u,w), and

• ∅ with probability (1− p(u, v)) (1− p(u,w)); when s1 > p(u, v) and s2 > p(u,w).

{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}.{u,w} → {u, v, w}. Similarly, this happens with probability

q({u,w} → {u, v, w}) =

(
1− (pg(V<2) + pg({u,w}))R

1− (pg(V<2) + pg({u,w}))
−

1− pRg (V<2)

1− pg(V<2)

)
pg(V

′)

Conditioned on that, it generates
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• {(u, v), (u,w), (v, w)} with probability p(u,w)p(v, w); when s1 ≤ p(u,w) and s2 ≤ p(v, w),
• {(u, v), (u,w)} with probability p(u,w) (p(u, v)− p(v, w)); when s1 ≤ p(u,w) and p(v, w) <
s2 ≤ p(u, v),

• {(u,w)} with probability p(u,w) (1− p(u, v)); when s1 ≤ p(u,w) and s2 > p(u, v),
• {(u, v), (v, w)} with probability (1− p(u,w)) p(v, w); when s1 > p(u,w) and s2 ≤ p(v, w),
• {(u, v)} with probability (1− p(u,w)) (p(u, v)− (v, w)); when s1 > p(u,w) and p(v, w) <
s2 ≤ p(u, v), and

• ∅ with probability (1− p(u,w)) (1− p(u, v)); when s1 > p(u,w) and s2 > p(u, v).

{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}.{v, w} → {u, v, w}. Similarly, this happens with probability

q({v, w} → {u, v, w}) =

(
1− (pg(V<2) + pg({v, w}))R

1− (pg(V<2) + pg({v, w}))
−

1− pRg (V<2)

1− pg(V<2)

)
pg(V

′)

Conditioned on that, it generates

• {(u, v), (u,w), (v, w)} with probability p(v, w)p(u,w); when s1 ≤ p(v, w) and s2 ≤ p(u,w),
• {(u, v), (v, w)} with probability p(v, w) (p(u, v)− p(u,w)); when s1 ≤ p(v, w) and p(u,w) <
s2 ≤ p(u, v),

• {(v, w)} with probability p(v, w) (1− p(u, v)); when s1 ≤ p(v, w) and s2 > p(u, v),
• {(u, v), (u,w)} with probability (1− p(v, w)) p(u,w); when s1 > p(v, w) and s2 ≤ p(u,w),
• {(u, v)} with probability (1− p(v, w)) (p(u, v)− (u,w)); when s1 > p(v, w) and p(u,w) <
s2 ≤ p(u, v), and

• ∅ with probability (1− p(v, w)) (1− p(u, v)); when s1 > p(v, w) and s2 > p(u, v).

The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases.The remaining cases. Three edges are determined independently. This happens with the remaining
probability
qindep = 1−q({u, v, w})−q({u, v} → {u, v, w})−q({u,w} → {u, v, w})−q({v, w} → {u, v, w})

Conditioned on that, it generates each E∗ ⊆
(
V ′

2

)
with probability∏

(x,y)∈E∗

p(x, y)
∏

(x′,y′)∈(V
′

2 )\E∗

(1− p(x′, y′)).

Taking the summation of all the sub-cases gives the results as follows.
E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}

PrfLB
p;g,R

[E(G[V ′]) = {(u, v), (u,w), (v, w)}] = q({u, v, w})p(v, w)+

q({u, v} → {u, v, w})p(u, v)p(v, w)+
q({u,w} → {u, v, w})p(u,w)p(v, w)+
q({v, w} → {u, v, w})p(v, w)p(u,w)+
qindepp(u, v)p(u,w)p(v, w)

E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}E∗ = {(u, v), (u,w)}
PrfLB

p;g,R
[E(G[V ′]) = {(u, v), (u,w)}] = q({u, v, w}) (p(u,w)− p(v, w))+

q({u, v} → {u, v, w})p(u, v) (p(u,w)− p(v, w))+

q({u,w} → {u, v, w})p(u,w) (p(u, v)− p(v, w))+

q({v, w} → {u, v, w}) (1− p(v, w)) p(u,w)+

qindepp(u, v)p(u,w) (1− p(v, w))

E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}E∗ = {(u, v), (v, w)}
PrfLB

p;g,R
[E(G[V ′]) = {(u, v), (v, w)}] = q({u,w} → {u, v, w}) (1− p(u,w)) p(v, w)+

q({v, w} → {u, v, w})p(v, w) (p(u, v)− p(u,w))+

qindepp(u, v)p(v, w) (1− p(u,w))
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E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}E∗ = {(u,w), (v, w)}

PrfLB
p;g,R

[E(G[V ′]) = {(u,w), (v, w)}] = q({u, v} → {u, v, w}) (1− p(u, v)) p(v, w)+

qindepp(u,w)p(v, w) (1− p(u, v))

E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}E∗ = {(u, v)}

PrfLB
p;g,R

[E(G[V ′]) = {(u, v)}] = q({u, v, w}) (p(u, v)− p(u,w))+

q({u, v} → {u, v, w})p(u, v) (1− p(u,w))+

q({u,w} → {u, v, w}) (1− p(u,w)) (p(u, v)− p(v, w))+

q({v, w} → {u, v, w}) (1− p(v, w)) (p(u, v)− p(u,w))+

qindepp(u, v) (1− p(u,w)) (1− p(v, w))

E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}E∗ = {(u,w)}

PrfLB
p;g,R

[E(G[V ′]) = {(u,w)}] = q({u, v} → {u, v, w}) (1− p(u, v)) (p(u,w)− p(v, w))+

q({u,w} → {u, v, w})p(u,w) (1− p(u, v))+

qindepp(u,w) (1− p(u, v)) (1− p(v, w))

E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}E∗ = {(v, w)}

PrfLB
p;g,R

[E(G[V ′]) = {(u,w)}] = q({v, w} → {u, v, w})p(v, w) (1− p(u, v))+

qindepp(v, w) (1− p(u, v)) (1− p(u,w))

E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅
PrfLB

p;g,R
[E(G[V ′]) = {(u,w)}] = q({u, v, w}) (1− p(u, v))+

q({u, v} → {u, v, w}) (1− p(u, v)) (1− p(u,w))+

q({u,w} → {u, v, w}) (1− p(u,w)) (1− p(u, v))+

q({v, w} → {u, v, w}) (1− p(v, w)) (1− p(u, v))+

qindep (1− p(u, v)) (1− p(u,w)) (1− p(v, w))

Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders. As mentioned in Remark 5.9, the reasoning in the proof above can be
extended to higher orders. When the order of motifs increases, enumerating the cases of how all the
pairs are sampled and grouped becomes more and more challenging. When considering 3-motifs, we
are essentially considering the possible sequences of subsets up to order 3, where (1) each sequence
should cover all the node pairs, and (2) each subset in the sequence should cover at least one pair
that has not been covered by the subsets before it. The high-level idea would be similar, but the
number increases exponentially:

• for 3-motifs, we need to consider 16 cases, 4 of which involve edge dependency, as shown above;
• for 4-motifs, we need to consider 16205 cases, 5261 of which involve edge dependency.

The above numbers are obtained using a recursive search. In principle, we can also derive the
variance of the number of 3-motif by considering the probabilities of 6-motifs, since the co-existence
of two 3-motifs involves motifs up to order 6. We leave the efficient computation for higher-order
motifs as a future direction.
Theorem 5.10 (Time complexity of computing motif probabilities with local binding). Given
p :
(
V
2

)
→ [0, 1], g : V → [0, 1], and R ∈ N, computing PrfLB

p;g,R
[E(G[V ′]) = E∗] takes O(|V |3)

time in total for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
V
3

)
.

Proof. For computing motif probabilities, we need to enumerate all triplets V ′ = {u, v, w} ∈
(
V
3

)
and compute the motif probability for each 3-motif. For each motif, the calculation only involves
arithmetic operations, which takes O(1) time since the formulae are fixed. In conclusion, computing
3-motif probabilities takes O(

(|V |
3

)
) time.
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B.4 PARALLEL BINDING

Proposition B.3 (Parallel binding produces EPGMs). For any p :
(
V
2

)
→ [0, 1], g : V → [0, 1], and

R ∈ N, fPB
p;g,R ∈ F(p).

Proof. For each pair (u, v), if 1−(1−p(u,v))1/R

g(u)g(v) ≤ 1, i.e., p(u, v) ≤ 1 − (1 − g(u)g(v))R, then
prem(u, v) = 0 and

PrfPB
p;g,R

[(u, v)] = 1− Pr[(u, v) not inserted in the R rounds] Pr[(u, v) not inserted when dealing with prem]

= 1− (1− g(u)g(v)r(u, v))R(1− prem)

= 1− (1− p(u, v))

= p(u, v).

Otherwise, if p(u, v) > 1− (1− g(u)g(v))R, then r(u, v) = 1 and

PrfPB
p;g,R

[(u, v)] = 1− Pr[(u, v) not inserted in the R rounds] Pr[(u, v) not inserted when dealing with prem]

= 1− (1− g(u)g(v)r(u, v))R(1− prem)

= 1− (1− g(u)g(v))R
1− p(u, v)

(1− g(u)g(v))R

= 1− (1− p(u, v))

= p(u, v).

Theorem B.4 (Time complexities of graph generation with parallel binding). Given p :
(
V
2

)
→

[0, 1], g : V → [0, 1], and R ∈ N, fPB
p;g,R generates a graph in O(R

(∑
v∈V g(v)

)2
+ |V |2) time

with high probability, with the worst case O(R |V |2).

Proof. We have at most R rounds of sampling and binding, where each round samples at most
|V | nodes and thus at most

(|V |
2

)
pairs. More specifically, the number of nodes sampled in each

round is
∑

v∈V g(v) in expectation, and thus O(
∑

v∈V g(v)) with high probability (e.g., one can
use a Chernoff bound). Hence, it takes O(R

∑
v∈V g(v)) time with high probability, and at most

O(
(|V |

2

)
R) time for the R rounds. The number of pairs with prem > 0 is at most

(|V |
2

)
so dealing

with them takes O(
(|V |

2

)
) time. In conclusion, generating a graph takes O(R

∑
v∈V g(v) + |V |2)

with high probability, and O(
(|V |

2

)
R) time in the worst case.

Theorem B.5 (Tractable motif probabilities with parallel binding). For any p :
(
V
2

)
→ [0, 1],

g : V → [0, 1], R ∈ N, and V ′ = {u, v, w} ∈
(
V
3

)
, we can compute the closed-form

PrfPB
p;g,R

[E(G[V ′]) = E∗],∀E∗ ⊆
(
V ′

2

)
as a function w.r.t. p, g, and R.

Proof. The overall idea is that we (1) compute the probabilities of each subset of
(
V ′

2

)
being inserted

in each round and (2) accumulate the probabilities in R rounds to obtain the final motif probabilities.

We first compute the probability of each subset of
(
V
2

)
being inserted in each round. We divide the

cases w.r.t. different sets of sampled nodes Vs ∩ V ′. First, let us define some “short-cut” variables:

• the probability that among V ′, exactly V ∗ is sampled together in a round

pg(V
∗) := Prg[{u, v, w} ∩ Vs = V ∗] =

∏
v∈V ∗

g(v)
∏

v′ /∈V ∗

(1− g(v)),∀V ∗ ⊆ V ′

• the probability that among V ′, at least two nodes (and thus at least one pair) are sampled together
in a round

pg(V≥2) :=
∑

V ∗ : |V ∗|≥2

pg(V
∗) = pg({u, v}) + pg({u,w}) + pg({v, w}) + pg({u, v, w})

= g(u)g(v)(1− g(w)) + g(u)g(w)(1− g(v)) + g(v)g(w)(1− g(u))
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• the probability that among V ′, at most one node (and thus no pair) is sampled together in a round

pg(V<2) := 1− pg(V≥2)

• the variables r and prem are defined as in Algorithm 3.

WLGO, we assume that p(u, v) ≥ p(u,w) ≥ p(v, w).
Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}.Vs = {u, v, w}. This happens with probability pg(V

′). Conditioned on that, it generates

• {(u, v), (u,w), (v, w)} with probability r(v, w); when s ≤ r(v, w),
• {(u, v), (u,w)} with probability r(u,w)− r(v, w); when r(v, w) < s ≤ r(u,w),
• {(u, v)} with probability r(u, v)− r(u,w); when r(u,w) < s ≤ r(u, v), and
• ∅ with probability 1− r(u, v); when s > r(u, v).

Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}.Vs = {u, v}. This happens with probability pg({u, v}). Conditioned on that, it generates

• {(u, v)} with probability r(u, v); when s ≤ r(u, v), and
• ∅ with probability 1− r(u, v)l when s > r(u, v).

Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}.Vs = {u,w}. This happens with probability pg({u,w}). Conditioned on that, it generates

• {(u,w)} with probability r(u,w); when s ≤ r(u,w),
• ∅ with probability 1− r(u,w); when s > r(u,w).

Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}.Vs{v, w}. This happens with probability pg({v, w}). Conditioned on that, it generates

• {(v, w)} with probability r(v, w); when s ≤ r(v, w),
• ∅ with probability 1− r(v, w); when s > r(v, w).

The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1).The remaining cases (i.e., |Vs ∩ V ′| ≤ 1). This happens with probability pg(V<2). Conditioned
on that, it generates

• ∅ with probability 1.

Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round.Summary for each round. Let pround(E∗) denote the probability of E∗ being generated in each
round, for each E∗ ⊆

(
V ′

2

)
. We have

• pround({(u, v), (u,w), (v, w)}) = pg(V
′)r(v, w),

• pround({(u, v), (u,w)}) = pg(V
′)(r(u,w)− r(v, w)),

• pround({(u, v)}) = pg(V
′) (r(u, v)− r(u,w)) + pg({u, v})r(u, v),

• pround({(u,w)}) = pg({u,w})r(u,w),
• pround({(v, w)}) = pg({v, w})r(v, w), and
• pround(∅) = 1− pg(V

′)r(u, v)− pg({u, v})r(u, v)− pg({u,w})r(u,w)− pg({v, w})r(v, w).

We are now ready to compute the motif probabilities.
E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅.E∗ = ∅. This happens when ∅ is generated in all R rounds and for the remaining probabilities prem,
with probability

PrfPB
p;g,R

[E(G[V ′]) = ∅] = (pround(∅))R(1− prem(u, v))(1− prem(u,w))(1− prem(v, w)).

E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}.E∗ = {(u, v)}. This happens when either ∅ or {(u, v)} is generated in all R rounds and for prem,
and (u, v) is generated in at least one round, which has probability

PrfPB
p;g,R

[E(G[V ′]) = {(u, v)}]

= (pround(∅))Rprem(u, v)(1− prem(u,w))(1− prem(v, w))+

((pround(∅) + pround({(u, v)}))R − (pround(∅))R)(1− prem(u,w))(1− prem(v, w)),
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where ((pround(∅) + pround({(u, v)}))R − (pround(∅))R) is the probability that in the R rounds,
only (u, v) is inserted.
E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}.E∗ = {(u,w)}. Similarly, this happens with probability

PrfPB
p;g,R

[E(G[V ′]) = {(u,w)}]

= (pround(∅))Rprem(u,w)(1− prem(u, v))(1− prem(v, w))+

((pround(∅) + pround({(u,w)}))R − (pround(∅))R)(1− prem(u, v))(1− prem(v, w)).

E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}.E∗ = {(v, w)}. Similarly, this happens with probability

PrfPB
p;g,R

[E(G[v′]) = {(u,w)}]

= (pround(∅))Rprem(v, w)(1− prem(u, v))(1− prem(u,w))+

((pround(∅) + pround({(v, w)}))R − (pround(∅))R)(1− prem(u, v))(1− prem(u,w)).

E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}.E∗ = {(u, v), (u,w)}. This happens when one among ∅, {(u, v)}, {(u,w)}, and {(u, v), (u,w)}
is generated in all R rounds and for Rrem, while excluding the cases ending up with ∅, {(u, v)}, or
{(u,w)}. This happens with probability

PrfPB
p;g,R

[E(G[V ′]) = {(u, v), (u,w)}]

= (pround(∅))Rprem(u, v)prem(u,w)(1− prem(v, w))+

((pround(∅) + pround({(u, v)}))R − (pround(∅))R)prem(u,w)(1− prem(v, w))+

((pround(∅) + pround({(u,w)}))R − (pround(∅))R)prem(u, v)(1− prem(v, w))+

p̃({(u, v), (u,w)};R)(1− prem(v, w)),

where

p̃({(u, v), (u,w)};R)

= (pround(∅) + pround({(u, v)}) + pround({(u,w)}) + pround({(u, v), (u,w)}))R−
(pround(∅) + pround({(u, v)}))R−
(pround(∅) + pround({(u,w)}))R+
(pround(∅))R

is the probability that exactly (u, v) and (u,w) are inserted in the R rounds, using the inclusion-
exclusion principle.
E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}.E∗ = {(u, v), (v, w)}. Similarly, this happens with probability

PrfPB
p;g,R

[E(G[V ′]) = {(u, v), (v, w)}]

= (pround(∅))Rprem(u, v)prem(v, w)(1− prem(u,w))+

((pround(∅) + pround({(u, v)}))R − (pround(∅))R)prem(v, w)(1− prem(u,w))+

((pround(∅) + pround({(v, w)}))R − (pround(∅))R)prem(u, v)(1− prem(u,w))+

p̃({(u, v), (v, w)};R)(1− prem(u,w)),

where

p̃({(u, v), (v, w)};R) = (pround(∅) + pround({(u, v)}) + pround({(v, w)}))R−
(pround(∅) + pround({(u, v)}))R−
(pround(∅) + pround({(v, w)}))R+
(pround(∅))R.

Note that pround({(u, v), (v, w)}) = 0.
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E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}.E∗ = {(u,w), (v, w)}. Similarly, this happens with probability

PrfPB
p;g,R

[E(G[V ′]) = {(u,w), (v, w)}]

= (pround(∅))Rprem(u,w)prem(v, w)(1− prem(u, v))+

((pround(∅) + pround({(u,w)}))R − (pround(∅))R)prem(v, w)(1− prem(u, v))+

((pround(∅) + pround({(v, w)}))R − (pround(∅))R)prem(u,w)(1− prem(u, v))+

p̃({(u,w), (v, w)};R)(1− prem(u, v)),

where

p̃({(u,w), (v, w)};R) = ((pround(∅) + pround({(u,w)}) + pround({(v, w)}))R−
(pround(∅) + pround({(u,w)}))R−
(pround(∅) + pround({(v, w)}))R+
(pround(∅))R)

Note that pround({(u,w), (v, w)}) = 0.
E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}.E∗ = {(u, v), (u,w), (v, w)}. This happens with the remaining probability, i.e.,

PrfPB
p;g,R

[E(G[V ′]) = {(u, v), (u,w), (v, w)}] = 1−
∑

E′⊊(V
′

2 )

PrfPB
p;g,R

[E(G[V ′]) = E′].

Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders.Discussion on higher orders. Similar to the counterpart for local binding, the reasoning in the proof
above can be extended to higher orders. When the order of motifs increases, both considering the
cases in each round and accumulating them in multiple rounds become increasingly challenging.
For the cases in each round, we first need to consider more cases of Vs, i.e., all the subsets of V ′.
For accumulating the probabilities, for each E∗, we first need to consider all the cases (i.e., all the
subsets of E∗) in each round that can accumulate to E∗, and we need to use the inclusion-exclusion
principle to avoid counting some sub-motifs multiple times, where again all the subsets of E∗ need
to be considered. Hence, for motifs of order k, the number of cases is at least O(2(

k
2)).

Theorem B.6 (Time complexity of computing motif probabilities with parallel binding). Given
p :
(
V
2

)
→ [0, 1], g : V → [0, 1], and R ∈ N, computing PrfPB

p;g,R
[E(G[V ′]) = E∗] takes O(|V |3)

time in total for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
V
3

)
.

Proof. For computing motif probabilities, we need to enumerate all triplets V ′ = {u, v, w} ∈
(
V
3

)
and compute the motif probability for each 3-motif. For each motif, the calculation only involves
arithmetic operations, which takes O(1) time since the formulae are fixed. In conclusion, computing
3-motif probabilities takes O(

(|V |
3

)
) time.

B.5 FITTING

B.5.1 THE ERDŐS-RÉNYI (ER) MODEL

Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition. The Erdős-Rényi (ER) model (Erdős & Rényi, 1959) outputs edge probabilities with two
parameters: n0 and p0, and the output is pER

n0,p0
with pER

n0,p0
(u, v) = p0,∀u, v ∈

(
V
2

)
with V = [n0].

Given a graph G = (V = [n], E), ER outputs n0 = n and p0 = 2|E|
n(n−1) .

Lemma 5.12 (Reduced time complexity with ER). Given n0 ∈ N, p0 ∈ [0, 1], g0 ∈ [0, 1], and
R ∈ N, computing both PrfLB

p;g,R
[E(G[V ′]) = E∗] and PrfPB

p;g,R
[E(G[V ′]) = E∗] takes O(1) times

in total for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
V
3

)
with p = pER

n0,p0
and g(v) = g0,∀v ∈ V = [n0].

Proof. When p(u, v) ≡ v0 and g(v) ≡ g0, both PrfLB
p;g,R

[E(G[V ′]) = E∗] and

PrfPB
p;g,R

[E(G[V ′]) = E∗] become the same functions for all V ′ ∈
(
V
3

)
, which only involve arith-

metic operations on p0 and g0 and thus take O(1) time for computation. Since the functions are the
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same for all V ′ ∈
(
V
3

)
, we only need to calculate for a single V ′. Hence, the total time complexity

is still O(1). The detailed formulae are as follows.
Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding.Local binding. Fix any V ′ ∈

(
V
3

)
, we have

pg(V
∗) = g

|V ∗|
0 (1− g0)

3−|V ∗|,∀V ∗ ⊆ V ′,

pg(V≥2) = 3g20(1− g0) + g30 ,

and
pg(V<2) = 3g0(1− g0)

2 + (1− g0)
3.

Hence

q({u, v, w}) =
1−

(
3g0(1− g0)

2 + (1− g0)
3
)R

3g20(1− g0) + g30
g30 ,

q2 := q({u, v} → {u, v, w}) = q({u,w} → {u, v, w}) = q({v, w} → {u, v, w})

=

(
1−

(
3g0(1− g0)

2 + (1− g0)
3 + g20(1− g0)

)R
2g20(1− g0) + g30

−
1−

(
3g0(1− g0)

2 + (1− g0)
3
)R

3g20(1− g0) + g30

)
,

and
qindep = 1− q({u, v, w})− 3q2.

E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}E∗ = {(u, v), (u,w), (v, w)}

PrfLB
p;g,R

[E(G[V ′]) = {(u, v), (u,w), (v, w)}] = q({u, v, w})p0 + 3q2p
2
0 + qindepp

3
0

|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2|E∗| = 2

For each E∗ with |E∗| = 2, i.e., E∗ = {(u, v), (u,w)} or {(u, v), (v, w)} or (u,w), (v, w), we have

PrfLB
p;g,R

[E(G[V ′]) = E∗] = q2p0(1− p0) + qindepp
2
0(1− p0)

|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1|E∗| = 1

For each E∗ with |E∗| = 1, i.e., E∗ = {(u, v)} or {(u,w)} or (v, w), we have

PrfLB
p;g,R

[E(G[V ′]) = E∗] = q2p0(1− p0) + qindepp0(1− p0)
2

E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅E∗ = ∅

PrfLB
p;g,R

[E(G[V ′]) = {(u,w)}] = q({u, v, w})(1− p0) + 3q2(1− p0)
2 + qindep(1− p0)

3

B.5.2 THE CHUNG-LU (CL) MODEL

Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition. The Chung-Lu (CL) model (Chung & Lu, 2002) outputs edge probabilities with a
sequence of expected degrees D = (d1, d2, . . . , dn), and the output is pCL

D with pCL
D (u, v) =

min( dudv∑n
i=1 di

, 1),∀u, v ∈
(
V
2

)
with V = [n]. Given a graph G = (V = [n], E), CL outputs

di = d(i;G) for each node i ∈ V .
Lemma 5.13 (Reduced time complexity with CL). Given D = (d1, d2, . . . , dn), gd for d ∈
{d1, d2, . . . , dn}, and R ∈ N, computing both PrfLB

p;g,R
[E(G[V ′]) = E∗] and PrfPB

p;g,R
[E(G[V ′]) =

E∗] for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
[n]
3

)
takes O(k3deg) times with p = pCL

D and g(i) = gdi
,∀i ∈ [n].

Proof. The key idea is that given V ′ = {i, j, k} ∈
(
V
3

)
, both the three edge probabilities (i.e., p(i, j),

p(i, k), and p(j, k)) and the three node-sampling probabilities (i.e., g(i), g(j), and g(k)) are fully
determined by the degrees of the three nodes.
Hence, we only need to calculate motif probabilities for each degree combination instead of each
node combination. Since we have kdeg different degrees, the total number of degree combinations of
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size 3 is O(k3deg), and the calculation for each combination takes O(1) time on arithmetic operations
with fixed formulae. In conclusion, the total time complexity is O(k3deg).

Some details are as follows. Let kdeg = {d1, d2, . . . , dn} = {d̃1, d̃2, . . . , d̃kdeg
}, and let ni denote

the number of nodes with degree d̃i, for i ∈ [kdeg]. Given three degrees d̃i, d̃j , and d̃k, we have

• ninjnk such combinations, when i ̸= j, i ̸= k, and j ̸= k

•
(
ni

2

)
nk such combinations, when i = j and i ̸= k; similarly for i = k and i ̸= j or j = k and

i ̸= j

•
(
ni

3

)
such combinations, when i = j = k.

B.5.3 THE STOCHASTIC BLOCK (SB) MODEL

Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition. Given a graph G = (V = [n], E) and a node partition fB : [n] → [c] with c ∈ N, let
Vi = {v ∈ V : fB(v) = i} denote the set of nodes partitioned in the i-th group for i ∈ [c]. The
fitting of the edge probabilities in the stochastic block (SB) model gives pB : [c]× [c] → [0, 1] with

pB(i, i) =
|E(G[Vi])|

(|Vi|
2 )

and pB(i, j) =
|E∩{(v,v′) : v∈Vi,v

′∈Vj}|
|Vi||Vj | , for i ̸= j ∈ [c].

Lemma 5.14 (Reduced time complexity with SB). Given fB : [n0] → [c], fB : [n0] → [c], gi for
i ∈ [c], and R ∈ N, computing both PrfLB

p;g,R
[E(G[V ′]) = E∗] and PrfPB

p;g,R
[E(G[V ′]) = E∗] takes

O(c3) times in total for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
[n]
3

)
with p = pSB

fB ,pB
and g(v) = gfB(v) for each

v ∈ V = [n].

Proof. The key idea is that given V ′ = {i, j, k} ∈
(
V
3

)
, both the three edge probabilities (i.e., p(i, j),

p(i, k), and p(j, k)) and the three node-sampling probabilities (i.e., g(i), g(j), and g(k)) are fully
determined by the membership the three nodes, i.e., fB(i), fB(j), and fB(k).
Hence, we only need to calculate motif probabilities for each membership combination instead of
each node combination. Since we have c different groups, the total number of degree combinations
of size 3 is O(c3), and the calculation for each combination takes O(1) time on arithmetic operations
with fixed formulae. In conclusion, the total time complexity is O(c3).
Some details are as follows. Let ni = |Vi| denote the number of nodes in the i-th group. Given three
group membership indicators i, j, and k, we have

• ninjnk such combinations, when i ̸= j, i ̸= k, and j ̸= k

•
(
ni

2

)
nk such combinations, when i = j and i ̸= k; similarly for i = k and i ̸= j or j = k and

i ̸= j

•
(
ni

3

)
such combinations, when i = j = k.
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B.5.4 THE STOCHASTIC KRONECKER (KR) MODEL

Definition B.7 (Kronecker product and Kronecker power). Given two matrices A ∈ Rm×n and
B ∈ Rp×q , the Kronecker product between A and B is

A⊗B =



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q
a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q

...
...

. . .
...

...
...

. . .
...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q
am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q

...
...

. . .
...

...
...

. . .
...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq.


Given k ∈ N, the k Kronecker power of A is

A⊗ (A · · · (A⊗ (A⊗A)))︸ ︷︷ ︸
k − 1 times of Kronecker products

.

Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition.Definition. The stochastic Kronecker (KR) model (Leskovec et al., 2010) outputs edge probabilities
with a seed matrix θ ∈ [0, 1]2×2 and kKR ∈ N,11, and the output pKR

θ,kKR
is the kKR-th Kronecker

power of θ.

Lemma B.8 (Node equivalence in KR). Given θ ∈ [0, 1]2×2, kKR ∈ N, gi for 0 ≤ i ≤ kKR, and
R ∈ N, computing both PrfLB

p;g,R
[E(G[V ′]) = E∗] and PrfPB

p;g,R
[E(G[V ′]) = E∗] takes O(k7KR)

times in total for all E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
[n]
3

)
with p = pKR

θ,kKR
and g(v) = gi with i being the

number of ones in the binary representation of v − 1, for each v ∈ [2kKR ].

Proof. A square binary matrix P ∈ {0, 1}n×n for some n ∈ N is a permutation matrix if exactly
one entry in each row or column of P is 1, i.e.,

∑
k Pik =

∑
k Pkj = 1,∀i, j ∈ [n].

With binary node labels, given two nodes

u = (u1u2 · · ·ukKR
)2

and
v = (v1v2 · · · vkKR

)2,

we have

θ(kKR)
uv =

kKR∏
i=1

θuivi ,

which implies that for any permutation π ∈ SkKR
,

θ(kKR)
uv = θ

(kKR)
π(u)π(v),∀u, v,

where with a slight abuse of notation,

π(u) = (uπ(1)uπ(2) · · ·uπ(kKR))2

and
π(v) = (vπ(1)vπ(2) · · · vπ(kKR))2.

On the other hand, for any two nodes with the same number of ones in the binary representations,
we can find a permutation π between the two binary representations by seeing them as sequences.
Let P = Pπ ∈ {0, 1}2kKR×2kKR with Pij = 1 if and only if π converts the binary presentation of
i− 1 to that of j − 1, and we have P⊤θ

(kKR)
uv P = θ

(kKR)
uv .

11We consider the commonly used 2-by-2 seed matrices.
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Figure 2: The node combinations in KR.

Remark B.9. The equivalence in KR is slightly weaker than that in the other three models (ER,
CL, and SB). Specifically, in the other three models, “two nodes i and j are equivalent” means that,
when you swap i and j while keeping the other nodes unchanged, the RGM is kept unchanged. For
KR, the equivalence is weaker in that you have to swap i and j together with all the other nodes
w.r.t. a permutation. This is also why the reduced time complexity is O(k7KR) instead of O(k3KR)
in Lemma 5.15.

Lemma 5.15 (Reduced time complexity with KR). Given θ ∈ [0, 1]2×2, kKR ∈ N, gi for 0 ≤ i ≤
kKR, and R ∈ N, computing both PrfLB

p;g,R
[E(G[V ′]) = E∗] and PrfPB

p;g,R
[E(G[V ′]) = E∗] for all

E∗ ⊆
(
V ′

2

)
and V ′ ∈

(
[n]
3

)
takes O(k7KR) times with p = pKR

θ,kKR
and g(v) = gi with i being the

number of ones in the binary representation of v − 1, for each v ∈ [2kKR ].

Proof. We divide node combinations w.r.t the binary node labels. As shown in the proof of
Lemma B.8, node combinations are equivalent with permutations on the binary node labels. Hence,
in each equivalent class of node combinations, we can consider only the one with the form as shown
in Figure 2, where each number (x0, x1, x00, etc.) represents the number of zeros and ones. Here,

• the first node v1 (more precisely, its binary node representation) has x0 zeros first and then x1

ones,
• the second node v2 has x00 zeros, then x01 ones, then x10 zeros, and finally x11 ones, and
• the third node v3 has x000 zeros, then x001 ones, then x010 zeros, then x011 ones, then x100 zeros,

then x101 ones, then x110 zeros, and finally x111 ones.

As indicated in the figure, we have

• x0 + x1 = kKR

• x00 + x01 = x0, x10 + x11 = x1

• x000 + x001 = x00, x010 + x011 = x01, x100 + x101 = x10, and x110 + x111 = x11.

The number of different equivalent classes is upper-bounded by
kKR∑
x0=0

x0∑
x00=0

kKR−x0∑
x10=0

x00∑
x0000

x0−x00∑
x010=0

x10∑
x100=0

kKR−x0−x10∑
x110=0

1

=
(kKR + 1)(kKR + 2)(kKR + 3)(kKR + 4)(kKR + 5)(kKR + 6)(kKR + 7)

5040
= O(k7KR).

For each equivalent class, the calculation only involves arithmetic with a fixed formula and thus
takes O(1) time. Note that the Kronecker power can be computed beforehand with much lower
time complexity, i.e., o(k7KR) (Seroussi & Ma, 1983). In conclusion, the total time complexity is
O(k7KR).

C ON (NON-)ISOLATED NODES

C.1 TRACTABLE NUMBER OF (NON-)ISOLATED NODES WITH PARALLEL BINDING

Theorem C.1 (Tractable number of (non-)isolated nodes with parallel binding). For any p :
(
V
2

)
→

[0, 1], g : V → [0, 1], R ∈ N, we can compute the closed-form (w.r.t. p, g, and R)
EfPB

p;g,R
[|{v ∈ G : d(v;G) ≥ 1}|].
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Proof. By the linearity of expectation,

EfPB
p;g,R

[|{v ∈ G : d(v;G) ≥ 1}|] =
∑
v∈V

PrfPB
p;g,R

[d(v;G) ≥ 1].

Hence, we only need to compute the probability of each node v being (non-)isolated. A node v is
isolated if and only if no edge incident to v is inserted in each round. In each round, when v is
sampled, i.e., v ∈ Vs, the probability that no edge incident to v is inserted is 1 −maxu∈Vs p(u, v).
Let piso(v) denote the aforementioned probability and sort V \ {v} = {u1, u2, . . . , un−1} with
n = |V | and p(u1, v) ≥ p(u2, v) ≥ · · · ≥ p(un−1, v). We have

piso(v) = (1−Pr[v ∈ Vs])+Pr[v ∈ Vs](1−EfPB
p;g,R

[max
u∈Vs

p(u, v)]) = 1−g(v)EfPB
p;g,R

[max
u∈Vs

p(u, v)],

where

EfPB
p;g,R

[max
u∈Vs

p(u, v)]

= Pr[u1 ∈ Vs]p(u1, v) + Pr[u1 /∈ Vs ∧ u2 ∈ Vs]p(u2, v) + · · ·+ Pr[(

n−2∧
i=1

ui /∈ Vs) ∧ un−1 ∈ Vs]p(un−1, v)

= g(u1)p(u1, v) + (1− g(u1))g(u2)p(u2, v) + · · ·+
n−2∏
i=1

(1− g(ui))g(un−1)p(un−1, v).

Finally, the probability that v is isolated after R rounds and dealing with prem is

p̃iso(v) = (piso(v))
R(1− prem(v)),

and thus the expected number of non-isolated nodes is

EfPB
p;g,R

[|{v ∈ G : d(v;G) ≥ 1}|] =
∑
v∈V

(1− p̃iso(v)).

The expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodesThe expected number of degree-1 nodes We can extend the reasoning above to compute the ex-
pected number of degree-1 nodes. Fix a node v, for each node uk, we shall compute the probability
that no other (uk′ , v) with k′ ̸= k is inserted, denoted by ps(v;uk), which is the probability of v
being isolated plus the probability of v being only adjacent to uk. In other words, we compute the
probability of v being isolated while ignoring uk. We have

ps(v;uk) = (1− g(v)) + g(v)p̃s(v;uk),

where

p̃s(v;uk) = g(u1)(1− p(u1, v))+

(1− g(u1))g(u2)(1− p(u2, v)) + · · ·+
k−2∏
i=1

(1− g(ui))g(uk−1)(1− p(uk−1, v))+

k−1∏
i=1

(1− g(ui))g(uk)p̂s(v;uk)+

k+1∏
i=1

(1− g(ui))g(uk+1)(1− p(uk+1, v)) + · · ·+

n−2∏
i=1

(1− g(ui))g(un−1)p(un−1, v)+

n−1∏
i=1

(1− g(ui))
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with

p̂s(v;uk) = g(uk+1)(1− p(uk+1, v))+

(1− g(uk+1))g(uk+2)(1− p(uk+2, v)) + · · ·+
n−2∏

i=k+1

(1− g(ui))g(un−1)(1− p(un−1, v))+

n−1∏
i=k+1

(1− g(ui)).

Finally, the probability of v being degree-1 is

n−1∑
i=1

(ps(v;ui)− piso(v)).

Theorem C.2 (Time complexity of computing the expected number of (non-)isolated nodes
with parallel binding). Given p :

(
V
2

)
→ [0, 1], g : V → [0, 1], and R ∈ N, computing

EfPB
p;g,R

[|{v ∈ G : d(v;G) ≥ 1}|] takes O(|V |2 log |V |) time.

Proof. For computing the expected number of non-isolated nodes, for each node v, we need to
first sort the other nodes u ∈ V \ {v} w.r.t. p(u, v), which takes O(|V | log |V |) times. After
that, the calculation only arithmetic operations, which takes O(1) time since the formulae are fixed.
Hence, for each node v it takes O(log |V |) times. In conclusion, for all the nodes in V , it takes
O(|V | log |V |) time in total.

Remark C.3. Considering node equivalence (see Section 5.4) can also be used to reduce the time
complexity of computing the number of (non-)isolated nodes.

C.2 EXPERIMENTAL RESULTS

Since we have the tractability results on the number of (non-)isolated nodes, we can also fit and
control the number of (non-)isolated nodes with our binding schemes. Specifically, in our main
experiments, the objective of fitting is merely the number of triangles. Here, we further consider
variants with the fitting objective including both the number of triangles and the number of (non-
)isolated nodes, trying to preserve both numbers as the ground truth.
In Table 5, for each dataset and each model, we compare the ground-truth graph, the corresponding
EIGM, and the following two variants of EPGMs:

1. PARABDG: parallel binding with the number of triangles as the objective
2. PARABDG-N: parallel binding with both the number of triangles and the number of (non-)isolated

nodes12

and report the following statistics of the generated graphs:

1. nni: the number of non-isolated nodes
2. △: the number of triangles
3. GCC: the global clustering coefficient
4. ALCC: the average clustering coefficient

As in the main text, the statistics are averaged on 100 random trials, i.e., 100 generated graphs.
For ER, we relax both the number of total nodes and the uniform edge probability, i.e., n0 and p0,
for fitting. For the other three models (CL, SB, and KR), we still use the edge probabilities obtained
from the original model and only add an additional term to the objective.
As shown in the results, in most cases, PARABDG generates graphs with fewer non-isolated nodes
compared to the ground truth, and PARABDG-n well fits the number of non-isolated nodes while still
improving clustering compared to EIGMs. Notably, since the total number of nodes for KR can only

12We only have tractability results with parallel binding.
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Table 5: The number of non-isolated nodes and clustering metrics of graphs generated by different realization
methods. The number of non-isoalted nodes nni and the number of triangles (△) are normalized. For each
dataset and each model, the best result is in bold and the second best is underlined.

dataset Hams Fcbk Polb

metric nni △ GCC ALCC nni △ GCC ALCC nni △ GCC ALCC

model GROUNDT 1.000 1.000 0.229 0.540 1.000 1.000 0.519 0.606 1.000 1.000 0.226 0.320

ER
EDGEIND 1.000 0.013 0.008 0.008 1.000 0.009 0.011 0.011 1.000 0.034 0.022 0.022
PARABDG 0.812 0.988 0.385 0.640 0.555 1.002 0.574 0.815 0.801 1.025 0.412 0.659

PARABDG-N 0.996 0.990 0.481 0.748 1.007 0.584 0.594 0.835 1.007 1.012 0.532 0.787

CL
EDGEIND 0.964 0.299 0.067 0.058 0.988 0.124 0.064 0.063 0.944 0.792 0.183 0.173
PARABDG 0.771 1.000 0.185 0.471 0.656 1.006 0.336 0.626 0.789 1.010 0.221 0.468

PARABDG-N 0.959 0.257 0.027 0.069 0.969 1.098 0.125 0.151 0.935 0.794 0.135 0.219

SB
EDGEIND 0.996 0.263 0.080 0.038 1.000 0.153 0.145 0.080 0.975 0.478 0.145 0.164
PARABDG 0.719 0.993 0.241 0.521 0.608 1.035 0.529 0.557 0.899 1.010 0.183 0.251

PARABDG-N 0.991 1.168 0.154 0.092 1.000 1.036 0.423 0.204 0.953 0.475 0.094 0.217

KR
EDGEIND 0.996 0.185 0.039 0.060 1.014 0.052 0.035 0.042 1.598 0.101 0.040 0.075
PARABDG 0.856 0.997 0.165 0.394 0.781 0.971 0.347 0.605 1.194 0.942 0.219 0.420

PARABDG-N 0.996 0.301 0.028 0.099 1.000 0.953 0.254 0.262 0.987 0.976 0.268 0.368

dataset Spam Cepg Scht

metric nni △ GCC ALCC nni △ GCC ALCC nni △ GCC ALCC

model GROUNDT 1.000 1.000 0.145 0.286 1.000 1.000 0.321 0.447 1.000 1.000 0.377 0.350

ER
EDGEIND 1.000 0.005 0.003 0.003 1.000 0.037 0.033 0.033 1.000 0.027 0.029 0.029
PARABDG 0.783 0.993 0.401 0.663 0.688 0.968 0.508 0.750 0.617 0.991 0.559 0.794

PARABDG-N 1.006 1.009 0.526 0.787 1.008 0.832 0.606 0.839 1.002 0.669 0.604 0.839

CL
EDGEIND 0.906 0.496 0.072 0.060 0.953 0.683 0.230 0.223 0.964 0.644 0.245 0.234
PARABDG 0.700 1.007 0.131 0.436 0.698 0.999 0.310 0.578 0.866 1.135 0.294 0.610

PARABDG-N 0.908 0.445 0.033 0.071 0.927 0.725 0.198 0.334 0.932 0.639 0.200 0.347

SB
EDGEIND 0.982 0.528 0.094 0.036 0.994 0.662 0.258 0.200 0.992 0.644 0.272 0.128
PARABDG 0.685 0.994 0.158 0.356 0.911 1.047 0.333 0.363 0.792 0.975 0.340 0.437

PARABDG-N 0.957 0.537 0.070 0.109 0.990 1.056 0.329 0.202 0.972 0.956 0.292 0.205

KR
EDGEIND 1.438 0.061 0.014 0.025 1.210 0.132 0.069 0.120 1.953 0.032 0.033 0.052
PARABDG 1.024 1.049 0.161 0.378 1.043 1.001 0.279 0.461 1.211 1.069 0.346 0.581

PARABDG-N 0.995 0.981 0.161 0.385 0.996 1.118 0.296 0.478 0.997 1.030 0.370 0.640

be a power of the seed-matrix size (i.e., a power of 2 in our experiments), the corresponding EIGM
generates graphs with too many non-isolated nodes in many cases, while PARABDG-n generates
graphs with a more similar number of non-isolated nodes (i.e., closer to the ground truth). Moreover,
it is also known that even without binding, some models may suffer from the problem of isolated
nodes, e.g., CL (Brissette & Slota, 2021; Brissette et al., 2022) and KR (Mahdian & Xu, 2007;
Seshadhri et al., 2013).
Overall, the results validate that, our tractability results allow practitioners to fit the number of non-
isolated nodes (if that is one of their main concerns) while improving other aspects, e.g., clustering.

D ADDITIONAL DISCUSSIONS

D.1 GENERAL GRAPHS

As mentioned in Section 2, we focus on undirected unweighted graphs without self-loops following
common settings for random graph models in the main text. Below, we shall discuss different more
general cases.
Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops.Directed edges and self-loops. In our binding schemes (Algorithms 1 to 3), if we consider directed
edges and/or self-loops, we can further consider them after sampling a group of nodes. Regard-
ing theoretical analysis, we can further consider subgraphs (motifs) with directed edges and self-
loops (Milo et al., 2002) and the high-level ideas still apply.
Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges.Weighted edges. Our graph generation algorithms only determine the (in)existence of edges and
we may need additional schemes to generate edge weights. For example, we can use algorithms
that generate proper edge weights when given graph topology (Bu et al., 2023). Since in our graph
generation algorithms, nodes (and thus edges) can be sampled multiple times, an alternative way to
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have edge weights is to allow each edge to be inserted multiple times and use the times of repetition
as edge weights.

D.2 OVERLAP-RELATED TRIANGLE-DENSITY RESULTS

As mentioned in Section 3.1, Chanpuriya et al. (2024) have recently extended their theoretical
analysis to other categories of RGMs. In addition to EIGMs, they further considered two other
categories: node independent graph models (NIGMs) and fully dependent graph models (FDGMs).
Between the two, FDGMs means any distribution of graphs, i.e., any RGM, is allowed.
They only discussed general overlap-related triangle-density upper bounds in those categories of
RGMs, without detailed tractability results for practical graph generations. Specifically, their graph
generation algorithm is based on maximal clique enumeration (MCE). However, given a graph,
MCE itself can take exponential time (Eblen et al., 2012).
Also, what we focus on in this work, i.e., the category of binding-based EPGMs, is a subset of
EPGMs and are not “fully general” as FDGMs. On the other hand, NIGMs are associated with
node embeddings, where we have a node embedding space (i.e., a distribution) E and a symmetric
function e : E × E → [0, 1], and each node i has a node embedding xi sampled from E i.i.d., and
each edge (i, j) exists with probability e(xi,xj) independently. Our binding-based EPGMs do not
fall in this category either.

D.3 SUBSET SAMPLING

As mentioned in Footnote 7 in Section 5.2, we use independent node sampling (yet still with edge
dependency) which is simple, tractable, and works well. Specifically, independent node sampling
allows us to easily compute the marginal probability of each node binding sampled in each round,
which is involved in the derivation of our tractability results. Also, as shown in our experiments,
with binding schemes using independent node sampling, we still achieve significant empirical im-
provement over EIGMs. In the most general case, considering the sampling probabilities of all 2|V |

subsets would be intractable. Recently, a line of works has been proposed for tractable and differ-
entiable subset sampling (Xie & Ermon, 2019; Pervez et al., 2023; Ahmed et al., 2023; Sutter et al.,
2023), and exploring more flexible node sampling schemes is an interesting future direction to be
explored.

D.4 PRACTICAL MEANING OF BINDING

As we mentioned in Section 5.2, local binding (and parallel binding as a parallel version) binds
node pairs locally among a group of nodes (instead of some irrelevant node pairs). Such node pairs
are structurally related, and are expected to be meaningfully related in the corresponding real-world
systems. We shall discuss two specific real-world scenarios below.
Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks.Group interactions in social networks. In typical social networks, nodes represent people, and
edges represent social communications/relations between people. Each group “bound together”
by our binding algorithms can represent a group interaction, e.g., an offline social event (meeting,
conference, party) or an online social event (group chat, Internet forum, online game). In such so-
cial events, people gather together and the communications/relations between them likely co-occur.
Certainly, not necessarily all people in such events would communicate with each other, e.g., some
people are more familiar with each other. This is exactly the point of considering binding with
various edge probabilities (instead of just inserting cliques).
Specifically, the random variable s represents the overall “social power” of an event, while individual
edge probabilities p(u, v)’s represent some local factors (e.g., their personal relationship) between
each pair of people. A line of research studies group interactions in social networks (Felmlee &
Faris, 2013; Levorato, 2014; Purushotham & Jay Kuo, 2015; Jang et al., 2016; Li et al., 2020;
Iacopini et al., 2022).
Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks.Gene functional associations in gene networks. In typical gene networks, nodes represent genes,
and edges represent gene functional associations, i.e., connections between genes that contribute
jointly to a biological function. Each group “bound together” by our binding algorithms can
represent a biological function, since typically (1) a single biological function involves multiple
genes (Plomin, 1990; Anastassiou, 2007; Naoumkina et al., 2010) (represented by a group of nodes
bound together), and (2) the same biological function may involve different genes in different

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 6: The basic statistics of the datasets.

dataset |V | |E| # triangles GCC ALCC

Hams 2,000 16,097 157,953 0.229 0.540
Fcbk 4,039 88,234 4,836,030 0.519 0.606
Polb 1,222 16,717 303,129 0.226 0.320
Spam 4,767 37,375 387,051 0.145 0.286
Cepg 1,692 47,309 2,353,812 0.321 0.447
Scht 2,077 63,023 4,192,980 0.377 0.350

cases (Gottesman & Hanson, 2005; Pritykin et al., 2015; Storey et al., 2007) (represented by the
probabilistic nature of binding).
On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding.On parallel binding. Specifically, as mentioned in Section 5.3, compared to local binding where
each pair can only participate in a single group, parallel binding allows each pair to participate
in multiple groups (in different rounds). This is also true for real-world group interactions, where
different groups overlap and intersect with each other (Lee et al., 2021; LaRock & Lambiotte, 2023).

E ADDITIONAL DETAILS OF THE EXPERIMENTS

E.1 EXPERIMENTAL SETTINGS

Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets.Datasets. We use six real-world datasets from three different domains: (1) social networks ham-
sterster (Hams) and facebook (Fcbk), (2) web graphs polblogs (Polb) and spam (Spam), and (3)
biological graphs CE-PG (Cepg) and SC-HT (Scht).
The datasets are available online (Rossi & Ahmed, 2015; Leskovec & Krevl, 2014):

• hamsterster (Hams) (Hamsterster) is available at https://networkrepository.com/
soc-hamsterster.php

• facebook (Fcbk) (Leskovec & Mcauley, 2012) is available at https://snap.stanford.
edu/data/ego-Facebook.html

• polblogs (Polb) (Adamic & Glance, 2005) is available at https://networks.skewed.de/
net/polblogs

• spam (Spam) (Castillo et al., 2008) is available at https://networkrepository.com/
web-spam.php

• CE-PG (Cepg) (Cho et al., 2014) is available at https://networkrepository.com/
bio-CE-PG.php

• SC-HT (Scht) (Cho et al., 2014) is available at https://networkrepository.com/
bio-SC-HT.php

In Table 6, we show the basic statistics (e.g., the numbers of nodes and edges) of the datasets.
We provide the formal definitions of some basic statistics below.
Definition E.1 (Clustering coefficients). Given G = (V,E), the number of wedges (i.e., open
triangles) is nw(G) =

∑
v∈V

(
d(v)
2

)
. The global clustering coefficient (GCC) of G is defined as

GCC(G) =
3△(G)

nw(G)
,

where △(G) is the number of triangles in G and it is multiplied by 3 because each triangle corre-
sponds to three wedges (consider three different nodes as the center of the wedge). The average
local clustering coefficient (ALCC) of G is defined as

ALCC(G) =
∑

v : d(v)≥2

△(v;G)(
d(v)
2

) ,

where △(v;G) is the number of triangles involving v in G.

Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models.Models. The Erdős-Rényi (ER) model outputs edge probabilities with two parameters: n0 and p0,
and the output is pER

n0,p0
with pER

n0,p0
(u, v) = p0,∀u, v ∈

(
V
2

)
with V = [n0]. Given a graph

G = (V = [n], E), the standard fitting of ER gives n0 = n and p0 = |E|
(|V |

2 )
.
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The Chung-Lu (CL) model outputs edge probabilities with a sequence of expected degrees D =
(d1, d2, . . . , dn), and the output is pCL

D with pCL
D (u, v) = min( dudv∑n

i=1 di
, 1),∀u, v ∈

(
V
2

)
with V =

[n]. Given a graph G = (V = [n], E), the standard fitting of CL gives di = d(i;G) for each node
i ∈ V .
The stochastic block (SB) model outputs edge probabilities with (1) a partition of nodes which
can be represented by an assignment function fB : [n0] → [c] with n0 nodes and c blocks and
(2) the edge probability between each pair of blocks (including between two identical blocks),
which can be represented by pB : [c] × [c] → [0, 1], and the output is pSB

fB ,pB
with pSB

fB ,pB
(u, v) =

pB(fB(u), fB(v)),∀u, v ∈ [n0]. In our experiments, we use the Python library Graspologic (Chung
et al., 2019) which contains a fitting algorithm for SB. Specifically, it uses spectral embed-
ding (Von Luxburg, 2007; Sussman et al., 2012; Rohe et al., 2011) and a Gaussian mixture
model (Reynolds et al., 2009) to obtain node partitions.
The stochastic Kronecker (KR) model outputs edge probabilities with a seed matrix θ ∈ [0, 1]2×2

and a Kronecker power kKR ∈ N, and the output is pKR
θ,kKR

with pKR
θ,kKR

(u, v) = θ
(kKR)
uv ,∀u, v ∈

(
V
2

)
with V = [2kKR ], where θ(kKR) ∈ [0, 1]2

kKR×2kKR is the kKR-th Kronecker power of θ. In our
experiments, we use kronfit (Leskovec et al., 2010) proposed by the original authors of KR.
Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting.Fitting. For fitting the parameters for our binding schemes, we use the Adam optimizer (Kingma &
Ba, 2015) with learning rate η = 0.001 and nep = 10, 000 epochs for training. In our experiments,
we consistently use R = 100, 000 rounds for both of our binding schemes. By default, the input
edge probabilities p are provided and fixed as described above. By default, the objective is the
expected number of triangles. More specifically, it is

(1−
EfX

p;g,R
[△(G)]

△(Ginput)
)2

where

EfX
p;g,R

[△(G)] =
∑

V ′∈(V3)

Pr
fX
p;g,R

[E(G[V ′]) =

(
V ′

2

)
]

is the expected number of triangles in a generated graph with X ∈ {LOCLBDG, PARABDG} in-
dicating the binding scheme, and △(Ginput) is the ground-truth number of triangles in the input
graph.
We observe that our fitting algorithms assign different node-sampling probabilities to different
nodes, which implies that different nodes have different levels of importance in binding. In Fig-
ure 3, for the CL model and for each dataset, we show the relations between nodes’ degrees and
their node-sampling probabilities in LOCLBDG and PARABDG. For LOCLBDG, we observe strong
positive correlations between node degrees and node-sampling probabilities. For PARABDG, similar
trends are observed, but the patterns are quite different. Also, we can observe that the node-sampling
probabilities for PARABDG are overall lower than those for LOCLBDG, as mentioned in Section 6.4.
Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software.Hardware and software. All the experiments of fitting are run on a machine with two Intel Xeon®

Silver 4210R (10 cores, 20 threads) processors, a 512GB RAM, and RTX A6000 (48GB) GPUs.
A single GPU is used for each fitting process. The code for fitting is written in Python, using
Pytorch (Paszke et al., 2019). All the experiments of graph generation are run on a machine with
one Intel i9-10900K (10 cores, 20 threads) processor, a 64GB RAM. The code for generation is
written in C++, compiled with G++ with O2 optimization and OpenMP (Dagum & Menon, 1998)
parallelization.

E.2 P1: CLUSTERING

As mentioned in Section 6.2, the results in Table 1 are averaged on 100 random trials. In Table 7,
we show the full results with standard deviations. With binding, the variance is higher since the
covariances between edges are higher with dependency. We also compute the mean squared errors
w.r.t. each metric. The results are in Table 8. Notably, for graph generators, variability is desirable
in many cases (Moreno et al., 2018; Stamm et al., 2023).
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Figure 3: The relations between node degrees and node-sampling probabilities.

E.3 P2: DEGREES, DISTANCES, AND OTHER GRAPH STATISTICS

Definition E.2 (Paths and distance). Given a graph G = (V,E), a sequences of nodes
(v1, v2, . . . , vt) consisting of t distinct nodes is a path between v1 and vt, if (vi, vi+1) ∈ E,∀i ∈
[t− 1], and t is called the length of the path. Given two nodes u, v ∈ V , the distance between u and
v is the length of the shortest path between u and v.

Definition E.3 (Connected components). Given a graph G = (V,E), and two nodes u, v ∈ V , we
say u and v are in the same connected component, if and only if there exists at least one path between
u and v. This relation of “being in the same connected component” forms equivalent classes among
the nodes, and each equivalent class is a connected component. A largest connected component is a
connected component with the largest size (i.e., the number of nodes in it).13

In Figure 4, for each dataset (each column) and each model (each row), we compare the degree
distributions and distance distributions in the ground-truth graph and the graphs generated with each
realization method, supplementing Figure 1.
In Table 9, we provide the detailed numerical results w.r.t. degrees and distances. Specifically, for
each dataset, each mode, and each realization method, we report the following statistics:

• the results of the linear regression of node degrees k and the number of nodes with each degree k
on a log-log scale: the fit slope (the exponent α in the corresponding power-law fitting) and the r
value (the strength of a power law)

• the average path length (APL) and the 90%-effective diameter (deff ) in the largest connected
component14

With binding, the generated graphs are overall closer to ground truth w.r.t. some other graph metrics:
modularity (Newman, 2006), conductance (Gleich, 2006), core numbers (Seidman, 1983), average
vertex betweenness (Freeman, 1977), average edge betweenness (Brandes, 2008), and natural con-
nectivity (Chan et al., 2014). See Tables 11 to 16 for the detailed results. Modularity is computed

13A graph may contain several equal-size largest connected components, but it rarely happens for real-world
graphs.

14The average path length is the average distance of the pairs in the largest connected component, and the
90%-effective diameter is the minimum distance d such that at least 90% of the pairs in the largest connected
component have distances at most d.
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Table 7: The clustering metrics of graphs generated by different realization methods, with the standard devia-
tions. The number of triangles (△) is normalized.

dataset Hams Fcbk Polb

metric △ GCC ALCC △ GCC ALCC △ GCC ALCC
model GROUNDT 1.000 0.229 0.540 1.000 0.519 0.606 1.000 0.226 0.320

ER

EDGEIND 0.013 0.008 0.008 0.009 0.011 0.011 0.034 0.022 0.022
(std) 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

LOCLBDG 0.997 0.321 0.236 1.010 0.448 0.223 0.955 0.336 0.247
(std) 0.279 0.028 0.022 0.445 0.077 0.042 0.320 0.038 0.032

PARABDG 0.988 0.385 0.640 1.002 0.574 0.815 1.025 0.412 0.659
(std) 0.081 0.014 0.018 0.155 0.036 0.026 0.135 0.022 0.028

CL

EDGEIND 0.299 0.067 0.058 0.124 0.064 0.063 0.792 0.183 0.173
(std) 0.010 0.002 0.002 0.002 0.001 0.001 0.017 0.002 0.005

LOCLBDG 0.992 0.165 0.255 1.026 0.255 0.305 1.002 0.214 0.341
(std) 0.353 0.030 0.026 1.033 0.095 0.050 0.132 0.008 0.021

PARABDG 1.000 0.185 0.471 1.006 0.336 0.626 1.010 0.221 0.468
(std) 0.144 0.013 0.013 0.261 0.035 0.018 0.068 0.003 0.009

SB

EDGEIND 0.263 0.080 0.038 0.153 0.145 0.080 0.478 0.145 0.164
(std) 0.007 0.001 0.001 0.002 0.001 0.000 0.012 0.002 0.004

LOCLBDG 1.039 0.219 0.240 0.934 0.429 0.331 0.994 0.237 0.355
(std) 0.419 0.042 0.026 0.732 0.086 0.074 0.386 0.025 0.037

PARABDG 0.993 0.241 0.521 1.035 0.529 0.557 1.010 0.183 0.251
(std) 0.118 0.013 0.012 0.504 0.064 0.042 1.819 0.076 0.054

KR

EDGEIND 0.185 0.039 0.060 0.052 0.035 0.042 0.101 0.040 0.075
(std) 0.006 0.001 0.002 0.001 0.000 0.001 0.003 0.001 0.003

LOCLBDG 1.095 0.152 0.230 0.927 0.239 0.270 1.061 0.141 0.234
(std) 0.580 0.047 0.028 1.090 0.117 0.048 2.234 0.106 0.054

PARABDG 0.997 0.165 0.394 0.971 0.347 0.605 0.942 0.219 0.420
(std) 0.210 0.021 0.016 0.395 0.055 0.017 0.601 0.075 0.035

dataset Spam Cepg Scht

metric △ GCC ALCC △ GCC ALCC △ GCC ALCC

model GROUNDT 1.000 0.145 0.286 1.000 0.321 0.447 1.000 0.377 0.350

ER

EDGEIND 0.005 0.003 0.003 0.037 0.033 0.033 0.027 0.029 0.029
(std) 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

LOCLBDG 0.993 0.336 0.234 1.016 0.397 0.258 1.012 0.420 0.251
(std) 0.158 0.022 0.013 0.557 0.083 0.057 0.687 0.094 0.063

PARABDG 0.993 0.401 0.663 0.968 0.508 0.750 0.991 0.559 0.794
(std) 0.047 0.010 0.011 0.183 0.039 0.038 0.198 0.043 0.035

CL

EDGEIND 0.496 0.072 0.060 0.683 0.230 0.223 0.644 0.245 0.234
(std) 0.010 0.001 0.002 0.008 0.001 0.004 0.006 0.001 0.003

LOCLBDG 1.028 0.124 0.260 0.996 0.293 0.430 1.036 0.318 0.469
(std) 0.214 0.016 0.019 0.241 0.018 0.033 0.367 0.028 0.042

PARABDG 1.007 0.131 0.436 0.999 0.310 0.578 1.135 0.294 0.610
(std) 0.074 0.006 0.011 0.107 0.004 0.010 1.290 0.079 0.033

SB

EDGEIND 0.528 0.094 0.036 0.662 0.258 0.200 0.644 0.272 0.128
(std) 0.013 0.002 0.001 0.008 0.002 0.002 0.006 0.001 0.001

LOCLBDG 0.985 0.152 0.223 0.986 0.323 0.415 1.034 0.354 0.386
(std) 0.171 0.018 0.017 0.450 0.037 0.046 0.368 0.034 0.042

PARABDG 0.994 0.158 0.356 1.047 0.333 0.363 0.975 0.340 0.437
(std) 0.110 0.013 0.017 0.541 0.085 0.056 0.298 0.045 0.030

KR

EDGEIND 0.061 0.014 0.025 0.132 0.069 0.120 0.032 0.033 0.052
(std) 0.002 0.000 0.001 0.002 0.001 0.002 0.001 0.000 0.001

LOCLBDG 0.943 0.118 0.187 0.990 0.175 0.312 1.444 0.181 0.277
(std) 0.759 0.055 0.028 2.112 0.098 0.077 3.610 0.132 0.079

PARABDG 1.049 0.161 0.378 1.001 0.279 0.461 1.069 0.346 0.581
(std) 0.319 0.032 0.017 0.757 0.098 0.044 1.165 0.152 0.035

after obtaining partitions using the Louvain algorithm (Blondel et al., 2008). Conductance is com-
puted after obtaining bi-partitions using the Kernighan-Lin bisection algorithm (Kernighan & Lin,
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Table 8: The mean squared errors w.r.t. clustering metrics of graphs generated by different realization methods.
The number of triangles (△) is normalized.

dataset Hams Fcbk Polb

metric △ GCC ALCC △ GCC ALCC △ GCC ALCC

model GROUNDT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ER
EDGEIND 0.974 0.049 0.283 0.983 0.258 0.354 0.934 0.042 0.089
LOCLBDG 0.078 0.009 0.093 0.199 0.011 0.148 0.104 0.013 0.007
PARABDG 0.007 0.024 0.010 0.024 0.004 0.044 0.019 0.035 0.115

CL
EDGEIND 0.492 0.026 0.233 0.767 0.207 0.295 0.044 0.002 0.022
LOCLBDG 0.125 0.005 0.082 1.068 0.079 0.093 0.017 0.000 0.001
PARABDG 0.021 0.002 0.005 0.068 0.035 0.001 0.005 0.000 0.022

SB
EDGEIND 0.544 0.022 0.252 0.718 0.140 0.276 0.273 0.007 0.025
LOCLBDG 0.177 0.002 0.091 0.539 0.015 0.081 0.149 0.001 0.002
PARABDG 0.014 0.000 0.001 0.255 0.004 0.004 3.303 0.008 0.008

KR
EDGEIND 0.664 0.036 0.230 0.898 0.234 0.317 0.809 0.034 0.060
LOCLBDG 0.346 0.008 0.097 1.194 0.092 0.115 4.989 0.018 0.010
PARABDG 0.044 0.005 0.022 0.157 0.033 0.000 0.364 0.006 0.011

dataset Spam Cepg Scht

metric △ GCC ALCC △ GCC ALCC △ GCC ALCC

model GROUNDT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ER
EDGEIND 0.990 0.020 0.080 0.927 0.083 0.171 0.947 0.121 0.103
LOCLBDG 0.025 0.037 0.003 0.310 0.013 0.039 0.473 0.011 0.014
PARABDG 0.002 0.066 0.143 0.035 0.037 0.093 0.039 0.035 0.198

CL
EDGEIND 0.254 0.005 0.051 0.100 0.008 0.050 0.126 0.017 0.014
LOCLBDG 0.046 0.001 0.001 0.058 0.001 0.001 0.136 0.004 0.016
PARABDG 0.006 0.000 0.023 0.012 0.000 0.017 1.682 0.013 0.069

SB
EDGEIND 0.223 0.003 0.062 0.114 0.004 0.061 0.127 0.011 0.049
LOCLBDG 0.030 0.000 0.004 0.202 0.001 0.003 0.136 0.002 0.003
PARABDG 0.012 0.000 0.005 0.295 0.007 0.010 0.089 0.003 0.008

KR
EDGEIND 0.882 0.017 0.068 0.754 0.064 0.107 0.936 0.118 0.089
LOCLBDG 0.579 0.004 0.011 4.462 0.031 0.024 13.233 0.056 0.012
PARABDG 0.104 0.001 0.009 0.573 0.011 0.002 1.361 0.024 0.054

1970). In most cases, the metrics in the graphs generated with binding are closer to the ground truth,
indicating that binding improves the generation quality in various aspects.

E.4 GRAPH GENERATION SPEED

In Table 10, for each dataset and each model, we report the running time of graph generation (av-
eraged on 100 random trials) using EDGEIND, LOCLBDG, PARABDG, and serialized PARABDG
without parallelization (PARABDG-S). The algorithmic details of EDGEIND for each model are as
follows:

• We try to find an optimized and fast algorithm for each model in C++
• For ER, we use the Boost Graph Library (Siek et al., 2001)
• For CL, we use NetworKit (Staudt et al., 2016)
• For SB, we use online code in a GitHub repo15

• For KR, we use krongen in SNAP (Leskovec & Sosič, 2016)

Consistent with our observation in Section 6.4, EDGEIND is fastest with the simplest algorithmic
nature, and between the two binding schemes, PARABDG is noticeably faster than LOCLBDG, and
is even faster with parallelization.

15https://github.com/ntamas/blockmodel
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Figure 4: The degree (top) and distance (bottom) distributions of graphs generated by different
realization methods. All the plots are in a log-log scale. Each shaded area represents one standard
deviation.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 9: The numerical results regarding degrees and distances of graphs generated by different realization
methods.

dataset Hams Fcbk Polb

metric α r APL deff α r APL deff α r APL deff

model GROUNDT -1.432 -0.934 3.589 5.000 -1.180 -0.900 3.693 5.000 -1.069 -0.921 2.738 4.000

ER
EDGEIND -0.058 -0.008 3.004 4.000 -0.046 -0.005 2.606 3.000 0.009 0.007 2.507 3.000
LOCLBDG -1.301 -0.850 3.254 4.060 -1.076 -0.869 2.892 3.950 -0.978 -0.828 2.703 3.570
PARABDG -0.958 -0.553 2.996 4.000 -2.338 -0.797 2.262 3.000 -1.136 -0.663 2.416 3.000

CL
EDGEIND -1.414 -0.927 2.938 4.000 -1.185 -0.898 2.608 3.000 -1.055 -0.920 2.585 3.000
LOCLBDG -1.262 -0.935 2.772 3.390 -1.058 -0.917 2.493 3.000 -0.974 -0.906 2.414 3.000
PARABDG -1.282 -0.924 2.713 3.000 -0.980 -0.877 2.331 3.000 -0.968 -0.900 2.373 3.000

SB
EDGEIND -1.211 -0.853 3.309 4.000 -0.600 -0.399 3.507 5.000 -0.967 -0.766 2.717 4.000
LOCLBDG -1.263 -0.905 3.193 4.420 -1.028 -0.823 4.276 6.480 -0.959 -0.884 2.525 3.020
PARABDG -1.209 -0.872 3.000 4.070 -0.409 -0.294 3.429 5.190 -0.954 -0.824 2.595 3.430

KR
EDGEIND -1.359 -0.909 2.856 3.990 -1.185 -0.806 2.566 3.000 -1.332 -0.912 2.848 3.940
LOCLBDG -1.272 -0.937 2.764 3.320 -1.134 -0.924 2.613 3.090 -1.174 -0.924 2.715 3.300
PARABDG -1.301 -0.934 2.742 3.010 -1.104 -0.915 2.499 3.000 -1.164 -0.928 2.661 3.050

dataset Spam Cepg Scht

metric α r APL deff α r APL deff α r APL deff

model GROUNDT -1.495 -0.947 3.794 5.000 -0.917 -0.907 2.711 4.000 -0.950 -0.860 2.772 4.000

ER
EDGEIND -0.054 -0.008 3.384 4.000 -0.067 -0.009 2.119 3.000 -0.078 -0.011 2.135 3.000
LOCLBDG -1.551 -0.856 3.601 4.840 -0.843 -0.821 2.482 3.210 -0.848 -0.825 2.532 3.340
PARABDG -1.069 -0.541 3.312 4.000 -1.858 -0.765 2.033 2.490 -2.274 -0.800 1.981 2.000

CL
EDGEIND -1.477 -0.943 3.119 4.000 -0.918 -0.897 2.415 3.000 -0.964 -0.905 2.430 3.000
LOCLBDG -1.364 -0.944 2.850 3.440 -0.789 -0.866 2.195 3.000 -0.802 -0.875 2.215 3.000
PARABDG -1.389 -0.940 2.811 3.000 -0.715 -0.809 2.096 3.000 -0.779 -0.825 2.201 3.000

SB
EDGEIND -1.448 -0.893 3.729 5.000 -0.715 -0.644 2.650 4.000 -0.790 -0.749 2.661 4.000
LOCLBDG -1.441 -0.938 3.274 4.550 -0.718 -0.803 2.318 3.030 -0.713 -0.814 2.289 3.000
PARABDG -1.445 -0.931 3.021 4.000 -0.713 -0.661 2.397 3.000 -0.756 -0.793 2.307 3.000

KR
EDGEIND -1.602 -0.929 3.466 4.000 -0.976 -0.807 2.303 3.000 -1.338 -0.882 2.747 3.000
LOCLBDG -1.457 -0.951 3.177 4.000 -1.010 -0.909 2.343 3.000 -1.100 -0.912 2.649 3.300
PARABDG -1.498 -0.953 3.126 4.000 -0.978 -0.904 2.313 3.000 -1.023 -0.891 2.522 3.000

Table 10: The time (in seconds) for graph generation with different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

ER

EDGEIND <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
LOCLBDG 3.2 7.9 2.2 7.7 3.7 4.9
PARABDG <0.05 <0.05 <0.05 0.1 <0.05 <0.05
PARABDG-S 0.2 0.1 <0.05 0.8 <0.05 <0.05

CL

EDGEIND <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
LOCLBDG 4.0 48.2 2.4 9.3 6.3 11.5
PARABDG 0.3 1.1 0.2 0.7 0.3 1.5
PARABDG-S 3.0 9.4 1.8 6.8 2.6 13.9

SB

EDGEIND 0.1 0.1 0.1 0.1 0.1 0.1
LOCLBDG 4.0 177.6 4.0 8.9 10.3 10.6
PARABDG 0.3 6.2 0.9 0.7 1.0 0.7
PARABDG-S 3.1 33.7 8.6 7.2 9.8 6.6

KR

EDGEIND 0.1 0.1 <0.05 0.1 <0.05 0.1
LOCLBDG 4.7 49.0 16.6 28.5 81.0 200.1
PARABDG 0.3 1.7 0.5 1.6 0.9 6.8
PARABDG-S 3.2 12.6 5.2 14.2 10.5 31.3

We upscale the hamsterster (Hams) dataset by duplicating the whole graphs multiple times.

• The original dataset contains |V | = 2000 nodes.
• With 32GB RAM, all the proposed methods can run with |V | = 128000 (64× of the original

graph).
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Figure 5: The degree (top) and distance (bottom) distributions of graphs generated by different
realization methods. Each shaded area represents one standard deviation.

Table 11: The modularity in the graphs generated by different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 0.474 0.777 0.427 0.462 0.434 0.253

ER
EDGEIND 0.210 0.120 0.155 0.205 0.104 0.099
LOCLBDG 0.394 0.443 0.353 0.440 0.321 0.369
PARABDG 0.365 0.517 0.323 0.394 0.392 0.430

CL
EDGEIND 0.193 0.107 0.127 0.180 0.082 0.078
LOCLBDG 0.325 0.343 0.184 0.303 0.184 0.205
PARABDG 0.301 0.332 0.152 0.271 0.118 0.262

SB
EDGEIND 0.317 0.756 0.423 0.370 0.407 0.208
LOCLBDG 0.386 0.751 0.422 0.396 0.417 0.235
PARABDG 0.375 0.741 0.482 0.432 0.466 0.263

KR
EDGEIND 0.190 0.114 0.193 0.254 0.107 0.142
LOCLBDG 0.322 0.357 0.335 0.424 0.248 0.313
PARABDG 0.314 0.367 0.420 0.411 0.304 0.385

See Table 17 for the detailed results.
To handle even large graphs, we further provide an alternative implementation with parallel binding
(PARABDG), where we

• Save the memory usage by considering the classes of node pairs with the same probability.
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Table 12: The conductance in the graphs generated by different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 0.131 0.012 0.079 0.147 0.075 0.556

ER
EDGEIND 0.330 0.394 0.369 0.327 0.407 0.411
LOCLBDG 0.235 0.181 0.271 0.201 0.311 0.251
PARABDG 0.226 0.188 0.253 0.212 0.241 0.226

CL
EDGEIND 0.744 0.830 0.869 0.831 0.901 0.911
LOCLBDG 0.444 0.265 0.816 0.492 0.813 0.809
PARABDG 0.540 0.453 0.826 0.687 0.847 0.326

SB
EDGEIND 0.261 0.067 0.081 0.207 0.090 0.615
LOCLBDG 0.222 0.017 0.080 0.186 0.083 0.597
PARABDG 0.228 0.021 0.086 0.245 0.067 0.472

KR
EDGEIND 0.814 0.776 0.863 0.828 0.883 0.853
LOCLBDG 0.411 0.406 0.420 0.265 0.474 0.216
PARABDG 0.432 0.282 0.211 0.288 0.359 0.208

Table 13: The max core number in the graphs generated by different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 24.0 115.0 36.0 35.0 80.0 100.0

ER
EDGEIND 11.0 32.7 19.5 10.9 42.9 46.9
LOCLBDG 29.5 120.9 42.6 33.9 94.3 117.3
PARABDG 18.7 70.4 28.1 20.9 61.7 79.8

CL
EDGEIND 16.9 43.7 33.5 25.6 66.7 79.4
LOCLBDG 30.6 104.3 35.9 35.3 76.6 96.2
PARABDG 24.4 105.7 35.3 27.1 73.1 96.9

SB
EDGEIND 21.4 71.8 33.9 37.6 99.8 96.4
LOCLBDG 31.4 88.7 34.8 40.4 85.1 98.4
PARABDG 26.3 121.3 37.4 38.4 107.8 109.0

KR
EDGEIND 15.5 32.0 15.9 13.0 36.2 25.0
LOCLBDG 31.6 98.4 33.7 37.9 68.8 84.9
PARABDG 26.3 107.6 38.5 37.7 86.1 109.4

Table 14: The average vertex betweenness (normalized w.r.t. the ground-truth value) in the graphs generated
by different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 1.000 1.000 1.000 1.000 1.000 1.000

ER
EDGEIND 0.794 0.610 0.863 0.876 0.666 0.647
LOCLBDG 0.975 0.888 1.065 1.078 0.938 1.103
PARABDG 0.954 0.945 1.038 1.089 0.944 0.954

CL
EDGEIND 0.790 0.605 0.940 0.835 0.893 0.817
LOCLBDG 0.903 0.808 0.998 0.965 0.983 0.919
PARABDG 0.873 0.755 0.985 0.946 0.929 0.792

SB
EDGEIND 0.898 0.961 0.999 1.024 0.976 0.929
LOCLBDG 1.084 1.234 1.133 1.202 1.064 1.169
PARABDG 1.126 1.446 1.000 1.081 0.917 0.945

KR
EDGEIND 0.730 0.582 0.654 0.626 0.628 0.503
LOCLBDG 0.809 0.751 0.817 0.754 0.715 0.668
PARABDG 0.818 0.757 0.815 0.762 0.804 0.715

– For ER, it would be all the pairs.
– For CL, each class contains node pairs with the same node degrees.
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Table 15: The average edge betweenness (normalized w.r.t. the ground-truth value) in the graphs generated by
different realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 1.000 1.000 1.000 1.000 1.000 1.000

ER
EDGEIND 0.863 0.719 0.995 0.911 0.962 0.902
LOCLBDG 1.062 1.159 1.122 1.090 1.186 1.050
PARABDG 0.983 0.970 1.090 1.073 1.138 0.877

CL
EDGEIND 0.790 0.605 0.940 0.835 0.893 0.817
LOCLBDG 0.903 0.808 0.998 0.965 0.983 0.919
PARABDG 0.873 0.755 0.985 0.946 0.929 0.792

SB
EDGEIND 0.927 0.972 1.009 1.023 0.985 0.958
LOCLBDG 1.055 2.142 1.358 1.297 1.274 1.480
PARABDG 1.233 1.406 1.029 1.170 0.935 1.129

KR
EDGEIND 0.770 0.704 0.689 0.666 0.742 0.566
LOCLBDG 0.886 1.141 0.952 0.807 1.089 1.088
PARABDG 0.897 1.151 0.913 0.850 1.191 1.095

Table 16: The natural connectivity (normalized w.r.t. the ground-truth value) in the graphs generated by differ-
ent realization methods.

dataset Hams Fcbk Polb Spam Cepg Scht

model GROUNDT 1.000 1.000 1.000 1.000 1.000 1.000

ER
EDGEIND 0.863 0.719 0.995 0.911 0.962 0.902
LOCLBDG 1.062 1.159 1.122 1.090 1.186 1.050
PARABDG 0.983 0.970 1.090 1.073 1.138 0.877

CL
EDGEIND 0.878 0.633 1.050 0.884 0.960 0.895
LOCLBDG 1.090 1.074 1.093 0.971 1.042 1.017
PARABDG 0.993 0.900 1.095 0.930 1.032 1.003

SB
EDGEIND 0.771 0.523 0.787 0.912 0.872 0.890
LOCLBDG 1.119 0.716 0.892 0.951 0.933 0.936
PARABDG 0.869 0.864 1.070 0.926 1.000 0.924

KR
EDGEIND 0.789 0.475 0.518 0.427 0.561 0.316
LOCLBDG 1.160 0.923 0.971 1.000 1.288 0.966
PARABDG 0.947 0.807 1.024 0.684 0.889 0.837

Table 17: The results of the scalability experiments when upscaling the input graph (time: seconds).

model |V | 2k 4k 8k 16k 32k 64k 128k

ER LOCLBDG 3.194 6.505 16.365 45.648 143.394 494.536 1859.232
PARABDG 0.034 0.058 0.113 0.232 0.601 1.705 5.381

CL LOCLBDG 3.962 9.595 35.364 123.902 472.281 2162.315 8402.245
PARABDG 0.302 0.495 1.027 2.114 4.404 11.184 31.129

SB LOCLBDG 3.989 9.493 29.557 99.167 362.930 1648.392 8398.062
PARABDG 0.266 0.489 0.994 2.132 5.335 14.861 45.983

KR LOCLBDG 8.611 31.241 124.453 506.921 2097.190 8680.988 33918.420
PARABDG 0.428 1.209 4.277 20.339 113.452 705.571 4351.573

– For SB, each class contains node pairs from the same blocks.
– For KR, each class contains node pairs with the same binary node labels up to permutation.

• Directly save the generated edges on the hard disk instead of in the RAM.
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Table 18: The results of the scalability experiments when upscaling the input graph (time: seconds) using
parallel binding (PARABDG) with additional optimization for large graphs.

model |V | 1m 2m 4m 8m 16m 32m 64m

ER PARABDG 5.942 12.449 28.174 60.975 121.889 262.736 490.985

CL PARABDG 102.150 220.177 423.836 815.883 1685.561 3135.217 6179.357

SB PARABDG 106.026 213.722 428.980 869.002 1798.333 3829.563 8638.938

KR PARABDG 105.062 219.351 439.110 875.381 1751.339 3504.719 7014.911

Table 19: Additional empirical evaluation on other models.
dataset Hams Fcbk Polb

metric △ GCC ALCC overlap △ GCC ALCC overlap △ GCC ALCC overlap

GROUNDT 1.000 0.229 0.540 N/A 1.000 0.519 0.606 N/A 1.000 0.226 0.320 N/A
EDGEIND-CL 0.299 0.067 0.058 0.059 0.124 0.064 0.063 0.063 0.792 0.183 0.173 0.182
LOCLBDG-CL 0.992 0.165 0.255 0.058 1.026 0.255 0.305 0.063 1.002 0.214 0.341 0.181
PARABDG-CL 1.000 0.185 0.471 0.059 1.006 0.336 0.626 0.062 1.010 0.221 0.468 0.181
PA 0.198 0.049 0.049 0.047 0.120 0.061 0.061 0.062 0.324 0.100 0.101 0.097
RGG (d = 1) 1.252 0.751 0.751 0.008 0.607 0.751 0.752 0.011 1.127 0.751 0.753 0.022
RGG (d = 2) 1.011 0.595 0.604 0.003 0.492 0.596 0.607 0.033 0.933 0.601 0.615 0.029
RGG (d = 3) 0.856 0.491 0.513 0.003 0.421 0.494 0.518 0.033 0.807 0.503 0.534 0.029
BTER 0.991 0.290 0.558 0.538 0.880 0.525 0.605 0.680 1.028 0.342 0.375 0.501
TCL 0.280 0.075 0.126 0.223 0.223 0.117 0.094 0.192 0.490 0.138 0.160 0.411
LFR (µ = 0.0) 1.140 0.262 0.546 0.435 N/A N/A N/A N/A 1.114 0.252 0.414 0.336
LFR (µ = 0.5) 0.296 0.068 0.081 0.175 0.161 0.084 0.120 0.170 0.571 0.145 0.170 0.170
LFR (µ = 1.0) 0.197 0.045 0.047 0.070 0.105 0.055 0.059 0.067 0.019 0.005 0.040 0.281

dataset Spam Cepg Scht

metric △ GCC ALCC overlap △ GCC ALCC overlap △ GCC ALCC overlap

GROUNDT 1.000 0.145 0.286 N/A 1.000 0.321 0.447 N/A 1.000 0.377 0.350 N/A
EDGEIND-CL 0.496 0.072 0.060 0.067 0.683 0.230 0.223 0.232 0.644 0.245 0.234 0.243
LOCLBDG-CL 1.028 0.124 0.260 0.067 0.996 0.293 0.430 0.231 1.036 0.318 0.469 0.241
PARABDG-CL 1.007 0.131 0.436 0.067 0.999 0.310 0.578 0.231 1.135 0.294 0.610 0.237
PA 0.112 0.027 0.026 0.025 0.288 0.130 0.130 0.129 0.226 0.121 0.123 0.116
RGG (d = 1) 1.144 0.750 0.750 0.003 0.834 0.752 0.754 0.033 0.678 0.752 0.754 0.029
RGG (d = 2) 0.899 0.592 0.597 0.003 0.704 0.604 0.622 0.033 0.567 0.603 0.620 0.029
RGG (d = 3) 0.772 0.485 0.501 0.003 0.611 0.509 0.544 0.033 0.492 0.507 0.541 0.029
BTER 1.003 0.194 0.325 0.402 0.991 0.484 0.504 0.631 0.658 0.397 0.383 0.544
TCL 0.201 0.044 0.087 0.223 0.356 0.166 0.165 0.362 0.218 0.130 0.146 0.312
LFR (µ = 0.0) 1.283 0.187 0.406 0.370 N/A N/A N/A N/A 1.081 0.506 0.850 0.977
LFR (µ = 0.5) 0.426 0.062 0.072 0.120 0.649 0.209 0.294 0.337 0.596 0.224 0.291 0.332
LFR (µ = 1.0) 0.332 0.048 0.042 0.081 0.516 0.166 0.217 0.303 0.476 0.179 0.212 0.292

By doing so, we are able to scale to even large graphs. See Table 18 for the detailed results. Notably,
parallel binding (PARABDG) is easily parallelizable. We can distribute the generation to multiple
machines and finally merge the generated edges, which allows us to handle even larger graphs.

E.5 JOINT OPTIMIZATION

As shown in Section 6.5, in some “difficult” cases where PARABDG well preserves the number of
triangles but not the number of wedges, with joint optimization, PARABDG-JW does better, well
preserving both the number of triangles and the number of wedges. In Figure 5, for both Hams and
Fcbk, we compare the degree and distance distributions in the ground-truth graph and in the graphs
generated by EDGEIND, PARABDG, and PARABDG-JW. With joint optimization, both degree and
distance distributions do not change much (compare PARABDG and PARABDG-JW in Figure 5).

E.6 ON HIGH-OVERLAP EIGMS, OTHER EDGE-DEPENDENT RGMS, AND MORE

As discussed in Section 3.1, there exist methods that shift edge probabilities by various mechanisms,
while they are still essentially EIGMs. Hence, by Theorem 3.3, they inevitably trade-off between
variability and the ability to generate high-clustering graphs. Such methods include Binning Chung
Lu (BCL) proposed by Mussmann et al. (2015) that uses accept-reject and Block Two-level Erdos-
Renyi (BTER) proposed by Kolda et al. (2014b) that uses a mixture of different EIGMs (specifically,
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Table 20: The ρ values (i.e., the probability of taking the triangle-forming step) used by TCL for each dataset.

dataset Hams Fcbk Polb Spam Cepg Scht

TCL ρ 0.877 0.986 0.035 0.652 0.263 0.411

Erdos-Renyi and Chung-Lu). Also, as discussed in Section 3.2, there are also existing methods that
use additional mechanisms to improve upon existing EIGMs. For example, Pfeiffer et al. (2012)
proposed Transitive Chung-Lu (TCL) that uses an additional mechanism to directly insert triangles
on top of the original edge-independent Chung-Lu.
Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences.Differences. In this work, we aim to improve upon EIGMs by further exploring models without as-
suming edge independency. The key point is to preserve individual edge probabilities and thus have
high tractability, but the existing methods usually use mixed models and thus change the underlying
edge probabilities. The consequence is that they either have less tractability or less variability (i.e.,
high overlap; see Theorems 3.2 and 4.7).

• TCL uses an additional mechanism to directly form triangles and is thus less tractable;
• BTER forms many small dense communities and has very high overlap.

As shown in Property 4.7, EPGMs have the same overlap as the corresponding EIGM, i.e., the
variability is perfectly maintained even though we introduce edge dependency.
Below, we compare the performance of (1) the original edge-independent Chung-Lu, (2) Chung-Lu
with local binding, (3) Chung-Lu with parallel binding, (4) TCL, and (5) BTER.
Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation.Evaluation. In addition to the clustering-related metrics (the number of triangles, global clustering
coefficient, and the average local clustering coefficient) we used in our main experiments, we further
compare the “overlap” (see Definition 3.1) of the generated graphs. Roughly, the overlap of a ran-
dom graph model is the expected proportion of overlapping edges between two randomly generated
graphs (i.e., the edges that exist in both randomly generated graphs). Higher overlap values imply
lower variability; when overlap approaches 1, the generated graphs are almost identical.
Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.Implementation.

• For TCL, we use online Python code;16

• For BTER, we use the official MATLAB implementation.17

Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results.Results. In Table 19, we show the detailed results. Overall, we have the following observations.

• For some datasets (e.g., facebook), TCL almost-always (i.e., ρ ≈ 1) uses the mechanism that
directly forms triangles. Even so, TCL often fails to well preserve the clustering-related metrics
in real-world graphs.

– TCL mixes two types of steps: (1) original Chung-Lu with probability (1−ρ) and (2) a triangle-
forming step with probability ρ.

– See Table 20 for the ρ values used by TCL for each dataset.

• As expected, although BTER generates graphs with high clustering as intended, it has very high
overlap, which implies that it well reproduces high-clustering graphs by largely duplicating the
input graphs.

• Our methods with binding schemes have the same overlap as the corresponding EIGM, while well
preserving clustering-related metrics in real-world graphs.

Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs.Other edge-dependent RMGs. For the experiments on other edge-dependent RMGs in Section 6.6,
we provide more details here.

• For random geometric graphs (RGG), we tried dimensions d ∈ {1, 2, 3}, while setting the number
of nodes as that in the input graph, and setting the diameter to fit the number of edges in the input
graph. Note that the clustering in the generated graph is only determined by the dimension, and
smaller dimensions give higher clustering.

16https://github.com/pdsteele/socialNetworksProject/blob/master/
proj-TransChungLu.py

17https://www.mathsci.ai/feastpack
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average g(v) △ GCC ALCC

0 (EIGM) 179.21 0.010 0.010
0.001 1957.88 0.100 0.119
0.002 3721.49 0.177 0.249
0.003 5499.17 0.240 0.379
0.004 7323.14 0.296 0.489
0.005 9489.65 0.344 0.568
0.006 10796.54 0.386 0.635
0.007 12742.98 0.422 0.681
0.008 14342.90 0.464 0.723
0.009 16122.18 0.491 0.749
0.01 18116.62 0.514 0.772

(a) ER + PARABDG

average g(v) △ GCC ALCC

0 (EIGM) 179.21 0.010 0.010
0.001 338.67 0.019 0.018
0.002 1006.9 0.054 0.047
0.003 1864.64 0.092 0.088
0.004 2567.84 0.121 0.125
0.005 3178.68 0.143 0.151
0.006 3797.42 0.165 0.171
0.007 4301.58 0.183 0.187
0.008 5080.94 0.202 0.200
0.009 5542.13 0.218 0.210
0.01 6441.86 0.236 0.222

(b) ER + LOCLBDG

Table 21: The clustering metrics of generated graphs without fitting specific graphs using ER as the underlying
edge-probability model.

• For preferential attachment (PA), we tried the extended Barabási-Albert model.18 We set the
number of nodes as that in the input graph, and set the parameter m to fit the number of edges
in the input graph. We tried p, q ∈ {0, 0.1, 0.2, 0.3}. We report the variant that gives the highest
clustering.

• For the Lancichinetti-Fortunato-Radicchi (LFR) model, we set the degrees as the ground-truth
degrees, set the community sizes as the sizes of the communities detected using the Louvain
algorithm, and tried different mixing parameters µ ∈ {0, 0.5, 1.0}.

Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models.Discussions on deep graph generative models. Recently, deep graph generative models have be-
come more and more popular. Typically, deep graph generative models aim to fit a population of
small graphs, while this work focuses on fitting random graph models to individual input graphs.
We empirically tested three deep graph generative models: CELL (Rendsburg et al., 2020), Graph-
VAE (Simonovsky & Komodakis, 2018), and GrpahRNN (You et al., 2018).
We summarize our empirical observations as follows:

• CELL often fails to generate high clustering, and also generates high overlap (i.e., low variability).
CELL is essentially an EIGM. See also the discussions by Chanpuriya et al. (2021).

• GraphVAE learns to duplicate the training graph (i.e., 100% overlap). This is likely because
GraphVAE was designed to learn from a population of graphs instead of a single graph, as dis-
cussed above.

• GraphRNN often generates graphs with far more edges but still low clustering. This is likely be-
cause GraphRNN was designed mainly for relatively small graphs and cannot fit well to individual
large graphs.

As discussed by Chanpuriya et al. (2021), several deep graph generative models also output edge
probabilities (e.g., CELL), and this work provides a new perspective to potentially enhance them
with edge dependency.

E.7 ON GRAPH GENERATION WITHOUT FITTING SPECIFIC GRAPHS

Instead of fitting specific graphs as done in our main experiments, one can also use the proposed
models to generate graphs “from scratch” without specific graphs as references by freely choosing
the parameters.
First, one needs to choose the underlying edge probabilities. Typically, one can use an underlying
edge-probability model and choose it according to the required properties. For example, if one
wants to generate graphs with power-law degree distributions, Chung-Lu with a prescribed power-
law degree sequence can be used. Or, if one wants to generate a graph with community structures,
the stochastic block model can be used.

18See, e.g., https://networkx.org/documentation/stable/reference/generated/
networkx.generators.random_graphs.extended_barabasi_albert_graph.html.
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α average g(v) △ GCC ALCC

-0.3

0 (EIGM) 13668.59 0.167 0.337
0.01 12506.14 0.153 0.493
0.02 13160.15 0.156 0.536
0.03 13844.84 0.161 0.559
0.04 15182.06 0.172 0.568
0.05 15610.28 0.168 0.584
0.06 17647.33 0.179 0.588
0.07 16757.68 0.172 0.588
0.08 16119.25 0.173 0.593
0.09 15417.53 0.160 0.594
0.1 18102.03 0.176 0.605

0

0 (EIGM) 13668.59 0.167 0.337
0.01 13051.15 0.159 0.539
0.02 14274.04 0.171 0.585
0.03 15724.32 0.181 0.602
0.04 16188.49 0.182 0.614
0.05 19404.04 0.200 0.622
0.06 20993.48 0.209 0.634
0.07 19845.02 0.198 0.639
0.08 23823.32 0.215 0.634
0.09 30700.56 0.232 0.644
0.1 26477.88 0.215 0.646

0.3

0 (EIGM) 13668.59 0.167 0.337
0.01 14245.14 0.173 0.598
0.02 17062.43 0.195 0.643
0.03 19329.61 0.215 0.660
0.04 22821.36 0.232 0.673
0.05 23128.39 0.238 0.684
0.06 28266.25 0.250 0.697
0.07 30571.88 0.265 0.703
0.08 27047.89 0.250 0.717
0.09 38293.91 0.286 0.728
0.1 34335.56 0.278 0.731

(a) CL + PARABDG

α average g(v) △ GCC ALCC

-0.3

0 (EIGM) 13668.59 0.167 0.337
0.01 11962.88 0.148 0.426
0.02 12417.21 0.149 0.462
0.03 12688.25 0.153 0.475
0.04 12847.39 0.151 0.486
0.05 13543.07 0.159 0.495
0.06 14457.40 0.163 0.504
0.07 13856.21 0.155 0.511
0.08 14942.73 0.156 0.530
0.09 15551.34 0.163 0.524
0.1 14264.12 0.154 0.532

0

0 (EIGM) 13668.59 0.167 0.337
0.01 12155.44 0.152 0.433
0.02 12651.05 0.154 0.463
0.03 13348.38 0.160 0.480
0.04 13249.86 0.157 0.495
0.05 14450.43 0.167 0.503
0.06 15668.08 0.171 0.518
0.07 14949.55 0.169 0.519
0.08 14733.55 0.164 0.525
0.09 19401.58 0.182 0.528
0.1 18072.88 0.182 0.529

0.3

0 (EIGM) 13668.59 0.167 0.337
0.01 12544.92 0.154 0.433
0.02 13383.98 0.160 0.461
0.03 13901.56 0.166 0.476
0.04 15005.39 0.175 0.493
0.05 16448.43 0.181 0.506
0.06 16623.27 0.182 0.503
0.07 18159.03 0.186 0.523
0.08 16835.26 0.185 0.522
0.09 18177.49 0.188 0.538
0.1 18459.21 0.195 0.546

(b) CL + LOCLBDG

Table 22: The clustering metrics of generated graphs without fitting specific graphs using CL as the underlying
edge-probability model.

Below, we shall discuss the graph statistics of random graphs generated by EPGMs using binding
with varying parameters. Let us first provide the parameter ranges.
For the Erdős-Rényi (ER) model:

• The number n of nodes is fixed as 1024.
• The edge probability p(u, v) is 0.01, the same for all the node pairs. The value 0.01 is chosen in

the typical range of real-world graphs (Melancon, 2006).
• The node-sampling probability g(v) is the same for all the nodes (as discussed in Section 5.4),

with varying values.
• The number R of rounds is 100000, as in our main experiments.

For the Chung-Lu (CL) model:

• The number n of nodes is fixed as 1024.
• The degree sequence dv’s are generated as a power-law sequence with power-law exponent 2, so

that the average edge probability p(u, v) is around 0.01. The exponent 2 is chosen in the typical
range of real-world graphs (Chakrabarti & Faloutsos, 2006).

• The node-sampling probability g(v) is the same for nodes with the same degree (as discussed in
Section 5.4), with varying mean values and varying correlation with degrees. Specifically, for each
node v, we set the node-sampling probability g(v) proportional to d(v)α with different α values
(-0.3, 0, and 0.3), where d(v) is the degree of node v. The α values are chosen so that no node has
a node-sampling probability exceeding 1. The node-sampling probabilities are positively (resp.,
negatively) correlated with node degrees with a positive (resp., negative) α value. When α = 0,
the node-sampling probability is the same for all the nodes.
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α average g(v) △ GCC ALCC

-0.5

0 (EIGM) 297.15 0.167 0.337
0.01 1070.80 0.153 0.493
0.02 1857.45 0.156 0.536
0.03 2587.32 0.161 0.559
0.04 3393.55 0.172 0.568
0.05 4140.39 0.168 0.584
0.06 4980.47 0.179 0.588
0.07 5662.74 0.172 0.588
0.08 6440.77 0.173 0.593
0.09 7169.38 0.160 0.594
0.1 7949.71 0.176 0.605

0

0 (EIGM) 297.15 0.167 0.337
0.01 1460.17 0.159 0.539
0.02 2656.48 0.171 0.585
0.03 3821.19 0.181 0.602
0.04 4995.17 0.182 0.614
0.05 6135.86 0.200 0.622
0.06 7271.69 0.209 0.634
0.07 8458.58 0.198 0.639
0.08 9924.68 0.215 0.634
0.09 10945.15 0.232 0.644
0.1 12061.47 0.215 0.646

0.5

0 (EIGM) 297.15 0.167 0.337
0.01 1527.10 0.173 0.598
0.02 2746.08 0.195 0.643
0.03 3989.85 0.215 0.660
0.04 5209.86 0.232 0.673
0.05 6516.78 0.238 0.684
0.06 7707.59 0.250 0.697
0.07 8833.38 0.265 0.703
0.08 10119.58 0.250 0.717
0.09 11197.86 0.286 0.728
0.1 12589.62 0.278 0.731

(a) SB + PARABDG

α average g(v) △ GCC ALCC

-0.5

0 (EIGM) 297.15 0.015 0.014
0.01 3139.06 0.133 0.147
0.02 6016.54 0.215 0.208
0.03 8872.29 0.272 0.239
0.04 11101.77 0.313 0.256
0.05 13093.51 0.331 0.261
0.06 19008.57 0.368 0.274
0.07 18992.58 0.378 0.270
0.08 23138.66 0.412 0.276
0.09 24280.39 0.412 0.271
0.1 30652.89 0.432 0.280

0

0 (EIGM) 297.15 0.015 0.014
0.01 4257.22 0.172 0.170
0.02 7764.28 0.265 0.221
0.03 11887.79 0.327 0.247
0.04 16886.04 0.379 0.253
0.05 20868.18 0.405 0.257
0.06 23889.00 0.436 0.256
0.07 29247.06 0.451 0.264
0.08 30123.19 0.450 0.253
0.09 36971.23 0.451 0.254
0.1 45597.38 0.468 0.264

0.5

0 (EIGM) 297.15 0.015 0.014
0.01 4348.57 0.170 0.156
0.02 8368.21 0.269 0.215
0.03 12679.81 0.331 0.235
0.04 17480.57 0.380 0.246
0.05 19396.23 0.412 0.242
0.06 24362.75 0.418 0.247
0.07 30949.97 0.453 0.250
0.08 33129.43 0.437 0.252
0.09 36050.41 0.463 0.253
0.1 41233.18 0.458 0.260

(b) SB + LOCLBDG

Table 23: The clustering metrics of generated graphs without fitting specific graphs using SB as the underlying
edge-probability model.

• The number R of rounds is 100000, as in our main experiments.

For the stochastic block (SB) model:

• The number n of nodes is fixed as 1024.
• The number of communities (i.e., blocks) is fixed as 10.
• The community sizes are generated as a power-law with power-law exponent 1.5. The exponent

1.5 is chosen in the typical range of real-world graphs (Fortunato, 2010).
• The intra-community edge probability and inter-community edge probability are the same for

different communities, and are chosen so that the average edge probability p(u, v) is around 0.01.
• The node-sampling probability g(v) is the same for nodes with the same community (as discussed

in Section 5.4), with varying mean values and varying correlation with community sizes. Specif-
ically, for each node v, we set the node-sampling probability g(v) proportional to s(v)α with
different α values (-0.5, 0, and 0.5), where s(v) is the size of the community v is in. The α values
are chosen so that no node has a node-sampling probability exceeding 1. The node-sampling prob-
abilities are positively (resp., negatively) correlated with community sizes with a positive (resp.,
negative) α value. When α = 0, the node-sampling probability is the same for all the nodes.

• The number R of rounds is 100000, as in our main experiments.

For the stochastic Kronecker (KR) model:

• The number n of nodes is fixed as 1024. Specifically, the seed matrix is two-by-two, and we take
the order-10 Kronecker power of the seed matrix.
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α average g(v) △ GCC ALCC

-1

0 (EIGM) 1044.88 0.031 0.033
0.01 6586.23 0.157 0.327
0.02 11809.86 0.240 0.422
0.03 17238.21 0.305 0.471
0.04 22369.54 0.334 0.508
0.05 27207.33 0.361 0.530
0.06 37717.33 0.409 0.556
0.07 38131.85 0.418 0.559
0.08 46682.81 0.432 0.580
0.09 52381.99 0.435 0.595
0.1 56996.55 0.439 0.604

0

0 (EIGM) 1044.88 0.031 0.033
0.01 8860.73 0.198 0.402
0.02 16677.24 0.307 0.499
0.03 23927.22 0.373 0.549
0.04 33434.06 0.430 0.582
0.05 33908.84 0.436 0.600
0.06 51113.67 0.488 0.624
0.07 56890.50 0.503 0.631
0.08 57262.88 0.492 0.637
0.09 73944.66 0.517 0.656
0.1 71084.79 0.486 0.642

1

0 (EIGM) 1044.88 0.031 0.033
0.01 11202.40 0.242 0.472
0.02 21129.53 0.360 0.572
0.03 30490.92 0.443 0.619
0.04 42543.89 0.501 0.648
0.05 48769.38 0.535 0.664
0.06 57292.62 0.562 0.665
0.07 62270.76 0.558 0.682
0.08 68569.86 0.522 0.689
0.09 99628.36 0.565 0.708
0.1 109134.19 0.547 0.702

(a) KR + PARABDG

α average g(v) △ GCC ALCC

-1

0 (EIGM) 1044.88 0.031 0.033
0.01 3086.48 0.081 0.147
0.02 5166.20 0.122 0.188
0.03 7636.03 0.158 0.211
0.04 9707.45 0.180 0.227
0.05 10435.17 0.189 0.232
0.06 13325.55 0.207 0.243
0.07 16207.68 0.225 0.250
0.08 18169.74 0.236 0.261
0.09 21601.60 0.234 0.267
0.1 23594.77 0.241 0.270

0

0 (EIGM) 1044.88 0.031 0.033
0.01 3726.94 0.094 0.154
0.02 6239.78 0.141 0.187
0.03 8729.61 0.176 0.209
0.04 11659.48 0.209 0.218
0.05 15550.88 0.238 0.230
0.06 17557.07 0.241 0.232
0.07 22365.64 0.271 0.243
0.08 20931.69 0.266 0.237
0.09 20406.49 0.240 0.237
0.1 26693.30 0.254 0.249

1

0 (EIGM) 1044.88 0.031 0.033
0.01 4118.72 0.103 0.152
0.02 7056.13 0.155 0.181
0.03 10525.82 0.196 0.201
0.04 12531.47 0.217 0.198
0.05 16213.98 0.245 0.207
0.06 22050.84 0.276 0.221
0.07 19337.29 0.256 0.212
0.08 25260.46 0.276 0.220
0.09 24525.96 0.263 0.213
0.1 33226.16 0.276 0.236

(b) KR + LOCLBDG

Table 24: The clustering metrics of generated graphs without fitting specific graphs using KR as the underlying
edge-probability model.

• The seed matrix is [0.95, 0.63; 0.63, 0.32]. The values in the seed matrix are chosen so that the
average edge probability p(u, v) is around 0.01, and the value distribution is similar to those in
the original paper of Kronecker Leskovec et al. (2010).

• The node-sampling probability g(v) is the same for nodes with the same number of ones in their
binary node labels (as discussed in Section 5.4), with varying mean values and varying correlation
with the number of ones. Specifically, for each node v, we set the node-sampling probability g(v)
proportional to (i(v)+1)α with different α values (-1, 0, and 1), where i(v) is the number of ones
in the binary node label of v. The α values are chosen so that no node has a node-sampling prob-
ability exceeding 1. The node-sampling probabilities are positively (resp., negatively) correlated
with the number of ones with a positive (resp., negative) α value. When α = 0, the node-sampling
probability is the same for all the nodes.

In Tables 21 to 24, we show the clustering metrics of graphs generated without fitting specific graphs
as described above, with different underlying edge-probability models.
Below, let us discuss the insights we have based on the results. Overall, in line with our theoretical
analysis, in most cases, when we increase node-sampling probabilities, the generated graphs have
higher clustering. By varying node-sampling probabilities, one can generate graphs with different
levels of clustering. Also, with the same node-sampling probabilities, PARABDG generates graphs
with higher clustering than LOCLBDG.
There are also interesting observations on the correlation between node-sampling probabilities and
some parameters in the underlying edge-probability models, indicated by the value of α. For CL,
with the same average node-sampling probability, when we make node-sampling probabilities pos-
itively correlated to the node degrees, the generated graphs have higher clustering. For SB, with
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the same average node-sampling probability, when we make node-sampling probabilities negatively
correlated to the node degrees, the generated graphs have relatively lower clustering, while positive
correlation and no correlation give similar results. For KR, with the same average node-sampling
probability, when we make node-sampling probabilities positively correlated to the number of ones,
the generated graphs have higher clustering.
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