EXPLORING EDGE PROBABILITY GRAPH MODELS BE YOND EDGE INDEPENDENCY: CONCEPTS, ANALYSES, AND ALGORITHMS

Anonymous authors

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027 028 Paper under double-blind review

Abstract

Desirable random graph models (RGMs) should (i) reproduce common patterns in real-world graphs (e.g., high clustering), (ii) generate variable (i.e., not overly similar) graphs, and (iii) remain tractable to compute and control graph statistics. A common class of RGMs (e.g., Erdős-Rényi and stochastic Kronecker) outputs edge probabilities, and we need to realize (i.e., sample from) the edge probabilities to generate graphs. Typically, each edge's existence is assumed to be determined independently for simplicity and tractability. However, with edge independency, RGMs theoretically cannot produce high subgraph densities and high output variability simultaneously. In this work, we explore realization beyond edge independence that can better reproduce common patterns while maintaining high tractability and variability. Theoretically, we propose an edge-dependent realization framework called *binding* that provably preserves output variability, and derive *closed-form* tractability results on subgraph (e.g., triangle) densities in generated graphs. Practically, we propose algorithms for graph generation with binding and parameter fitting of binding. Our empirical results demonstrate that binding exhibits high tractability and well reproduce patterns such as high clustering, significantly improving upon existing RGMs assuming edge independency.

029 1 INTRODUCTION

Random graph models (RGMs) help us understand, analyze, and predict real-world systems (Droby-031 shevskiy & Turdakov, 2019), with various practical applications, e.g., graph algorithm testing (Mur-032 phy et al., 2010), statistical testing (Ghoshdastidar et al., 2017), and graph anonymization (Back-033 strom et al., 2007). Desirable RGMs should generate graphs with *common patterns* in real-world 034 graphs, such as high clustering,¹ power-law degrees, and small diameters (Chakrabarti & Faloutsos, 2006). At the same time, the generated graphs should be *variable*, i.e., not highly-similar or even 035 near-identical, and the RGMs should be *tractable*, i.e., we can compute and control graph statistics.² 036 Many RGMs output individual edge probabilities and generate graphs accordingly, e.g., the Erdős-037 Rényi model (Erdős & Rényi, 1959), the Chung-Lu model (Chung & Lu, 2002), the stochastic block model (Holland et al., 1983), and the stochastic Kronecker model (Leskovec et al., 2010). To generate graphs from edge probabilities, we need realization (i.e., sampling), where edge independency 040 (i.e., the edge existences are determined mutually independently) is widely assumed for the sake of 041 simplicity and tractability. Although edge-independent RGMs have high tractability and they may 042 reproduce some common patterns (e.g., power-law degrees and small diameters), they empirically 043 fail to preserve some other patterns, especially high clustering (Moreno et al., 2018; Seshadhri et al., 044 2013). Moreover, edge-independent RGMs theoretically cannot generate graphs with high triangle density and high output variability at the same time (Chanpuriya et al., 2021).

Naturally, we ask: Can we apply realization without assuming edge independency so that we can improve upon such RGMs to generate graphs with common patterns and high variability, while still ensuring high tractability? To address this question, we propose and explore the concept of *edge probability graph models* (EPGMs), i.e., RGMs that are still based on edge probabilities but do not assume edge independency, from theoretical and practical perspectives. Our key message is a positive answer to the question. Specifically, our novel contributions are four-fold:

¹*High clustering* means high subgraph densities, as used by, e.g., Newman (2003) and Pfeiffer et al. (2012). ²In this work, *tractability* refers to the feasibility of deriving graph statistics, rather than the ability to handle large-scale graphs (which we refer to as *scalability*).

- 1. Concepts (Section 4): We formally define EPGMs with related concepts, and theoretically show some basic properties of EPGMs, e.g., even with edge dependency introduced, the *variability is maintained* in the generated graphs as the corresponding edge-independent model.
 - 2. Analyses (Section 5): We propose *pattern-reproducing*, *tractable*, and *flexible* realization schemes called *binding* to construct EPGMs with different levels of edge dependency, and derive tractability results on the *closed-form* subgraph (e.g., triangle) densities.
 - 3. Algorithms (Section 5): We propose practical algorithms for graph generation with binding, and for efficient parameter fitting to control the graph statistics generated by EPGMs with binding.
 - 4. **Experiments (Section 6):** We use our binding and fitting algorithms to generate graphs. Via experiments on real-world graphs, we show the power of edge dependency to reproduce common graph patterns and validate the correctness of our theoretical analyses and practical algorithms.

Reproducibility. The code and datasets are available in the online appendix (Anonymous, 2024).

2 PRELIMINARIES

057

058

059

060

061

062

063

064

065

066 067

068

087

069 **Graphs.** A node-labelled graph G = (V, E) is defined by a node set V = V(G) and an edge set $E = E(G) \subseteq {\binom{V}{2}} \coloneqq \{V' \subseteq V \colon |V'| = 2\}.^3$ For a node $v \in V$, the set of *neighbors* of v is $N(v;G) = \{u \in V \colon (u,v) \in E(G)\}.$ The *degree* d(v;G) of v is the number of its neighbors, i.e., 070 071 072 d(v; G) = |N(v; G)|. Given $V' \subseteq V$, the *induced subgraph* of G on V' is $G[V'] = (V', E \cap {V' \choose 2})$. 073 **Random graph models (RGMs).** Fix a node set $V = [n] = \{1, 2, ..., n\}$ with $n \in \mathbb{N}$. Let 074 $\mathcal{G}(V) = \{G = (V, E) : E \subseteq {V \choose 2}\}$ denote the set of all $2^{\binom{n}{2}}$ possible node-labelled graphs on 075 V. A random graph model (RGM) is defined as a probability distribution $f : \mathcal{G}(V) \to [0, 1]$ with 076 $\sum_{G \in \mathcal{G}(V)} f(G) = 1$. For each graph $G \in \mathcal{G}(V)$, f(G) is the probability of G being generated by 077 the RGM f. For each node pair (u, v) with $u, v \in V$, the (marginal) *edge probability* of (u, v) under the RGM f is $\Pr_f[(u, v)] \coloneqq \sum_{G \in \mathcal{G}(V)} f(G) \mathbf{1}[(u, v) \in E(G)]$, where $\mathbf{1}[\cdot]$ is the indicator function. 079 Edge independent graph models (EIGMs). Given edge probabilities, edge independency is 080 widely assumed in many existing RGMs, resulting in the concept of edge independent graph models 081 (EIGMs; also known as inhomogeneous Erdős-Rényi graphs (Klopp et al., 2017)). 082

Definition 2.1 (EIGMs (Chanpuriya et al., 2021)). Given edge probabilities $p: \binom{V}{2} \to [0, 1]$, the *edge independent graph model* (EIGM) w.r.t. p is the RGM f_p^{EI} defined by $f_p^{\text{EI}}(G) = \prod_{(u,v)\in E(G)} p(u,v) \prod_{(u',v')\notin E(G)} (1-p(u',v')), \forall G \in \mathcal{G}(V).$

- 3 RELATED WORK AND BACKGROUND
- 3.1 LIMITATIONS OF EIGMS

This work is motivated by the theoretical findings of Chanpuriya et al. (2021) on the limitations of EIGMs and the power of edge (in)dependency. They defined the concept of *overlap* to measure the variability of RGMs, where a high overlap value implies low variability. Roughly speaking, the overlap of an RGM is the expected proportion of edges co-existing in two generated graphs.

Definition 3.1 (Overlap (Chanpuriya et al., 2021)). Given an RGM $f : \mathcal{G}(V) \to [0, 1]$, the *overlap* of f is defined as $Ov(f) = \frac{\mathbb{E}_f |E(G') \cap E(G'')|}{\mathbb{E}_f |E(G)|}$, where G, G', and G'' are three mutually independent random graphs generated by f.

Remark 3.2. High variability (i.e., low overlap) is important for RGMs (De Cao & Kipf, 2018), as generating overly similar graphs undermines RGMs' effectiveness in their common applications, e.g., graph algorithm testing, statistical testing, and graph anonymization (see Section 1).

101 Chanpuriya et al. (2021) showed that EIGMs are unable to generate graphs with high triangle density (i.e., with many triangles) unless EIGMs memorize a whole input graph (i.e., have high overlap).

Theorem 3.3 (Limited triangles by EIGMs (Chanpuriya et al., 2021)). For any $p: \binom{V}{2} \to [0, 1]$, $\mathbb{E}_{f_p^{EI}}[\Delta(G)] \leq \frac{\sqrt{2}}{3} \left(\operatorname{Ov}(f_p^{EI}) \sum_{(u,v) \in \binom{V}{2}} p(u,v) \right)^{3/2}$, where $\Delta(G)$ is the number of triangles in G.

³In this work, we consider undirected unweighted graphs without self-loops following common settings for random graph models. See Appendix D.1 for discussions on more general graphs.

Chanpuriya et al. (2024) recently extended their theoretical results, showing triangle-density upper bounds w.r.t. overlap in different types of edge-dependent RGMs.⁴ However, they did not provide practical graph generation algorithms⁵ or detailed tractability results, while tractability results and practical graph generation are part of our focus in this work.

Some methods shift edge probabilities by accept-reject (Mussmann et al., 2015) or mixing different
EIGMs (Kolda et al., 2014b; Lancichinetti et al., 2008), in order to improve upon existing EIGMs.
Such methods are essentially still EIGMs, and by Theorem 3.3, they inevitably have high overlap
(i.e., low variability). See Appendix E.6 for more discussion and evaluation on such methods.

116 3.2 Edge dependency in RGMs

117 Despite the popularity of EIGMs, edge dependency also widely exists in various RGMs, e.g., prefer-118 ential attachment models (Barabási & Albert, 1999), small-world graphs (Watts & Strogatz, 1998), 119 copying network models (Kleinberg et al., 1999), random geometric graphs (Penrose, 2003), and ex-120 ponential random graph models (Lusher et al., 2013). Some other models use additional mechanisms 121 on top of existing models to introduce edge dependency by, e.g., directly forming triangles (Pfeiffer 122 et al., 2012; Wegner & Olhede, 2021). Exchangeable network models (ENMs) (Lovász & Szegedy, 123 2006; Diaconis & Janson, 2007) also involve edge dependency, where isomorphic graphs are gener-124 ated with the same probability (i.e., all nodes are treated probabilistically in symmetry). However, 125 ENMs cannot generate graphs with sparsity and power-law degrees, which are common patterns in real-world graphs (Crane & Dempsey, 2016). Recent efforts have introduced asymmetry among 126 nodes to enhance expressiveness (Crane & Dempsey, 2018; Wu et al., 2025). In the same spirit but 127 from a different perspective, we aim to improve expressiveness by introducing *dependence among* 128 edges upon EIGMs. Since we build RGMs based on edge-probability models, the nodes are asym-129 metric (i.e., non-exchangeable), except for the Erdős-Rényi model with uniform edge probabilities. 130 Notably, the closed-form tractability results on subgraph densities derived by us (Theorems 5.8 131 and B.5) are usually unavailable for existing RGMs with edge dependency (Drobyshevskiy & Tur-132 dakov, 2019). Usually, only *asymptotic* results, as the number of nodes approaches infinity, are 133 available for such models (Ostroumova Prokhorenkova, 2017; Gu et al., 2013; Bhat et al., 2016). 134 In this work, we propose novel edge-dependent RGMs with the following desirable properties:

- *Reproducing common patterns* observed in real-world graphs across different domains, e.g., high clustering, power-law degrees, and small diameters (Chakrabarti & Faloutsos, 2006).
- Having high variability, generating graphs with low overlap (see Definition 3.1).
- *Having high tractability*, with the feasibility to obtain closed-form results of graph statistics.
- 139 140 141

160

161

135

136

137

138

4 EDGE PROBABILITY GRAPH MODELS: CONCEPTS AND BASIC PROPERTIES

Given edge probabilities, EIGMs generate graphs assuming edge independency. In contrast, we explore a broader class of edge probability graph models (EPGMs) going beyond edge independency.

144 145 146 Definition 4.1 (EPGMs). Given edge probabilities $p: \binom{V}{2} \to [0, 1]$, the set $\mathcal{F}(p)$ of *edge probability graph models* (EPGMs) w.r.t. *p* consists of all the RGMs satisfying the given marginal edge probabilities, i.e., $\mathcal{F}(p) \coloneqq \{f: \Pr_f[(u, v)] = p(u, v), \forall u, v \in V\}.$

The concept of EPGMs decomposes each RGM into two factors: (F1) the marginal probability of each edge and (F2) how the edge probabilities are realized (i.e., sampled), where (F2) has been overlooked by EIGMs and this decomposition introduces a novel way of imposing edge dependency. Below, we show some basic properties of EPGMs and discuss their meanings and implications.

Property 4.2. *EIGMs are special cases of EPGMs w.r.t. the same edge probabilities.*

153 *Proof.* See Appendix B for all the formal statements and proofs not covered in the main text. \Box

Property 4.3. *Each RGM can be represented as an EPGM (w.r.t its marginal edge probabilities).*

While Property 4.3 is an immediate result following the definition of EPGMs, it shows the *generality* of the concept of EPGMs, yet also implies the impossibility of exploring all possible EPGMs, which motivates us to find *good subsets* of EPGMs. Specifically, Property 4.3 tells us that each RGM can be represented as an EPGM w.r.t. *some* edge probabilities. What can we obtain for *given* edge

⁴In EPGMs, the overlap is constant yet we can have different triangle densities. See Property 4.7.

⁵Their graph generation algorithm is not practical since it relies on maximal clique enumeration, which is time-consuming (Eblen et al., 2012). See Appendix D.2 for more discussions.

193

215

162 163	probabilities? For this, in Property 4.4, we obtain the upper bounds of expected subgraph densities in the graphs generated by EPGMs with given edge probabilities.
164	Property 4.4 (Upper bound of edge-group probabilities in EPGMs). For any $p: \binom{V}{2} \to [0,1]$ and
166	any $P \subseteq \binom{V}{2}$, $\Pr_f[P \subseteq E(G)] \le \min_{(u,v) \in P} p(u,v), \forall f \in \mathcal{F}(p).$
167 168	<i>Remark</i> 4.5. Later, we shall show that the upper bound in Property 4.4 is tight, i.e., we can find EPGMs achieving the upper bound (see Lemma B.2).
169 170	Property 4.4 can be applied to obtain the upper bounds of the expected number of specific subgraphs, e.g., cliques and cycles. Below is an example on the number of triangles (i.e., $\triangle(G)$).
171	Corollary 4.6. For any p , $\mathbb{E}_f[\triangle(G)] \leq \sum_{\{u,v,w\} \in \binom{V}{3}} \min(p(u,v), p(u,w), p(v,w)), \forall f \in \mathcal{F}(p).$
172 173	Property 4.7 (EPGMs have constant expected degrees and overlap). For any $p: \binom{V}{2} \to [0,1]$, the expected node degrees and overlap (see Definition 3.1) of all the EPGMs w.r.t. p are constant.
174	Property 4.7 implies that, for given edge probabilities, compared to EIGMs, considering more gen- eral EPGMs neither changes expected degrees nor impairs the variability of the generated graphs.
176	Many EIGMs (e.g., Chung-Lu and Kronecker) can generate graphs with desirable degrees, and this property ensures that EPGMs can inherit such strengths (see Figure 1 for empirical evidence). As
178 179	discussed in Remark 3.2, high variability is important and desirable for RGMs. In this work, we explore EPGMs from both theoretical and practical perspectives, aiming to answer
180	two research questions inspired by the basic properties of EPGMs above:
181 182 183	 (RQ1; Theory) What good subsets of EPGMs are pattern-reproducing, flexible, and tractable? (RQ2; Practice) How to generate graphs using such EPGMs and fit the parameters of EPGMs?
184	5 BINDING: PATTERN-REPRODUCING, FLEXIBLE, AND TRACTABLE EPGMS
185 186	We aim to construct EPGMs that reproduce <i>common patterns</i> (specifically, high clustering) and are
187	<i>flexible</i> (i.e., different levels of dependency), in a <i>tractable</i> (i.e., controllable graph statistics) way.
188	5.1 BINDING: A GENERAL FRAMEWORK FOR EPGMS WITH HIGH CLUSTERING
189 190	As discussed in Section 1, desirable RGMs should generate graphs with common patterns, e.g.,
191	high clustering, power-law degrees, and small diameters (Chakrabarti & Faloutsos, 2006). We focus on the bottleneck of FIGMs and aim to construct FPGMs with high clustering (i.e., subgraph densi-
192	ties). ⁶ To this end, we study and propose <i>binding</i> , a general mathematical framework that introduces

positive dependency among edges, where multiple edge existences are determined together.

Algo	orithm 1: General Binding	Binding is the probabilistic process in Algo- rithm 1 where edge dependence is imposed in
In 0 1 E 2 fo 3	put : (1) $p: \binom{V}{2} \to [0, 1]$: edge probabilities; (2) \mathcal{P} s.t. $\binom{V}{2} = \bigcup_{P \in \mathcal{P}} P$ and $P \cap P' = \emptyset, \forall P \neq P' \in \mathcal{P}$: pair partition utput: G: generated graph $F \leftarrow \emptyset$ or $P \in \mathcal{P}$ do $E \leftarrow E \cup \text{binding}(p, P)$	each group of pairs. Specifically, in each group, if a node pair is sampled as an edge, all the pairs with higher edge probabilities must be sampled too. Note that, Algorithm 1 describes a general framework, while our practical algorithms (Algorithms 2 and 3) do not need to choose an explicit partition \mathcal{P} beforehand.
4 re	eturn $G = (V, E)$	Definition 5.1 (Binding). Given edge proba-
5 Pl	sample a random variable $s \sim \mathcal{U}(0, 1)$	bilities p and a partition \mathcal{P} , binding gives the RGM $f_{i:\mathcal{D}}^{BD}$ as follows. For each $P_i \in \mathcal{P}$, write
7	$\hat{E} \leftarrow \emptyset$	$P_i = \{(u_{i1}, v_{i1}), \dots, (u_{i P_i }, v_{i P_i })\}$ such that
8	for $(u, v) \in \hat{P}$ do	$p(u_{i1}, v_{i1}) \ge \cdots \ge p(u_{i P_i }, v_{i P_i })$, and let
9 10	$\begin{bmatrix} \mathbf{i} \ s \leq p(u, v) \text{ then} \\ \hat{E} \leftarrow \hat{E} \cup \{(u, v)\} \end{bmatrix}$	$\begin{array}{ll} P_{i;k} & := \{(u_{i1}, v_{i1}), \dots, (u_{ik}, v_{ik})\} \text{ for each } \\ k \in [P_i]. \end{array} \text{ Then, for each } k \in [P_i] \text{ and} \end{array}$
11	_ return \hat{E}	the graph G with edges $\bigcup_i P_{i;k}$, $f_{p;\mathcal{P}}^{BD}(\hat{G}) = \prod_i (p(u_{ik}, v_{ik}) - p(u_{i,k+1}, v_{i,k+1}))$, where we
take _l	$p(u_{i, P_i +1}, v_{i, P_i +1}) = 0$. For any other graph	$\overline{G}, f_{p;\mathcal{P}}^{\mathrm{BD}}(G) = 0.$
There	e are two basic properties of binding: <i>(i)</i> bin	ding is <i>correct</i> i.e. generates EPGMs and (ii)

212 There are two basic properties of binding: (i) binding is correct, i.e., generates EPGMs, and (ii) 213 binding improves subgraph densities upon EIGMs. 214

⁶Notably, we shall also empirically show that binding maintains (or even improves) the generation quality w.r.t. several different graph metrics, including but not limited to degrees and diameters (see Section 6.3).

216 **Proposition 5.2.** Algorithm 1 with input p (and any \mathcal{P}) produces an EPGM w.r.t. p. 217

Proposition 5.3. Binding produces higher or equal subgraph densities, compared to the corre-218 sponding EIGMs. 219

Remark 5.4. There are EPGMs with lower subgraph densities, which are against our motivation to 220 improve upon EIGMs w.r.t. subgraph densities and are out of this work's scope. That said, they may 221 be useful in scenarios where dense subgraphs are unwanted, e.g., disease control. 222

With binding, we can construct EPGMs with different levels of edge dependency by different ways of binding the node pairs. Let us first study two extreme cases. 224

Minimal binding. EIGMs are the case with minimal binding, i.e., without binding, where the parti-225 tion contains only sets of a single pair, i.e., $\mathcal{P} = \{\{(u, v)\} : u, v \in V\}$. 226

<u>Maximal binding.</u> Maximal binding corresponds to the case with $\mathcal{P} = \{\binom{V}{2}\}$, i.e., all the pairs are 227 bound together. It achieves the upper bound of subgraph densities, i.e., the maximal edge-group 228 probabilities in Property 4.4 (see Lemma B.2), as mentioned in Remark 4.5. 229

230 5.2 LOCAL BINDING: FLEXIBLE AND TRACTABLE SPECTRUM BETWEEN TWO EXTREMES

231 Building upon the general framework introduced in Section 5.1, we propose practical binding algo-232 rithms. Intuitively, the more pairs we bind together, the higher subgraph densities we have. Between 233 minimal binding (i.e., EIGMs) and maximal binding that achieves the upper bound of subgraph den-234 sities, we can have a *flexible* spectrum. However, the number of possible partitions of node pairs 235 $\binom{v}{2}$ grows exponentially w.r.t. |V|. Hence, we propose to introduce edge dependency without ex-236 plicit partitions. Specifically, we propose *local binding*, where we repeatedly sample node groups,⁷ 237 and bind pairs between each sampled node group together. Pairs between the same node group are 238 structurally related, compared to pairs sharing no common nodes.

239 Real-world motivation. In social networks, each group "bound together" can represent a group in-240 teraction, e.g., an offline social event (meeting, conference, party) or an online social event (group 241 chat, Internet forum, online game). In such social events, people gather together, and the commu-242 nications/relations between them likely co-occur. At the same time, not all people in such events would necessarily communicate with each other, e.g., some people are more familiar with each 243 other. This is the point of considering binding with various edge probabilities (instead of just in-244 serting cliques). In general, group interactions widely exist in graphs in different domains, e.g., 245 social networks (Felmlee & Faris, 2013), biological networks (Naoumkina et al., 2010), and web 246 graphs (Dourisboure et al., 2009). See Appendix D.4 for more discussions. 247

248	Algo	orithm 2: Local bind	ing
249	I	nput : (1) $p: \binom{V}{2} \to \lfloor$	0, 1]: edge probabilities;
250		(2) $g: V \to [0, \infty)$	1]: node-sampling probabilities;
251		(3) <i>R</i> : maximu	m number of rounds for binding
252	0	utput: G: generated gr	aph
253	1 F	$ \bullet \phi; i_{round} \leftarrow 0; P_{re}$	$_m \leftarrow \binom{v}{2} \triangleright$ Initialization
254	2 fc	or $i_{round} = 1, 2, \dots, R$	do
255	3	if $P_{rem} = \emptyset$ then	
200	4	break	▷ Pairs exhausted
256	5	$i_{round} \leftarrow i_{round} + i_{round}$	1
257	6	sample $V_s \subseteq V$ with	$\Pr[v \in V_s] = g(v)$
258		independently	
259	7	$P_s \leftarrow \binom{V_s}{2} \cap P_{rem}$	
260	8	if $P_s \neq \emptyset$ then	
261	9	$\mathcal{P} \leftarrow \mathcal{P} \cup \{P_s\}$	_
262	10	$ P_{rem} \leftarrow P_{rem} \lor$	$\setminus P_s$
263	11 F	$\mathcal{P} \leftarrow \mathcal{P} \cup \{\{(u,v)\} \colon (u,v)\}$	$(v) \in P_{rem}$
264	12 r	eturn the output of Algo	with print I with inputs p and $\mathcal P$
265			

266

267

268

269

In Algorithm 2, we repeatedly sample a subset of nodes (Line 6) and group the ungrouped pairs between the sampled nodes (Line 9). We maintain P_{rem} to ensure disjoint partitions (Lines 7 and 10). For practical usage, we consider a limited number (i.e., R) of rounds for binding (Line 2) otherwise it may take a long time to exhaust all the pairs. Algorithm 2 is also a probabilistic process, and we use $f_{p;g,R}^{\text{LB}}$ to denote the corresponding RGM, i.e., $f_{p;g,R}^{LB}(G) =$ Pr[Algorithm 2 outputs G with inputs p, g, and R]. As a special case of binding, local binding is also correct, i.e., generates EPGMs.

Proposition 5.5. Algorithm 2 with input p (and any g and R) produces an EPGM w.r.t. p.

Remark 5.6. We introduce node-sampling probabilities (i.e., q) to sample node groups with better tractability, without explicit partitions. With higher node-sampling probabilities, larger node groups

⁷We use independent *node* sampling (yet still with *edge* dependency), which is simple, tractable, and works empirically well in our experiments. See Appendix D.3 for more discussions.

286

287 288

323

are bound together, and the generated graphs are expected to have higher subgraph densities. Specifically, local binding forms a spectrum between the two extreme cases. When $g(v) \equiv 0$, local binding reduces to minimal binding, i.e., EIGMs. When $g(v) \equiv 1$, it reduces to maximal binding.

Theorem 5.7 (Time complexity of graph generation with local binding). Given $p: \binom{V}{2} \to [0, 1]$, $g: V \to [0, 1]$, and $R \in \mathbb{N}$, $f_{p;g,R}^{LB}$ generates a graph in $O(R\left(\sum_{v \in V} g(v)\right)^2 + |V|^2)$ time with high probability,⁸ with the worst case $O(R|V|^2)$.

We derive tractability results of local binding on the closed-form expected number of motifs (i.e., induced subgraphs; see Section 2). For this, we derive the probabilities of all the possible motifs for each node group, then we can compute the expected number of motifs by taking the summation over all different node groups, which can be later used for parameter fitting (see Section 5.4).

Theorem 5.8 (Tractable motif probabilities with local binding). For any $p: \binom{V}{2} \to [0,1], g: V \to [0,1], R \in \mathbb{N}$, and $V' = \{u, v, w\} \in \binom{V}{3}$, we can compute the closed-form $\Pr_{f_{p;g,R}^{LB}}[E(G[V']) = E^*], \forall E^* \subseteq \binom{V'}{2}$, as a function w.r.t. p, g, and R (the detailed formulae are in Appendix B.3).

Proof sketch. See Appendix B.3 for the full proof and the detailed formulae. Higher p and g values give higher clustering. The choice of R is mainly for controlling the running time.

Remark 5.9. Having closed-form formulae of motif probabilities allows us to estimate the output and fit the parameters of RGMs (see Section 5.4). Theorem 5.8 can be extended to larger |V'| with practical difficulties from the increasing sub-cases as motif size increases. See Appendix B.3.

Theorem 5.10 (Time complexity of computing motif probabilities with local binding). Computing Pr_f^{IB}_{*P*:*q*, *R*} [*E*(*G*[*V'*]) = *E*^{*}] takes *O*(|*V*|³) in total for all $E^* \subseteq \binom{V'}{2}$ and $V' \in \binom{V}{3}$.

295 5.3 PARALLEL BINDING: THE PARALLELIZABLE ICING ON THE CAKE

In local binding, the sampling order matters, i.e., later rounds are affected by earlier rounds. Specifically, if one pair is already determined in an early round, even if it is sampled again in later rounds, its (in)existence cannot be changed. This property hinders the parallelization of the binding process and the derivation of tractability analyses. This property also implies that each pair can only be bound together once, entailing less flexibility in the group interactions.

We thus propose a more flexible and naturally *parallelizable* binding algorithm, *parallel binding*. Specifically, we consider the probabilistic process in Algorithm 3, and let $f_{p;g,R}^{PB}$ denote the corresponding RGM defined by $f_{p;g,R}^{PB}(G) = \Pr[\text{Algorithm 3 outputs } G \text{ with inputs } p, g, \text{ and } R].$

	Input : (1) $p: \binom{V}{2} \to [0, 1]$: edge probabilities;
	(2) $g: V \to [0, 1]$: node-sampling probabilities
	(3) R : the number of rounds for binding
	Output: G: generated graph
1	$E \leftarrow \emptyset$ > Initializat
2	$r(u,v) \leftarrow \min(\frac{1 - (1 - p(u,v))^{1/R}}{g(u)g(v)}, 1), \forall u, v \in V$
3	$p_{rem}(u, v) \leftarrow \max(1 - \frac{1 - p(u, v)}{(1 - g(u)g(v))^R}, 0), \forall u, v \in V$
4	for $i_{round} = 1, 2, \ldots, R$ do
5	sample $V_s \subseteq V$ with $\Pr[v \in V_s] = g(v)$
	independently
6	$E \leftarrow E \cup \text{binding}(r, \binom{V_s}{2}) \qquad \triangleright \text{ See Alg}$
7	for $(u, v) \in {\binom{V}{2}}$ s.t. $p_{rem}(u, v) > 0$ do
8	sample a random variable $s \sim \mathcal{U}(0, 1)$
9	if $s \leq p_{rem}(u, v)$ then
10	
11	return G = (V, E)

The high-level idea is to make each round of binding probabilistically equivalent (see Lines 4 to 6). Specifically, in each round, we insert edges with low probabilities (compared to the ones in p) while maintaining the final individual edge probabilities, by the calculation of r and p_{rem} at Lines 2 and 3. We can straightforwardly parallelize the rounds by, e.g., multi-threading. Although parallel binding is algorithmi-

cally different from (local) binding (e.g., no partition is used), it shares many theoretical properties with local binding. Specifically, Proposition 5.5, Remark 5.6, Theorem 5.7, Theorem 5.8, Remark 5.9, and Theorem 5.10 also apply to parallel binding. This implies that we maintain (or even improve; see Re-

mark 5.11) correctness, tractability, flexibility, and efficiency when using parallel binding instead of
 local binding. See Appendix B.4 for the formal statements and proofs.

⁸That is, $\lim_{|V|\to\infty} \Pr[\text{it takes } O(R\left(\sum_{v\in V} g(v)\right)^2 + |V|^2)] = 1.$

Remark 5.11. We also derive tractability results of parallel binding on the expected number of (non-)isolated nodes. It is much more challenging to derive such results for local binding due to the properties mentioned above, i.e., later rounds are affected by earlier rounds. Since our main focus is on subgraph densities, see Appendix C for all the analysis regarding (non-)isolated nodes.

329 5.4 Efficient parameter fitting with node equivalence

330 Efficient evaluation of the fitting objective is important. A key challenge is that the naive computa-331 tion takes $O(|V|^3)$ time in total by considering all $O(|V|^3)$ different possible node groups V' (see 332 Theorems 5.8 and B.5)). We aim to improve the speed of computing the tractability results by con-333 sidering node equivalence w.r.t. motif probabilities in various edge-probability models. Equivalent 334 nodes form equivalent node groups, which reduces the number of distinct node groups to calculate. Erdős-Rényi (ER) model. The ER model (Erdős & Rényi, 1959) outputs uniform edge probabili-335 ties, and all the nodes are equivalent. Hence, we set all the node-sampling probabilities identical, 336 i.e., $g(v) = g_0, \forall v \in V$ for a single parameter $g_0 \in [0, 1]$. As mentioned in Section 3.2, the ER 337 model is the only case with node exchangeability, and the exchangeability is preserved with binding 338 since the nodes are also treated symmetrically for binding. 339

- **Lemma 5.12** (Reduced time complexity with ER). For ER, the time complexities of computing 341 3-motif probabilities can be reduced from $O(|V|^3)$ to O(1).
- **Chung-Lu** (**CL**) **model.** The CL model (Chung & Lu, 2002) outputs edge probabilities with expected degrees $D = (d_1, d_2, \ldots, d_n)$, and nodes with the same degree are equivalent. We set node-sampling probabilities as a function of degree with k_{deg} parameters, where $k_{deg} := |\{d_1, d_2, \ldots, d_n\}|$.
- **Lemma 5.13** (Reduced time complexity with CL). For CL, the time complexities of computing 3-motif probabilities can be reduced from $O(|V|^3)$ to $O(k_{deg}^3)$.

349 <u>Stochastic block (SB) model</u> The SB model (Holland et al., 1983) outputs edge probabilities with
 asigned to a block (i.e., a group), and nodes partitioned in the same block are equivalent.
 Hence, we set the node-sampling probabilities as a function of the block index, with the number of
 parameters equal to the number of blocks.

- Lemma 5.14 (Reduced time complexity with SB). For SB, the time complexities of computing 3motif probabilities can be reduced from $O(|V|^3)$ to $O(c^3)$, where c is the total number of blocks.
- Stochastic Kronecker (KR) model With a (commonly used 2-by-2) seed matrix $\theta \in [0, 1]^{2 \times 2}$ and $k_{KR} \in \mathbb{N}$, the KR model (Leskovec et al., 2010) outputs edge probabilities as the k_{KR} -th Kronecker power of θ . In KR, each node $i \in [2^{k_{KR}}]$ is associated with a binary node label of length k_{KR} , i.e., the binary representation of i - 1. Nodes with the same number of ones in their binary node labels are equivalent.⁹ Hence, we set node-sampling probabilities as a function of the number of ones in the binary representation, with $k_{KR} + 1$ parameters.
- **Lemma 5.15** (Reduced time complexity with KR). For KR, the time complexities of computing 3-motif probabilities can be reduced from $O(|V|^3)$ to $O(k_{KR}^7)$.

364 <u>Note.</u> See Appendix B.5 for more details about parameter fitting, e.g., formal definitions of the models and the details of node equivalence.

6 EXPERIMENTS

366

367 368

369

- In this section, we empirically evaluate EPGMs with our binding schemes and show the superiority of realization schemes beyond edge independency. Specifically, we show the following two points:
- (P1) When we use our tractability results to fit the parameters of EPGMs, we improve upon EIGMs and reproduce high triangle densities, and thus produce high clustering, which is a common pattern in real-world graphs; this also validates the correctness of our tractability results and algorithms.
- (P2) We can reproduce other common patterns, e.g., power-law degrees and small diameters, especially when the corresponding EIGMs are able to do so; this shows that improving EIGMs w.r.t. clustering by binding does not harm the generation quality w.r.t. other common patterns.
 - ⁹The equivalence in KR is slightly weaker than that in the other three models. This is why the reduced time complexity is $O(k_{KR}^7)$ instead of $O(k_{KR}^3)$. See Appendix B.5.4 for more details.

Table 1: The clustering metrics of generated graphs. The number of triangles (\triangle) is normalized. For each dataset and each model, the best result is in **bold** and the second best is underlined. AR represents average ranking. The statistics are averaged over 100 random trails. See Table 7 in Appendix E.2 for the full results with standard deviations. Our binding schemes (LOCLBDG and PARABDG) are consistently and clearly beneficial for improving clustering, and generating graphs with close-to-ground-truth clustering metrics.

001			-		-		_	-	-			-				_					-		
382	d	ataset		Hams	5		Fcbk			Polb			Spam			Cepg			Scht		AR	over da	ataset
383	n	netric	\triangle	GCC	ALCC	Δ	GCC	ALCC	Δ	GCC	ALCC	Δ	GCC	ALCC	Δ	GCC	ALCC	Δ	GCC	ALCC		GCC	ALCC
201	model	GROUNDT	1.00	0.23	0.54	1.00	0.52	0.61	1.00	0.23	0.32	1.00	0.14	0.29	1.00	0.32	0.45	1.00	0.38	0.35	N/A	N/A	N/A
304 385 296	ER	EDGEIND LOCLBDG PARABDG	0.01 1.00 <u>0.99</u>	0.01 0.32 <u>0.39</u>	0.01 <u>0.24</u> 0.64	0.01 <u>1.01</u> 1.00	0.01 <u>0.45</u> 0.57	0.01 <u>0.22</u> 0.81	0.03 <u>0.95</u> 1.02	0.02 0.34 <u>0.41</u>	0.02 0.25 0.66	0.01 <u>0.99</u> 0.99	0.00 <u>0.34</u> 0.40	0.00 0.23 0.66	0.04 1.02 <u>0.97</u>	0.03 0.40 <u>0.51</u>	0.03 0.26 <u>0.75</u>	0.03 <u>1.01</u> 0.99	0.03 0.42 <u>0.56</u>	0.03 0.25 0.79	3.0 <u>1.7</u> 1.3	2.7 1.3 2.0	2.5 1.3 <u>2.2</u>
387 388	CL	EDGEIND LOCLBDG PARABDG	0.30 <u>0.99</u> 1.00	0.07 <u>0.17</u> 0.18	0.06 <u>0.26</u> 0.47	0.12 <u>1.03</u> 1.01	0.06 <u>0.26</u> 0.34	0.06 <u>0.30</u> 0.63	0.79 1.00 <u>1.01</u>	0.18 <u>0.21</u> 0.22	0.17 0.34 0.47	0.50 <u>1.03</u> 1.01	0.07 <u>0.12</u> 0.13	0.06 0.26 <u>0.44</u>	0.68 <u>1.00</u> 1.00	0.23 <u>0.29</u> 0.31	0.22 0.43 <u>0.58</u>	0.64 1.04 <u>1.14</u>	0.24 0.32 <u>0.29</u>	0.23 0.47 0.61	3.0 <u>1.7</u> 1.3	3.0 <u>1.8</u> 1.2	2.5 1.5 <u>2.0</u>
389 300	SB	EDGEIND LOCLBDG PARABDG	0.26 <u>1.04</u> 0.99	0.08 0.22 <u>0.24</u>	0.04 <u>0.24</u> 0.52	0.15 <u>0.93</u> 1.03	0.14 <u>0.43</u> 0.53	0.08 <u>0.33</u> 0.56	0.48 0.99 <u>1.01</u>	0.14 0.24 <u>0.18</u>	0.16 0.35 <u>0.25</u>	0.53 <u>0.98</u> 0.99	0.09 0.15 <u>0.16</u>	0.04 0.22 <u>0.36</u>	0.66 0.99 <u>1.05</u>	0.26 0.32 <u>0.33</u>	0.20 0.41 <u>0.36</u>	0.64 <u>1.03</u> 0.97	0.27 0.35 <u>0.34</u>	0.13 0.39 <u>0.44</u>	3.0 <u>1.7</u> 1.3	3.0 1.2 <u>1.8</u>	3.0 1.3 <u>1.7</u>
391 392	KR	EDGEIND LOCLBDG PARABDG	0.18 <u>1.09</u> 1.00	0.04 <u>0.15</u> 0.17	0.06 <u>0.23</u> 0.39	0.05 <u>0.93</u> 0.97	$\begin{array}{c} 0.04 \\ \underline{0.24} \\ 0.35 \end{array}$	0.04 <u>0.27</u> 0.60	0.10 <u>1.06</u> 0.94	$\begin{array}{c} 0.04 \\ \underline{0.14} \\ 0.22 \end{array}$	0.07 0.23 <u>0.42</u>	$0.06 \\ \underline{0.94} \\ 1.05$	$\begin{array}{c} 0.01 \\ \underline{0.12} \\ 0.16 \end{array}$	$\begin{array}{c} 0.03 \\ \underline{0.19} \\ 0.38 \end{array}$	0.13 <u>0.99</u> 1.00	$\begin{array}{c} 0.07 \\ \underline{0.17} \\ 0.28 \end{array}$	0.12 <u>0.31</u> 0.46	$0.03 \\ \frac{1.44}{1.07}$	$\begin{array}{c} 0.03 \\ \underline{0.18} \\ 0.35 \end{array}$	0.05 0.28 <u>0.58</u>	3.0 <u>2.0</u> 1.0	3.0 <u>2.0</u> 1.0	3.0 <u>1.7</u> 1.3
393 394	AR over models	EDGEIND LoclBdg ParaBdg	3.0 <u>1.8</u> 1.3	3.0 1.5 1.5	3.0 <u>2.0</u> 1.0	3.0 <u>2.0</u> 1.0	3.0 <u>2.0</u> 1.0	3.0 <u>2.0</u> 1.0	3.0 1.5 1.5	3.0 1.5 1.5	2.5 1.0 2.5	3.0 <u>2.0</u> 1.0	2.5 1.8 1.8	2.8 1.3 2.0	3.0 1.5 1.5	3.0 1.5 1.5	3.0 1.3 <u>1.8</u>	3.0 <u>1.8</u> 1.3	3.0 1.3 <u>1.8</u>	2.3 1.3 2.5	3.0 <u>1.8</u> 1.3	2.9 <u>1.6</u> 1.5	2.8 1.5 <u>1.8</u>

395 6.1 EXPERIMENTAL SETTINGS

378

379

380

381

Datasets. We use six real-world datasets: (1) social networks hamsterster (Hams) and facebook 397 (Fcbk), (2) web graphs polblogs (Polb) and spam (Spam), and (3) biological graphs CE-PG (Cepg) 398 and SC-HT (Scht). See Table 6 in Appendix E.1 for the statistics of the datasets.

Models. We consider the four edge-probability models analyzed in Section 5.4: the Erdős-Rényi 399 (ER) model, the Chung-Lu (CL) model, the stochastic block (SB) model, and the stochastic Kro-400 necker (KR) model. Given an input graph, we fit each model to the graph and obtain the output edge 401 probabilities (see Appendix B.5 for more details). 402

Realization methods. We compare three realization methods: EIGMs (EDGEIND), and EPGMs 403 with local binding (LOCLBDG) and with parallel binding (PARABDG). 404

Fitting. Since our main focus is to improve clustering, in our main experiments, we use the number 405 of triangles, an important indicator of clustering (Tsourakakis et al., 2009; Kolda et al., 2014a), as 406 the objective of the fitting algorithms. We use gradient descent to optimize parameters. In the main 407 experiments, the edge probabilities are fixed as those output by the edge-probability models, while 408 we also consider joint optimization of edge probabilities and node-sampling probabilities (see Sec-409 tion 6.5). See Appendix E.1 for the detailed experimental settings. Instead of fitting specific graphs, it is also possible to use EPGMs with binding to generate graphs "from scratch" with different levels 410 of clustering by directly setting the parameters. See Appendix E.7 for more discussions and results. 411

412 6.2 P1: EPGMs REPRODUCE HIGH CLUSTERING (TABLE 1)

413 EPGMs with binding reproduce high clustering in real-world graphs. In Table 1, for each dataset and 414 each model, we compare three clustering-related metrics, the number of triangles (\triangle), the global clustering coefficient (GCC), and the average local clustering coefficient (ALCC), in the ground-415 truth (GROUNDT) graph and the graphs generated with each realization method. For each dataset 416 and each model, we compute the ranking of each method according to the absolute error w.r.t. each 417 metric. We also show the average rankings (ARs) over datasets and models. The statistics are 418 averaged over 100 generated graphs. See Appendix E.2 for the full results with standard deviations. 419 The number of triangles, which is the objective of our fitting algorithms, can be almost perfectly 420 preserved by both LOCLBDG and PARABDG, showing the correctness and effectiveness of our algo-421 rithms. Notably, as Theorem 3.3 imply, EIGMs often fail to generate graphs with enough triangles. 422 GCC and ALCC are also significantly improved (upon EIGMs) in most cases, while PARABDG has 423 noticeably higher ALCC than LOCLBDG. In some rare cases, PARABDG generates graphs with 424 exceedingly high GCC and/or ALCC and have higher absolute errors compared to EIGMs.

425 6.3 P2: EPGMs REPRODUCE REAL-WORLD DEGREES AND DISTANCES (FIGURE 1)

426 EPGMs with binding (LOCLBDG and PARABDG) also reproduce other common patterns in real-427 world graphs. In Figure 1, for each dataset (each column) and each model (each row), we compare 428 the degree distributions and distance distributions in the ground-truth graph and the graphs generated 429 with each realization method. Specifically, for each realization method, we count the number of nodes with degree at least k for each $k \in \mathbb{N}$ and count the number of pairs in the largest connected 430 component with distance at least d for each $d \in \mathbb{N}$ in each generated graph, and take the average 431 number over 100 generated graphs. See Appendix E.3 for the formal definitions and full results.

Figure 1: The degree (left) and distance (right) distributions of generated graphs. Each shaded area represents one standard deviation. The plots are in a log-log scale. Our binding schemes (LOCLBDG and PARABDG) do not negatively affect degree or distance distributions, and provide improvements sometimes (e.g., for the ER model).

EPGMs with binding generate graphs with common patterns: power-law degrees and small diameters (i.e., small distances). Both schemes (LOCLBDG and PARABDG) perform comparably well
while LOCLBDG performs noticeably better with ER and PARABDG performs noticeably better
with KR. Importantly, when the edge probabilities output power-law expected degrees (e.g., CL and KR), the degree distributions are well preserved with binding. Edge-independent ER cannot
generate power-law degrees (Bollobás & Riordan, 2003), and binding alleviates this problem.

<u>Other graph metrics.</u> Notably, with binding, the generated graphs are overall closer to the ground
 truth w.r.t. some other graph metrics: modularity, core numbers, conductance, average vertex/edge
 betweenness, and natural connectivity. See Appendix E.3 for more details.

458 6.4 GRAPH GENERATION SPEED (TABLE 2)

In Table 2, we compare the running time of graph generation (averaged over 100 random trials) using EDGEIND,¹⁰ LO-CLBDG, PARABDG, and serialized PARABDG without parallelization (PARABDG-s) with the stochastic Kronecker (KR) model.

Among the competitors, EDGEIND is the fastest with the simplest algorithmic nature. Between the two binding schemes, PARABDG is noticeably faster than LOCLBDG, and is even faster with parallelization. Fitting the same number of triangles, PARABDG usually requires lower node-sampling probabilities and thus deals with fewer

Table 2: The time (in seconds)
for graph generation with dif-
ferent realization methods.

	Hams	Fcbk
EdgeInd	0.1	0.1
LOCLBDG	4.7	49.0
PARABDG	0.3	1.7
PARABDG-S	3.2	12.6

pairs in each round, and is thus faster even when serialized. We also conduct scalability experiments
by upscaling the input graph. With 32GB RAM, all the proposed algorithms can run with 128,000
nodes. See Appendix E.4 for more detailed discussions and results.

6.5 JOINT OPTIMIZATION OF EDGE AND NODE-SAMPLING PROBABILITIES (TABLE 3)

471 In addition to optimizing node-sampling 472 probabilities for given edge probabilities, 473 we can also jointly optimize both kinds of probabilities. In Table 3, we compare 474 the ground-truth clustering and that gen-475 erated by EPGMs using three variants of 476 parallel binding: (1) PARABDG with the 477 number of triangles as the objective (the 478 one used in Table 1), (2) PARABDG-W 479 with the numbers of triangles and wedges 480 as the objective (given edge probabilities), 481 (3) PARABDG-JW jointly optimizing both

Table 3: The clustering metrics of the graphs generated by
three variants of parallel binding. The number of triangles
(\triangle) is normalized. For each dataset and each model, the best
result is in bold, and the second best is underlined. Joint
optimization further enhances the power of our binding
scheme PARABDG to reproduce graph patterns.

			8			
dataset		Hams			Fcbk	
metric	Δ	GCC	ALCC	Δ	GCC	ALCC
GROUNDT	1.000	0.229	0.540	1.000	0.519	0.606
PARABDG PARABDG-W PARABDG-JW	0.997 0.964 0.999	0.165 <u>0.176</u> 0.230	0.394 0.260 0.448	0.971 <u>1.021</u> 1.018	0.347 <u>0.408</u> 0.521	0.605 0.458 <u>0.644</u>

482 kinds of probabilities, with the numbers of triangles and wedges as the objective.

On both *Hams* and *Fcbk*, PARABDG and PARABDG-W can well fit the number of triangles but have noticeable errors w.r.t. the number of wedges (and thus GCC), while PARABDG-JW with joint

¹⁰We use krongen in SNAP (Leskovec & Sosič, 2016), which is parallelized and optimized for KR.

optimization accurately fits both triangles and wedges. On the other datasets, the three variants
 perform similarly well because PARABDG already preserves both triangles and wedges well, and
 there is not much room for improvement. Notably, with joint optimization, the degree and distance
 distributions are still well preserved (see Appendix E.5 for more details).

6.6 Comparison with edge-dependent RGMs and advanced EIGMs (Table 4)

491 We test other edge-dependent RGMs: 492 preferential attachment models (PA; 493 Barabási & Albert (1999)) and ran-494 dom geometric graphs (RGG; Pen-495 rose (2003)). We fit them to the num-496 bers of nodes and edges of each input graph. PA fails to generate high clus-497 tering. For RGG, we often need di-498 mension d = 1 (the smallest dimen-499 sion gives the highest clustering) to 500 generate enough triangles, while the 501 GCC and ALCC are too high (they 502 are only determined by the dimension d). Also, as discussed in Sec-504 tion 3.2, closed-form tractability re-

Table 4: The clustering metrics and overlap (lower the better) of the graphs generated by binding and other models. For each dataset and each model, the best result is in bold, and the second best is underlined. **Overall, binding achieves promising performance in generating high-clustering graphs, with high variability.**

	<u> </u>		0.			0		•	
dataset		h	lams		Fcbk				
metric	Δ	GCC	ALCC	overlap	Δ	GCC	ALCC	overlap	
GROUNDT	1.000	0.229	0.540	N/A	1.000	0.519	0.606	N/A	
LOCLBDG-CL	0.992	0.165	0.255	5.8%	1.026	0.255	0.305	6.3%	
PARABDG-CL	1.000	0.185	0.471	5.9%	1.006	0.336	0.626	6.2%	
PA	0.198	0.049	0.049	4.7%	0.120	0.061	0.061	6.2%	
RGG (d = 1)	1.252	0.751	0.751	0.8%	0.607	0.751	0.752	1.1%	
RGG (d = 2)	1.011	0.595	0.604	0.8%	0.492	0.596	0.607	<u>1.1</u> %	
RGG (d = 3)	0.856	0.491	0.513	0.8%	0.421	0.494	0.518	1.1%	
BTER	0.991	0.290	0.558	53.8%	0.880	0.525	0.605	68.0%	
LFR ($\mu = 0.0$)	1.140	0.262	0.546	43.5%	N/A	N/A	N/A	N/A	
LFR ($\mu = 0.5$)	0.296	0.068	0.081	13.4%	0.161	0.084	0.120	17.0%	
LFR ($\mu = 1.0$)	0.197	0.045	0.047	7.0%	0.105	0.055	0.059	6.7%	

505 sults on subgraph densities are not unavailable for PA and RGG. See Appendix E.2 for more details. 506 As discussed in Section 3.1, some existing methods shift edge probabilities, and they are essentially 507 EIGMs with an inevitable trade-off between variability and the ability to generate high clustering (see Theorem 3.3). We test the block two-level Erdős-Rényi (BTER) model (Kolda et al., 2014b) 508 that essentially uses a mixture of multiple Chung-Lu models to generate high clustering. Similarly, 509 the Lancichinetti-Fortunato-Radicchi (LFR) model (Lancichinetti et al., 2008) generates graphs with 510 community structures by shifting edge probabilities to intra-community pairs on top of Chung-Lu. 511 We empirically validate that EPGMs with binding (we report the results based on Chung-Lu; one 512 may achieve even better performance with binding based on other edge-probability models, as shown 513 in Table 1) achieve comparable performance in generating high-clustering graphs, with much higher 514 variability (i.e., low overlap; recall that high variability is important for RGMs; see Definition 3.1 515 and Remark 3.2). See Table 4 for the results on *Hams* and *Fcbk*, and see Appendix E.6 for more 516 details with full results and discussions on deep graph generative models (Rendsburg et al., 2020; 517 Simonovsky & Komodakis, 2018; You et al., 2018).

518 <u>Extra experimental results.</u> Due to the page limit, the full results are in Appendix E. Our fitting algorithms also assign different node-sampling probabilities to different nodes (See Appendix E.1).
 520 Moreover, as mentioned in Remark 5.11, for parallel binding, we can fit and control the number of (non-)isolated nodes; see Appendix C for the theoretical analyses and experimental results.

7 CONCLUSION AND DISCUSSIONS

522

523 In this work, we show that realization beyond edge independence can better reproduce common 524 patterns while ensuring high tractability and variability. We formally define EPGMs and show their 525 basic properties (Section 4). Notably, even with edge dependency, EPGMs maintain the same vari-526 ability (Property 4.7). We propose a pattern-reproducing, tractable, and flexible realization frame-527 work called *binding* (Algorithm 1) with two practical variants: local binding (Algorithm 2) and 528 parallel binding (Algorithm 3). We derive tractability results (Theorems 5.8 and B.5) on the closed-529 form subgraph densities, and propose efficient parameter fitting (Section 5.4; Lemmas 5.12-5.15). 530 We conduct extensive experiments to show the empirical power of EPGMs with binding (Section 6). Limitations and future directions. EPGMs with binding generate more isolated nodes than EIGMs 531 due to higher variance. Fortunately, we can address the limitation by fitting and controlling the num-532 ber of isolated nodes with the tractability results, as mentioned in Remark 5.11. The performance 533 of EPGMs depends on both the underlying edge probabilities and the way to realize (i.e., sample 534 from) them. In this work, we focus on the latter, while finding valuable edge probabilities is an 535 independent problem. Notably, as shown in Section 6.5, it is possible to jointly optimize both edge 536 probabilities and their realization. As discussed in Remark 5.4, binding only covers a subset of 537 EPGMs, and we will explore the other types of EPGMs (e.g., EPGMs with lower subgraph densi-538 ties) in the future. Combining binding with other mechanisms in existing edge-dependent RGMs to create even stronger RGMs is another interesting future direction.

540 REFERENCES

556

562

- Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided they blog. In *LinkKDD workshop*, 2005.
- Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. SIMPLE: A gradient estimator for *k*-subset sampling. In *ICLR*, 2023.
- 547 Dimitris Anastassiou. Computational analysis of the synergy among multiple interacting genes.
 548 Molecular systems biology, 3(1):83, 2007.
- Anonymous. Exploring edge probability graph models beyond edge independency: Code and datasets. https://anonymous.4open.science/r/epgm-7EBE, 2024.
- Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou r3579x? anonymized
 social networks, hidden patterns, and structural steganography. In *theWebConf (WWW)*, 2007.
- Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. *science*, 286 (5439):509–512, 1999.
- ⁵⁵⁷ U Bhat, PL Krapivsky, R Lambiotte, and S Redner. Densification and structural transitions in net ⁵⁵⁸ works that grow by node copying. *Physical Review E*, 94(6):062302, 2016.
- Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of communities in large networks. *Journal of statistical mechanics: theory and experiment*, 2008 (10):P10008, 2008.
- Béla Bollobás and Oliver M Riordan. Mathematical results on scale-free random graphs. *Handbook* of graphs and networks: from the genome to the internet, pp. 1–34, 2003.
- ⁵⁶⁵ Ulrik Brandes. On variants of shortest-path betweenness centrality and their generic computation.
 Social networks, 30(2):136–145, 2008.
- 568 Christopher Brissette and George M. Slota. Limitations of chung lu random graph generation. In
 569 International Workshop on Complex Networks and Their Applications, 2021.
- 570 Christopher Brissette, David Liu, and George M Slota. Correcting output degree sequences in chung 571 lu random graph generation. In *International Conference on Complex Networks and Their Appli-* 572 *cations*, 2022.
- Fanchen Bu, Shinhwan Kang, and Kijung Shin. Interplay between topology and edge weights in real-world graphs: concepts, patterns, and an algorithm. *Data Mining and Knowledge Discovery*, 37:2139 2191, 2023.
- 577 Carlos Castillo, Kumar Chellapilla, and Ludovic Denoyer. Web spam challenge 2008. In *AIRWeb* 578 *workshop*, 2008.
- Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and algorithms.
 ACM computing surveys, 38(1):2–es, 2006.
- Hau Chan, Leman Akoglu, and Hanghang Tong. Make it or break it: Manipulating robustness in
 large networks. In SDM, 2014.
- Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Charalampos Tsourakakis. On the power of edge independent graph models. In *NeurIPS*, 2021.
- Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Charalampos
 Tsourakakis. On the role of edge dependency in graph generative models. In *ICML*, 2024.
- Ara Cho, Junha Shin, Sohyun Hwang, Chanyoung Kim, Hongseok Shim, Hyojin Kim, Hanhae Kim, and Insuk Lee. Wormnet v3: a network-assisted hypothesis-generating server for caenorhabditis elegans. *Nucleic acids research*, 42(W1):W76–W82, 2014.
- 593 Fan Chung and Linyuan Lu. Connected components in random graphs with given expected degree sequences. *Annals of combinatorics*, 6(2):125–145, 2002.

594 595 596	Jaewon Chung, Benjamin D Pedigo, Eric W Bridgeford, Bijan K Varjavand, Hayden S Helm, and Joshua T Vogelstein. Graspy: Graph statistics in python. <i>Journal of Machine Learning Research</i> , 20:1–7, 2019.
597 598 599	Harry Crane and Walter Dempsey. Edge exchangeable models for network data. <i>arXiv:1603.04571</i> , 2016.
600 601	Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. <i>Journal of the American Statistical Association</i> , 113(523):1311–1326, 2018.
603 604	Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-memory pro- gramming. <i>IEEE computational science and engineering</i> , 5(1):46–55, 1998.
605 606 607	Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs. <i>arXiv preprint arXiv:1805.11973</i> , 2018.
608 609	Persi Diaconis and Svante Janson. Graph limits and exchangeable random graphs. <i>arXiv:0712.2749</i> , 2007.
610 611 612	Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and classification of dense implicit communities in the web graph. <i>ACM Transactions on the Web</i> , 3(2):1–36, 2009.
613 614	Mikhail Drobyshevskiy and Denis Turdakov. Random graph modeling: A survey of the concepts. <i>ACM computing surveys</i> , 52(6):1–36, 2019.
615 616 617 618	John D Eblen, Charles A Phillips, Gary L Rogers, and Michael A Langston. The maximum clique enumeration problem: algorithms, applications, and implementations. In <i>BMC bioinformatics</i> , volume 13, pp. 1–11, 2012.
619 620	P Erdős and A Rényi. On random graphs i. <i>Publicationes Mathematicae Debrecen</i> , 6:290–297, 1959.
621 622 623	Diane Felmlee and Robert Faris. Interaction in social networks. In <i>Handbook of social psychology</i> , pp. 439–464. Springer, 2013.
624	Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.
625 626	LC Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35-41, 1977.
627 628	Debarghya Ghoshdastidar, Maurilio Gutzeit, Alexandra Carpentier, and Ulrike von Luxburg. Two- sample tests for large random graphs using network statistics. In <i>COLT</i> , 2017.
630	David Gleich. Hierarchical directed spectral graph partitioning. Information Networks, 443, 2006.
631 632 633	Irving I Gottesman and Daniel R Hanson. Human development: Biological and genetic processes. Annual review of psychology, 56:263–286, 2005.
634 635	Lei Gu, Hui Lin Huang, and Xiao Dong Zhang. The clustering coefficient and the diameter of small-world networks. <i>Acta Mathematica Sinica, English Series</i> , 29(1):199–208, 2013.
636 637	Hamsterster. Hamsterster social network. http://www.hamsterster.com.
638 639	Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps. Social networks, 5(2):109–137, 1983.
641 642	Iacopo Iacopini, Giovanni Petri, Andrea Baronchelli, and Alain Barrat. Group interactions modulate critical mass dynamics in social convention. <i>Communications Physics</i> , 5(1):64, 2022.
643 644 645	Hyukjae Jang, Sungwon P Choe, Simon NB Gunkel, Seungwoo Kang, and Junehwa Song. A system to analyze group socializing behaviors in social parties. <i>IEEE Transactions on Human-Machine Systems</i> , 47(6):801–813, 2016.
647	Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs. <i>The Bell system technical journal</i> , 49(2):291–307, 1970.

648 649	Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
650 651	Jon M Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew S Tomkins. The web as a graph: Measurements, models, and methods. In <i>COCOON</i> , 1999.
652 653 654	Olga Klopp, Alexandre B Tsybakov, and Nicolas Verzelen. Oracle inequalities for network models and sparse graphon estimation. <i>Annals of Statistics</i> , 45(1):316–354, 2017.
655 656	Tamara G Kolda, Ali Pinar, Todd Plantenga, C Seshadhri, and Christine Task. Counting triangles in massive graphs with mapreduce. <i>SIAM Journal on Scientific Computing</i> , 36(5):S48–S77, 2014a.
657 658 659 660	Tamara G Kolda, Ali Pinar, Todd Plantenga, and Comandur Seshadhri. A scalable generative graph model with community structure. <i>SIAM Journal on Scientific Computing</i> , 36(5):C424–C452, 2014b.
661 662 663	Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing com- munity detection algorithms. <i>Physical Review E—Statistical, Nonlinear, and Soft Matter Physics</i> , 78(4):046110, 2008.
664 665 666	Timothy LaRock and Renaud Lambiotte. Encapsulation structure and dynamics in hypergraphs. <i>Journal of Physics: Complexity</i> , 4(4):045007, 2023.
667 668	Geon Lee, Minyoung Choe, and Kijung Shin. How do hyperedges overlap in real-world hypergraphs?-patterns, measures, and generators. In <i>theWebConf (WWW)</i> , 2021.
669 670 671	Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http: //snap.stanford.edu/data, June 2014.
672 673	Jure Leskovec and Julian Mcauley. Learning to discover social circles in ego networks. In <i>NeurIPS</i> , 2012.
674 675 676	Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library. <i>ACM Transactions on Intelligent Systems and Technology</i> , 8(1):1–20, 2016.
677 678 679	Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. Kronecker graphs: an approach to modeling networks. <i>Journal of Machine Learning Research</i> , 11(2), 2010.
680 681 682	Vincent Levorato. Group measures and modeling for social networks. <i>Journal of Complex Systems</i> , 2014, 2014.
683 684	Aming Li, Lei Zhou, Qi Su, Sean P Cornelius, Yang-Yu Liu, Long Wang, and Simon A Levin. Evolution of cooperation on temporal networks. <i>Nature communications</i> , 11(1):2259, 2020.
686 687	László Lovász and Balázs Szegedy. Limits of dense graph sequences. <i>Journal of Combinatorial Theory, Series B</i> , 96(6):933–957, 2006.
688 689	Dean Lusher, Johan Koskinen, and Garry Robins. <i>Exponential random graph models for social networks: Theory, methods, and applications.</i> Cambridge University Press, 2013.
691	Mohammad Mahdian and Ying Xu. Stochastic kronecker graphs. In WAW, 2007.
692 693	Guy Melancon. Just how dense are dense graphs in the real world? a methodological note. In <i>BELIV</i> , 2006.
695 696	Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. Net- work motifs: simple building blocks of complex networks. <i>Science</i> , 298(5594):824–827, 2002.
697 698 699 700	Sebastian Moreno, Jennifer Neville, and Sergey Kirshner. Tied kronecker product graph models to capture variance in network populations. <i>ACM Transactions on Knowledge Discovery from Data</i> , 12(3):1–40, 2018.
701	Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. Introducing the graph 500. <i>Cray Users Group</i> , 19:45–74, 2010.

- 702 Stephen Mussmann, John Moore, Joseph Pfeiffer, and Jennifer Neville. Incorporating assortativity 703 and degree dependence into scalable network models. In AAAI, 2015. 704 Marina A Naoumkina, Luzia V Modolo, David V Huhman, Ewa Urbanczyk-Wochniak, Yuhong 705 Tang, Lloyd W Sumner, and Richard A Dixon. Genomic and coexpression analyses predict 706 multiple genes involved in triterpene saponin biosynthesis in medicago truncatula. The Plant Cell, 22(3):850-866, 2010. 708 709 Mark EJ Newman. Properties of highly clustered networks. *Physical Review E*, 68(2):026121, 2003. 710 Mark EJ Newman. Modularity and community structure in networks. Proceedings of the national 711 academy of sciences, 103(23):8577-8582, 2006. 712 713 Liudmila Ostroumova Prokhorenkova. General results on preferential attachment and clustering 714 coefficient. Optimization Letters, 11:279-298, 2017. 715 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor 716 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-717 performance deep learning library. In NeurIPS, 2019. 718 719 Mathew Penrose. Random geometric graphs, volume 5. OUP Oxford, 2003. 720 721 Adeel Pervez, Phillip Lippe, and Efstratios Gavves. Scalable subset sampling with neural conditional poisson networks. In ICLR, 2023. 722 723 Joseph J Pfeiffer, Timothy La Fond, Sebastian Moreno, and Jennifer Neville. Fast generation of 724 large scale social networks while incorporating transitive closures. In *PASSAT-SocialCom*, 2012. 725 726 Robert Plomin. The role of inheritance in behavior. Science, 248(4952):183-188, 1990. 727 Yuri Pritykin, Dario Ghersi, and Mona Singh. Genome-wide detection and analysis of multifunc-728 tional genes. *PLoS computational biology*, 11(10):e1004467, 2015. 729 730 Sanjay Purushotham and C C Jay Kuo. Modeling group dynamics for personalized group-event 731 recommendation. In SBP, 2015. 732 Luca Rendsburg, Holger Heidrich, and Ulrike Von Luxburg. Netgan without gan: From random 733 walks to low-rank approximations. In *ICML*, 2020. 734 735 Douglas A Reynolds et al. Gaussian mixture models. Encyclopedia of biometrics, 741(659-663), 736 2009. 737 Karl Rohe, Sourav Chatterjee, and Bin Yu. Spectral clustering and the high-dimensional stochastic 738 blockmodel. The Annals of Statistics, pp. 1878–1915, 2011. 739 740 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics 741 and visualization. In AAAI, 2015. 742 Stephen B Seidman. Network structure and minimum degree. Social networks, 5(3):269–287, 1983. 743 744 Gadiel Seroussi and Fai Ma. On the arithmetic complexity of matrix kronecker powers. Information 745 processing letters, 17(3):145-148, 1983. 746 747 Comandur Seshadhri, Ali Pinar, and Tamara G Kolda. An in-depth analysis of stochastic kronecker 748 graphs. Journal of the ACM, 60(2):1–32, 2013. 749 Jeremy G Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User Guide and 750 Reference Manual. Pearson Education, 2001. 751 752 Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs using 753 variational autoencoders. In ICANN, 2018. 754
- 755 Felix I Stamm, Michael Scholkemper, Markus Strohmaier, and Michael T Schaub. Neighborhood structure configuration models. In *WWW*, 2023.

756 757 758	Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool suite for large- scale complex network analysis. <i>Network Science</i> , 4(4):508–530, 2016.
759 760	John D Storey, Jennifer Madeoy, Jeanna L Strout, Mark Wurfel, James Ronald, and Joshua M Akey. Gene-expression variation within and among human populations. <i>The American Journal of Hu-</i>
761 762	<i>man Genetics</i> , 80(3):502–509, 2007. Daniel L Sussman, Minh Tang, Donniell E Fishkind, and Carey E Priebe. A consistent adjacency
763 764	spectral embedding for stochastic blockmodel graphs. <i>Journal of the American Statistical Association</i> , 107(499):1119–1128, 2012.
765 766 767	Thomas M Sutter, Alain Ryser, Joram Liebeskind, and Julia E Vogt. Differentiable random partition models. <i>arXiv</i> 2305.16841, 2023.
768 769	Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. Doulion: counting triangles in massive graphs with a coin. In <i>KDD</i> , 2009.
770 771	Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395-416, 2007.
772 773	Duncan J Watts and Steven H Strogatz. Collective dynamics of small-world networks. <i>nature</i> , 393 (6684):440–442, 1998.
774 775 776	Anatol E Wegner and Sofia Olhede. Atomic subgraphs and the statistical mechanics of networks. <i>Physical Review E</i> , 103(4):042311, 2021.
777 778	Weichi Wu, Sofia Olhede, and Patrick Wolfe. Tractably modelling dependence in networks beyond exchangeability. <i>Bernoulli</i> , 31(1):584–608, 2025.
779 780 781	Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling via continuous relax- ations. In <i>IJCAI</i> , 2019.
782 783 784	Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating realistic graphs with deep auto-regressive models. In <i>ICML</i> , 2018.
785	
786 787	
788	
789	
790	
791	
792	
793	
794	
795	
796	
797	
798	
799	
800	
00 I 900	
0UZ	
804	
805	
806	
807	
808	

⁸¹⁰ A FLOWCHART

Below, we provide a flowchart of this work, summarizing the main ideas and contents.

B PROOFS

In this section, we show the proofs of our theoretical results.

B.1 EPGMs

Proposition 4.2 (EIGMs are special EPGMs). For any p, the EIGM w.r.t. p is an EPGM w.r.t. p, *i.e.*, $f_p^{EI} \in \mathcal{F}(p)$.

Proof. By the definition of EIGMs,

 $\Pr_{f^{\text{EI}}}[(u,v)]$

$$= \sum_{G \in \mathcal{G}(V)} f_p^{\text{EI}}(G) \mathbf{1}[(u, v) \in G]$$

=
$$\sum_{(u,v) \in G \in \mathcal{G}(V)} f_p^{\text{EI}}(G)$$

=
$$\sum_{(u,v) \in G \in \mathcal{G}(V)} p(u, v) \prod_{(u,v) \neq (u^+, v^+) \in G} p(u^+, v^+) \prod_{(u^-, v^-) \notin G} (1 - p(u^-, v^-))$$

=
$$p(u, v), \forall u, v,$$

861 completing the proof.862

Proposition 4.3 (EPGMs are general). For any $f : \mathcal{G}(V) \to [0, 1]$, there exists $p : \binom{V}{2} \to [0, 1]$ such that $f \in \mathcal{F}(p)$.

 \square

Proof. Let $p: \binom{V}{2} \to [0,1]$ be that $p(u,v) = \Pr_f[(u,v)], \forall u,v \in V$, then by Definition 4.1, $f \in \mathcal{F}(p).$

Proposition 4.4 (Upper bound of edge-group probabilities). For any $p: \binom{V}{2} \to [0,1]$ and any edge group $P \subseteq \binom{V}{2}$, $\Pr_f[P \subseteq E(G)] \le \min_{(u,v) \in P} p(u,v), \forall f \in \mathcal{F}(p)$.

Proof. By definition, $\Pr_f[(u, v)] = p(u, v), \forall (u, v)$. Hence,

$$\Pr_{f}[P \subseteq E(G)] = \Pr_{f}[\bigwedge_{(u,v)\in P} (u,v) \in G]$$
$$\leq \min_{(u,v)\in P} \Pr_{f}[(u,v)]$$
$$= \min_{(u,v)\in P} p(u,v),$$

where we have used the fact that $\bigwedge_{(u,v)\in P}(u,v)\in G$ is a subevent of $(u,v)\in G$ for any $(u,v)\in G$ P.

Proposition 4.7 (EPGMs have constant expected degrees and overlap). For any $p: \binom{V}{2} \to [0,1]$, the expected degree of each node and the overlap of all the EPGMs w.r.t. p are constant. Specifically, $\mathbb{E}_f[d(v;G)] = \sum_{u \in V} p(u,v) \text{ and } \operatorname{Ov}(f) = \frac{\sum_{u,v \in V} p^2(u,v)}{\sum_{u,v \in V} p(u,v)}, \forall f \in \mathcal{F}(p).$

Proof. By linearity of expectation,

$$\mathbb{E}_f[d(v;G)] = \sum_{u \in V} \Pr[u \in N(v)] = \sum_{u \in V} \Pr[(u,v) \in G] = \sum_{u \in V} p(u,v),$$

which does not depend on anything else but p.

By Definition 3.1,

$$\begin{split} & \operatorname{Ov}(f) \\ \frac{\mathbb{E}_{G',G'' \sim f} |E(G') \cap E(G'')|}{\mathbb{E}_f |E(G)|} \\ & \frac{\sum_{u,v} \Pr[(u,v) \in G' \land (u,v) \in G'']}{\sum_{u,v} \Pr[(u,v) \in G]} \end{split}$$

$$\mathbb{E}_{f}|E$$

$$= \frac{\sum_{u,v} \Pr[(u,v) \in G \land (u,v) \in G']}{\sum_{u,v} \Pr[(u,v) \in G]}$$
$$= \frac{\sum_{u,v} \Pr[(u,v) \in G'] \Pr[(u,v) \in G'']}{\sum_{u,v} \Pr[(u,v) \in G'']}$$

$$\sum_{u,v \in V} \Pr[(u,v) \in G]$$

$$= \frac{\sum_{u,v \in V} p^2(u,v)}{\sum_{u,v \in V} p(u,v)}, \forall f \in \mathcal{F}(p),$$

where we have used linearity of expectation and the independence between G' and G'', completing the proof.

Corollary 4.6. For any $p: \binom{V}{2} \to [0,1], \mathbb{E}_f[\Delta(G)] \leq \sum_{\{u,v,w\} \in \binom{V}{3}} \min(p(u,v), p(u,w), p(v,w)), \forall f \in \mathcal{F}(p), where \Delta(G) is the number of tri-$ angles in G.

Proof. By linearity of expectation and Property 4.4,

$$\mathbb{E}_{f}[\triangle(G)] = \sum_{\{u,v,w\} \in \binom{V}{3}} \Pr_{f}[\{(u,v), (u,w), (v,w) \in E(G)\}$$

915
$$\leq \sum_{\{u,v,w\} \in (V)} \min(p(u,v), p(u,w), p(v,w)).$$

 $\{u,v,w\} \in \begin{pmatrix} v\\ 3 \end{pmatrix}$

Proposition 5.2 (Binding produces EPGMs). For any $p: \binom{V}{2} \to [0,1]$ and any pair partition \mathcal{P} , $f_{p;\mathcal{P}}^{BD} \in \mathcal{F}(p)$.

Proof. For each pair (u, v), the existence of the corresponding edge is determined in the "binding" procedure on the group P such that $(u, v) \in P$ (Lines 2 and 3), where (u, v) is added into \hat{E} and thus E if and only if $s \leq \hat{p}(u, v) = p(u, v)$ (Line 9), which happens with probability p(u, v) since $s \sim \mathcal{U}(0, 1)$.

Proposition 5.3 (Binding produces higher edge-group probabilities). For any $p: \binom{V}{2} \to [0, 1]$, any pair partition \mathcal{P} , and any $P \subseteq \binom{V}{2}$, $\Pr_{f_{p,\mathcal{P}}^{BD}}[P \subseteq E(G)] \ge \Pr_{f_{p}^{ED}}[P \subseteq E(G)]$.

Proof. Let \mathcal{P}' be a partition of P such that $\mathcal{P}' \coloneqq \{P_0 \cap P \colon P_0 \in \mathcal{P}, P_0 \cap P \neq \emptyset\}$. Then

$$\begin{split} \Pr_{f_{p;\mathcal{P}}^{\mathrm{BD}}}[P \subseteq E(G)] &= \prod_{P' \in \mathcal{P}'} \min_{(u,v) \in P'} p(u,v) \\ &= \prod_{(u,v) \in P: \ \exists P' \in \mathcal{P}', (u,v) = \arg\min_{(u',v') \in P'} p(u,v)} p(u,v) \\ &\geq \prod_{(u,v) \in P} p(u,v), \end{split}$$

939 since each $p(u, v) \le 1$.

941 B.2 MAXIMAL BINDING

As mentioned in Remark 4.5, the upper bound in Property 4.4 is tight, i.e., we can find EPGMs achieving the upper bound.

Indeed, we shall show below in Lemma B.2 that, as mentioned in Section 5.1, *maximal binding* (i.e., binding with all the pairs bound together $\mathcal{P} = \{\binom{V}{2}\}$) achieves the upper bound.

947 In order to prove Lemma B.2, let us prove the following lemma first.

Lemma B.1 (The graph distribution with maximal binding). For any $p: \binom{V}{2} \to [0, 1]$, we first index the pairs (i.e., assign each pair a number) in $\binom{V}{2}$ in the descending order w.r.t. probabilities, i.e.,

$$\binom{V}{2} = \{(u_1, v_1), (u_2, v_2), \dots, (u_M, v_M)\}$$

with $M = \binom{|V|}{2}$ such that

$$p(u_1, v_1) \ge p(u_2, v_2) \ge \cdots \ge p(u_M, V_M),$$

then the graph distribution with maximal binding is

J

$$f^{BD}_{p;\{\binom{V}{2}\}}(G) = \begin{cases} 1 - p(u_1, v_1), & \text{if } G = (V, \emptyset), \\ p(u_M, v_M), & \text{if } G = (V, \binom{V}{2}), \\ p(u_i, v_i) - p(u_{i+1}, v_{i+1}), & \text{if } G = (V, \{(u_j, v_j) : 1 \le j \le i\}), \forall i \in [M-1], \\ 0, & \text{otherwise.} \end{cases}$$

Proof. With $\mathcal{P} = \{\binom{V}{2}\}$, all the edge existences are determined by the same random variable *s*. Hence, if a pair (u, v) exists, then all the pairs (u', v') with $p(u', v') \ge p(u, v)$ must exist. The possible outputs are either $G = (V, \emptyset)$ or $G = (V, \{(u_j, v_j): 1 \le j \le i\})$ for some $i \in [M]$. The case $G = (V, \emptyset)$ happens when $s > \max_{u,v \in V} p(u, v) = p(u_1, v_1)$ with probability $1 - p(u_1, v_1)$. The case $G = (V, \binom{V}{2})$ happens when $s \le \min_{u,v \in V} p(u, v) = p(u_M, v_M)$ with probability $p(P_{\binom{|V|}{2}})$. For each remaining case $G = (V, \{(u_j, v_j): 1 \le j \le i\}$ with $i \in [M - 1]$, it happens when $p(u_{i+1}, v_{i+1}) < s \le p(u_i, v_i)$ with probability $p(u_i, v_i) - p(u_{i+1}, v_{i+1})$.

Lemma B.2 (Maximal binding achieves maximum edge-group probabilities). For any $p: \binom{V}{2} \rightarrow [0,1]$ and any edge-group $P \subseteq \binom{V}{2}$, we have

$$\Pr_{\substack{f_{p;\{\binom{V}{2}\}}}}[P \subseteq E(G)] = \min_{(u,v) \in P} p(u,v), \forall f \in \mathcal{F}(p),$$

where $f_{p;\mathcal{P}}^{BD}$ denotes the RGM defined by $f_{p;\mathcal{P}}^{BD}(G) = \Pr[Algorithm \ l \ outputs \ G \ with \ inputs \ p \ and \ \mathcal{P}].$

Proof. By Lemma B.1, in a graph G generated by $f_{p;\{\binom{V}{2}\}}^{\text{BD}}$, $P \subseteq E(G)$ if and only if $\arg\min_{(u,v)\in P} p(u,v) \in G$, which happens with probability $\min_{(u,v)\in P} p(u,v)$.

B.3 LOCAL BINDING

975 976

977 978 979

980 981

982 983

988 989

994

1016

1018 1019 **Proposition 5.5** (Local binding produces EPGMs). For any $p: \binom{V}{2} \to [0,1]$, $g: V \to [0,1]$ and $R \in \mathbb{N}$, $f_{p;g,R}^{LB} \in \mathcal{F}(p)$.

Proof. For each pair (u, v), $\Pr_{f_{p;g,R}^{\text{LB}}}[(u, v)] = \sum_{\mathcal{P}} \Pr_{\mathcal{P} \sim g}[\mathcal{P}] \Pr_{f_{p;\mathcal{P}}^{\text{BD}}}[(u, v)]$. By Proposition 5.2, $\Pr_{f_{p;\mathcal{P}}^{\text{BD}}}[(u, v)] = p(u, v), \forall \mathcal{P}.$ Hence, $\Pr_{f_{p;g,R}^{\text{LB}}}[(u, v)] = \sum_{\mathcal{P}} \Pr_{\mathcal{P} \sim g}[\mathcal{P}]p(u, v) = p(u, v).$

Theorem 5.7 (Time complexities of graph generation with local binding). Given $p: \binom{V}{2} \to [0, 1]$, $g: V \to [0, 1]$, and $R \in \mathbb{N}$, $f_{p;g,R}^{LB}$ generates a graph in $O(R(\sum_{v \in V} g(v))^2 + |V|^2)$ time with high probability, with the worst case $O(R|V|^2)$.

Proof. We have at most R rounds of sampling and binding, where each round samples at most 995 |V| nodes and thus at most $\binom{|V|}{2}$ pairs. More specifically, the number of nodes sampled in each 996 round is $\sum_{v \in V} g(v)$ in expectation, and thus $O(\sum_{v \in V} g(v))$ with high probability (e.g., you can use a Chernoff bound). Hence, it takes $O(R \sum_{v \in V} g(v))$ time with high probability, and at most $O(\binom{|V|}{2}R)$ time for the *R* rounds. The number of remaining pairs is at most $\binom{|V|}{2}$ so dealing with 997 998 999 them takes $O(\binom{|V|}{2})$ time. For the generation, we need to enumerate all the node groups and each pair in each group. Since the partition is disjoint, i.e., each pair is in exactly one group, each 1000 1001 pair is visited exactly once, which takes $O(\binom{|V|}{2})$ time. In conclusion, generating a graph takes 1002 1003 $O(R\sum_{v \in V} g(v) + |V|^2)$ with high probability, and $O(\binom{|V|}{2}R)$ time in the worst case. 1004

Theorem 5.8 (Tractable motif probabilities with local binding). For any $p: \binom{V}{2} \to [0, 1], g: V \to [0, 1], R \in \mathbb{N}$, and $V' = \{u, v, w\} \in \binom{V}{3}$, we can compute the closed-form $\Pr_{f_{p;g,R}^{LB}}[E(G[V']) = E^*], \forall E^* \subseteq \binom{V'}{2}$ as a function w.r.t. p, g, and R.

Proof. The overall idea is that we (1) consider all the sub-cases of how all the pairs $\binom{V'}{2}$ are partitioned and grouped during the whole process, (2) compute the motif probabilities conditioned on each sub-case, and (3) finally take the summation of the motif probabilities in all the sub-cases.

We first consider all the cases of how all the pairs are sampled and grouped until $\binom{V'}{2}$ are fully determined. We divided the cases w.r.t. how the pairs in $\binom{V'}{2}$ are eventually grouped by the sampled node sets. First let us define some "short-cut" variables:

• the probability that among V', exactly V^* is sampled together in a round

$$p_g(V^*) \coloneqq \Pr_g[\{u, v, w\} \cap V_s = V^*] = \prod_{v \in V^*} g(v) \prod_{v' \notin V^*} (1 - g(v)), \forall V^* \subseteq V'$$

• the probability that among V', at least two nodes (and thus at least one pair) are sampled together in a round

$$\begin{array}{ll} & 1022 \\ 1023 \\ 1024 \\ 1025 \end{array} p_g(\mathcal{V}_{\geq 2}) \coloneqq \sum_{V^* \colon |V^*| \geq 2} p_g(V^*) = p_g(\{u,v\}) + p_g(\{u,w\}) + p_g(\{v,w\}) + p_g(\{u,v,w\}) \\ = g(u)g(v)(1-g(w)) + g(u)g(w)(1-g(v)) \\ = g(u)g(v)(1-g(w)) + g(u)g(w)(1-g(v)) \\ \end{array}$$

$$+ g(v)g(w)(1 - g(u)) + g(u)g(v)g(w)$$

• the probability that among V', at most one node (and thus no pair) is sampled together in a round

$$p_g(\mathcal{V}_{<2}) \coloneqq 1 - p_g(\mathcal{V}_{\geq 2})$$

WLOG, we assume that $p(u, v) \ge p(u, w) \ge p(v, w)$.

 $\{\underline{u, v, w}\}$. The first time any pair in $\binom{V'}{2}$ is sampled in the R rounds is when u, v, and w are sampled by g together, which happens with probability

$$q(\{u, v, w\}) = p_g(V') + p_g(\mathcal{V}_{<2})p_g(V') + p_g^2(\mathcal{V}_{<2})p_g(V') + \dots + p_g^{R-1}(\mathcal{V}_{<2})p_g(V')$$
$$= \prod_{i=0}^{R-1} p_g^i(\mathcal{V}_{<2})p_g(V') = \frac{1 - p_g^R(\mathcal{V}_{<2})}{1 - p_g(\mathcal{V}_{<2})}p_g(V'),$$

where each term $p_a^i(\mathcal{V}_{\leq 2})p_q(V')$ is the probability that in the first *i* rounds at most one node among V' is sampled and V' is sampled altogether in the (i + 1)-th round. Conditioned on that, it generates

- $\{(u, v), (u, w), (v, w)\}$ with probability p(v, w); when the random variable s in binding satisfies $s \leq p(v, w),$
- $\{(u,v),(u,w)\}$ with probability p(u,w) p(v,w); when $p(v,w) < s \le p(u,w)$,
- $\{(u, v)\}$ with probability p(u, v) p(u, w); when $p(u, w) < s \le p(u, v)$, and
- \emptyset with probability 1 p(u, v); when s > p(u, v).

 $\{\underline{u}, \underline{v}\} \rightarrow \{\underline{u}, \underline{v}, \underline{w}\}$. All the pairs in $\binom{V'}{2}$ are covered in twice in the R rounds. At the first time, u and v are sampled together by g but not w. At the second time, u, v, and w are sampled together by q. This happens with probability

$$q(\{u,v\} \to \{u,v,w\}) = p_g(V') + (p_g(\mathcal{V}_{<2}) + p_g(\{u,v\})) p_g(V') + \cdots + (p_g(\mathcal{V}_{<2}) + p_g(\{u,v\}))^{R-1} p_g(V') - q(\{u,v,w\})$$

$$= \sum_{i=1}^{R-1} (p_i(\mathcal{V}_{<2}) + p_i(\{u,v\}))^i p_i(V') - q(\{u,v,w\})$$

$$= \sum_{i=0}^{i=0} (p_g(V_{<2}) + p_g(\{u,v\})) \ p_g(V_{-1}) - q(\{u,v,w\})$$

$$= \left(\frac{1 - (p_g(\mathcal{V}_{<2}) + p_g(\{u, v\}))^R}{1 - (p_g(\mathcal{V}_{<2}) + p_g(\{u, v\}))} - \frac{1 - p_g^R(\mathcal{V}_{<2})}{1 - p_g(\mathcal{V}_{<2})}\right) p_g(V'),$$
1058

where $(p_q(\mathcal{V}_{\leq 2}) + p_q(\{u, v\}))^i p_q(V')$ is the probability that in the first *i* rounds we either sam-ple no pair between V' or just (u, v), and we sample V' altogether in the (i + 1)-th round, and $q(\{u, v, w\})$ is subtracted to exclude the cases where (u, v) is not sampled in the first i rounds. In such cases, when (u, v) is sampled for the first time, we decide the existence of (u, v), and then after that, when V' is sampled altogether for the first time, we decide the existences of the remaining two pair (u, w) and (v, w). Hence, conditioned on that, it generates

• $\{(u, v), (u, w), (v, w)\}$ with probability p(u, v)p(v, w); when $s_1 \leq p(u, v)$ in the round (u, v) is sampled for the first time and $s_2 \le p(v, w)$ in the round V' is sampled altogether for the first time,

• $\{(u, v), (u, w)\}$ with probability p(u, v) (p(u, w) - p(v, w)); when $s_1 \leq p(u, v)$ and p(v, w) < v $s_2 \le p(u, w),$

• $\{(u, v)\}$ with probability p(u, v) (1 - p(u, w)); when $s_1 \le p(u, v)$ and $s_2 > p(u, w)$,

- $\{(u, w), (v, w)\}$ with probability (1 p(u, v)) p(v, w); when $s_1 > p(u, v)$ and $s_2 \le p(v, w)$,
- $\{(u,w)\}$ with probability (1 p(u,v))(p(u,w) (v,w)); when $s_1 > p(u,v)$ and p(v,w) < 0 $s_2 \leq p(u, w)$, and

•
$$\emptyset$$
 with probability $(1 - p(u, v))(1 - p(u, w))$; when $s_1 > p(u, v)$ and $s_2 > p(u, w)$.

 $\{u, w\} \rightarrow \{u, v, w\}$. Similarly, this happens with probability

$$q(\{u,w\} \to \{u,v,w\}) = \left(\frac{1 - (p_g(\mathcal{V}_{<2}) + p_g(\{u,w\}))^R}{1 - (p_g(\mathcal{V}_{<2}) + p_g(\{u,w\}))} - \frac{1 - p_g^R(\mathcal{V}_{<2})}{1 - p_g(\mathcal{V}_{<2})}\right) p_g(V')$$

Conditioned on that, it generates

1080 • $\{(u,v),(u,w),(v,w)\}$ with probability p(u,w)p(v,w); when $s_1 \leq p(u,w)$ and $s_2 \leq p(v,w)$, 1081 • $\{(u,v),(u,w)\}$ with probability p(u,w) (p(u,v) - p(v,w)); when $s_1 \leq p(u,w)$ and p(v,w) < 01082 $s_2 \le p(u, v),$ 1083 • $\{(u, w)\}$ with probability p(u, w) (1 - p(u, v)); when $s_1 \le p(u, w)$ and $s_2 > p(u, v)$, 1084 • $\{(u, v), (v, w)\}$ with probability (1 - p(u, w)) p(v, w); when $s_1 > p(u, w)$ and $s_2 \le p(v, w)$, 1085 • $\{(u,v)\}$ with probability (1 - p(u,w))(p(u,v) - (v,w)); when $s_1 > p(u,w)$ and p(v,w) < 01086 $s_2 \leq p(u, v)$, and 1087 1088 • \emptyset with probability (1 - p(u, w)) (1 - p(u, v)); when $s_1 > p(u, w)$ and $s_2 > p(u, v)$. 1089 $\{v, w\} \rightarrow \{u, v, w\}$. Similarly, this happens with probability 1090 1091 $q(\{v,w\} \to \{u,v,w\}) = \left(\frac{1 - (p_g(\mathcal{V}_{<2}) + p_g(\{v,w\}))^R}{1 - (p_g(\mathcal{V}_{<2}) + p_g(\{v,w\}))} - \frac{1 - p_g^R(\mathcal{V}_{<2})}{1 - p_g(\mathcal{V}_{<2})}\right) p_g(V')$ 1092 1093 Conditioned on that, it generates 1094 1095 • $\{(u,v),(u,w),(v,w)\}$ with probability p(v,w)p(u,w); when $s_1 \leq p(v,w)$ and $s_2 \leq p(u,w)$, 1096 • $\{(u,v),(v,w)\}$ with probability p(v,w) (p(u,v) - p(u,w)); when $s_1 \leq p(v,w)$ and p(u,w) < p(v,w)1097 $s_2 \leq p(u, v),$ 1098 • $\{(v, w)\}$ with probability p(v, w) (1 - p(u, v)); when $s_1 \le p(v, w)$ and $s_2 > p(u, v)$, 1099 • $\{(u, v), (u, w)\}$ with probability (1 - p(v, w)) p(u, w); when $s_1 > p(v, w)$ and $s_2 \le p(u, w)$, 1100 1101 • $\{(u,v)\}$ with probability (1 - p(v,w)) (p(u,v) - (u,w)); when $s_1 > p(v,w)$ and p(u,w) < 01102 $s_2 \leq p(u, v)$, and 1103 • \emptyset with probability (1 - p(v, w)) (1 - p(u, v)); when $s_1 > p(v, w)$ and $s_2 > p(u, v)$. 1104 The remaining cases. Three edges are determined independently. This happens with the remaining 1105 probability 1106 $q_{indep} = 1 - q(\{u, v, w\}) - q(\{u, v\} \to \{u, v, w\}) - q(\{u, w\} \to \{u, v, w\}) - q(\{v, w\} \to \{u, w\}) - q(\{v, w\} \to \{$ 1107 1108 Conditioned on that, it generates each $E^* \subseteq \binom{V'}{2}$ with probability 1109 $\prod_{(x,y)\in E^*} p(x,y) \prod_{(x',y')\in \binom{V'}{2}\setminus E^*} (1-p(x',y')).$ 1110 1111 1112 Taking the summation of all the sub-cases gives the results as follows. 1113 $E^* = \{(\underline{u}, \underline{v}), (\underline{u}, \underline{w}), (\underline{v}, \underline{w})\}$ 1114 1115 $\Pr_{f_{rec}^{\text{LB}}}[E(G[V']) = \{(u, v), (u, w), (v, w)\}] = q(\{u, v, w\})p(v, w) + q(\{u, w, w\})p(v, w) + q(\{u,$ 1116 $q(\lbrace u, v \rbrace \to \lbrace u, v, w \rbrace) p(u, v) p(v, w) +$ 1117 $q(\lbrace u, w \rbrace \to \lbrace u, v, w \rbrace) p(u, w) p(v, w) +$ 1118 $q(\lbrace v, w \rbrace \to \lbrace u, v, w \rbrace) p(v, w) p(u, w) +$ 1119 1120 $q_{indep}p(u,v)p(u,w)p(v,w)$ 1121 $E^* = \{(u, v), (u, w)\}$ 1122 $\Pr_{f^{\text{LB}}} \left[E(G[V']) = \{(u,v), (u,w)\} \right] = q(\{u,v,w\}) \left(p(u,w) - p(v,w) \right) + q(\{u,v,w\}) \left(p(u,w) - p(v,w) \right) \right)$ 1123 1124 $q(\{u, v\} \to \{u, v, w\})p(u, v)(p(u, w) - p(v, w)) +$ 1125 $q(\{u, w\} \rightarrow \{u, v, w\})p(u, w)(p(u, v) - p(v, w)) +$ 1126 $q(\{v, w\} \rightarrow \{u, v, w\}) (1 - p(v, w)) p(u, w) +$ 1127 $q_{indep}p(u,v)p(u,w)\left(1-p(v,w)\right)$ 1128 1129 $\underline{E^*} = \{(u, v), (v, w)\}$ 1130 $\Pr_{f_{L^{\mathbb{B}}, \mathbb{P}}}[E(G[V']) = \{(u, v), (v, w)\}] = q(\{u, w\} \to \{u, v, w\}) (1 - p(u, w)) p(v, w) + q((u, w)) p(v, w) p(v, w) + q((u, w)) p(v, w$ 1131 1132 $q(\{v, w\} \rightarrow \{u, v, w\})p(v, w)(p(u, v) - p(u, w)) +$ 1133 $q_{indep}p(u,v)p(v,w)\left(1-p(u,w)\right)$

1134 $\underline{E^*} = \{(\underline{u}, \underline{w}), (\underline{v}, \underline{w})\}$ 1135 $\Pr_{f_{v,a,B}^{\text{LB}}}[E(G[V']) = \{(u,w), (v,w)\}] = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,v) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) p(v,w) + q(v,w) = q((v,v)) (1 - p(v,w)) (1 - p(v$ 1136 1137 $q_{indep}p(u,w)p(v,w)\left(1-p(u,v)\right)$ 1138 $\underline{E^*} = \{(\underline{u}, \underline{v})\}$ 1139 1140 $\Pr_{f_{\text{even}}^{\text{LB}}}[E(G[V']) = \{(u,v)\}] = q(\{u,v,w\})(p(u,v) - p(u,w)) + q((u,v))(p(u,v) - p(u,w)) + q((u,v))(p(u,v))(p(u,v))(p(u,v)) + q((u,v))(p(u,v))(p(u,v))(p(u,v))(p(u,v))(p(u,v)) + q((u,v))(p(u$ 1141 $q(\{u, v\} \rightarrow \{u, v, w\})p(u, v)(1 - p(u, w)) +$ 1142 $q(\{u, w\} \rightarrow \{u, v, w\}) (1 - p(u, w)) (p(u, v) - p(v, w)) +$ 1143 1144 $q(\{v, w\} \rightarrow \{u, v, w\}) (1 - p(v, w)) (p(u, v) - p(u, w)) +$ 1145 $q_{indep}p(u,v) (1 - p(u,w)) (1 - p(v,w))$ 1146 1147 $E^* = \{(u, w)\}$ 1148 $\Pr_{f_{\text{true }P}^{\text{LB}}}[E(G[V']) = \{(u,w)\}] = q(\{u,v\} \to \{u,v,w\}) (1 - p(u,v)) (p(u,w) - p(v,w)) + q(v,w) (1 - p(u,v)) (p(u,w) - p(v,w)) (p(u,w) - p(v,w)) + q(v,w) (1 - p(u,v)) (p(u,w) - p(v,w)) (p(u,w) - p(v,w)) (p(u,w) - p(v,w)) + q(v,w) (p(u,w) - p(v,w)) (p(u,w) - p(w,w)) (p(u,w) - p(w,w$ 1149 $q(\{u, w\} \to \{u, v, w\})p(u, w)(1 - p(u, v)) +$ 1150 1151 $q_{indep}p(u, w) (1 - p(u, v)) (1 - p(v, w))$ 1152 $E^* = \{(v, w)\}$ 1153 1154 $\Pr_{f_{\text{true } p}^{\text{LB}}}[E(G[V']) = \{(u, w)\}] = q(\{v, w\} \to \{u, v, w\})p(v, w) (1 - p(u, v)) + q(v, w) (1 - p(u, v)) + q(v,$ 1155 $q_{indep}p(v,w) (1 - p(u,v)) (1 - p(u,w))$ 1156 1157 $E^* = \emptyset$ 1158 $\Pr_{f_{uva}^{\text{LB}}}[E(G[V']) = \{(u, w)\}] = q(\{u, v, w\})(1 - p(u, v)) + q((u, v, w))(1 - p(u, v)) + q((u, v, w))(1 - p(u, v)) + q((u, v, w))(1 - p(u, v))(1 - p(u, v)) + q((u, v, w))(1 - p(u, v))(1 - p(u, v))(1 - p(u, v)))$ 1159 1160 $q(\{u, v\} \rightarrow \{u, v, w\}) (1 - p(u, v)) (1 - p(u, w)) +$ 1161 $q(\{u, w\} \rightarrow \{u, v, w\}) (1 - p(u, w)) (1 - p(u, v)) +$ 1162 $q(\{v, w\} \rightarrow \{u, v, w\}) (1 - p(v, w)) (1 - p(u, v)) +$ 1163 $q_{indep} (1 - p(u, v)) (1 - p(u, w)) (1 - p(v, w))$ 1164 1165 1166 **Discussion on higher orders.** As mentioned in Remark 5.9, the reasoning in the proof above can be 1167 extended to higher orders. When the order of motifs increases, enumerating the cases of how all the 1168 pairs are sampled and grouped becomes more and more challenging. When considering 3-motifs, we 1169 are essentially considering the possible sequences of subsets up to order 3, where (1) each sequence 1170 should cover all the node pairs, and (2) each subset in the sequence should cover at least one pair 1171 that has not been covered by the subsets before it. The high-level idea would be similar, but the 1172 number increases exponentially: 1173 • for 3-motifs, we need to consider 16 cases, 4 of which involve edge dependency, as shown above; 1174 • for 4-motifs, we need to consider 16205 cases, 5261 of which involve edge dependency. 1175 1176 The above numbers are obtained using a recursive search. In principle, we can also derive the 1177 variance of the number of 3-motif by considering the probabilities of 6-motifs, since the co-existence 1178 of two 3-motifs involves motifs up to order 6. We leave the efficient computation for higher-order 1179 motifs as a future direction. 1180 Theorem 5.10 (Time complexity of computing motif probabilities with local binding). Given 1181 $p: \binom{V}{2} \to [0,1], g: V \to [0,1], and R \in \mathbb{N}, computing \Pr_{f_{W^{a}R}}[E(G[V']) = E^*] takes O(|V|^3)$ 1182 time in total for all $E^* \subseteq \binom{V'}{2}$ and $V' \in \binom{V}{3}$. 1183 1184 *Proof.* For computing motif probabilities, we need to enumerate all triplets $V' = \{u, v, w\} \in \binom{V}{3}$ 1185 and compute the motif probability for each 3-motif. For each motif, the calculation only involves 1186 arithmetic operations, which takes O(1) time since the formulae are fixed. In conclusion, computing 1187 3-motif probabilities takes $O(\binom{|V|}{3})$ time.

B.4 PARALLEL BINDING

1223

1235 1236

1189 **Proposition B.3** (Parallel binding produces EPGMs). For any $p: \binom{V}{2} \to [0,1], g: V \to [0,1], and$ 1190 $R \in \mathbb{N}, f_{p;q,R}^{PB} \in \mathcal{F}(p).$ 1191 1192 *Proof.* For each pair (u, v), if $\frac{1-(1-p(u,v))^{1/R}}{g(u)g(v)} \leq 1$, i.e., $p(u, v) \leq 1 - (1 - g(u)g(v))^R$, then 1193 1194 $p_{rem}(u,v) = 0$ and 1195 $\Pr_{f_{ren}^{PB}}[(u,v)] = 1 - \Pr[(u,v) \text{ not inserted in the } R \text{ rounds}] \Pr[(u,v) \text{ not inserted when dealing with } p_{rem}]$ 1196 $= 1 - (1 - g(u)g(v)r(u,v))^{R}(1 - p_{rem})$ 1197 1198 = 1 - (1 - p(u, v))1199 = p(u, v).Otherwise, if $p(u, v) > 1 - (1 - g(u)g(v))^R$, then r(u, v) = 1 and 1201 $\Pr_{f_{\text{PIR}}^{\text{PB}}}[(u,v)] = 1 - \Pr[(u,v) \text{ not inserted in the } R \text{ rounds}] \Pr[(u,v) \text{ not inserted when dealing with } p_{rem}]$ 1202 1203 $= 1 - (1 - g(u)g(v)r(u,v))^{R}(1 - p_{rem})$ 1204 $= 1 - (1 - g(u)g(v))^{R} \frac{1 - p(u, v)}{(1 - q(u)g(v))^{R}}$ 1205 1207 = 1 - (1 - p(u, v))1208 = p(u, v).1209 1210 **Theorem B.4** (Time complexities of graph generation with parallel binding). Given $p: \binom{V}{2} \rightarrow$ 1211

Theorem B.4 (Time complexities of graph generation with parallel binding). Given $p: \binom{V}{2} \rightarrow [0,1]$, $g: V \rightarrow [0,1]$, and $R \in \mathbb{N}$, $f_{p;g,R}^{PB}$ generates a graph in $O(R(\sum_{v \in V} g(v))^2 + |V|^2)$ time with high probability, with the worst case $O(R|V|^2)$.

1215 *Proof.* We have at most R rounds of sampling and binding, where each round samples at most 1216 |V| nodes and thus at most $\binom{|V|}{2}$ pairs. More specifically, the number of nodes sampled in each 1217 round is $\sum_{v \in V} g(v)$ in expectation, and thus $O(\sum_{v \in V} g(v))$ with high probability (e.g., one can 1218 use a Chernoff bound). Hence, it takes $O(R\sum_{v \in V} g(v))$ time with high probability, and at most 1219 $O(\binom{|V|}{2}R)$ time for the R rounds. The number of pairs with $p_{rem} > 0$ is at most $\binom{|V|}{2}$ so dealing 1220 with them takes $O(\binom{|V|}{2})$ time. In conclusion, generating a graph takes $O(R\sum_{v \in V} g(v) + |V|^2)$ 1221 with high probability, and $O(\binom{|V|}{2}R)$ time in the worst case. 1222

Theorem B.5 (Tractable motif probabilities with parallel binding). For any $p: \binom{V}{2} \to [0, 1]$, $g: V \to [0, 1], R \in \mathbb{N}$, and $V' = \{u, v, w\} \in \binom{V}{3}$, we can compute the closed-form $\Pr_{f_{p;g,R}^{PB}}[E(G[V']) = E^*], \forall E^* \subseteq \binom{V'}{2}$ as a function w.r.t. p, g, and R.

1228 Proof. The overall idea is that we (1) compute the probabilities of each subset of $\binom{V'}{2}$ being inserted 1229 in each round and (2) accumulate the probabilities in R rounds to obtain the final motif probabilities. 1230 We first compute the probability of each subset of $\binom{V}{2}$ being inserted in each round. We divide the 1232 cases w.r.t. different sets of sampled nodes $V_s \cap V'$. First, let us define some "short-cut" variables:

• the probability that among V', exactly V^* is sampled together in a round

$$p_g(V^*) \coloneqq \Pr_g[\{u, v, w\} \cap V_s = V^*] = \prod_{v \in V^*} g(v) \prod_{v' \notin V^*} (1 - g(v)), \forall V^* \subseteq V'$$

• the probability that among V', at least two nodes (and thus at least one pair) are sampled together in a round

$$p_{g}(\mathcal{V}_{\geq 2}) \coloneqq \sum_{V^{*}: |V^{*}| \geq 2} p_{g}(V^{*}) = p_{g}(\{u, v\}) + p_{g}(\{u, w\}) + p_{g}(\{v, w\}) + p_{g}(\{u, v, w\}) = g(u)g(v)(1 - g(w)) + g(u)g(w)(1 - g(v)) + g(v)g(w)(1 - g(u)))$$

1242 • the probability that among V', at most one node (and thus no pair) is sampled together in a round 1243 $p_a(\mathcal{V}_{<2}) \coloneqq 1 - p_a(\mathcal{V}_{>2})$ 1244 1245 • the variables r and p_{rem} are defined as in Algorithm 3. 1246 1247 WLGO, we assume that $p(u, v) \ge p(u, w) \ge p(v, w)$. 1248 $V_s = \{u, v, w\}$. This happens with probability $p_q(V')$. Conditioned on that, it generates 1249 1250 • $\{(u, v), (u, w), (v, w)\}$ with probability r(v, w); when $s \le r(v, w)$, 1251 • $\{(u, v), (u, w)\}$ with probability r(u, w) - r(v, w); when $r(v, w) < s \le r(u, w)$, 1252 • $\{(u, v)\}$ with probability r(u, v) - r(u, w); when r(u, w) < s < r(u, v), and 1253 • \emptyset with probability 1 - r(u, v); when s > r(u, v). 1254 1255 $\underline{V_s} = \{\underline{u}, \underline{v}\}$. This happens with probability $p_a(\{u, v\})$. Conditioned on that, it generates 1256 1257 • $\{(u, v)\}$ with probability r(u, v); when s < r(u, v), and 1258 • \emptyset with probability 1 - r(u, v) when s > r(u, v). 1259 1260 $V_s = \{u, w\}$. This happens with probability $p_q(\{u, w\})$. Conditioned on that, it generates 1261 • $\{(u, w)\}$ with probability r(u, w); when $s \le r(u, w)$, 1262 • \emptyset with probability 1 - r(u, w); when s > r(u, w). 1263 1264 $V_s\{v, w\}$. This happens with probability $p_q(\{v, w\})$. Conditioned on that, it generates 1265 1266 • $\{(v, w)\}$ with probability r(v, w); when $s \le r(v, w)$, 1267 • \emptyset with probability 1 - r(v, w); when s > r(v, w). 1268 1269 <u>The remaining cases (i.e., $|V_s \cap V'| \leq 1$)</u>. This happens with probability $p_q(\mathcal{V}_{<2})$. Conditioned 1270 on that, it generates 1271 1272 • \emptyset with probability 1. 1273 <u>Summary for each round.</u> Let $p_{round}(E^*)$ denote the probability of E^* being generated in each 1274 round, for each $E^* \subseteq \binom{V'}{2}$. We have 1275 1276 • $p_{round}(\{(u, v), (u, w), (v, w)\}) = p_q(V')r(v, w),$ 1277 • $p_{round}(\{(u, v), (u, w)\}) = p_q(V')(r(u, w) - r(v, w)),$ 1278 1279 • $p_{round}(\{(u,v)\}) = p_q(V')(r(u,v) - r(u,w)) + p_q(\{u,v\})r(u,v),$ 1280 • $p_{round}(\{(u, w)\}) = p_q(\{u, w\})r(u, w),$ 1281 • $p_{round}(\{(v, w)\}) = p_a(\{v, w\})r(v, w)$, and 1282 • $p_{round}(\emptyset) = 1 - p_g(V')r(u,v) - p_g(\{u,v\})r(u,v) - p_a(\{u,w\})r(u,w) - p_a(\{v,w\})r(v,w).$ 1283 1284 We are now ready to compute the motif probabilities. 1285 $E^* = \emptyset$. This happens when \emptyset is generated in all R rounds and for the remaining probabilities p_{rem} , 1286 with probability 1287 $\Pr_{f_{rem}^{PB}}[E(G[V']) = \emptyset] = (p_{round}(\emptyset))^{R}(1 - p_{rem}(u, v))(1 - p_{rem}(u, w))(1 - p_{rem}(v, w)).$ 1288 1289 $E^* = \{(u, v)\}$. This happens when either \emptyset or $\{(u, v)\}$ is generated in all R rounds and for p_{rem} . 1290 1291 and (u, v) is generated in at least one round, which has probability 1292 $\Pr_{f_{n:a}^{\mathsf{PB}}}[E(G[V']) = \{(u, v)\}]$ 1293 $= (p_{round}(\emptyset))^{R} p_{rem}(u, v) (1 - p_{rem}(u, w)) (1 - p_{rem}(v, w)) +$ 1294 1295 $((p_{round}(\emptyset) + p_{round}(\{(u, v)\}))^{R} - (p_{round}(\emptyset))^{R})(1 - p_{rem}(u, w))(1 - p_{rem}(v, w)),$

where $((p_{round}(\emptyset) + p_{round}(\{(u, v)\}))^R - (p_{round}(\emptyset))^R)$ is the probability that in the R rounds, only (u, v) is inserted. $E^* = \{(u, w)\}$. Similarly, this happens with probability $\Pr_{f_{m, a, B}^{PB}}[E(G[V']) = \{(u, w)\}]$ $= (p_{round}(\emptyset))^{R} p_{rem}(u, w) (1 - p_{rem}(u, v)) (1 - p_{rem}(v, w)) +$ $((p_{round}(\emptyset) + p_{round}(\{(u, w)\}))^{R} - (p_{round}(\emptyset))^{R})(1 - p_{rem}(u, v))(1 - p_{rem}(v, w)).$ $E^* = \{(v, w)\}$. Similarly, this happens with probability $= (p_{round}(\emptyset))^{R} p_{rem}(v, w) (1 - p_{rem}(u, v)) (1 - p_{rem}(u, w)) +$ $((p_{round}(\emptyset) + p_{round}(\{(v, w)\}))^{R} - (p_{round}(\emptyset))^{R})(1 - p_{rem}(u, v))(1 - p_{rem}(u, w)).$ $E^* = \{(u, v), (u, w)\}$. This happens when one among $\emptyset, \{(u, v)\}, \{(u, w)\}, \{(u, v)\}, \{(u, v)\}, \{(u, v)\}\}$ is generated in all R rounds and for R_{rem} , while excluding the cases ending up with \emptyset , $\{(u, v)\}$, or $\{(u, w)\}$. This happens with probability $\Pr_{f_{v,u, B}^{\mathsf{PB}}}[E(G[V']) = \{(u, v), (u, w)\}]$ $= (p_{round}(\emptyset))^R p_{rem}(u, v) p_{rem}(u, w) (1 - p_{rem}(v, w)) +$ $((p_{round}(\emptyset) + p_{round}(\{(u, v)\}))^R - (p_{round}(\emptyset))^R)p_{rem}(u, w)(1 - p_{rem}(v, w)) +$ $((p_{round}(\emptyset) + p_{round}(\{(u, w)\}))^{R} - (p_{round}(\emptyset))^{R})p_{rem}(u, v)(1 - p_{rem}(v, w)) +$ $\tilde{p}(\{(u,v),(u,w)\};R)(1-p_{rem}(v,w)),$ where $\tilde{p}(\{(u, v), (u, w)\}; R)$ $= (p_{round}(\emptyset) + p_{round}(\{(u,v)\}) + p_{round}(\{(u,w)\}) + p_{round}(\{(u,v),(u,w)\}))^{R} (p_{round}(\emptyset) + p_{round}(\{(u,v)\}))^R (p_{round}(\emptyset) + p_{round}(\{(u, w)\}))^R +$ $(p_{round}(\emptyset))^R$ is the probability that exactly (u, v) and (u, w) are inserted in the R rounds, using the inclusion-exclusion principle. $E^* = \{(u, v), (v, w)\}$. Similarly, this happens with probability $\Pr_{f^{\mathsf{PB}}} [E(G[V']) = \{(u, v), (v, w)\}]$ $= (p_{round}(\emptyset))^R p_{rem}(u, v) p_{rem}(v, w) (1 - p_{rem}(u, w)) +$ $((p_{round}(\emptyset) + p_{round}(\{(u, v)\}))^R - (p_{round}(\emptyset))^R)p_{rem}(v, w)(1 - p_{rem}(u, w)) +$ $((p_{round}(\emptyset) + p_{round}(\{(v, w)\}))^{R} - (p_{round}(\emptyset))^{R})p_{rem}(u, v)(1 - p_{rem}(u, w)) +$

$$\tilde{p}(\{(u,v),(v,w)\};R) = (p_{round}(\emptyset) + p_{round}(\{(u,v)\}) + p_{round}(\{(v,w)\}))^{R} - (p_{round}(\emptyset) + p_{round}(\{(u,v)\}))^{R} - (p_{round}(\emptyset) + p_{round}(\{(v,w)\}))^{R} + (p_{round}(\emptyset) + p_{round}(\{(v,w)\}))^{R} + (p_{round}(\emptyset) + p_{round}(\{(v,w)\}))^{R} + (p_{round}(\emptyset) + p_{round}(\{(v,w)\}))^{R} + (p_{round}(\{(v,w)\}))^{R} + (p_{round}(\{(v,w)\})$$

 $(p_{round}(\psi) + p_{round}(\{(v, u)\}))$

 $\tilde{p}(\{(u,v),(v,w)\};R)(1-p_{rem}(u,w)),$

 $(p_{round}(\emptyset))^R$.

Note that $p_{round}(\{(u, v), (v, w)\}) = 0.$

1350 $E^* = \{(u, w), (v, w)\}$. Similarly, this happens with probability 1351 $\Pr_{f_{v:q}^{\mathsf{PB}}}[E(G[V']) = \{(u, w), (v, w)\}]$

1353 1354

1355

1356

1359 1360 1361

 $((p_{round}(\emptyset) + p_{round}(\{(u, w)\}))^R - (p_{round}(\emptyset))^R)p_{rem}(v, w)(1 - p_{rem}(u, v)) +$ $((p_{round}(\emptyset) + p_{round}(\{(v, w)\}))^R - (p_{round}(\emptyset))^R)p_{rem}(u, w)(1 - p_{rem}(u, v)) + (p_{round}(\emptyset) + p_{round}(\emptyset))^R + (p_{round}(\emptyset))^R + (p_{round}(\emptyset))^R$ $\tilde{p}(\{(u, w), (v, w)\}; R)(1 - p_{rem}(u, v)),$

 $= (p_{round}(\emptyset))^R p_{rem}(u, w) p_{rem}(v, w) (1 - p_{rem}(u, v)) +$

where

$$\tilde{p}(\{(u, w), (v, w)\}; R) = ((p_{round}(\emptyset) + p_{round}(\{(u, w)\}) + p_{round}(\{(v, w)\}))^{R} - (p_{round}(\emptyset) + p_{round}(\{(u, w)\}))^{R} - (p_{round}(\emptyset) + p_{round}(\{(v, w)\}))^{R} + (p_{round}(\emptyset))^{R})$$

1363 1364 1365

1367

1368 1369 1370

Note that $p_{round}(\{(u, w), (v, w)\}) = 0.$ 1366

 $E^* = \{(u, v), (u, w), (v, w)\}$. This happens with the remaining probability, i.e.,

$$\Pr_{f_{p;g,R}^{\mathsf{PB}}}[E(G[V']) = \{(u,v), (u,w), (v,w)\}] = 1 - \sum_{E' \subsetneq \binom{V'}{2}} \Pr_{f_{p;g,R}^{\mathsf{PB}}}[E(G[V']) = E'].$$

1	3	7	1
1	3	7	2

1385

1373 Discussion on higher orders. Similar to the counterpart for local binding, the reasoning in the proof 1374 above can be extended to higher orders. When the order of motifs increases, both considering the 1375 cases in each round and accumulating them in multiple rounds become increasingly challenging. 1376 For the cases in each round, we first need to consider more cases of V_s , i.e., all the subsets of V'. For accumulating the probabilities, for each E^* , we first need to consider all the cases (i.e., all the 1377 subsets of E^*) in each round that can accumulate to E^* , and we need to use the inclusion-exclusion 1378 principle to avoid counting some sub-motifs multiple times, where again all the subsets of E^* need 1379 to be considered. Hence, for motifs of order k, the number of cases is at least $O(2^{\binom{\kappa}{2}})$. 1380

1381 Theorem B.6 (Time complexity of computing motif probabilities with parallel binding). Given 1382 $p: \binom{V}{2} \to [0,1], g: V \to [0,1], and R \in \mathbb{N}, computing \Pr_{f_{p;a,R}^{PB}}[E(G[V']) = E^*] takes O(|V|^3)$ 1383 time in total for all $E^* \subseteq \binom{V'}{2}$ and $V' \in \binom{V}{3}$. 1384

Proof. For computing motif probabilities, we need to enumerate all triplets $V' = \{u, v, w\} \in \binom{V}{3}$ 1386 and compute the motif probability for each 3-motif. For each motif, the calculation only involves 1387 arithmetic operations, which takes O(1) time since the formulae are fixed. In conclusion, computing 1388 3-motif probabilities takes $O(\binom{|V|}{3})$ time. 1389

1390 **B.5** FITTING 1391

B.5.1 THE ERDŐS-RÉNYI (ER) MODEL 1392

1393 **Definition.** The Erdős-Rényi (ER) model (Erdős & Rényi, 1959) outputs edge probabilities with two parameters: n_0 and p_0 , and the output is p_{n_0,p_0}^{ER} with $p_{n_0,p_0}^{ER}(u,v) = p_0, \forall u, v \in {V \choose 2}$ with $V = [n_0]$. 1394 1395 Given a graph G = (V = [n], E), ER outputs $n_0 = n$ and $p_0 = \frac{2|E|}{n(n-1)}$. 1396

Lemma 5.12 (Reduced time complexity with ER). Given $n_0 \in \mathbb{N}$, $p_0 \in [0,1]$, $g_0 \in [0,1]$, and $R \in \mathbb{N}$, computing both $\Pr_{f_{p;g,R}^{lB}}[E(G[V']) = E^*]$ and $\Pr_{f_{p;g,R}^{PB}}[E(G[V']) = E^*]$ takes O(1) times 1397 1398 in total for all $E^* \subseteq {V \choose 2}$ and $V' \in {V \choose 3}$ with $p = p_{n_0,p_0}^{ER}$ and $g(v) = g_0, \forall v \in V = [n_0]$. 1399 1400

Proof. When $p(u,v) \equiv v_0$ and $g(v) \equiv g_0$, both $\Pr_{f_{p;g,R}^{\text{LB}}}[E(G[V']) = E^*]$ and 1401 1402 $\Pr_{f_{p;q,R}^{\mathsf{PB}}}[E(G[V']) = E^*]$ become the same functions for all $V' \in \binom{V}{3}$, which only involve arith-1403 metic operations on p_0 and g_0 and thus take O(1) time for computation. Since the functions are the same for all $V' \in {V \choose 3}$, we only need to calculate for a single V'. Hence, the total time complexity is still O(1). The detailed formulae are as follows. **Local binding.** Fix any $V' \in \binom{V}{2}$, we have $p_{q}(V^{*}) = q_{0}^{|V^{*}|} (1 - q_{0})^{3 - |V^{*}|}, \forall V^{*} \subseteq V'.$ $p_{q}(\mathcal{V}_{>2}) = 3q_{0}^{2}(1-q_{0}) + q_{0}^{3}.$ and $p_q(\mathcal{V}_{\leq 2}) = 3q_0(1-q_0)^2 + (1-q_0)^3.$ Hence $q(\{u, v, w\}) = \frac{1 - \left(3g_0(1 - g_0)^2 + (1 - g_0)^3\right)^R}{3g_0^2(1 - g_0) + g_0^3}g_0^3,$ $q_2 := q(\{u, v\} \to \{u, v, w\}) = q(\{u, w\} \to \{u, v, w\}) = q(\{v, w\} \to \{u, v, w\})$ $= \left(\frac{1 - \left(3g_0(1 - g_0)^2 + (1 - g_0)^3 + g_0^2(1 - g_0)\right)^R}{2g_0^2(1 - g_0) + g_0^3} - \frac{1 - \left(3g_0(1 - g_0)^2 + (1 - g_0)^3\right)^R}{3g_0^2(1 - g_0) + g_0^3}\right),$ and $q_{indep} = 1 - q(\{u, v, w\}) - 3q_2.$ $E^* = \{(u, v), (u, w), (v, w)\}$ $\Pr_{f_{wa,B}^{\text{LB}}}[E(G[V']) = \{(u,v), (u,w), (v,w)\}] = q(\{u,v,w\})p_0 + 3q_2p_0^2 + q_{indep}p_0^3)$ $|E^*| = 2$ For each E^* with $|E^*| = 2$, i.e., $E^* = \{(u, v), (u, w)\}$ or $\{(u, v), (v, w)\}$ or $\{(u, w), (v, w), (v, w)\}$, we have $\Pr_{f^{\text{LB}}}[E(G[V']) = E^*] = q_2 p_0 (1 - p_0) + q_{indep} p_0^2 (1 - p_0)$ $|E^*| = 1$ For each E^* with $|E^*| = 1$, i.e., $E^* = \{(u, v)\}$ or $\{(u, w)\}$ or (v, w), we have $\Pr_{f^{\text{LB}}}[E(G[V']) = E^*] = q_2 p_0 (1 - p_0) + q_{indep} p_0 (1 - p_0)^2$ $E^* = \emptyset$ $\Pr_{f_{\text{the p}}^{\text{LB}}}[E(G[V']) = \{(u, w)\}] = q(\{u, v, w\})(1 - p_0) + 3q_2(1 - p_0)^2 + q_{indep}(1 - p_0)^3$ B.5.2 THE CHUNG-LU (CL) MODEL Definition. The Chung-Lu (CL) model (Chung & Lu, 2002) outputs edge probabilities with a sequence of expected degrees $D = (d_1, d_2, \dots, d_n)$, and the output is p_D^{CL} with $p_D^{CL}(u, v) = \min(\frac{d_u d_v}{\sum_{i=1}^{i} d_i}, 1), \forall u, v \in \binom{V}{2}$ with V = [n]. Given a graph G = (V = [n], E), CL outputs

 $d_i = d(i; G)$ for each node $i \in V$. **Lemma 5.13** (Reduced time complexity with CL). Given $D = (d_1, d_2, \ldots, d_n)$, g_d for $d \in \{d_1, d_2, \ldots, d_n\}$, and $R \in \mathbb{N}$, computing both $\Pr_{f_{p;g,R}^{LB}}[E(G[V']) = E^*]$ and $\Pr_{f_{p;g,R}^{PB}}[E(G[V']) = E^*]$ E^* for all $E^* \subseteq \binom{V'}{2}$ and $V' \in \binom{[n]}{3}$ takes $O(k_{deg}^3)$ times with $p = p_D^{CL}$ and $g(i) = g_{d_i}, \forall i \in [n]$.

Proof. The key idea is that given $V' = \{i, j, k\} \in \binom{V}{3}$, both the three edge probabilities (i.e., p(i, j), p(i,k), and p(j,k) and the three node-sampling probabilities (i.e., q(i), q(j), and q(k)) are fully determined by the degrees of the three nodes.

Hence, we only need to calculate motif probabilities for each degree combination instead of each node combination. Since we have k_{dea} different degrees, the total number of degree combinations of size 3 is $O(k_{deg}^3)$, and the calculation for each combination takes O(1) time on arithmetic operations with fixed formulae. In conclusion, the total time complexity is $O(k_{deg}^3)$.

Some details are as follows. Let $k_{deg} = \{d_1, d_2, \dots, d_n\} = \{\tilde{d}_1, \tilde{d}_2, \dots, \tilde{d}_{k_{deg}}\}$, and let n_i denote the number of nodes with degree \tilde{d}_i , for $i \in [k_{deg}]$. Given three degrees \tilde{d}_i, \tilde{d}_j , and \tilde{d}_k , we have

• $n_i n_j n_k$ such combinations, when $i \neq j, i \neq k$, and $j \neq k$

• $\binom{n_i}{2}n_k$ such combinations, when i = j and $i \neq k$; similarly for i = k and $i \neq j$ or j = k and $i \neq j$

• $\binom{n_i}{3}$ such combinations, when i = j = k.

1477 1478 B.5.3 The stochastic block (SB) model

1479 1480 1480 1481 1481 1482 1483 1483 Definition. Given a graph G = (V = [n], E) and a node partition $f_B : [n] \to [c]$ with $c \in \mathbb{N}$, let $V_i = \{v \in V : f_B(v) = i\}$ denote the set of nodes partitioned in the *i*-th group for $i \in [c]$. The fitting of the edge probabilities in the stochastic block (SB) model gives $p_B : [c] \times [c] \to [0, 1]$ with 1482 1483 $p_B(i, i) = \frac{|E(G[V_i])|}{\binom{|V_i|}{2}}$ and $p_B(i, j) = \frac{|E \cap \{(v, v') : v \in V_i, v' \in V_j\}|}{|V_i||V_j|}$, for $i \neq j \in [c]$.

1484 1485 Lemma 5.14 (Reduced time complexity with SB). Given $f_B: [n_0] \to [c], f_B: [n_0] \to [c], g_i$ for 1486 $i \in [c], and R \in \mathbb{N}, computing both \Pr_{f_{p;g,R}^{LB}}[E(G[V']) = E^*] and \Pr_{f_{p;g,R}^{PB}}[E(G[V']) = E^*] takes$ 1487 $O(c^3)$ times in total for all $E^* \subseteq {V' \choose 2}$ and $V' \in {[n] \choose 3}$ with $p = p_{f_B,p_B}^{SB}$ and $g(v) = g_{f_B(v)}$ for each 1488 $v \in V = [n].$

1489 1490

1464 1465 1466

1467 1468

1469

1474 1475 1476

1491

Proof. The key idea is that given $V' = \{i, j, k\} \in {V \choose 3}$, both the three edge probabilities (i.e., p(i, j), p(i, k), and p(j, k)) and the three node-sampling probabilities (i.e., g(i), g(j), and g(k)) are fully determined by the membership the three nodes, i.e., $f_B(i)$, $f_B(j)$, and $f_B(k)$.

Hence, we only need to calculate motif probabilities for each membership combination instead of each node combination. Since we have c different groups, the total number of degree combinations of size 3 is $O(c^3)$, and the calculation for each combination takes O(1) time on arithmetic operations with fixed formulae. In conclusion, the total time complexity is $O(c^3)$.

Some details are as follows. Let $n_i = |V_i|$ denote the number of nodes in the *i*-th group. Given three group membership indicators *i*, *j*, and *k*, we have

1502

1503 1504

• $n_i n_j n_k$ such combinations, when $i \neq j, i \neq k$, and $j \neq k$

• $\binom{n_i}{2}n_k$ such combinations, when i = j and $i \neq k$; similarly for i = k and $i \neq j$ or j = k and $i \neq j$

- $\binom{n_i}{3}$ such combinations, when i = j = k.
- 1508 1509

- 1510
- 1511

B.5.4 THE STOCHASTIC KRONECKER (KR) MODEL

Definition B.7 (Kronecker product and Kronecker power). Given two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$, the Kronecker product between A and B is $\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & \cdots & a_{11}b_{1q} & \cdots & \cdots & a_{1n}b_{11} & a_{1n}b_{12} & \cdots & a_{1n}b_{1q} \\ a_{11}b_{21} & a_{11}b_{22} & \cdots & a_{11}b_{2q} & \cdots & \cdots & a_{1n}b_{21} & a_{1n}b_{22} & \cdots & a_{1n}b_{2q} \\ \vdots & \vdots & \ddots & \vdots & & \vdots & \vdots & \ddots & \vdots \\ a_{11}b_{p1} & a_{11}b_{p2} & \cdots & a_{11}b_{pq} & \cdots & \cdots & a_{1n}b_{p1} & a_{1n}b_{p2} & \cdots & a_{1n}b_{pq} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{11}b_{11} & a_{m1}b_{12} & \cdots & a_{m1}b_{1q} & \cdots & \cdots & a_{mn}b_{11} & a_{mn}b_{12} & \cdots & a_{mn}b_{1q} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1}b_{11} & a_{m1}b_{22} & \cdots & a_{m1}b_{1q} & \cdots & \cdots & a_{mn}b_{11} & a_{mn}b_{22} & \cdots & a_{mn}b_{1q} \\ \vdots & \vdots & \ddots & \vdots & & \vdots & \vdots & \ddots & \vdots \\ a_{m1}b_{p1} & a_{m1}b_{p2} & \cdots & a_{m1}b_{pq} & \cdots & \cdots & a_{mn}b_{p1} & a_{mn}b_{p2} & \cdots & a_{mn}b_{pq}. \end{bmatrix}$

Given $k \in \mathbb{N}$, the k Kronecker power of A is

 $\underbrace{A \otimes (A \cdots (A \otimes (A \otimes A)))}_{k = 1 \text{ times of Kronecker products}}.$

Definition. The stochastic Kronecker (KR) model (Leskovec et al., 2010) outputs edge probabilities with a seed matrix $\theta \in [0,1]^{2\times 2}$ and $k_{KR} \in \mathbb{N}^{11}$, and the output $p_{\theta,k_{KR}}^{KR}$ is the k_{KR} -th Kronecker power of θ .

Lemma B.8 (Node equivalence in KR). Given $\theta \in [0,1]^{2\times 2}$, $k_{KR} \in \mathbb{N}$, g_i for $0 \le i \le k_{KR}$, and $R \in \mathbb{N}$, computing both $\Pr_{f_{p;g,R}^{lB}}[E(G[V']) = E^*]$ and $\Pr_{f_{p;g,R}^{pB}}[E(G[V']) = E^*]$ takes $O(k_{KR}^7)$ times in total for all $E^* \subseteq {\binom{V'}{2}}$ and $V' \in {\binom{[n]}{3}}$ with $p = p_{\theta,k_{KR}}^{KR}$ and $g(v) = g_i$ with i being the number of ones in the binary representation of v - 1, for each $v \in [2^{k_{KR}}]$.

Proof. A square binary matrix $P \in \{0,1\}^{n \times n}$ for some $n \in \mathbb{N}$ is a permutation matrix if exactly one entry in each row or column of P is 1, i.e., $\sum_k P_{ik} = \sum_k P_{kj} = 1, \forall i, j \in [n].$

With binary node labels, given two nodes

 $u = (u_1 u_2 \cdots u_{k_{K,P}})_2$

and

$$v = (v_1 v_2 \cdots v_{k_{KR}})_2$$

we have

$$\theta_{uv}^{(k_{KR})} = \prod_{i=1}^{k_{KR}} \theta_{u_i v_i},$$

which implies that for any permutation $\pi \in S_{k_{KB}}$,

$$\theta_{uv}^{(k_{KR})} = \theta_{\pi(u)\pi(v)}^{(k_{KR})}, \forall u, v,$$

where with a slight abuse of notation,

 $\pi(u) = (u_{\pi(1)}u_{\pi(2)}\cdots u_{\pi(k_{KB})})_2$

and

$$\pi(v) = (v_{\pi(1)}v_{\pi(2)}\cdots v_{\pi(k_{KR})})_2.$$

On the other hand, for any two nodes with the same number of ones in the binary representations, we can find a permutation π between the two binary representations by seeing them as sequences. Let $P = P_{\pi} \in \{0,1\}^{2^{k_{KR}} \times 2^{k_{KR}}}$ with $P_{ij} = 1$ if and only if π converts the binary presentation of i-1 to that of j-1, and we have $P^{\top} \theta_{uv}^{(k_{KR})} P = \theta_{uv}^{(k_{KR})}$.

¹¹We consider the commonly used 2-by-2 seed matrices.

Proof. By the linearity of expectation,

$$\mathbb{E}_{f_{p;g,R}^{\mathrm{PB}}}[|\{v \in G \colon d(v;G) \ge 1\}|] = \sum_{v \in V} \Pr_{f_{p;g,R}^{\mathrm{PB}}}[d(v;G) \ge 1]$$

Hence, we only need to compute the probability of each node v being (non-)isolated. A node v is isolated if and only if no edge incident to v is inserted in each round. In each round, when v is sampled, i.e., $v \in V_s$, the probability that no edge incident to v is inserted is $1 - \max_{u \in V_s} p(u, v)$. Let $p_{iso}(v)$ denote the aforementioned probability and sort $V \setminus \{v\} = \{u_1, u_2, \dots, u_{n-1}\}$ with n = |V| and $p(u_1, v) \ge p(u_2, v) \ge \cdots \ge p(u_{n-1}, v)$. We have $p_{iso}(v) = (1 - \Pr[v \in V_s]) + \Pr[v \in V_s] (1 - \mathbb{E}_{f_{p;g,R}^{\mathrm{PB}}}[\max_{u \in V_s} p(u, v)]) = 1 - g(v) \mathbb{E}_{f_{p;g,R}^{\mathrm{PB}}}[\max_{u \in V_s} p(u, v)],$

where

$$\mathbb{E}_{f_{p;g,R}^{\mathsf{PB}}}[\max_{u \in V_{\circ}} p(u,v)]$$

$$\begin{array}{ll} 1634 & & & \\ 1635 & & \\ 1636 & & \\ 1636 & & \\ 1637 & & \\ 1638 & & \\ 1639 & & \\ 1$$

Finally, the probability that v is isolated after R rounds and dealing with p_{rem} is

$$\tilde{p}_{iso}(v) = (p_{iso}(v))^R (1 - p_{rem}(v))$$

and thus the expected number of non-isolated nodes is

$$\mathbb{E}_{f_{p;g,R}^{\mathrm{PB}}}[|\{v \in G \colon d(v;G) \ge 1\}|] = \sum_{v \in V} (1 - \tilde{p}_{iso}(v)).$$

The expected number of degree-1 nodes We can extend the reasoning above to compute the ex-pected number of degree-1 nodes. Fix a node v, for each node u_k , we shall compute the probability that no other (u_k, v) with $k' \neq k$ is inserted, denoted by $p_s(v; u_k)$, which is the probability of v being isolated plus the probability of v being only adjacent to u_k . In other words, we compute the probability of v being isolated while ignoring u_k . We have

$$p_s(v; u_k) = (1 - g(v)) + g(v)\tilde{p}_s(v; u_k),$$

where

$$\tilde{p}_{s}(v; u_{k}) = g(u_{1})(1 - p(u_{1}, v)) + (1 - g(u_{1}))g(u_{2})(1 - p(u_{2}, v)) + \dots + (1 - g(u_{1}))g(u_{2})(1 - p(u_{2}, v)) + \dots + 1)$$

$$1660 \\ 1661 \\ 1662 \\ 1663 \\ 1664 \\ 1665 \\ 1666 \\ 1666 \\ 1666 \\ 1667 \\ 1668 \\ 1669 \\ 1669 \\ 1669 \\ 1670 \\ 1670 \\ 1670 \\ 1671 \\ 1671 \\ 1671 \\ 1672 \\ 1673 \end{bmatrix}$$

$$\tilde{p}_{s}(v; u_{k}) = g(u_{1})(1 - p(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - p(u_{k+1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - p(u_{k+1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - p(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - p(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - p(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - p(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - p(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - p(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u_{k-1}, v)) + \dots + (1 - g(u_{k-1}))g(u_{k-1})(1 - g(u$$

with

1676 1677

1681 1682

1683 1684

 $\prod_{i=k+1}^{n-1} (1 - g(u_i)).$ Finally, the probability of v being degree-1 is

 $\sum_{i=1}^{n-1} (p_s(v; u_i) - p_{iso}(v)).$

 $\hat{p}_{s}(v; u_{k}) = g(u_{k+1})(1 - p(u_{k+1}, v)) +$

 $(1 - g(u_{k+1}))g(u_{k+2})(1 - p(u_{k+2}, v)) + \dots +$

 $\prod_{i=k+1}^{n-2} (1 - g(u_i))g(u_{n-1})(1 - p(u_{n-1}, v)) +$

1688

Theorem C.2 (Time complexity of computing the expected number of (non-)isolated nodes with parallel binding). Given $p: \binom{V}{2} \to [0,1], g: V \to [0,1], and R \in \mathbb{N}$, computing $\mathbb{E}_{f_{p;g,R}^{PB}}[|\{v \in G: d(v; G) \ge 1\}|]$ takes $O(|V|^2 \log |V|)$ time.

1693
1694Proof. For computing the expected number of non-isolated nodes, for each node v, we need to
first sort the other nodes $u \in V \setminus \{v\}$ w.r.t. p(u,v), which takes $O(|V| \log |V|)$ times. After
that, the calculation only arithmetic operations, which takes O(1) time since the formulae are fixed.1696Hence, for each node v it takes $O(\log |V|)$ times. In conclusion, for all the nodes in V, it takes
 $O(|V| \log |V|)$ time in total.

Remark C.3. Considering node equivalence (see Section 5.4) can also be used to reduce the time complexity of computing the number of (non-)isolated nodes.

1701 1702 C.2 EXPERIMENTAL RESULTS

Since we have the tractability results on the number of (non-)isolated nodes, we can also fit and control the number of (non-)isolated nodes with our binding schemes. Specifically, in our main experiments, the objective of fitting is merely the number of triangles. Here, we further consider variants with the fitting objective including both the number of triangles and the number of (non-)isolated nodes, trying to preserve both numbers as the ground truth.

In Table 5, for each dataset and each model, we compare the ground-truth graph, the corresponding EIGM, and the following two variants of EPGMs:

1710 1. PARABDG: parallel binding with the number of triangles as the objective

PARABDG-N: parallel binding with both the number of triangles and the number of (non-)isolated nodes¹²

and report the following statistics of the generated graphs:

- 1715 1. n_{ni} : the number of non-isolated nodes
- 1716 2. \triangle : the number of triangles

1727

- 3. GCC: the global clustering coefficient
- 4. ALCC: the average clustering coefficient

As in the main text, the statistics are averaged on 100 random trials, i.e., 100 generated graphs.

For ER, we relax both the number of total nodes and the uniform edge probability, i.e., n_0 and p_0 , for fitting. For the other three models (CL, SB, and KR), we still use the edge probabilities obtained from the original model and only add an additional term to the objective.

As shown in the results, in most cases, PARABDG generates graphs with fewer non-isolated nodes compared to the ground truth, and PARABDG-n well fits the number of non-isolated nodes while still improving clustering compared to EIGMs. Notably, since the total number of nodes for KR can only

¹²We only have tractability results with parallel binding.

1731		dataset		Ha	ims		Fcbk			Polb				
1732		metric	n _{ni}	Δ	GCC	ALCC	n_{ni}	Δ	GCC	ALCC	n_{ni}	Δ	GCC	ALCC
1733	model	GROUNDT	1.000	1.000	0.229	0.540	1.000	1.000	0.519	0.606	1.000	1.000	0.226	0.320
1734		EdgeInd	1.000	0.013	0.008	0.008	1.000	0.009	0.011	0.011	1.000	0.034	0.022	0.022
1725	ER	PARABDG	0.812	<u>0.988</u>	0.385	0.640	0.555	1.002	0.574	0.815	0.801	1.025	0.412	<u>0.659</u>
1733		PARABDG-N	<u>0.996</u>	0.990	0.481	<u>0.748</u>	<u>1.007</u>	<u>0.584</u>	<u>0.594</u>	<u>0.835</u>	1.007	1.012	0.532	0.787
1736		EdgeInd	0.964	0.299	0.067	0.058	0.988	0.124	0.064	0.063	0.944	0.792	0.183	<u>0.173</u>
1737	CL	PARABDG	0.771	1.000	0.185	0.471	0.656	1.006	0.336	0.626	0.789	1.010	0.221	0.468
1738		PARABDG-N	<u>0.959</u>	0.257	0.027	<u>0.069</u>	<u>0.969</u>	<u>1.098</u>	<u>0.125</u>	<u>0.151</u>	<u>0.935</u>	<u>0.794</u>	0.135	0.219
1739		EdgeInd	0.996	0.263	0.080	0.038	1.000	0.153	0.145	0.080	0.975	<u>0.478</u>	<u>0.145</u>	0.164
17/0	SB	PARABDG	0.719	0.993	0.241	0.521	0.608	1.035	0.529	0.557	0.899	1.010	0.183	0.251
1740		PARABDG-N	0.991	<u>1.168</u>	0.154	<u>0.092</u>	1.000	1.036	0.423	0.204	<u>0.953</u>	0.475	0.094	0.217
1741		EdgeInd	0.996	0.185	<u>0.039</u>	0.060	<u>1.014</u>	0.052	0.035	0.042	1.598	0.101	0.040	0.075
1742	KR	PARABDG	0.856	0.997	0.165	0.394	0.781	0.971	0.347	0.605	<u>1.194</u>	<u>0.942</u>	0.219	<u>0.420</u>
1743		PARABDG-N	<u>0.996</u>	<u>0.301</u>	0.028	<u>0.099</u>	1.000	<u>0.953</u>	<u>0.254</u>	0.262	0.987	0.976	<u>0.268</u>	0.368
1744														
1745		dataset		S	pam			С	epg			S	Scht	
1746		metric	n _{ni}	Δ	GCC	ALCC	n _{ni}	Δ	GCC	ALCC	n _{ni}	Δ	GCC	ALCC
1747	model	GROUNDT	1.000	1.000	0.145	0.286	1.000	1.000	0.321	0.447	1.000	1.000	0.377	0.350
1748		EdgeInd	1.000	0.005	0.003	0.003	1.000	0.037	0.033	0.033	1.000	0.027	0.029	0.029
1749	ER	PARABDG	0.783	0.993	0.401	0.663	0.688	0.968	0.508	0.750	0.617	0.991	0.559	$\frac{0.794}{0.000}$
1750		PARABDG-N	1.006	1.009	0.526	0.787	1.008	0.832	0.606	0.839	<u>1.002</u>	0.669	0.604	0.839
1751	CI	EDGEIND	$\frac{0.906}{0.700}$	0.496	$\frac{0.072}{0.121}$	0.060	0.953	0.683	$\frac{0.230}{0.210}$	0.223	0.964	$\frac{0.644}{1.125}$	$\frac{0.245}{0.204}$	$\frac{0.234}{0.(10)}$
1751	CL	PARABDG PARABDG-N	0.700	0.445	0.033	0.430	0.098	0.999	0.510	0.378	0.800	0.639	0.294	0.010
1752		EDGELND	0.900	0.529	0.000	0.026	0.004	0.662	0.150	0.200	0.002	0.637	0.200	0.129
1753	SB	PARABDG	0.982	0.328	0.158	0.050	0.994	1.047	0.238	0.200	0.992	0.044	0.272	0.128
1754	05	PARABDG-N	0.957	0.537	0.070	0.109	0.990	1.056	0.329	<u>0.202</u>	0.972	0.956	0.292	0.205
1755		EdgeInd	1.438	0.061	0.014	0.025	1.210	0.132	0.069	0.120	1.953	0.032	0.033	0.052
1756	KR	PARABDG	1.024	1.049	0.161	0.378	1.043	1.001	0.279	0.461	<u>1.211</u>	1.069	<u>0.346</u>	0.581
1757		PARABDG-N	0.995	0.981	0.161	<u>0.385</u>	0.996	<u>1.118</u>	0.296	<u>0.478</u>	0.997	1.030	0.370	0.640

Table 5: The number of non-isolated nodes and clustering metrics of graphs generated by different realization methods. The number of non-isolated nodes n_{ni} and the number of triangles (\triangle) are normalized. For each dataset and each model, the best result is in bold and the second best is underlined.

be a power of the seed-matrix size (i.e., a power of 2 in our experiments), the corresponding EIGM generates graphs with too many non-isolated nodes in many cases, while PARABDG-n generates graphs with a more similar number of non-isolated nodes (i.e., closer to the ground truth). Moreover, it is also known that even without binding, some models may suffer from the problem of isolated nodes, e.g., CL (Brissette & Slota, 2021; Brissette et al., 2022) and KR (Mahdian & Xu, 2007; Seshadhri et al., 2013).

Overall, the results validate that, our tractability results allow practitioners to fit the number of nonisolated nodes (if that is one of their main concerns) while improving other aspects, e.g., clustering.

1767

¹⁷⁶⁸ D Additional discussions

1770 D.1 GENERAL GRAPHS

As mentioned in Section 2, we focus on undirected unweighted graphs without self-loops following common settings for random graph models in the main text. Below, we shall discuss different more general cases.

1775 <u>Directed edges and self-loops.</u> In our binding schemes (Algorithms 1 to 3), if we consider directed edges and/or self-loops, we can further consider them after sampling a group of nodes. Regard-ing theoretical analysis, we can further consider subgraphs (motifs) with directed edges and self-loops (Milo et al., 2002) and the high-level ideas still apply.

1779 Weighted edges. Our graph generation algorithms only determine the (in)existence of edges and
 1780 we may need additional schemes to generate edge weights. For example, we can use algorithms
 1781 that generate proper edge weights when given graph topology (Bu et al., 2023). Since in our graph
 1781 generation algorithms, nodes (and thus edges) can be sampled multiple times, an alternative way to

have edge weights is to allow each edge to be inserted multiple times and use the times of repetition as edge weights.

1784

1785 D.2 OVERLAP-RELATED TRIANGLE-DENSITY RESULTS

As mentioned in Section 3.1, Chanpuriya et al. (2024) have recently extended their theoretical analysis to other categories of RGMs. In addition to EIGMs, they further considered two other categories: node independent graph models (NIGMs) and fully dependent graph models (FDGMs). Between the two, FDGMs means any distribution of graphs, i.e., any RGM, is allowed.

They only discussed general overlap-related triangle-density upper bounds in those categories of RGMs, without detailed tractability results for practical graph generations. Specifically, their graph generation algorithm is based on maximal clique enumeration (MCE). However, given a graph, MCE itself can take exponential time (Eblen et al., 2012).

Also, what we focus on in this work, i.e., the category of binding-based EPGMs, is a subset of EPGMs and are not "fully general" as FDGMs. On the other hand, NIGMs are associated with node embeddings, where we have a node embedding space (i.e., a distribution) \mathcal{E} and a symmetric function $e: \mathcal{E} \times \mathcal{E} \rightarrow [0, 1]$, and each node *i* has a node embedding x_i sampled from \mathcal{E} i.i.d., and each edge (i, j) exists with probability $e(x_i, x_j)$ independently. Our binding-based EPGMs do not fall in this category either.

1800

1801 D.3 SUBSET SAMPLING

As mentioned in Footnote 7 in Section 5.2, we use independent *node* sampling (yet still with *edge* 1803 dependency) which is simple, tractable, and works well. Specifically, independent node sampling 1804 allows us to easily compute the marginal probability of each node binding sampled in each round, 1805 which is involved in the derivation of our tractability results. Also, as shown in our experiments, with binding schemes using independent node sampling, we still achieve significant empirical im-1807 provement over EIGMs. In the most general case, considering the sampling probabilities of all $2^{|V|}$ 1808 subsets would be intractable. Recently, a line of works has been proposed for tractable and differ-1809 entiable subset sampling (Xie & Ermon, 2019; Pervez et al., 2023; Ahmed et al., 2023; Sutter et al., 1810 2023), and exploring more flexible node sampling schemes is an interesting future direction to be 1811 explored.

- 1812
- 1813 D.4 PRACTICAL MEANING OF BINDING

As we mentioned in Section 5.2, local binding (and parallel binding as a parallel version) binds node pairs *locally among a group of nodes* (instead of some irrelevant node pairs). Such node pairs are structurally related, and are expected to be meaningfully related in the corresponding real-world systems. We shall discuss two specific real-world scenarios below.

Group interactions in social networks. In typical social networks, nodes represent people, and edges represent social communications/relations between people. Each group "bound together" by our binding algorithms can represent a group interaction, e.g., an offline social event (meeting, conference, party) or an online social event (group chat, Internet forum, online game). In such social events, people gather together and the communications/relations between them likely co-occur. Certainly, not necessarily all people in such events would communicate with each other, e.g., some people are more familiar with each other. This is exactly the point of considering binding with various edge probabilities (instead of just inserting cliques).

Specifically, the random variable *s* represents the overall "social power" of an event, while individual edge probabilities p(u, v)'s represent some local factors (e.g., their personal relationship) between each pair of people. A line of research studies group interactions in social networks (Felmlee & Faris, 2013; Levorato, 2014; Purushotham & Jay Kuo, 2015; Jang et al., 2016; Li et al., 2020; Iacopini et al., 2022).

1831 <u>Gene functional associations in gene networks.</u> In typical gene networks, nodes represent genes, and edges represent gene functional associations, i.e., connections between genes that contribute jointly to a biological function. Each group "bound together" by our binding algorithms can represent a biological function, since typically (1) a single biological function involves multiple genes (Plomin, 1990; Anastassiou, 2007; Naoumkina et al., 2010) (represented by a group of nodes bound together), and (2) the same biological function may involve different genes in different

1836	Table 6: The basic statistics of the datasets.										
1837	dataset	V	E	# triangles	GCC	ALCC					
1839	Hams	2,000	16,097	157,953	0.229	0.540					
1840	Fcbk	4,039	88,234	4,836,030	0.519	0.606					
1841	Polb Smarr	1,222	16,717	303,129	0.226	0.320					
1842	Spam Ceno	4,707	37,373 47 309	2 353 812	0.143	0.280 0.447					
1843	Scht	2,077	63,023	4,192,980	0.377	0.350					

Table 6. The basic statistics of the datasets

1863

1846 cases (Gottesman & Hanson, 2005; Pritykin et al., 2015; Storey et al., 2007) (represented by the 1847 probabilistic nature of binding).

On parallel binding. Specifically, as mentioned in Section 5.3, compared to local binding where 1849 each pair can only participate in a single group, parallel binding allows each pair to participate 1850 in multiple groups (in different rounds). This is also true for real-world group interactions, where different groups overlap and intersect with each other (Lee et al., 2021; LaRock & Lambiotte, 2023). 1851

Ε ADDITIONAL DETAILS OF THE EXPERIMENTS

E.1 **EXPERIMENTAL SETTINGS** 1855

Datasets. We use six real-world datasets from three different domains: (1) social networks *ham*-1857 sterster (Hams) and facebook (Fcbk), (2) web graphs polblogs (Polb) and spam (Spam), and (3) 1858 biological graphs *CE-PG* (*Cepg*) and *SC-HT* (*Scht*).

1859 The datasets are available online (Rossi & Ahmed, 2015; Leskovec & Krevl, 2014):

- 1860 • hamsterster (Hams) (Hamsterster) is available at https://networkrepository.com/ soc-hamsterster.php 1862
 - facebook (Fcbk) (Leskovec & Mcauley, 2012) is available at https://snap.stanford. edu/data/ego-Facebook.html
- 1864 • polblogs (Polb) (Adamic & Glance, 2005) is available at https://networks.skewed.de/ 1865 net/polblogs 1866
- spam (Spam) (Castillo et al., 2008) is available at https://networkrepository.com/ 1867 web-spam.php 1868
- CE-PG (Cepg) (Cho et al., 2014) is available at https://networkrepository.com/ bio-CE-PG.php 1870
 - SC-HT (Scht) (Cho et al., 2014) is available at https://networkrepository.com/ bio-SC-HT.php

In Table 6, we show the basic statistics (e.g., the numbers of nodes and edges) of the datasets. 1873

We provide the formal definitions of some basic statistics below. 1874

1875 **Definition E.1** (Clustering coefficients). Given G = (V, E), the number of wedges (i.e., open triangles) is $n_w(G) = \sum_{v \in V} {d(v) \choose 2}$. The global clustering coefficient (GCC) of G is defined as 1876 1877

1883 1884 1885

1871

1872

$$\operatorname{GCC}(G) = \frac{3\triangle(G)}{n_{\operatorname{cur}}(G)}$$

where $\triangle(G)$ is the number of triangles in G and it is multiplied by 3 because each triangle corre-1880 sponds to three wedges (consider three different nodes as the center of the wedge). The average 1881 local clustering coefficient (ALCC) of G is defined as 1882

$$\operatorname{ALCC}(G) = \sum_{v: \ d(v) \ge 2} \frac{\Delta(v; G)}{\binom{d(v)}{2}},$$

where $\triangle(v; G)$ is the number of triangles involving v in G. 1886

Models. The Erdős-Rényi (ER) model outputs edge probabilities with two parameters: n_0 and p_0 , and the output is p_{n_0,p_0}^{ER} with $p_{n_0,p_0}^{ER}(u,v) = p_0, \forall u,v \in \binom{V}{2}$ with $V = [n_0]$. Given a graph 1889 G = (V = [n], E), the standard fitting of ER gives $n_0 = n$ and $p_0 = \frac{|E|}{\binom{|V|}{2}}$.

¹⁸⁴⁵

The Chung-Lu (CL) model outputs edge probabilities with a sequence of expected degrees $D = (d_1, d_2, \ldots, d_n)$, and the output is p_D^{CL} with $p_D^{CL}(u, v) = \min(\frac{d_u d_v}{\sum_{i=1}^n d_i}, 1), \forall u, v \in \binom{V}{2}$ with V = [n]. Given a graph G = (V = [n], E), the standard fitting of CL gives $d_i = d(i; G)$ for each node $i \in V$.

The stochastic block (SB) model outputs edge probabilities with (1) a partition of nodes which can be represented by an assignment function $f_B: [n_0] \rightarrow [c]$ with n_0 nodes and c blocks and (2) the edge probability between each pair of blocks (including between two identical blocks), which can be represented by $p_B: [c] \times [c] \rightarrow [0, 1]$, and the output is p_{f_B,p_B}^{SB} with $p_{f_B,p_B}^{SB}(u,v) =$ $p_B(f_B(u), f_B(v)), \forall u, v \in [n_0]$. In our experiments, we use the Python library Graspologic (Chung et al., 2019) which contains a fitting algorithm for SB. Specifically, it uses spectral embedding (Von Luxburg, 2007; Sussman et al., 2012; Rohe et al., 2011) and a Gaussian mixture model (Reynolds et al., 2009) to obtain node partitions.

The stochastic Kronecker (KR) model outputs edge probabilities with a seed matrix $\theta \in [0, 1]^{2 \times 2}$ and a Kronecker power $k_{KR} \in \mathbb{N}$, and the output is $p_{\theta,k_{KR}}^{KR}$ with $p_{\theta,k_{KR}}^{KR}(u,v) = \theta_{uv}^{(k_{KR})}, \forall u, v \in {V \choose 2}$ with $V = [2^{k_{KR}}]$, where $\theta^{(k_{KR})} \in [0, 1]^{2^{k_{KR}} \times 2^{k_{KR}}}$ is the k_{KR} -th Kronecker power of θ . In our experiments, we use kronfit (Leskovec et al., 2010) proposed by the original authors of KR.

Fitting. For fitting the parameters for our binding schemes, we use the Adam optimizer (Kingma & Ba, 2015) with learning rate $\eta = 0.001$ and $n_{ep} = 10,000$ epochs for training. In our experiments, we consistently use R = 100,000 rounds for both of our binding schemes. By default, the input edge probabilities p are provided and fixed as described above. By default, the objective is the expected number of triangles. More specifically, it is

$$(1 - \frac{\mathbb{E}_{f_{p;g,R}^{\mathbf{X}}}[\triangle(G)]}{\triangle(G_{input})})^2$$

where

1912

1913 1914 1915

 $\mathbb{E}_{f_{p;g,R}^{\mathsf{X}}}[\triangle(G)] = \sum_{V' \in \binom{V}{2}} \Pr_{f_{p;g,R}^{\mathsf{X}}}[E(G[V']) = \binom{V'}{2}]$

1919 1920

is the expected number of triangles in a generated graph with $X \in \{\text{LOCLBDG}, \text{PARABDG}\}$ indicating the binding scheme, and $\triangle(G_{input})$ is the ground-truth number of triangles in the input graph.

We observe that our fitting algorithms assign different node-sampling probabilities to different nodes, which implies that different nodes have different levels of importance in binding. In Figure 3, for the CL model and for each dataset, we show the relations between nodes' degrees and their node-sampling probabilities in LOCLBDG and PARABDG. For LOCLBDG, we observe strong positive correlations between node degrees and node-sampling probabilities. For PARABDG, similar trends are observed, but the patterns are quite different. Also, we can observe that the node-sampling probabilities for PARABDG are overall lower than those for LOCLBDG, as mentioned in Section 6.4.

Hardware and software. All the experiments of fitting are run on a machine with two Intel Xeon[®]
 Silver 4210R (10 cores, 20 threads) processors, a 512GB RAM, and RTX A6000 (48GB) GPUs. A single GPU is used for each fitting process. The code for fitting is written in Python, using Pytorch (Paszke et al., 2019). All the experiments of graph generation are run on a machine with one Intel i9-10900K (10 cores, 20 threads) processor, a 64GB RAM. The code for generation is written in C++, compiled with G++ with O2 optimization and OpenMP (Dagum & Menon, 1998) parallelization.

1937

1938 E.2 P1: CLUSTERING

As mentioned in Section 6.2, the results in Table 1 are averaged on 100 random trials. In Table 7, we show the full results with standard deviations. With binding, the variance is higher since the covariances between edges are higher with dependency. We also compute the mean squared errors w.r.t. each metric. The results are in Table 8. Notably, for graph generators, variability is desirable in many cases (Moreno et al., 2018; Stamm et al., 2023).

1966 1967

1989

Figure 3: The relations between node degrees and node-sampling probabilities.

1968 E.3 P2: DEGREES, DISTANCES, AND OTHER GRAPH STATISTICS

Definition E.2 (Paths and distance). Given a graph G = (V, E), a sequences of nodes (v_1, v_2, \ldots, v_t) consisting of t distinct nodes is a *path* between v_1 and v_t , if $(v_i, v_{i+1}) \in E, \forall i \in [t-1]$, and t is called the length of the path. Given two nodes $u, v \in V$, the *distance* between u and v is the length of the shortest path between u and v.

Definition E.3 (Connected components). Given a graph G = (V, E), and two nodes $u, v \in V$, we say u and v are in the same *connected component*, if and only if there exists at least one path between u and v. This relation of "being in the same connected component" forms equivalent classes among the nodes, and each equivalent class is a connected component. A *largest connected component* is a connected component with the largest size (i.e., the number of nodes in it).¹³

In Figure 4, for each dataset (each column) and each model (each row), we compare the degree distributions and distance distributions in the ground-truth graph and the graphs generated with each realization method, supplementing Figure 1.

In Table 9, we provide the detailed numerical results w.r.t. degrees and distances. Specifically, for each dataset, each mode, and each realization method, we report the following statistics:

- the results of the linear regression of node degrees k and the number of nodes with each degree k on a log-log scale: the fit slope (the exponent α in the corresponding power-law fitting) and the r value (the strength of a power law)
 the average path length (APL) and the 90% effective diameter (d correspondence) in the largest connected
 - the average path length (APL) and the 90%-effective diameter (d_{eff}) in the largest connected component¹⁴

With binding, the generated graphs are overall closer to ground truth w.r.t. some other graph metrics:
modularity (Newman, 2006), conductance (Gleich, 2006), core numbers (Seidman, 1983), average
vertex betweenness (Freeman, 1977), average edge betweenness (Brandes, 2008), and natural connectivity (Chan et al., 2014). See Tables 11 to 16 for the detailed results. Modularity is computed

 ¹³A graph may contain several equal-size largest connected components, but it rarely happens for real-world graphs.

¹⁹⁹⁶ i^{4} The average path length is the average distance of the pairs in the largest connected component, and the 1997 90%-effective diameter is the minimum distance d such that at least 90% of the pairs in the largest connected component have distances at most d.

2000	ć	lataset		Hams			Fcbk			Polb	
2001	1	netric	Δ	GCC	ALCC	Δ	GCC	ALCC	Δ	GCC	ALCC
2002	model	GROUNDT	1.000	0.229	0.540	1.000	0.519	0.606	1.000	0.226	0.320
2003		EdgeInd	0.013	0.008	0.008	0.009	0.011	0.011	0.034	0.022	0.022
2004		(std)	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
2005		LOCLBDG	0.997	0.321	0.236	1.010	0.448	0.223	0.955	0.336	0.247
2003	ER	(std)	0.279	0.028	0.022	0.445	0.077	0.042	0.320	0.038	0.032
2006		PARABDG	0.988	0.385	0.640	1.002	0.574	0.815	1.025	0.412	0.659
2007		(std)	0.081	0.014	0.018	0.155	0.036	0.026	0.135	0.022	0.028
2008		EdgeInd	0.299	0.067	0.058	0.124	0.064	0.063	0.792	0.183	0.173
2009		(std)	0.010	0.002	0.002	0.002	0.001	0.001	0.017	0.002	0.005
2010	CI	LOCLBDG	0.992	0.165	0.255	1.026	0.255	0.305	1.002	0.214	0.341
2011	CL	(std)	0.353	0.030	0.026	1.033	0.095	0.050	0.132	0.008	0.021
2012		PARABDG	0.144	0.185	0.471	0.261	0.330	0.020	1.010	0.221	0.468
2013		(std)	0.144	0.015	0.015	0.201	0.055	0.018	0.008	0.005	0.009
2017		(etd)	0.203	0.080	0.038	0.133	0.145	0.080	0.478	0.145	0.104
2014			1.039	0.001	0.001	0.002	0.001	0.000	0.012	0.002	0.355
2015	SB	(std)	0.419	0.042	0.240	0.732	0.429	0.074	0.386	0.237	0.037
2016		PARABDG	0.993	0.241	0.521	1.035	0.529	0.557	1.010	0.183	0.251
2017		(std)	0.118	0.013	0.012	0.504	0.064	0.042	1.819	0.076	0.054
2018		EDGEIND	0.185	0.039	0.060	0.052	0.035	0.042	0.101	0.040	0.075
2019		(std)	0.006	0.001	0.002	0.001	0.000	0.001	0.003	0.001	0.003
2020		LOCLBDG	1.095	0.152	0.230	0.927	0.239	0.270	1.061	0.141	0.234
2021	KR	(std)	0.580	0.047	0.028	1.090	0.117	0.048	2.234	0.106	0.054
2022		PARABDG	0.997	0.165	0.394	0.971	0.347	0.605	0.942	0.219	0.420
2022		(std)	0.210	0.021	0.016	0.395	0.055	0.017	0.601	0.075	0.035
2112.3											
2024											
2024		lataset		Spam			Cepg			Scht	
2024 2025 2026		lataset metric		Spam GCC	ALCC		Cepg GCC	ALCC	Δ	Scht GCC	ALCC
2024 2025 2026 2027	model	lataset metric GROUNDT	△ 1.000	<i>Spam</i> GCC 0.145	ALCC 0.286	△ 1.000	<i>Cepg</i> GCC 0.321	ALCC 0.447	△ 1.000	<i>Scht</i> GCC 0.377	ALCC 0.350
2024 2025 2026 2027	model	lataset metric GROUNDT EDGEIND	△ 1.000 0.005	<i>Spam</i> GCC 0.145 0.003	ALCC 0.286 0.003	△ 1.000 0.037	<i>Cepg</i> GCC 0.321 0.033	ALCC 0.447 0.033	△ 1.000 0.027	Scht GCC 0.377 0.029	ALCC 0.350 0.029
2024 2025 2026 2027 2028	model	lataset metric GROUNDT EDGEIND (std)	△ 1.000 0.005 0.000	<i>Spam</i> GCC 0.145 0.003 0.000	ALCC 0.286 0.003 0.000	△ 1.000 0.037 0.001	Cepg GCC 0.321 0.033 0.000	ALCC 0.447 0.033 0.000	△ 1.000 0.027 0.000	Scht GCC 0.377 0.029 0.000	ALCC 0.350 0.029 0.000
2024 2025 2026 2027 2028 2029	model	lataset metric GROUNDT EDGEIND (std) LOCLBDG	△ 1.000 0.005 0.000 0.993	Spam GCC 0.145 0.003 0.000 0.336	ALCC 0.286 0.003 0.000 0.234	△ 1.000 0.037 0.001 1.016	Cepg GCC 0.321 0.033 0.000 0.397	ALCC 0.447 0.033 0.000 0.258	△ 1.000 0.027 0.000 1.012	Scht GCC 0.377 0.029 0.000 0.420	ALCC 0.350 0.029 0.000 0.251
2024 2025 2026 2027 2028 2029 2030	model	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std)	△ 1.000 0.005 0.000 0.993 0.158	Spam GCC 0.145 0.003 0.000 0.336 0.022	ALCC 0.286 0.003 0.000 0.234 0.013	△ 1.000 0.037 0.001 1.016 0.557	Cepg GCC 0.321 0.033 0.000 0.397 0.083	ALCC 0.447 0.033 0.000 0.258 0.057	△ 1.000 0.027 0.000 1.012 0.687	Scht GCC 0.377 0.029 0.000 0.420 0.094	ALCC 0.350 0.029 0.000 0.251 0.063
2024 2025 2026 2027 2028 2029 2030 2031	model	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG	△ 1.000 0.005 0.000 0.993 0.158 0.993	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401	ALCC 0.286 0.003 0.000 0.234 0.013 0.663	△ 1.000 0.037 0.001 1.016 0.557 0.968	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508	ALCC 0.447 0.033 0.000 0.258 0.057 0.750	△ 1.000 0.027 0.000 1.012 0.687 0.991	Scht GCC 0.377 0.029 0.000 0.420 0.094 0.559	ALCC 0.350 0.029 0.000 0.251 0.063 0.794
2024 2025 2026 2027 2028 2029 2030 2031 2032	model	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198	Scht GCC 0.377 0.029 0.000 0.420 0.094 0.559 0.043	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033	model ER	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.072 0.021	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.683	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.399 0.2301	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.644	Scht GCC 0.377 0.029 0.000 0.420 0.094 0.559 0.043 0.245	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2033 2034	model ER	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.072 0.001	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.008 0.008	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006	Scht GCC 0.377 0.029 0.000 0.420 0.094 0.559 0.043 0.245 0.001	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035	ER	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) EDGEIND (std) LOCLBDG (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.072 0.001 0.124 0.16	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.008 0.996 0.241	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.230 0.201 0.293 0.18	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367	Scht GCC 0.377 0.029 0.000 0.420 0.559 0.043 0.245 0.001 0.318 0.028	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036	ER	dataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) LOCLBDG (std) PARABDC	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007	Spam GCC 0.145 0.003 0.336 0.022 0.401 0.010 0.072 0.001 0.124 0.016 0.131	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.260 0.019 0.436	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.008 0.996 0.241 0.000	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.399 0.230 0.001 0.293 0.018 0.310	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135	Scht GCC 0.377 0.029 0.000 0.420 0.94 0.559 0.043 0.245 0.001 0.318 0.028 0.204	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037	ER	dataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) PARABDG (std) PARABDG (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.074	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.012 0.001 0.124 0.016 0.131 0.006	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.008 0.996 0.241 0.999 0.107	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.010	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135 1.290	Scht GCC 0.377 0.029 0.000 0.420 0.94 0.559 0.043 0.245 0.001 0.318 0.294 0.294 0.294 0.79	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038	ER	dataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) PARABDG (std) PARABDG (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.074 0.528	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.072 0.001 0.124 0.016 0.131 0.006 0.094	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.035	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.088 0.996 0.241 0.999 0.107 0.662	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.010	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135 1.290 0.644	Scht GCC 0.377 0.029 0.000 0.420 0.594 0.559 0.043 0.245 0.001 0.318 0.028 0.294 0.079 0.272	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033 0.128
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038	ER	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) EDGEIND (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.74 0.528 0.013	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.072 0.001 0.124 0.016 0.131 0.006 0.094 0.002	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.036 0.001	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.098 0.241 0.999 0.107 0.662 0.008	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258 0.002	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.010 0.200 0.002	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006	Scht GCC 0.377 0.029 0.000 0.420 0.594 0.559 0.043 0.245 0.001 0.318 0.294 0.799 0.272 0.001	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033 0.128 0.001
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039	ER	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.074 0.528 0.013 0.985	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.072 0.001 0.124 0.016 0.131 0.006 0.094 0.002 0.152	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.036 0.001 0.036	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.098 0.241 0.999 0.107 0.662 0.008 0.986	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258 0.002 0.323	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.010 0.200 0.002 0.415	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.036 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.036 0.367 0.364 0.367 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.367 0.364 0.365 0.364 0.364 0.364 0.364 0.364	Scht GCC 0.377 0.029 0.000 0.420 0.559 0.043 0.245 0.001 0.318 0.028 0.294 0.772 0.001 0.354	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033 0.128 0.001 0.386
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040	ER CL SB	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) EDGEIND (std) PARABDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.074 0.528 0.013 0.985 0.171	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.072 0.001 0.124 0.016 0.131 0.006 0.094 0.002 0.152 0.018	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.436 0.011 0.436 0.011	$\begin{tabular}{ c c c c c } \hline & $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258 0.002 0.323 0.037	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.010 0.200 0.002 0.415 0.046	$\begin{tabular}{ c c c c c } \hline $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	Scht GCC 0.377 0.029 0.000 0.420 0.559 0.043 0.245 0.001 0.318 0.294 0.079 0.272 0.001 0.354 0.034	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033 0.128 0.001 0.386 0.042
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041	ER CL SB	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.074 0.528 0.013 0.985 0.171 0.994	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.072 0.001 0.124 0.016 0.131 0.006 0.094 0.0152 0.018 0.158	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.436 0.011 0.223 0.017 0.356	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.008 0.996 0.241 0.999 0.107 0.662 0.008 0.986 0.450 1.047	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258 0.002 0.323 0.037 0.333	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.010 0.200 0.002 0.415 0.046 0.363	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.034 0.006 1.034 0.368 0.975	Scht GCC 0.377 0.029 0.000 0.420 0.094 0.559 0.043 0.245 0.001 0.318 0.294 0.079 0.272 0.001 0.354 0.340	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033 0.128 0.001 0.386 0.042 0.437
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042	ER CL SB	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.074 0.528 0.013 0.985 0.171 0.994 0.110	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.72 0.001 0.124 0.016 0.131 0.006 0.094 0.0152 0.018 0.158 0.013	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.436 0.011 0.223 0.017 0.356 0.017	$\begin{tabular}{ c c c c c } \hline $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258 0.002 0.323 0.037 0.333 0.085	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.010 0.200 0.002 0.415 0.046 0.363 0.056	$\begin{tabular}{ c c c c c } \hline & $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $	Scht GCC 0.377 0.029 0.000 0.420 0.094 0.559 0.043 0.245 0.001 0.318 0.294 0.079 0.272 0.001 0.354 0.340 0.340	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033 0.128 0.001 0.386 0.042 0.437 0.030
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043	ER CL SB	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) LOCLBDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.74 0.528 0.013 0.985 0.171 0.994 0.110 0.061	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.72 0.001 0.124 0.016 0.131 0.006 0.152 0.018 0.158 0.013 0.014	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.223 0.011 0.223 0.017 0.356 0.017 0.025	$\begin{tabular}{ c c c c c } \hline $$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$ $	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258 0.002 0.323 0.037 0.333 0.085 0.069	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.010 0.200 0.002 0.415 0.046 0.363 0.056 0.120	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.034 0.006 1.034 0.368 0.975 0.298 0.032	Scht GCC 0.377 0.029 0.000 0.420 0.094 0.559 0.043 0.245 0.001 0.318 0.028 0.294 0.079 0.272 0.001 0.354 0.340 0.045 0.033	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033 0.128 0.001 0.386 0.042 0.437 0.030 0.052
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044	ER CL SB	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) LOCLBDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.74 0.528 0.013 0.985 0.171 0.994 0.110 0.061 0.002	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.72 0.001 0.124 0.016 0.131 0.006 0.152 0.018 0.158 0.013 0.014	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.223 0.017 0.223 0.017 0.356 0.017	$\begin{tabular}{ c c c c } \hline $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258 0.002 0.323 0.037 0.333 0.085 0.069 0.001	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.004 0.430 0.033 0.578 0.010 0.200 0.002 0.415 0.046 0.363 0.056 0.120 0.002	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.034 0.068 0.975 0.298 0.032 0.001	Scht GCC 0.377 0.029 0.000 0.420 0.094 0.559 0.043 0.245 0.001 0.318 0.028 0.294 0.079 0.272 0.001 0.354 0.340 0.045 0.033	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033 0.128 0.001 0.386 0.042 0.437 0.030 0.052 0.001
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045	ER CL SB	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.74 0.528 0.013 0.985 0.171 0.994 0.110 0.061 0.002 0.943 0.957 0.957 0.000 0.993 0.047 0.0496 0.010 0.0496 0.010 0.057 0.000 0.993 0.047 0.496 0.010 0.0496 0.010 0.0496 0.010 0.057 0.0496 0.010 0.057 0.0496 0.010 0.057 0.0496 0.010 0.057 0.0496 0.010 0.057 0.0496 0.010 0.057 0.000 0.0496 0.010 0.0528 0.077 0.994 0.110 0.994 0.005 0.007 0.007 0.0528 0.0171 0.995 0.0171 0.995 0.0171 0.995 0.0171 0.995 0.0171 0.995 0.0171 0.995 0.0171 0.995 0.0171 0.995 0.007 0.995 0.007 0.995 0.007 0.995 0.007 0.995 0.007 0.995 0.007 0.995 0.007 0.995 0.007 0.995 0.007 0.995 0.007 0.995 0.007 0.005 0.007 0.995 0.007 0.995 0.007 0.005 0.007 0.995 0.007 0.005 0.007 0.994 0.006 0.002 0.005	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.72 0.001 0.124 0.016 0.131 0.006 0.152 0.018 0.158 0.013 0.014 0.002	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.223 0.017 0.356 0.017 0.356 0.017 0.025 0.001 0.187	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.008 0.996 0.241 0.999 0.107 0.662 0.008 0.986 0.450 1.047 0.541 0.132 0.002 0.9990 0.9990	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258 0.002 0.323 0.037 0.333 0.085 0.069 0.001 0.175 0.255	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.004 0.430 0.033 0.578 0.010 0.200 0.002 0.415 0.046 0.363 0.056 0.120 0.002 0.312 0.312	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.034 0.975 0.298 0.032 0.001 1.444	Scht GCC 0.377 0.029 0.000 0.420 0.094 0.559 0.043 0.245 0.001 0.318 0.028 0.294 0.079 0.272 0.001 0.354 0.340 0.045 0.033 0.000	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033 0.128 0.001 0.386 0.042 0.437 0.030 0.052 0.001 0.2777
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046	CL SB	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) LOCLBDG (std) EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std)	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.748 0.214 1.007 0.758 0.171 0.994 0.110 0.061 0.002 0.943 0.759 0.558	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.72 0.001 0.124 0.016 0.131 0.006 0.152 0.018 0.158 0.014 0.001	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.223 0.017 0.356 0.017 0.356 0.017 0.25 0.001 0.187 0.028	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.996 0.241 0.999 0.107 0.662 0.008 0.986 0.450 1.047 0.541 0.132 0.002 0.990 2.112	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258 0.002 0.323 0.037 0.333 0.085 0.069 0.001 0.175 0.985	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.010 0.200 0.002 0.415 0.046 0.363 0.056 0.120 0.002 0.312 0.077	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.034 0.368 0.975 0.298 0.032 0.001 1.444 3.610	Scht GCC 0.377 0.029 0.000 0.420 0.094 0.559 0.043 0.245 0.001 0.318 0.028 0.294 0.079 0.272 0.001 0.354 0.340 0.045 0.033 0.000	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.386 0.042 0.437 0.030 0.052 0.001 0.277 0.779 0.779
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2044 2045	CL SB	lataset metric GROUNDT EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) EDGEIND (std) LOCLBDG (std) PARABDG (std) EDGEIND	△ 1.000 0.005 0.000 0.993 0.158 0.993 0.047 0.496 0.010 1.028 0.214 1.007 0.748 0.214 1.007 0.758 0.171 0.994 0.110 0.061 0.002 0.943 0.759 1.049 0.310	Spam GCC 0.145 0.003 0.000 0.336 0.022 0.401 0.010 0.072 0.001 0.124 0.016 0.131 0.006 0.152 0.018 0.158 0.158 0.158 0.158 0.158 0.155 0.118 0.055 0.161 0.032	ALCC 0.286 0.003 0.000 0.234 0.013 0.663 0.011 0.060 0.002 0.260 0.019 0.436 0.011 0.223 0.017 0.356 0.017 0.25 0.001 0.187 0.028 0.378 0.017	△ 1.000 0.037 0.001 1.016 0.557 0.968 0.183 0.683 0.098 0.241 0.999 0.107 0.662 0.008 0.986 0.450 1.047 0.541 0.132 0.002 0.990 2.112 1.001 0.757	Cepg GCC 0.321 0.033 0.000 0.397 0.083 0.508 0.039 0.230 0.001 0.293 0.018 0.310 0.004 0.258 0.002 0.323 0.037 0.333 0.085 0.069 0.001 0.175 0.098 0.279 0.087	ALCC 0.447 0.033 0.000 0.258 0.057 0.750 0.038 0.223 0.004 0.430 0.033 0.578 0.010 0.200 0.002 0.415 0.046 0.363 0.056 0.120 0.002 0.312 0.077 0.312 0.077	△ 1.000 0.027 0.000 1.012 0.687 0.991 0.198 0.644 0.006 1.036 0.367 1.135 1.290 0.644 0.006 1.036 0.644 0.064 0.367 1.135 0.290 0.032 0.001 1.444 3.610 1.069 1.45	Scht GCC 0.377 0.029 0.000 0.420 0.94 0.559 0.043 0.245 0.001 0.318 0.294 0.079 0.272 0.001 0.354 0.340 0.043 0.181 0.132 0.346 0.132	ALCC 0.350 0.029 0.000 0.251 0.063 0.794 0.035 0.234 0.003 0.469 0.042 0.610 0.033 0.128 0.001 0.386 0.042 0.437 0.030 0.052 0.001 0.277 0.079 0.581 0.035

1998Table 7: The clustering metrics of graphs generated by different realization methods, with the standard devia-1999tions. The number of triangles (Δ) is normalized.

2050 2051

after obtaining partitions using the Louvain algorithm (Blondel et al., 2008). Conductance is computed after obtaining bi-partitions using the Kernighan-Lin bisection algorithm (Kernighan & Lin,

Ċ	lataset		Hams			Fcbk			Polb	
1	metric	\triangle	GCC	ALCC	Δ	GCC	ALCC	Δ	GCC	ALCC
model	GROUNDT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ER	EDGEIND LoclBdg ParaBdg	0.974 0.078 0.007	0.049 0.009 0.024	0.283 0.093 0.010	0.983 0.199 0.024	0.258 0.011 0.004	0.354 0.148 0.044	0.934 0.104 0.019	0.042 0.013 0.035	0.089 0.007 0.115
CL	EdgeInd LoclBdg ParaBdg	0.492 0.125 0.021	0.026 0.005 0.002	0.233 0.082 0.005	0.767 1.068 0.068	0.207 0.079 0.035	0.295 0.093 0.001	0.044 0.017 0.005	0.002 0.000 0.000	0.022 0.001 0.022
SB	EdgeInd LoclBdg ParaBdg	0.544 0.177 0.014	0.022 0.002 0.000	0.252 0.091 0.001	0.718 0.539 0.255	0.140 0.015 0.004	0.276 0.081 0.004	0.273 0.149 3.303	0.007 0.001 0.008	0.025 0.002 0.008
KR	EdgeInd LoclBdg ParaBdg	0.664 0.346 0.044	0.036 0.008 0.005	0.230 0.097 0.022	0.898 1.194 0.157	0.234 0.092 0.033	0.317 0.115 0.000	0.809 4.989 0.364	0.034 0.018 0.006	0.060 0.010 0.011
Ċ	lataset		Spam			Cepg			Scht	
1	netric	\triangle	GCC	ALCC	\triangle	GCC	ALCC	\triangle	GCC	ALCC
model	GROUNDT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ER	EDGEIND LoclBdg ParaBdg	0.990 0.025 0.002	0.020 0.037 0.066	0.080 0.003 0.143	0.927 0.310 0.035	0.083 0.013 0.037	0.171 0.039 0.093	0.947 0.473 0.039	0.121 0.011 0.035	0.103 0.014 0.198
CL	EdgeInd LoclBdg ParaBdg	0.254 0.046 0.006	0.005 0.001 0.000	0.051 0.001 0.023	0.100 0.058 0.012	0.008 0.001 0.000	0.050 0.001 0.017	0.126 0.136 1.682	0.017 0.004 0.013	0.014 0.016 0.069
SB	EdgeInd LoclBdg ParaBdg	0.223 0.030 0.012	0.003 0.000 0.000	0.062 0.004 0.005	0.114 0.202 0.295	0.004 0.001 0.007	0.061 0.003 0.010	0.127 0.136 0.089	0.011 0.002 0.003	0.049 0.003 0.008
KR	EDGEIND LOCLBDG	0.882	0.017 0.004	0.068 0.011	0.754 4.462	0.064 0.031	0.107 0.024	0.936 13.233	0.118 0.056	0.089 0.012

2052 Table 8: The mean squared errors w.r.t. clustering metrics of graphs generated by different realization methods. **2053** The number of triangles (\triangle) is normalized.

1970). In most cases, the metrics in the graphs generated with binding are closer to the ground truth, indicating that binding improves the generation quality in various aspects.

2091 E.4 GRAPH GENERATION SPEED

2087 2088

2089

2090

2097

2098

In Table 10, for each dataset and each model, we report the running time of graph generation (averaged on 100 random trials) using EDGEIND, LOCLBDG, PARABDG, and serialized PARABDG
without parallelization (PARABDG-S). The algorithmic details of EDGEIND for each model are as follows:

- We try to find an optimized and fast algorithm for each model in C++
- For ER, we use the Boost Graph Library (Siek et al., 2001)
- For CL, we use NetworKit (Staudt et al., 2016)
- For SB, we use online code in a GitHub repo¹⁵
- For KR, we use krongen in SNAP (Leskovec & Sosič, 2016)

2102 Consistent with our observation in Section 6.4, EDGEIND is fastest with the simplest algorithmic nature, and between the two binding schemes, PARABDG is noticeably faster than LOCLBDG, and is even faster with parallelization.
 2105

¹⁵https://github.com/ntamas/blockmodel

Figure 4: The degree (top) and distance (bottom) distributions of graphs generated by different realization methods. All the plots are in a log-log scale. Each shaded area represents one standard deviation.

Ċ	lataset		Har	ns	s			Fcbk			Polb			
I	netric	α	r	APL	$d_{\rm eff}$	α	r	APL	$d_{\rm eff}$	α	r	APL		
model	GROUNDT	-1.432	-0.934	3.589	5.000	-1.180	-0.900	3.693	5.000	-1.069	-0.921	2.738	4.0	
	EdgeInd	-0.058	-0.008	3.004	4.000	-0.046	-0.005	2.606	3.000	0.009	0.007	2.507	3.0	
ER	LOCLBDG	-1.301	-0.850	3.254	4.060	-1.076	-0.869	2.892	3.950	-0.978	-0.828	2.703	3.	
	FARABDG	-0.938	-0.555	2.996	4.000	-2.338	-0.797	2.202	3.000	-1.130	-0.003	2.410	3.0	
CI	LOCLBDG	-1.414	-0.927	2.938	4.000	-1.185	-0.898	2.608	3.000	-1.055	-0.920 -0.906	2.585	3.	
CL	PARABDG	-1.282	-0.924	2.713	3.000	-0.980	-0.877	2.331	3.000	-0.968	-0.900	2.373	3.	
	EdgeInd	-1.211	-0.853	3.309	4.000	-0.600	-0.399	3.507	5.000	-0.967	-0.766	2.717	4.	
SB	LOCLBDG	-1.263	-0.905	3.193	4.420	-1.028	-0.823	4.276	6.480	-0.959	-0.884	2.525	3	
	FARADDG	-1.209	-0.872	2.000	2.000	-0.409	-0.294	2.429	2.000	-0.934	-0.624	2.393	2	
KB	LOCLBDG	-1.359	-0.909	2.856	3.320	-1.185	-0.806	2.500	3.000	-1.332	-0.912	2.848	3	
IXIX	PARABDG	-1.301	-0.934	2.742	3.010	-1.104	-0.915	2.499	3.000	-1.164	-0.928	2.661	3	
		_				1				1				
ć	lataset		Sno	m			Cer	n <i>a</i>			Sel	ht		
1	netric			ΔΡΙ	d a	0		Δ. Δ. ΡΙ	d a					
model	GROUNDT	-1 495	-0.947	3 794	5 000	-0.917	-0.907	2 711	4 000	-0.950	-0.860	2 772		
model	EDGEIND	-0.054	-0.008	3 384	4 000	-0.067	-0.009	2.711	3.000	-0.078	-0.000	2.172		
ER	LOCLBDG	-1.551	-0.856	3.601	4.840	-0.843	-0.821	2.482	3.210	-0.848	-0.825	2.532	3	
	PARABDG	-1.069	-0.541	3.312	4.000	-1.858	-0.765	2.033	2.490	-2.274	-0.800	1.981	2	
	EdgeInd	-1.477	-0.943	3.119	4.000	-0.918	-0.897	2.415	3.000	-0.964	-0.905	2.430	3	
CL	LOCLBDG PARABDG	-1.364	-0.944	2.850	3.440	-0.789	-0.866	2.195	3.000	-0.802	-0.875	2.215	3	
	EDGEIND	-1.309	-0.940	3 720	5.000	-0.715	-0.644	2.650	4.000	-0.790	-0.325	2.201		
SB	LOCLBDG	-1.441	-0.938	3.274	4.550	-0.718	-0.803	2.318	3.030	-0.713	-0.814	2.289	3	
55	PARABDG	-1.445	-0.931	3.021	4.000	-0.713	-0.661	2.397	3.000	-0.756	-0.793	2.307	3	
	EdgeInd	-1.602	-0.929	3.466	4.000	-0.976	-0.807	2.303	3.000	-1.338	-0.882	2.747	3	
KR	LOCLBDG PARABDG	-1.457	-0.951	3.177	4.000	-1.010	-0.909	2.343	3.000	-1.100	-0.912	2.649	3	
	Table 1	0: The tir	me (in s	econds)) for gr	aph gene	eration w	ith dif	erent i	ealizatio	n metho	ods.		
		dataset		Har	ns	Fcbk	Polb	Sp	am	Cepg	Sch	t		
		EDGE	ND	/ _0/	~ ~									
		LDOL.	IND	< 0.0	05 <	< 0.05	< 0.05	< 0.	.05	< 0.05	< 0.04	5		
		LOCL	BDG	< 0.0	05 < 5.2	<0.05 7.9	<0.05 2.2	<0	.05 7.7	<0.05 3.7	<0.05	5 Э		
	ER	LOCLI PARAI	BDG BDG	< 0.0 3 < 0.0	05 < 5.2 05 <	<0.05 7.9 <0.05	<0.05 2.2 <0.05	<0	.05 7.7 0.1	<0.05 3.7 <0.05	<0.04 4.9 <0.04	5 9 5		
	ER	LOCLI PARAI PARAI	BDG BDG BDG-S	<0.0 3 <0.0	05 < 5.2 05 < 0.2	<0.05 7.9 <0.05 0.1	<0.05 2.2 <0.05 <0.05	<0	.05 7.7 0.1 0.8	<0.05 3.7 <0.05 <0.05	<0.05 4.9 <0.05 <0.05	5 9 5 5		
	ER	LOCLI PARAI PARAI EDGEI	BDG BDG BDG-S	<0.0 3 <0.0 0 <00	05 < 6.2 05 < 0.2	<0.05 7.9 <0.05 0.1	<0.05 2.2 <0.05 <0.05 <0.05	<0.	.05 7.7 0.1 0.8	<0.05 3.7 <0.05 <0.05 <0.05	<0.04 <0.04 <0.04 <0.04 <0.04	5 9 5 5 5		
	ER	LOCLI PARAI PARAI EDGEI LOCLI	BDG BDG BDG-S IND BDG	<0.0 3 <0.0 0 <0.0 4	$0.5 < 0.2 \\ 0.5 < 0.2 \\ 0.2 \\ 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 $	<0.05 7.9 <0.05 0.1 <0.05 48.2	<0.05 2.2 <0.05 <0.05 <0.05 2.4	<0.	.05 7.7 0.1 0.8 .05 9.3		<0.05 4.9 <0.05 <0.05 <0.05	5 9 5 5 5 5 5		
	ER	EDGE LOCLI PARAI PARAI EDGE LOCLI PARAI	BDG BDG BDG-S IND BDG BDG	<0.0 3 <0.0 0 <0.0 4 4 0	05 < 0.2 0.2 0.2 05 < 0.0 0.3	<0.05 7.9 <0.05 0.1 <0.05 48.2 1.1	<0.05 2.2 <0.05 <0.05 <0.05 2.4 0.2	<0.	.05 7.7 0.1 0.8 .05 9.3 0.7		<0.05 4.9 <0.05 <0.05 <0.05 11.5	5 9 5 5 5 5 5 5 5 5		
	ER	LOCLI PARAI PARAI EDGEI LOCLI PARAI PARAI	BDG BDG-S BDG-S IND BDG BDG BDG-S	<0.0 3 <0.0 0 <0.0 4 0 3	05 < 05 < 0.2 0.2 0.5 < 0.3 0.3 0.0	<0.05 7.9 <0.05 0.1 <0.05 48.2 1.1 9.4	$\begin{array}{c} < 0.05 \\ 2.2 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 2.4 \\ 0.2 \\ 1.8 \end{array}$	<0.	.05 7.7 0.1 0.8 .05 9.3 0.7 6.8	$\begin{array}{r} < 0.05 \\ 3.7 \\ < 0.05 \\ < 0.05 \\ \hline < 0.05 \\ \hline < 0.05 \\ \hline 6.3 \\ 0.3 \\ 2.6 \\ \end{array}$	<0.05 4.9 <0.05 <0.05 <0.05 11.5 1.5 13.9	5 9 5 5 5 5 5 5 5 5		
	ER CL	LOCLI PARAI PARAI EDGEI LOCLI PARAI PARAI	BDG BDG-S BDG-S IND BDG BDG BDG-S	< 0.0 3 < 0.0 0 < 0.0 < 0.0 4 0 0 3 = 0 0	0.05 < 0.05 < 0.05 < 0.05 < 0.02 < 0.05 < 0.02 < 0.05 < 0.03 < 0.03 < 0.00 < 0.03 < 0.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 <	<0.05 7.9 <0.05 0.1 <0.05 48.2 1.1 9.4	<0.05 2.2 <0.05 <0.05 <0.05 2.4 0.2 1.8	<0	05 7.7 0.1 0.8 05 9.3 0.7 6.8	$ \begin{array}{r} < 0.05 \\ 3.7 \\ < 0.05 \\ < 0.05 \\ \hline < 0.05 \\ \hline 6.3 \\ 0.3 \\ 2.6 \\ \hline 0.1 \\ \end{array} $	<0.03 4.9 <0.03 <0.03 <0.03 11.5 1.5 13.9	5 9 5 5 5 5 5 5 5 9		
	ER CL	LOCLI PARAI PARAI EDGEI LOCLI PARAI PARAI EDGEI	BDG BDG-S BDG-S IND BDG BDG BDG-S IND	<0.0 3 <0.0 0 <0.0 4 0 3 0 0	05 < 05 < 05 < 0.2 05 < 0.0 0.3 0.1 0.1	<0.05 7.9 <0.05 0.1 <0.05 48.2 1.1 9.4 0.1	<0.05 2.2 <0.05 <0.05 2.4 0.2 1.8 0.1	<0.	05 7.7 0.1 0.8 05 9.3 0.7 6.8 0.1		<0.03 4.9 <0.05 <0.05 11.5 1.5 13.9 0.1	5 9 5 5 5 5 5 5 5 9		
	ER CL SB	LOCLI PARAI PARAI EDGEI LOCLI PARAI EDGEI LOCLI DARAI	BDG BDG BDG-S IND BDG BDG-S IND BDG BDG	<0.0 3 <0.0 0 <0.0 4 00 3 3 0 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0		<0.05 7.9 <0.05 0.1 <0.05 48.2 1.1 9.4 0.1 177.6			05 7.7 0.1 0.8 05 9.3 0.7 6.8 0.1 8.9	<0.05 3.7 <0.05 <0.05 <0.05 <0.05 <0.05 6.3 0.3 2.6 0.1 10.3 1.0	<0.03 <0.03 <0.03 <0.03 11.5 13.9 0.1 10.0	5 9 5 5 5 5 5 5 5 9 1 5 7		
	ER CL SB	LOCLI PARAI PARAI EDGEI LOCLI PARAI EDGEI LOCLI PARAI	BDG BDG BDG-S IND BDG BDG BDG-S IND BDG BDG BDG	$ \begin{array}{c} < 0.0 \\ 3 \\ < 0.0 \\ 0 \\ \hline 0 \\ 4 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0.5 < 0.2 0.5 < 0.2 0.5 < 0.2 0.5 < 0.2 0.5 < 0.2 0.3 = 0.3 0.1 = 0.3 0.3 = 0.3 0.1 = 0.3 0.3	<0.05 7.9 <0.05 0.1 <0.05 48.2 1.1 9.4 0.1 177.6 6.2 23.7	$\begin{array}{c} < 0.05 \\ 2.2 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 2.4 \\ 0.2 \\ 1.8 \\ 0.1 \\ 4.0 \\ 0.9 \\ 0.9 \\ \end{array}$		05 7.7 0.1 0.8 05 9.3 0.7 6.8 0.1 8.9 0.7 7.2	<0.05 3.7 <0.05 <0.05 <0.05 6.3 0.3 2.6 0.1 10.3 1.0 0 8	<0.03 <0.03 <0.03 <0.05 <0.05 <0.05 <0.05 11.5 13.9 0.1 10.6 0.7 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	5 9 5 5 5 5 5 5 5 5 5 5 5 7 1 5 7		
	ER CL SB	LOCLI PARAI PARAI EDGEI LOCLI PARAI EDGEI LOCLI PARAI PARAI	IND BDG BDG-S IND BDG BDG BDG-S IND BDG BDG BDG-S	$ \begin{array}{c} < 0.0 \\ 3 \\ < 0.0 \\ 0 \\ \hline 0 \\ 4 \\ 0 \\ 3 \\ \hline 0 \\ 4 \\ 0 \\ 3 \\ \hline 0 \\ 4 \\ 0 \\ 3 \\ \hline 0 \\ 0 \\ 4 \\ 0 \\ 3 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0.5 & < \\ 3.2 \\ 0.5 & < \\ 0.2 \\ 0.5 & < \\ 0.0 \\ 0.3 \\ 0.1 \\ 0.3 \\$	<0.05 7.9 <0.05 0.1 <0.05 48.2 1.1 9.4 0.1 177.6 6.2 33.7	$\begin{array}{c} <0.05\\ 2.2\\ <0.05\\ <0.05\\ <0.05\\ 2.4\\ 0.2\\ 1.8\\ 0.1\\ 4.0\\ 0.9\\ 8.6\end{array}$		05 7.7 0.1 0.8 05 9.3 0.7 6.8 0.1 8.9 0.7 7.2	<0.05 3.7 <0.05 <0.05 <0.05 6.3 0.3 2.6 0.1 10.3 1.0 9.8	<0.02 <0.02 <0.02 <0.02 <0.02 11.2 1.3 1.3 1.3 0.1 10.6 0.7 6.6	5 9 5 5 5 5 5 5 5 5 5 5 5 7 1 5 7 5		
	ER CL SB	LOCLI PARAI PARAI EDGEI LOCLI PARAI EDGEI LOCLI PARAI PARAI EDGEI	IND BDG BDG BDG-S IND BDG BDG-S IND BDG BDG BDG BDG-S IND	$ \begin{array}{c} < 0.0 \\ 3 \\ < 0.0 \\ 0 \\ \hline 0 \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \hline 0 \\ \hline 0 \\ \hline \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \hline \hline 0 \\ \hline \hline 0 \\ \hline \hline \hline 0 \\ \hline \hline \hline \hline 0 \\ \hline \hline \hline \hline 0 \\ \hline \hline$	$\begin{array}{c} 0.5 & < \\ 3.2 \\ 0.5 & < \\ 0.2 \\ \hline 0.5 & < \\ 0.0 \\ 0.3 \\ 0.1 \\ \hline 0.1 \\ \hline 0.1 \\ \hline \end{array}$	< 0.05 7.9 < 0.05 0.1 < 0.05 48.2 1.1 9.4 0.1 177.6 6.2 33.7 0.1	$\begin{array}{c} < 0.05 \\ 2.2 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 2.4 \\ 0.2 \\ 1.8 \\ 0.1 \\ 4.0 \\ 0.9 \\ 8.6 \\ < 0.05 \end{array}$		05 7.7 0.1 0.8 05 9.3 0.7 6.8 0.1 8.9 0.7 7.2 0.1	<0.05 3.7 <0.05 <0.05 <0.05 6.3 0.3 2.6 0.1 10.3 1.0 9.8 <0.05	<0.02 <0.02 <0.02 <0.02 <0.02 11.2 13.9 13.9 0.1 10.6 0.7 6.6	5 9 5 5 5 5 5 5 5 5 5 9 1 5 7 5 1		
	ER CL SB	LOCLI PARAI PARAI EDGEI LOCLI PARAI EDGEI LOCLI PARAI EDGEI LOCLI	IND BDG BDG-S IND BDG BDG BDG-S IND BDG BDG-S IND BDG	$ \begin{array}{c} < 0.0 \\ 3 \\ < 0.0 \\ 0 \\ \hline 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0.5 & < \\ 5.2 \\ 0.5 & < \\ 0.2 \\ \hline 0.5 & < \\ 0.3 \\ 5.0 \\ \hline 0.1 \\ 5.1 \\ \hline 0.1 \\ 5.7 \\ \hline 0.1 \\ 5.7 \\ \hline \end{array}$	$< 0.05 \\ 7.9 \\ < 0.05 \\ 0.1 \\ < 0.05 \\ 48.2 \\ 1.1 \\ 9.4 \\ 0.1 \\ 177.6 \\ 6.2 \\ 33.7 \\ 0.1 \\ 49.0 \\ \end{cases}$	$\begin{array}{c} < 0.05 \\ 2.2 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 2.4 \\ 0.2 \\ 1.8 \\ 0.1 \\ 4.0 \\ 0.9 \\ 8.6 \\ < 0.05 \\ 16.6 \end{array}$	<0,	05 7.7 0.1 0.8 05 9.3 0.7 6.8 0.1 8.9 0.7 7.2 0.1 8.5	<0.05 3.7 <0.05 <0.05 <0.05 6.3 0.3 2.6 0.1 10.3 1.0 9.8 <0.05 81.0	<0.02 <0.02 <0.02 <0.02 <0.02 11.5 13.5 0.1 10.6 0.7 200.1	5 9 5 5 5 5 5 5 5 5 5 5 5 7 5 7 5 7 5 1 1 5 7 5 1		
	ER CL SB KR	LOCLI PARAI PARAI EDGEI LOCLI PARAI EDGEI LOCLI PARAI EDGEI LOCLI PARAI	IND BDG BDG-S IND BDG BDG BDG-S IND BDG BDG BDG BDG BDG BDG BDG	$\begin{array}{c} <0.0 \\ 3 \\ <0.0 \\ 0 \\ <0.0 \\ 4 \\ 0 \\ 3 \\ 0 \\ 0 \\ 4 \\ 0 \\ 3 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0.5 < 0.5 < 0.5 0.5 < 0.2 0.5 < 0.2 0.3 = 0.3 0.1 = 0.3 0.1 = 0.3 0.1 = 0.3 0.1 = 0.3 0.1 = 0.3 0.1 = 0.3 0.3 = 0.3 0.1 = 0.3 0.3 = 0.3	$< 0.05 \\ 7.9 \\ < 0.05 \\ 0.1 \\ < 0.05 \\ 48.2 \\ 1.1 \\ 9.4 \\ 0.1 \\ 177.6 \\ 6.2 \\ 33.7 \\ 0.1 \\ 49.0 \\ 1.7 \\ \end{cases}$	$\begin{array}{c} < 0.05 \\ 2.2 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 2.4 \\ 0.2 \\ 1.8 \\ 0.1 \\ 4.0 \\ 0.9 \\ 8.6 \\ < 0.05 \\ 16.6 \\ 0.5 \\ \end{array}$	<0,	05 7.7 0.1 0.8 05 9.3 0.7 6.8 0.1 8.9 0.7 7.2 0.1 8.5 1.6	<0.05 3.7 <0.05 <0.05 <0.05 6.3 0.3 2.6 0.1 10.3 1.0 9.8 <0.05 81.0 0.9	<0.02 <0.02 <0.02 <0.02 <0.02 11.5 13.5 13.5 0.1 10.6 0.7 6.6	5 9 5 5 5 5 5 5 5 5 7 5 7 5 1 5 7 5 1 1 3		
	ER CL SB KR	LOCLI PARAI PARAI EDGEI LOCLI PARAI EDGEI LOCLI PARAI EDGEI LOCLI PARAI PARAI	IND BDG BDG BDG-S IND BDG BDG-S IND BDG BDG BDG BDG BDG BDG-S	$\begin{array}{c} <0.0 \\ 3 \\ <0.0 \\ 0 \\ <0.0 \\ 4 \\ 0 \\ 3 \\ 0 \\ 0 \\ 4 \\ 0 \\ 3 \\ 3 \\ 3 \\ \end{array}$	05 <	$< 0.05 \\ 7.9 \\ < 0.05 \\ 0.1 \\ < 0.05 \\ 48.2 \\ 1.1 \\ 9.4 \\ 0.1 \\ 177.6 \\ 6.2 \\ 33.7 \\ \hline 0.1 \\ 49.0 \\ 1.7 \\ 12.6 \\ \end{cases}$	$\begin{array}{c} < 0.05 \\ 2.2 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ 2.4 \\ 0.2 \\ 1.8 \\ 0.1 \\ 4.0 \\ 0.9 \\ 8.6 \\ < 0.05 \\ 16.6 \\ 0.5 \\ 5.2 \\ \end{array}$	<0, <0, , , , , , , , , , , , , , , , ,	05 7.7 0.1 0.8 05 9.3 0.7 5.8 0.7 5.8 0.1 8.9 0.7 7.2 0.1 8.5 1.6 4.2	$\begin{array}{c} < 0.05 \\ 3.7 \\ < 0.05 \\ < 0.05 \\ < 0.05 \\ \hline \\ < 0.05 \\ \hline \\ < 0.05 \\ \hline \\ 0.1 \\ 10.3 \\ 1.0 \\ 9.8 \\ \hline \\ < 0.05 \\ 81.0 \\ 0.9 \\ 10.5 \\ \end{array}$	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 11.5 13.5 10.6 0.7 6.6 0.7 200.7 6.8 31.5	5 9 5 5 5 5 5 5 5 5 5 5 5 7 5 7 5 1 1 5 7 5 1 1 3 3		

2160Table 9: The numerical results regarding degrees and distances of graphs generated by different realization2161methods.

2210 2211

2212

We upscale the hamsterster (*Hams*) dataset by duplicating the whole graphs multiple times.

• The original dataset contains |V| = 2000 nodes.

• With 32GB RAM, all the proposed methods can run with $|V| = 128000 (64 \times \text{ of the original graph})$.

Figure 5: The degree (top) and distance (bottom) distributions of graphs generated by different realization methods. Each shaded area represents one standard deviation.

Table 11: The modularity in the graphs generated by different realization methods.

	dataset		Fcbk	Polb	Spam	Cepg	Scht
model	model GROUNDT		0.777	0.427	0.462	0.434	0.253
ER	ER EDGEIND		0.120	0.155	0.205	0.104	0.099
	LOCLBDG		0.443	0.353	0.440	0.321	0.369
	PARABDG		0.517	0.323	0.394	0.392	0.430
CL	EdgeInd	0.193	0.107	0.127	0.180	0.082	0.078
	LoclBdg	0.325	0.343	0.184	0.303	0.184	0.205
	ParaBdg	0.301	0.332	0.152	0.271	0.118	0.262
SB	EdgeInd	0.317	0.756	0.423	0.370	0.407	0.208
	LoclBdg	0.386	0.751	0.422	0.396	0.417	0.235
	ParaBdg	0.375	0.741	0.482	0.432	0.466	0.263
KR	EdgeInd	0.190	0.114	0.193	0.254	0.107	0.142
	LoclBdg	0.322	0.357	0.335	0.424	0.248	0.313
	ParaBdg	0.314	0.367	0.420	0.411	0.304	0.385

2264 See Table 17 for the detailed results.

To handle even large graphs, we further provide an alternative implementation with parallel binding
 (PARABDG), where we

• Save the memory usage by considering the classes of node pairs with the same probability.

		-					
dataset		Hams	Fcbk	Polb	Spam	Cepg	Scht
model	model GROUNDT		0.012	0.079	0.147	0.075	0.556
ER	EdgeInd LoclBdg ParaBdg	0.330 0.235 0.226	0.394 0.181 0.188	0.369 0.271 0.253	0.327 0.201 0.212	0.407 0.311 0.241	0.411 0.251 0.226
CL	EdgeInd LoclBdg ParaBdg	$\begin{array}{c} 0.744 \\ 0.444 \\ 0.540 \end{array}$	0.830 0.265 0.453	0.869 0.816 0.826	0.831 0.492 0.687	0.901 0.813 0.847	0.911 0.809 0.326
SB	EdgeInd LoclBdg ParaBdg	0.261 0.222 0.228	0.067 0.017 0.021	0.081 0.080 0.086	0.207 0.186 0.245	0.090 0.083 0.067	0.615 0.597 0.472
KR	EdgeInd LoclBdg ParaBdg	0.814 0.411 0.432	0.776 0.406 0.282	0.863 0.420 0.211	0.828 0.265 0.288	0.883 0.474 0.359	0.853 0.216 0.208

Table 13: The max core number in the graphs generated by different realization methods.

Ċ	lataset	Hams	Fcbk	Polb	Spam	Cepg	Scht
model	model GROUNDT		115.0	36.0	35.0	80.0	100.0
	EdgeInd	11.0	32.7	19.5	10.9	42.9	46.9
ER	LOCLBDG	29.5	120.9	42.6	33.9	94.3	117.3
	PARABDG	18.7	70.4	28.1	20.9	61.7	79.8
	EdgeInd	16.9	43.7	33.5	25.6	66.7	79.4
CL	LOCLBDG	30.6	104.3	35.9	35.3	76.6	96.2
-	PARABDG	24.4	105.7	35.3	27.1	73.1	96.9
	EdgeInd	21.4	71.8	33.9	37.6	99.8	96.4
SB	LOCLBDG	31.4	88.7	34.8	40.4	85.1	98.4
	PARABDG	26.3	121.3	37.4	38.4	107.8	109.0
	EdgeInd	15.5	32.0	15.9	13.0	36.2	25.0
KR	LOCLBDG	31.6	98.4	33.7	37.9	68.8	84.9
	PARABDG		107.6	38.5	37.7	86.1	109.4

Table 14: The average vertex betweenness (normalized w.r.t. the ground-truth value) in the graphs generated by different realization methods.

dataset		Hams	Fcbk	Polb	Spam	Cepg	Scht
model	GROUNDT	1.000	1.000	1.000	1.000	1.000	1.000
ER EDGEIND		0.794	0.610	0.863	0.876	0.666	0.647
LOCLBDG		0.975	0.888	1.065	1.078	0.938	1.103
PARABDG		0.954	0.945	1.038	1.089	0.944	0.954
CL	EdgeInd	0.790	0.605	0.940	0.835	0.893	0.817
	LoclBdg	0.903	0.808	0.998	0.965	0.983	0.919
	ParaBdg	0.873	0.755	0.985	0.946	0.929	0.792
SB	EdgeInd	0.898	0.961	0.999	1.024	0.976	0.929
	LoclBdg	1.084	1.234	1.133	1.202	1.064	1.169
	ParaBdg	1.126	1.446	1.000	1.081	0.917	0.945
KR	EdgeInd	0.730	0.582	0.654	0.626	0.628	0.503
	LoclBdg	0.809	0.751	0.817	0.754	0.715	0.668
	ParaBdg	0.818	0.757	0.815	0.762	0.804	0.715

– For ER, it would be all the pairs.

- For CL, each class contains node pairs with the same node degrees.

2324	Ċ	lataset	Hams	Fcbk	Polb	Spam	Cepg	Scht
2325	model	GROUNDT	1.000	1.000	1.000	1,000	1 000	1.000
2326	moder	GROUNDI	1.000	1.000	1.000	1.000	1.000	1.000
2327		EdgeInd	0.863	0.719	0.995	0.911	0.962	0.902
2328	ER	LOCLBDG	1.062	1.159	1.122	1.090	1.186	1.050
2329		PARABDG	0.983	0.970	1.090	1.073	1.138	0.877
2330		EdgeInd	0.790	0.605	0.940	0.835	0.893	0.817
2331	CL	LOCLBDG	0.903	0.808	0.998	0.965	0.983	0.919
2332	01	PARABDG	0.873	0.755	0.985	0.946	0.929	0.792
2333		EdgeInd	0.927	0.972	1.009	1.023	0.985	0.958
2334	SB	LOCLBDG	1.055	2.142	1.358	1.297	1.274	1.480
2335		PARABDG	1.233	1.406	1.029	1.170	0.935	1.129
2336		EdgeInd	0.770	0.704	0.689	0.666	0.742	0.566
2337	KR	LOCLBDG	0.886	1.141	0.952	0.807	1.089	1.088
2338	int	PARABDG	0.897	1.151	0.913	0.850	1.191	1.095
2339		1	1					

2322Table 15: The average edge betweenness (normalized w.r.t. the ground-truth value) in the graphs generated by2323different realization methods.

Table 16: The natural connectivity (normalized w.r.t. the ground-truth value) in the graphs generated by different realization methods.

(lataset	Hams	Fcbk	Polb	Spam	Cepg	Scht
model	GROUNDT	1.000	1.000	1.000	1.000	1.000	1.000
ER	EdgeInd	0.863	0.719	0.995	0.911	0.962	0.902
	LoclBdg	1.062	1.159	1.122	1.090	1.186	1.050
	ParaBdg	0.983	0.970	1.090	1.073	1.138	0.877
CL	EdgeInd	0.878	0.633	1.050	0.884	0.960	0.895
	LoclBdg	1.090	1.074	1.093	0.971	1.042	1.017
	ParaBdg	0.993	0.900	1.095	0.930	1.032	1.003
SB	EdgeInd	0.771	0.523	0.787	0.912	0.872	0.890
	LoclBdg	1.119	0.716	0.892	0.951	0.933	0.936
	ParaBdg	0.869	0.864	1.070	0.926	1.000	0.924
KR	EdgeInd	0.789	0.475	0.518	0.427	0.561	0.316
	LoclBdg	1.160	0.923	0.971	1.000	1.288	0.966
	ParaBdg	0.947	0.807	1.024	0.684	0.889	0.837

Table 17: The results of the scalability experiments when upscaling the input graph (time: seconds).

model	V	2k	4k	8k	16k	32k	64k	128k
ER	LoclBdg	3.194	6.505	16.365	45.648	143.394	494.536	1859.232
	ParaBdg	0.034	0.058	0.113	0.232	0.601	1.705	5.381
CL	LoclBdg	3.962	9.595	35.364	123.902	472.281	2162.315	8402.245
	ParaBdg	0.302	0.495	1.027	2.114	4.404	11.184	31.129
SB	LoclBdg	3.989	9.493	29.557	99.167	362.930	1648.392	8398.062
	ParaBdg	0.266	0.489	0.994	2.132	5.335	14.861	45.983
KR	LoclBdg	8.611	31.241	124.453	506.921	2097.190	8680.988	33918.420
	ParaBdg	0.428	1.209	4.277	20.339	113.452	705.571	4351.573

- For SB, each class contains node pairs from the same blocks.

- For KR, each class contains node pairs with the same binary node labels up to permutation.

• Directly save the generated edges on the hard disk instead of in the RAM.

Table 18: The results of the scalability experiments when upscaling the input graph (time: seconds) using parallel binding (PARABDG) with additional optimization for large graphs.

-	-		-						
model	V	1m	2m	4m	8m	16m	32m	64m	
ER	PARABDG	5.942	12.449	28.174	60.975	121.889	262.736	490.985	
CL	PARABDG	102.150	220.177	423.836	815.883	1685.561	3135.217	6179.357	
SB	PARABDG	106.026	213.722	428.980	869.002	1798.333	3829.563	8638.938	
KR	PARABDG	105.062	219.351	439.110	875.381	1751.339	3504.719	7014.911	

2386	Table 19. Additional empirical evaluation on other models.													
2387	dataset		Н	lams			I	Fcbk		Polb				
2388	metric	Δ	GCC	ALCC	overlap	Δ	GCC	ALCC	overlap	Δ	GCC	ALCC	overlap	
	GROUNDT	1.000	0.229	0.540	N/A	1.000	0.519	0.606	N/A	1.000	0.226	0.320	N/A	
2389	EDGEIND-CL	0.299	0.067	0.058	0.059	0.124	0.064	0.063	0.063	0.792	0.183	0.173	0.182	
2390	LOCLBDG-CL	0.992	0.165	0.255	0.058	1.026	0.255	0.305	0.063	1.002	0.214	0.341	0.181	
2301	PARABDG-CL	1.000	0.185	0.471	0.059	1.006	0.336	0.626	0.062	1.010	0.221	0.468	0.181	
2001	PA	0.198	0.049	0.049	0.047	0.120	0.061	0.061	0.062	0.324	0.100	0.101	0.097	
2392	RGG (d = 1)	1.252	0.751	0.751	0.008	0.607	0.751	0.752	0.011	1.127	0.751	0.753	0.022	
2393	RGG $(d=2)$	1.011	0.595	0.604	0.003	0.492	0.596	0.607	0.033	0.933	0.601	0.615	0.029	
	RGG $(d = 3)$	0.856	0.491	0.513	0.003	0.421	0.494	0.518	0.033	0.807	0.503	0.534	0.029	
2394	BTER	0.991	0.290	0.558	0.538	0.880	0.525	0.605	0.680	1.028	0.342	0.375	0.501	
2395	TCL	0.280	0.075	0.126	0.223	0.223	0.117	0.094	0.192	0.490	0.138	0.160	0.411	
0206	LFR ($\mu = 0.0$)	1.140	0.262	0.546	0.435	N/A	N/A	N/A	N/A	1.114	0.252	0.414	0.336	
2390	LFR ($\mu = 0.5$)	0.296	0.068	0.081	0.175	0.161	0.084	0.120	0.170	0.571	0.145	0.170	0.170	
2397	LFR ($\mu = 1.0$)	0.197	0.045	0.047	0.070	0.105	0.055	0.059	0.067	0.019	0.005	0.040	0.281	

2399	dataset		S	рат			(Cepg		Scht			
2400	metric	Δ	GCC	ALCC	overlap	Δ	GCC	ALCC	overlap	Δ	GCC	ALCC	overlap
2401	GROUNDT	1.000	0.145	0.286	N/A	1.000	0.321	0.447	N/A	1.000	0.377	0.350	N/A
2402	EDGEIND-CL	0.496	0.072	0.060	0.067	0.683	0.230	0.223	0.232	0.644	0.245	0.234	0.243
2403	LOCLBDG-CL	1.028	0.124	0.260	0.067	0.996	0.293	0.430	0.231	1.036	0.318	0.469	0.241
2400	PARABDG-CL	1.007	0.131	0.436	0.067	0.999	0.310	0.578	0.231	1.135	0.294	0.610	0.237
2404	PA	0.112	0.027	0.026	0.025	0.288	0.130	0.130	0.129	0.226	0.121	0.123	0.116
2405	RGG $(d = 1)$	1.144	0.750	0.750	0.003	0.834	0.752	0.754	0.033	0.678	0.752	0.754	0.029
0.100	RGG $(d=2)$	0.899	0.592	0.597	0.003	0.704	0.604	0.622	0.033	0.567	0.603	0.620	0.029
2406	RGG $(d = 3)$	0.772	0.485	0.501	0.003	0.611	0.509	0.544	0.033	0.492	0.507	0.541	0.029
2407	BTER	1.003	0.194	0.325	0.402	0.991	0.484	0.504	0.631	0.658	0.397	0.383	0.544
0400	TCL	0.201	0.044	0.087	0.223	0.356	0.166	0.165	0.362	0.218	0.130	0.146	0.312
2408	LFR ($\mu = 0.0$)	1.283	0.187	0.406	0.370	N/A	N/A	N/A	N/A	1.081	0.506	0.850	0.977
2409	LFR ($\mu = 0.5$)	0.426	0.062	0.072	0.120	0.649	0.209	0.294	0.337	0.596	0.224	0.291	0.332
2410	LFR ($\mu = 1.0$)	0.332	0.048	0.042	0.081	0.516	0.166	0.217	0.303	0.476	0.179	0.212	0.292

By doing so, we are able to scale to even large graphs. See Table 18 for the detailed results. Notably, parallel binding (PARABDG) is easily parallelizable. We can distribute the generation to multiple machines and finally merge the generated edges, which allows us to handle even larger graphs.

E.5 JOINT OPTIMIZATION

As shown in Section 6.5, in some "difficult" cases where PARABDG well preserves the number of triangles but not the number of wedges, with joint optimization, PARABDG-JW does better, well preserving both the number of triangles and the number of wedges. In Figure 5, for both Hams and *Fcbk*, we compare the degree and distance distributions in the ground-truth graph and in the graphs generated by EDGEIND, PARABDG, and PARABDG-JW. With joint optimization, both degree and distance distributions do not change much (compare PARABDG and PARABDG-JW in Figure 5).

E.6 ON HIGH-OVERLAP EIGMS, OTHER EDGE-DEPENDENT RGMS, AND MORE

As discussed in Section 3.1, there exist methods that shift edge probabilities by various mechanisms, while they are still essentially EIGMs. Hence, by Theorem 3.3, they inevitably trade-off between variability and the ability to generate high-clustering graphs. Such methods include Binning Chung Lu (BCL) proposed by Mussmann et al. (2015) that uses accept-reject and Block Two-level Erdos-Renyi (BTER) proposed by Kolda et al. (2014b) that uses a mixture of different EIGMs (specifically,

	······		1		0	8	0 1			
2431		dataset	Hams	Fcbk	Polb	Spam	Cepg	Scht		
2432		TCL	0.877	0.086	0.035	0.652	0.263	0.411		
2433	-	ICL ρ	0.877	0.980	0.055	0.032	0.205	0.411		
2434										
2435	EI B I I				1. 0					
2436	Erdos-Renyi and C	hung-Lu)	. Also, a	s discuss	ed in Sec	ction 3.2 ,	there ar	e also exis	ting methods	s that
2437	use additional mec	chanisms 1	to impro	ve upon	existing	EIGMs.	For exa	mple, Pfei	iffer et al. (2	2012)
2438	on top of the origin	e Chung-I al edge-ii	Lu (TCL) idepende) that use int Chung	s an add g-Lu.	itional m	echanisr	n to direct	ly insert triar	ngles
2439	Differences In this	swork w	e aim to	improve	upon FI	GMs hv f	further ex	nloring m	odels withor	nt as-
2440	suming edge inden	endency '	The key	noint is t	o preserv	e individ	lual edge	nrohahilit	ties and thus	have
2441	high tractability by	it the exist	ing meth	ods usu	ally use r	nixed mo	dels and	thus chan	ge the under	lvino
2442	edge probabilities	The cons	equence	is that th	ev either	r have les	s tractab	ility or les	s variability	(ie
2443	high overlap: see T	heorems	3.2 and 4	.7).	ley entited	11400 100	is tractae	, inty of 105	is variability	(1.0.,
2444	ingli overiup, see 1			•••)•						
2445	 TCL uses an add 	itional me	echanism	to direc	tly form	triangles	and is th	us less tra	ctable;	
2446	BTER forms man	ny small c	lense cor	nmunitie	s and ha	s very hig	gh overla	ıp.		
2447	As shown in Prop	ertv 47	EPGMs	have the	same or	verlan as	the cor	responding	FIGM ie	the
2448	variability is perfec	ctly maint	ained eve	en though	n we intro	oduce ed	ge deper	idency.	, 110111, 1.0.	, 110
2449	Below, we compare	e the perfo	ormance	of (1) the	e origina	l edge-in	depender	nt Chung-I	Lu, (2) Chun	g-Lu
2450	with local binding,	(3) Chun	g-Lu wit	h paralle	l binding	, (4) TCI	L, and (5) BTER.		e
2451	Evaluation. In add	lition to th	e cluster	ing-relat	ed metri	cs (the n	umber of	triangles	global cluste	ering
2452	coefficient and the	average l	ocal clusi	tering co	efficient)	we used	in our m	ain experi	ments we fu	rther
2453	compare the "overl	an" (see]	Definitio	n 3.1) of	the gene	erated gra	phs. Ro	ughly, the	overlap of a	ran-
2454	dom graph model i	s the expe	cted pro	portion o	f overlar	ping edg	es betwe	en two rar	ndomly gene	rated
2455	graphs (i.e., the ed	ges that e	xist in bo	oth rando	omly gen	erated gr	aphs). F	ligher over	rlap values i	mply
2456	lower variability; w	when over	ap appro	aches 1,	the gene	rated gra	phs are a	almost ider	ntical.	-r-J

Table 20: The ρ values (i.e., the probability of taking the triangle-forming step) used by TCL for each dataset.

2457 <u>Implementation.</u>

2459

2460

2461

2462 2463

2464

2465

2466

2467

2468

2473

2474

2482

- For TCL, we use online Python code;¹⁶
- For BTER, we use the official MATLAB implementation.¹⁷

<u>Results.</u> In Table 19, we show the detailed results. Overall, we have the following observations.

- For some datasets (e.g., *facebook*), TCL almost-always (i.e., $\rho \approx 1$) uses the mechanism that directly forms triangles. Even so, TCL often fails to well preserve the clustering-related metrics in real-world graphs.
 - TCL mixes two types of steps: (1) original Chung-Lu with probability $(1-\rho)$ and (2) a triangle-forming step with probability ρ .
 - See Table 20 for the ρ values used by TCL for each dataset.
- As expected, although BTER generates graphs with high clustering as intended, it has very high overlap, which implies that it well reproduces high-clustering graphs by largely duplicating the input graphs.
 - Our methods with binding schemes have the same overlap as the corresponding EIGM, while well preserving clustering-related metrics in real-world graphs.

2475 <u>Other edge-dependent RMGs.</u> For the experiments on other edge-dependent RMGs in Section 6.6, we provide more details here.

• For random geometric graphs (RGG), we tried dimensions $d \in \{1, 2, 3\}$, while setting the number of nodes as that in the input graph, and setting the diameter to fit the number of edges in the input graph. Note that the clustering in the generated graph is only determined by the dimension, and smaller dimensions give higher clustering.

¹⁶https://github.com/pdsteele/socialNetworksProject/blob/master/

²⁴⁸³ proj-TransChungLu.py

¹⁷https://www.mathsci.ai/feastpack

average $g(v)$	Δ	GCC	ALCC		average $g(v)$	\triangle	GCC	ALCC
0 (EIGM)	179.21	0.010	0.010		0 (EIGM)	179.21	0.010	0.010
0.001	1957.88	0.100	0.119		0.001	338.67	0.019	0.018
0.002	3721.49	0.177	0.249		0.002	1006.9	0.054	0.047
0.003	5499.17	0.240	0.379		0.003	1864.64	0.092	0.088
0.004	7323.14	0.296	0.489		0.004	2567.84	0.121	0.125
0.005	9489.65	0.344	0.568		0.005	3178.68	0.143	0.151
0.006	10796.54	0.386	0.635		0.006	3797.42	0.165	0.171
0.007	12742.98	0.422	0.681		0.007	4301.58	0.183	0.187
0.008	14342.90	0.464	0.723		0.008	5080.94	0.202	0.200
0.009	16122.18	0.491	0.749		0.009	5542.13	0.218	0.210
0.01	18116.62	0.514	0.772		0.01	6441.86	0.236	0.222
(a)) ER + Para	Bdg		-	(b)	ER + LOCI	.BDG	

2498

edge-probability model.

2499 2500

• For preferential attachment (PA), we tried the extended Barabási-Albert model.¹⁸ We set the number of nodes as that in the input graph, and set the parameter m to fit the number of edges in the input graph. We tried $p, q \in \{0, 0.1, 0.2, 0.3\}$. We report the variant that gives the highest clustering.

Table 21: The clustering metrics of generated graphs without fitting specific graphs using ER as the underlying

• For the Lancichinetti-Fortunato-Radicchi (LFR) model, we set the degrees as the ground-truth degrees, set the community sizes as the sizes of the communities detected using the Louvain algorithm, and tried different mixing parameters $\mu \in \{0, 0.5, 1.0\}$.

Discussions on deep graph generative models. Recently, deep graph generative models have be come more and more popular. Typically, deep graph generative models aim to fit a population of small graphs, while this work focuses on fitting random graph models to individual input graphs.
 We empirically tested three deep graph generative models: CELL (Rendsburg et al., 2020), Graph VAE (Simonovsky & Komodakis, 2018), and GrpahRNN (You et al., 2018).

- 2513 We summarize our empirical observations as follows:
 - CELL often fails to generate high clustering, and also generates high overlap (i.e., low variability). CELL is essentially an EIGM. See also the discussions by Chanpuriya et al. (2021).
- CEEL is essentially an ElOM. See also the discussions by Champulitya et al. (2021).
 GraphVAE learns to duplicate the training graph (i.e., 100% overlap). This is likely because GraphVAE was designed to learn from a population of graphs instead of a single graph, as discussed above.
 - GraphRNN often generates graphs with far more edges but still low clustering. This is likely because GraphRNN was designed mainly for relatively small graphs and cannot fit well to individual large graphs.

As discussed by Chanpuriya et al. (2021), several deep graph generative models also output edge probabilities (e.g., CELL), and this work provides a new perspective to potentially enhance them with edge dependency.

2526

2514

2515

2520

2521

2522

2527 E.7 ON GRAPH GENERATION WITHOUT FITTING SPECIFIC GRAPHS

Instead of fitting specific graphs as done in our main experiments, one can also use the proposed models to generate graphs "from scratch" without specific graphs as references by freely choosing the parameters.

First, one needs to choose the underlying edge probabilities. Typically, one can use an underlying edge-probability model and choose it according to the required properties. For example, if one wants to generate graphs with power-law degree distributions, Chung-Lu with a prescribed power-law degree sequence can be used. Or, if one wants to generate a graph with community structures, the stochastic block model can be used.

¹⁸See, e.g., https://networkx.org/documentation/stable/reference/generated/ networkx.generators.random_graphs.extended_barabasi_albert_graph.html.

2538	α	average $g(v)$	Δ	GCC	ALCC	α	average $g(v)$	Δ	GCC	ALCC
2539		0 (EIGM)	13668.59	0.167	0.337		0 (EIGM)	13668.59	0.167	0.337
2540		0.01	12506.14	0.153	0.493		0.01	11962.88	0.148	0.426
2541		0.02	13160.15	0.156	0.536		0.02	12417.21	0.149	0.462
25/12		0.03	13844.84	0.161	0.559		0.03	12688.25	0.153	0.475
2342		0.04	15182.06	0.172	0.568		0.04	12847.39	0.151	0.486
2543	-0.3	0.05	15610.28	0.168	0.584	-0.3	0.05	13543.07	0.159	0.495
2544		0.06	17647.33	0.179	0.588		0.06	14457.40	0.163	0.504
2545		0.07	16757.68	0.172	0.588		0.07	13856.21	0.155	0.511
0546		0.08	16119.25	0.173	0.593		0.08	14942.73	0.156	0.530
2340		0.09	15417.53	0.160	0.594		0.09	15551.34	0.163	0.524
2547		0.1	18102.03	0.176	0.605		0.1	14264.12	0.154	0.532
2548		0 (EIGM)	13668.59	0.167	0.337		0 (EIGM)	13668.59	0.167	0.337
2549		0.01	13051.15	0.159	0.539		0.01	12155.44	0.152	0.433
2550		0.02	14274.04	0.171	0.585		0.02	12651.05	0.154	0.463
2000		0.03	15724.32	0.181	0.602		0.03	13348.38	0.160	0.480
2551		0.04	16188.49	0.182	0.614		0.04	13249.86	0.157	0.495
2552	0	0.05	19404.04	0.200	0.622	0	0.05	14450.43	0.167	0.503
2553		0.06	20993.48	0.209	0.634		0.06	15668.08	0.171	0.518
0554		0.07	19845.02	0.198	0.639		0.07	14949.55	0.169	0.519
2554		0.08	23823.32	0.215	0.634		0.08	14733.55	0.164	0.525
2555		0.09	30700.56	0.232	0.644		0.09	19401.58	0.182	0.528
2556		0.1	26477.88	0.215	0.646		0.1	18072.88	0.182	0.529
2557		0 (EIGM)	13668.59	0.167	0.337		0 (EIGM)	13668.59	0.167	0.337
0550		0.01	14245.14	0.173	0.598		0.01	12544.92	0.154	0.433
2000		0.02	17062.43	0.195	0.643		0.02	13383.98	0.160	0.461
2559		0.03	19329.61	0.215	0.660		0.03	13901.56	0.166	0.476
2560		0.04	22821.36	0.232	0.673		0.04	15005.39	0.175	0.493
2561	0.3	0.05	23128.39	0.238	0.684	0.3	0.05	16448.43	0.181	0.506
2501		0.06	28266.25	0.250	0.697		0.06	16623.27	0.182	0.503
2562		0.07	30571.88	0.265	0.703		0.07	18159.03	0.186	0.523
2563		0.08	27047.89	0.250	0.717		0.08	16835.26	0.185	0.522
2564		0.09	38293.91	0.286	0.728		0.09	18177.49	0.188	0.538
2565		0.1	34335.56	0.278	0.731		0.1	18459.21	0.195	0.546
2000										

2567

2568 2569

2574

2575

2576

2577

2578

2579

2580

2581 2582

2583

2584

2585

(a) CL + PARABDG

(b) CL + LOCLBDG

Table 22: The clustering metrics of generated graphs without fitting specific graphs using CL as the underlying edge-probability model.

Below, we shall discuss the graph statistics of random graphs generated by EPGMs using binding with varying parameters. Let us first provide the parameter ranges.

2572 2573 For the Erdős-Rényi (ER) model:

• The number n of nodes is fixed as 1024.

• The edge probability p(u, v) is 0.01, the same for all the node pairs. The value 0.01 is chosen in the typical range of real-world graphs (Melancon, 2006).

• The node-sampling probability g(v) is the same for all the nodes (as discussed in Section 5.4), with varying values.

• The number R of rounds is 100000, as in our main experiments.

For the Chung-Lu (CL) model:

• The number *n* of nodes is fixed as 1024.

• The degree sequence d_v 's are generated as a power-law sequence with power-law exponent 2, so that the average edge probability p(u, v) is around 0.01. The exponent 2 is chosen in the typical range of real-world graphs (Chakrabarti & Faloutsos, 2006).

The node-sampling probability g(v) is the same for nodes with the same degree (as discussed in Section 5.4), with varying mean values and varying correlation with degrees. Specifically, for each node v, we set the node-sampling probability g(v) proportional to d(v)^α with different α values (-0.3, 0, and 0.3), where d(v) is the degree of node v. The α values are chosen so that no node has a node-sampling probability exceeding 1. The node-sampling probabilities are positively (resp., negatively) correlated with node degrees with a positive (resp., negative) α value. When α = 0, the node-sampling probability is the same for all the nodes.

2592	α	average $g(v)$	Δ	GCC	ALCC	 α	average $g(v)$	Δ	GCC	ALCC
2593		0 (EIGM)	297.15	0.167	0.337		0 (EIGM)	297.15	0.015	0.014
2594		0.01	1070.80	0.153	0.493		0.01	3139.06	0.133	0.147
2595		0.02	1857.45	0.156	0.536		0.02	6016.54	0.215	0.208
2506		0.03	2587.32	0.161	0.559		0.03	8872.29	0.272	0.239
2590		0.04	3393.55	0.172	0.568		0.04	11101.77	0.313	0.256
2597	-0.5	0.05	4140.39	0.168	0.584	-0.5	0.05	13093.51	0.331	0.261
2598		0.06	4980.47	0.179	0.588		0.06	19008.57	0.368	0.274
2599		0.07	5662.74	0.172	0.588		0.07	18992.58	0.378	0.270
2600		0.08	6440.77	0.173	0.593		0.08	23138.66	0.412	0.276
2000		0.09	7169.38	0.160	0.594		0.09	24280.39	0.412	0.271
2601		0.1	7949.71	0.176	0.605		0.1	30652.89	0.432	0.280
2602		0 (EIGM)	297.15	0.167	0.337		0 (EIGM)	297.15	0.015	0.014
2603		0.01	1460.17	0.159	0.539		0.01	4257.22	0.172	0.170
2604		0.02	2656.48	0.171	0.585		0.02	7764.28	0.265	0.221
2004		0.03	3821.19	0.181	0.602		0.03	11887.79	0.327	0.247
2605		0.04	4995.17	0.182	0.614		0.04	16886.04	0.379	0.253
2606	0	0.05	6135.86	0.200	0.622	0	0.05	20868.18	0.405	0.257
2607		0.06	7271.69	0.209	0.634		0.06	23889.00	0.436	0.256
2608		0.07	8458.58	0.198	0.639		0.07	29247.06	0.451	0.264
2000		0.08	9924.68	0.215	0.634		0.08	30123.19	0.450	0.253
2609		0.09	10945.15	0.232	0.644		0.09	369/1.23	0.451	0.254
2610		0.1	12061.47	0.215	0.646	 	0.1	45597.38	0.468	0.264
2611		0 (EIGM)	297.15	0.167	0.337		0 (EIGM)	297.15	0.015	0.014
2612		0.01	1527.10	0.173	0.598		0.01	4348.57	0.170	0.156
2012		0.02	2746.08	0.195	0.643		0.02	8368.21	0.269	0.215
2613		0.03	3989.85	0.215	0.660		0.03	12679.81	0.331	0.235
2614		0.04	5209.86	0.232	0.673		0.04	17480.57	0.380	0.246
2615	0.5	0.05	6516.78	0.238	0.684	0.5	0.05	19396.23	0.412	0.242
2616		0.00	1/0/.59	0.250	0.09/		0.00	24302.75	0.418	0.247
2010		0.07	0033.30	0.203	0.705		0.07	22120 42	0.433	0.250
2617		0.08	11107.86	0.230	0.717		0.08	35129.45	0.457	0.252
2618		0.09	12580.62	0.280	0.720		0.09	41233 19	0.405	0.235
2619		0.1	12369.02	0.278	0.731		0.1	41233.10	0.438	0.200

(a) SB + PARABDG

(b) SB + LOCLBDG

Table 23: The clustering metrics of generated graphs without fitting specific graphs using SB as the underlying edge-probability model.

• The number R of rounds is 100000, as in our main experiments.

For the stochastic block (SB) model:

- The number n of nodes is fixed as 1024.
- The number of communities (i.e., blocks) is fixed as 10.
- The community sizes are generated as a power-law with power-law exponent 1.5. The exponent 1.5 is chosen in the typical range of real-world graphs (Fortunato, 2010).
- The intra-community edge probability and inter-community edge probability are the same for different communities, and are chosen so that the average edge probability p(u, v) is around 0.01.
- The node-sampling probability g(v) is the same for nodes with the same community (as discussed in Section 5.4), with varying mean values and varying correlation with community sizes. Specifically, for each node v, we set the node-sampling probability g(v) proportional to s(v)^α with different α values (-0.5, 0, and 0.5), where s(v) is the size of the community v is in. The α values are chosen so that no node has a node-sampling probability exceeding 1. The node-sampling probabilities are positively (resp., negatively) correlated with community sizes with a positive (resp., negative) α value. When α = 0, the node-sampling probability is the same for all the nodes.
- The number R of rounds is 100000, as in our main experiments.

For the stochastic Kronecker (KR) model:

• The number n of nodes is fixed as 1024. Specifically, the seed matrix is two-by-two, and we take the order-10 Kronecker power of the seed matrix.

2646			^	CCC	ALCC		α	average $q(v)$	Δ	GCC	ALCC
2647	<u>-</u>	average $g(v)$		GCC	ALCC			0 (FIGM)	1044.88	0.031	0.033
2648		0 (EIGM)	1044.88	0.031	0.033			0.01	3086.48	0.081	0.033
2649		0.01	6586.23	0.157	0.327			0.02	5166.20	0.122	0.188
2650		0.02	11809.80	0.240	0.422			0.03	7636.03	0.158	0.211
2000		0.03	17238.21	0.305	0.471			0.04	9707.45	0.180	0.227
2651	1	0.04	22309.34	0.354	0.508		-1	0.05	10435.17	0.189	0.232
2652	-1	0.05	37717 33	0.301	0.556		1	0.06	13325.55	0.207	0.243
2653		0.07	38131.85	0.418	0.559			0.07	16207.68	0.225	0.250
2654		0.08	46682.81	0.432	0.580			0.08	18169.74	0.236	0.261
2054		0.09	52381.99	0.435	0.595			0.09	21601.60	0.234	0.267
2000		0.1	56996.55	0.439	0.604			0.1	23594.77	0.241	0.270
2656		0 (EIGM)	1044.88	0.031	0.033			0 (EIGM)	1044.88	0.031	0.033
2657		0.01	8860.73	0.198	0.402			0.01	3726.94	0.094	0.154
2658		0.02	16677.24	0.307	0.499			0.02	6239.78	0.141	0.187
2659		0.03	23927.22	0.373	0.549			0.03	8729.61	0.176	0.209
2660		0.04	33434.06	0.430	0.582			0.04	11659.48	0.209	0.218
2000	0	0.05	33908.84	0.436	0.600		0	0.05	15550.88	0.238	0.230
2661		0.06	51113.67	0.488	0.624			0.06	17557.07	0.241	0.232
2662		0.07	56890.50	0.503	0.631			0.07	22365.64	0.271	0.243
2663		0.08	57262.88	0.492	0.637			0.08	20931.69	0.266	0.237
2664		0.09	73944.66	0.517	0.656			0.09	20406.49	0.240	0.237
2665		0.1	/1084.79	0.480	0.642			0.1	26693.30	0.254	0.249
2005		0 (EIGM)	1044.88	0.031	0.033			0 (EIGM)	1044.88	0.031	0.033
2666		0.01	11202.40	0.242	0.472			0.01	4118.72	0.103	0.152
2667		0.02	21129.53	0.360	0.572			0.02	7056.13	0.155	0.181
2668		0.03	30490.92	0.443	0.619			0.03	10525.82	0.196	0.201
2669		0.04	42343.89	0.501	0.048			0.04	12531.47	0.217	0.198
2670	1	0.05	40709.30	0.555	0.004		1	0.05	16213.98	0.245	0.207
2070		0.00	62270.76	0.502	0.005			0.06	22050.84	0.276	0.221
2671		0.07	68569.86	0.522	0.689			0.07	19337.29	0.256	0.212
2672		0.09	99628.36	0.565	0.708			0.08	25260.46	0.276	0.220
2673		0.1	109134.19	0.547	0.702			0.09	24525.96	0.263	0.213
2674						· .		0.1	33220.10	0.270	0.230
2675		(a) <mark>K</mark>	R + PARABI	DG				(b) K	R + LOCLB	DG	

2676 Table 24: The clustering metrics of generated graphs without fitting specific graphs using KR as the underlying edge-probability model.

2678 2679

2680

2681

• The seed matrix is [0.95, 0.63; 0.63, 0.32]. The values in the seed matrix are chosen so that the average edge probability p(u, v) is around 0.01, and the value distribution is similar to those in the original paper of Kronecker Leskovec et al. (2010).

2682 • The node-sampling probability q(v) is the same for nodes with the same number of ones in their 2683 binary node labels (as discussed in Section 5.4), with varying mean values and varying correlation 2684 with the number of ones. Specifically, for each node v, we set the node-sampling probability g(v)proportional to $(i(v) + 1)^{\alpha}$ with different α values (-1, 0, and 1), where i(v) is the number of ones 2685 in the binary node label of v. The α values are chosen so that no node has a node-sampling prob-2686 ability exceeding 1. The node-sampling probabilities are positively (resp., negatively) correlated 2687 with the number of ones with a positive (resp., negative) α value. When $\alpha = 0$, the node-sampling 2688 probability is the same for all the nodes. 2689

In Tables 21 to 24, we show the clustering metrics of graphs generated without fitting specific graphsas described above, with different underlying edge-probability models.

Below, let us discuss the insights we have based on the results. Overall, in line with our theoretical
analysis, in most cases, when we increase node-sampling probabilities, the generated graphs have
higher clustering. By varying node-sampling probabilities, one can generate graphs with different
levels of clustering. Also, with the same node-sampling probabilities, PARABDG generates graphs
with higher clustering than LOCLBDG.

2697 There are also interesting observations on the correlation between node-sampling probabilities and 2698 some parameters in the underlying edge-probability models, indicated by the value of α . For CL, 2699 with the same average node-sampling probability, when we make node-sampling probabilities positively correlated to the node degrees, the generated graphs have higher clustering. For SB, with

2700	the same average node-sampling probability, when we make node-sampling probabilities negatively
2701	correlated to the node degrees, the generated graphs have relatively lower clustering, while positive
2702	correlation and no correlation give similar results. For KR, with the same average node-sampling
2703	probability, when we make node-sampling probabilities positively correlated to the number of ones,
2704	the generated graphs have higher clustering.
2705	
2706	
2707	
2708	
2709	
2710	
2711	
2712	
2713	
2714	
2715	
2716	
2717	
2718	
2719	
2720	
2721	
2722	
2723	
2724	
2725	
2726	
2727	
2728	
2729	
2730	
2731	
2732	
2733	
2734	
2735	
2736	
2737	
2738	
2739	
2740	
2741	
2742	
2743	
2744	
2745	
2746	
2747	
2748	
2749	
2754	
2750	
2152	
2133	