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Abstract
Disentangled latent spaces usually have better001
semantic separability and geometrical proper-002
ties, which leads to better interpretability and003
more controllable data generation. While this004
has been well investigated in Computer Vision,005
in tasks such as image disentanglement, in the006
NLP domain sentence disentanglement is still007
comparatively under-investigated. Most previ-008
ous work have concentrated on disentangling009
task-specific generative factors, such as senti-010
ment, within the context of style transfer. In this011
work, we focus on a more general form of sen-012
tence disentanglement, targeting the localised013
modification and control of more general sen-014
tence semantic features. To achieve this, we015
contribute to a novel notion of sentence seman-016
tic disentanglement and introduce a flow-based017
invertible neural network (INN) mechanism in-018
tegrated with a transformer-based language Au-019
toencoder (AE) in order to deliver latent spaces020
with better separability properties. Experimen-021
tal results demonstrate that the model can con-022
form the distributed latent space into a better023
semantically disentangled sentence space, lead-024
ing to improved language interpretability and025
controlled generation when compared to the026
recent state-of-the-art language VAE models.027

1 Introduction028

Most previous work on controlled text generation029

have concentrated on style transfer tasks: modify-030

ing sentences with regard to markers of sentiment,031

formality, affirmation/negation (John et al., 2019;032

Bao et al., 2019; Hu and Li, 2021; Vasilakes et al.,033

2022; Gu et al., 2022; Liu et al., 2023; Gu et al.,034

2023) (Figure 1 top). Disentanglement of language035

generative factors over Variational Autoencoder036

(VAE) spaces has been a key mechanism to deliver037

this type of generative control (John et al., 2019;038

Bao et al., 2019; Vasilakes et al., 2022). Recently,039

Zhang et al. (2022) demonstrated that a more gen-040

eral form of semantic control can be achieved in the041

latent space of Optimus (Li et al., 2020b), the first042
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sport + negative:
I hate basketball.

science + positive:
I love Physics and Chemistry.

their objective: sentence control for sentiment/topic transfer (Liu et al., 2023)

our objective: Granular semantic sentence control and manipulation

Figure 1: Top: attribute space geometry. Bottom: gen-
eral semantic geometry, where left: distributional se-
mantic space of Optimus (Li et al., 2020b), right: our
compositionality-induced semantic space where the ge-
ometrical location of sentence vectors can be located by
the intersection of role-content clusters.

standard transformer-based VAE, where a BERT 043

(Devlin et al., 2018) encoder and a GPT2 (Radford 044

et al., 2019) decoder are connected within a VAE 045

bottleneck. Using representations of conceptually 046

dense explanatory sentences (Jansen et al., 2018b), 047

they showed that sentences (e.g. animals require 048

oxygen for survival), can be represented within 049

a space which can be organised around the asso- 050

ciations between predicate, arguments and their 051

associated token content: ARG0-animals or VERB- 052

require, is geometrically resolved to a hypersolid 053

over the latent space. Nevertheless, the ability to 054
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learn and control such separation is still limited as055

different semantic factors of the sentence are still056

overlapped and entangled in the latent space (e.g.,057

V-eat and V-require in Figure 1 bottom left), indi-058

cating distributional sentence semantics cannot be059

currently localised and controlled from the perspec-060

tive of formal semantics (i.e., predicate-argument061

structures, compositionality) (Marcus, 2003; Nefdt,062

2020; Dankers et al., 2022).063

This work aims to improve the localisation and064

semantic control of latent sentence spaces, by de-065

livering a model which can better separate and066

control syntactic-semantic features (e.g. predicate-067

argument) and their associated lexical semantics068

content. This type of representation can provide069

the foundation to shorten the gap between deep070

latent semantics and formal linguistic representa-071

tions (Gildea and Jurafsky, 2000; Banarescu et al.,072

2013; Mitchell, 2023), integrating the flexibility of073

distributional-neural models with the properties of074

linguistically grounded representations, facilitating075

both interpretability and generative control.076

To deliver this type of semantic control within077

the distributional sentence space, following the078

methodological framework introduced by (Zhang079

et al., 2022), we target on improving the semantic080

separability of sentences by focusing on explana-081

tory sentences 1, rather than synthetic or style trans-082

fer datasets (Hupkes et al., 2020; Yanaka et al.,083

2021), in which the semantic structure of sentences084

can be isolated and controlled. Inspired by the085

work of Esser et al. (2020), we integrate a flow-086

based invertible neural network (INN) (Dinh et al.,087

2014) as a plug-in control component to learn the088

bijective transformation between the distributional089

hidden space of the transformer-based language au-090

toencoder (BERT-GPT2) and the smooth Gaussian091

space of the INN (Figure 2). Specifically, we first092

pre-train an autoencoder (AE) to learn sentence rep-093

resentations from the transformers’ latent spaces.094

Then, we freeze the AE weights and train the INN095

to map the AE representations to a Gaussian space.096

Since INN models define a bijective transforma-097

tion, we can control the autoencoder generation by098

manipulating the INN latent spaces, which is more099

efficient and significantly less resource intensive100

than re-training a language AE end-to-end.101

More importantly, we propose a supervised train-102

ing strategy within the INN setting to learn a latent103

1The rationale for choosing explanatory sentences and their
semantic details are provided in Appendix A.

space with improved semantic separability, namely: 104

the semantic role-content pairs and their associ- 105

ated clusters can be better separated over the latent 106

space modelled by the INN (Section 4.1). In this 107

case, we can improve localised control over the de- 108

coding process due to the reduction of overlapping 109

(ambiguous) regions. A more separable and geo- 110

metrically consistent sentence space can be then 111

operated over to improve the generative control 112

with support of geometric operators, such as inter- 113

polation (Bowman et al., 2016) (Section 4.2). The 114

contributions of this work are summarised below: 115

1. We approach sentence disentanglement and 116

generation control from the point of view of Argu- 117

ment Structure Theory (AST), bridging latent space 118

features with a canonical, linguistics-informed, se- 119

mantic representation of sentences. 2. We find that 120

integrating a flow-based INN mechanism into a 121

transformer-based language-AE architecture is an 122

effective mechanism for transforming the hidden 123

space of the autoencoder into a smooth Gaussian 124

latent space for representing sentences. 3. We 125

propose a supervised training strategy for INNs to 126

learn a controllable semantic space with higher dis- 127

entanglement and separability of semantic features, 128

when compared to previous work. 4. Using this 129

mechanism, we systematically employ geometrical 130

data augmentation strategies to assist on sentence 131

representation disentanglement. 132

Interpreting and controlling sentence generation 133

from the perspective of the geometric manipulation 134

of the latent space is still largely unexplored within 135

NLP. To the best of our knowledge, this is the first 136

work which focuses on the introduction of invert- 137

ible NN-based mechanisms to support latent spaces 138

with better separated argument structure/semantic 139

features, allowing for a more universal form of sen- 140

tence generation control. All code and supporting 141

datasets are available online2. 142

2 Preliminaries 143

In this section, we first define the sentence rep- 144

resentation model based on Argument Structure 145

Theory (AST), linking with the associated disentan- 146

glement/generative factors and then proceed with 147

the description of the proposed flow-based INN 148

mechanism. 149

Sentence semantic disentanglement. AST (Jack- 150

endoff, 1992; Levin, 1993; Rappaport Hovav and 151

Levin, 2008) provides a model for representing sen- 152

2https://github.com/<anonymized>
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tence structure and meaning of sentences in terms153

of the interface between the their syntactic struc-154

ture and the associated semantic roles of the argu-155

ments within those sentences. It delineates how156

verbs define the organisation of their associated ar-157

guments and the reflection of this organisation in a158

sentence’s syntactic realisation. AST abstracts sen-159

tences as predicate-argument structures, where the160

predicate p (associated with the verb) has a set of161

associated arguments argi, where each argument162

has an associated positional component i and a the-163

matic/semantic roles ri, the latter categorising the164

semantic functions of arguments in relation to the165

verb (e.g. agent, patient, theme, instrument). In the166

context of this work, the AST predicate-argument167

representation is associated with a lexical-semantic168

representation of the content ci of the term ti.169

In this work, we simplify and particularise the170

relationship between the argument structure and171

the distributional lexical semantic representation as172

a role-content relation, where the structural syntac-173

tic/semantic relationship is defined by its shallow174

semantics, i.e. as the composition of the content of175

the terms, their position in the predicate-argument176

(PArg) structure (argi) and their semantic roles177

(SRs) (ri: pred, arg). Therefore, this work uses178

the notion of sentence semantic disentanglement179

as the cluster separation of the content under the180

PArg/SRs structure (the corresponding role in role-181

content), aiming to induce a latent space which182

geometrically encodes the AST structure, better183

disentangling and separating role-content clusters184

(Figure 1).185

animals︸ ︷︷ ︸
ARG0

require︸ ︷︷ ︸
PRED

oxygen︸ ︷︷ ︸
ARG1

for survival︸ ︷︷ ︸
ARGM−PRP

186

187

Formally, a sentence s (e.g., see above) consists188

of a sequence PArgs/SRs and word content associ-189

ations. Upon encoding in latent space, this can be190

described as:191

sem(s) = t1(c1, r1)︸ ︷︷ ︸
i.e.,ARG0−animals

⊕ · · · ⊕ ti(ci, ri)︸ ︷︷ ︸
PRP−survival

192

where ti(ci, ri) = ci ⊗ ri represents the seman-193

tics of term ti with content ci (i.e., animals) and194

SRL ri (i.e., ARG0) in context s, ⊗: connects195

the meanings of words with their roles, using196

the compositional-distributional semantics notation197

of (Smolensky and Legendre, 2006; Clark et al.,198

2008). ⊕: connects the lexical semantics (word199

content + structural role) to form the sentence se-200

mantics. This work applies distinct symbols aim-201

ing to emphasise the disentanglement aspects as- 202

sociated with the AST structure. If the sentence 203

representation can be semantically disentangled 204

under ⊕, the sem(s) can be decomposed into: 205

sem(s) = {t1(c1, r1)} ⊕ · · · ⊕ {ti(ci, ri)} where 206

each set represents a specific role-content cluster 207

resolved to a hypersolid over the latent space, in 208

this case, given a set of N sentences within the 209

same predicate cluster t(c, r) (i.e., V-require) but 210

different sem(s), those sentence vectors can repre- 211

sent t(c, r) features independently of other features 212

(i.e., ARG0-animals), forming the t(c, r) cluster: 213

{sem(s1), ..., sem(sN )} = {t(c, r)}×N ⊕ {...} 214

Therefore, we can evaluate the disentanglement 215

(i.e., natural clustering property (Bengio, 2013)) of 216

sentence semantics by evaluating the density within 217

{t(c, r)} set(cluster) (classifier recall) and the sep- 218

aration between different {t(c, r)} set(clusters) 219

(classifier accuracy) with downstream classifiers 220

based on the manifold hypothesis for classifica- 221

tion (Rifai et al., 2011), rather than disentangle- 222

ment metrics, which usually calculate the separa- 223

tion between latent dimensions, commonly used 224

in the image domain (Higgins et al., 2017; Kim 225

and Mnih, 2018; Chen et al., 2018; Ridgeway and 226

Mozer, 2018). Next, we will introduce the INN- 227

based mechanism which is used to learn this se- 228

mantically disentangled space. 229

Invertible Neural Networks (INNs). Flow-based 230

INNs (Dinh et al., 2014, 2016) are a class of neural 231

networks that models the bijective mapping be- 232

tween the observation distribution p(x) and the 233

latent distribution p(z). We use T to represent the 234

forward mapping (from p(x) to p(z)) and T ′ to rep- 235

resent the backward mapping (from p(z) to p(x)), 236

respectively. Unlike VAEs that approximate the 237

prior distribution to multivariate Gaussian distribu- 238

tions, INNs exactly use multivariate Gaussian dis- 239

tributions. These are trained by the following objec- 240

tive function: L = −Ex∼p(x)

[
T (x)

]2
−log |T ′(x)| 241

where T (x) learns the transformation from x to 242

z ∼ N(0, 1). |T ′(x)| is the determinant of the 243

Jacobian for T (x), which indicates the extent in 244

which the transformation locally expands or con- 245

tracts the space. The term − log |T ′(x)| ensures 246

the integration of the probability density function 247

to be one. The forward and reversed mapping can 248

be implemented via the coupling layer (Dinh et al., 249

2014; Kingma and Dhariwal, 2018). 250

The rationale for choosing flow-based INNs lies 251

on the fact that they learn the bijective transforma- 252
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Figure 2: Transforming the representations of explana-
tory sentences from a language autoencoder (BERT-
GPT2), into asemantically separable latent space with
the support of the INN mechanism, where a sentence
representation can be decomposed into a predicate-
argument-level semantics (role-content).

tion between the latent and observed spaces, which253

can be used to guide the autoencoder generation by254

manipulating the INN latent space, which is more255

efficient and has lower computational demand than256

re-training a language VAE. Besides, flow-based257

INNs that learn the prior distribution (i.e., Gaus-258

sian) exactly, can theoretically prevent the informa-259

tion loss from variational inference (ELBO) where260

the prior is approximated from posterior P (z|x).261

3 Proposed Approach262

We encode each sentence x with a frozen autoen-263

coder (e.g., Bert-GPT2) and consider its sentence264

representation E(x) as the input of INNs (Figure265

2). We propose two training strategies to map the266

hidden representations into the Gaussian space.267

3.1 Training Strategy268

Unsupervised INN. Firstly, we train the INN-269

based model unsupervised, which minimises the270

negative log-likelihood of the marginal distribution271

of latent representation z = E(x):272

Lunsup = −Ex∼p(x)

[
T (E(x))

]2
− log |T ′(E(x))|273

As the minimisation leads to a bijective mapping be-274

tween the distributed representation and the disen-275

tangled latent representation (multivariate Gaussian276

space), it allows for a more semantically consistent277

representation of the geometric (role-content) clus-278

tering properties of its latent space, allowing for279

a more consistent traversal and interpolation (Li280

et al., 2020b) over the sentence space (Figure 1).281

Cluster-supervised INN. According to the find-282

ings of (Zhang et al., 2022), the content of the283

predicate-argument structure/semantic roles can be284

disentangled over the latent space approximated to285

multivariate Gaussian learned using the Language286

VAE setting. Using the same foundation, we train 287

the INN component to learn the embeddings, by 288

minimising the distance between points in the same 289

role-content regions and maximising the distance 290

between points in different regions, based on the 291

explanation embeddings and their corresponding 292

central point from the language autoencoder model. 293

For example, given a sentence "animals require 294

food for survival" and its central vector of ARG0- 295

animals, the training moves the sentence represen- 296

tation closer to the ARG0-animals region centre in 297

the INN latent space. Specifically, during the cal- 298

culation of the posterior, we replace the mean and 299

variance of the standard Gaussian distribution by 300

the centre point of its cluster and a hyper-parameter, 301

which should be less than one, respectively. In this 302

case, each role-content cluster in the latent space 303

will be mapped to a space where each cluster will 304

have its embeddings more densely and regularly 305

distributed around its centre. The objective func- 306

tion can be described as follows: 307

Lsup =− Ex∼pcluster(x)

[
T (E(x))− µcluster

]2
1− σ2

− log
∣∣T ′(E(x))

∣∣ 308

where T (E(x)) learns the transformation from x to 309

z ∼ N(µcluster, 1− σ2). σ2 is a parameter which 310

can be empirically determined (in this particular 311

context the optimal value was found to be 0.6). 312

Additional details are provided in Appendix A. 313

3.2 Geometrical Data Augmentation 314

Data augmentation, which captures and augments 315

a common or distinct feature across different sam- 316

ples, has been considered a common technique to 317

assist disentanglement, such as in Graph (Li et al., 318

2021) and Image (Liu et al., 2022) representations, 319

but is still limited in the context of sentence genera- 320

tion. In this work, we consider the vector arithmetic 321

and traversal operators as a systematic mechanism 322

to support data augmentation (via semantically con- 323

trolled sentence generation) for each role-content 324

cluster, described as follows: 325

(1) v = average(E′(xi), E
′(xj))

(2) vneighbour = v[i] ∼ N(0, 1)∀i∈{0,..,size(v)}

(3) xnew = D′(vneighbour)

326

where xk ∈ S (original corpus), E′ and D′ are the 327

encoder and decoder of Optimus fine-tuned over 328

S. average operation aims to modify the sentence 329

while maintaining the target role-content common 330
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to both xi and xj (Zhang et al., 2022). The term331

v[i] ∼ N(0, 1) is introduced to resample each di-332

mension of v in the latent space (i.e., traverse its333

neighbour) and xnew = D′(vneighbour) generates334

a new sentence. Finally, we only keep the sen-335

tences holding the target role-content, where the336

PArgs/SRs of x are annotated via the AllenNLP337

(Gardner et al., 2018) semantic role labeller. Table338

1 lists randomly selected examples from augmented339

explanations. Full details and the supporting abla-340

tion study are provided in Appendices A and D.341

Role-content Augmented sentences

ARG0-animal
an animal requires energy to move
an animal requires shelter
an animal can use its body to breathe

ARG0-human
humans usually use gasoline
humans use coal to make food
humans depend on pollinators for survival

PRED-mean
summit mean the top of the mountain
colder mean a decrease in heat energy
friction mean the product of a physical change

Table 1: Augmented explanations. We also provide
more examples in Table 11 for qualitative evaluation.

4 Experiments342

For the experiments, we start by focusing on the343

effect of the supervised INN mechanism to exam-344

ine its impact on the sentence semantic separability345

of the distributional latent space defined in Section346

2 (detailed in Section 4.1). Next, we examine the347

localised semantic generation control enabled by348

such semantic separability via latent interpolation349

(Section 4.2). Further details of the AutoEncoder350

model and dataset are provided in Appendix A.351

4.1 Disentanglement Encoding Evaluation352

We examine the latent space separability (i.e.,353

natural clustering property (Bengio, 2013)) of354

our supervision approach on different predicate-355

argument/semantic roles. In the context of this356

work, the thematic roles’ labels are not referred to357

control the generation. Instead, we use the pred-358

icate argument position markers, e.g. including359

ARG0, ARG1, PRED(V), where each category has360

a) four possible word contents (ci), or b) the same361

content (i.e., animal) with different argument/roles,362

including ARG0,1,2. We provide the reconstructed363

examples of INNs in Table 24.364

Disentanglement between ARG0 clusters. For365

ARG0, we choose human, animal, plant, and some-366

thing due to having the highest frequency in the367

original dataset, and evaluate model performance368

from two directions, including forward and back-369

ward mapping. Within forward mapping, we as-370

sess the disentanglement of the latent space of the 371

INN model from two perspectives (visualisation 372

and classification metrics). Figure 3 displays the 373

distributions of four role-content clusters over the 374

latent space. As we can observe, after the cluster- 375

supervised training strategy, the embeddings are 376

more concentrated at the center of their cluster, and 377

there is a clear boundary between clusters, indi- 378

cating a better disentanglement when compared to 379

Optimus and unsupervised INNs.

Figure 3: ARG0: t-SNE plot, different colour represents
different content regions (blue: animal, green: human,
red: plant, purple: something) (left: Optimus, middle:
unsupervised, right: cluster supervised), same order for
remaining visualizations. We also provide the PCA plot
in Figure 11, both visualization shows that supervised
embeddings concentrate on the respective cluster center.

380

We then quantitatively evaluate the disentangle- 381

ment of ARG0-content clusters. We consider clas- 382

sification task metrics (accuracy, precision, recall, 383

f1) as proxies for evaluating region separability, 384

effectively testing cluster membership across dif- 385

ferent clusters. We choose a non-parametric down- 386

stream classifier (i.e., kNN) to quantitatively evalu- 387

ate the separation of clusters and parametric down- 388

stream classifiers, including Naive Bayes (NB) and 389

Support Vector Machine (SVM), to assess both 390

separability and representation capability of latent 391

sentence spaces (Rifai et al., 2011; Conneau et al., 392

2018). The configuration of the downstream classi- 393

fiers are detailed in Appendix A. 394

As shown in table 2, all classifiers trained over 395

supervised latent representations outperformed the 396

unsupervised INN (U) and Optimus (O), indicating 397

that the cluster-supervised approach leads to better 398

disentanglement and representation. Moreover, (O) 399

demonstrates superior performance compared to 400

(U) for the KNN-based evaluation. However, it ex- 401

hibits lower performance than (U) in NB and SVM. 402

This suggests that the INN-AutoEncoder configura- 403

tion can more effectively capture sentence seman- 404

tics (from the point-of-view of AST+distributional 405

content), in the context of a reconstruction task 406

since the VAEs’ training process is prone to experi- 407

encing posterior collapse. 408
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ARG0: disentanglement proxy metrics
classifier train accuracy precision recall f1 score

KNN
O 0.972 0.973 0.972 0.972
U 0.938 0.938 0.938 0.938
C 0.979 0.979 0.979 0.979

NB
O 0.934 0.934 0.933 0.933
U 0.958 0.958 0.958 0.958
C 0.978 0.978 0.978 0.978

SVM
O 0.970 0.970 0.970 0.970
U 0.972 0.972 0.972 0.972
C 0.980 0.980 0.980 0.980

Table 2: Disentanglement of ARG0 between Optimus
(O), unsupervised INN (U), and cluster-supervised INN
(C) where KNN: k-neighbours, NB: naive bayes, SVM:
support vector machine. The abbreviations are the same
for the remaining tables. Cluster supervision displays
consistent improvement with different classifiers.

As for the evaluation of the backward mapping,409

we calculate the ratio of generated sentences that410

hold the same role-content as the inputs (hence-411

forth called the invertibility ratio). We randomly412

selected 100 embeddings as inputs and showed the413

corresponding ratios in Table 3. We can observe414

that both unsupervised and supervised cases can415

achieve high invertibility ratios, indicating that the416

INN mechanism provides stable invertibility with417

or without cluster supervision.

ARG0: invertibility ratio (backward: T ′)
train human animal plant something

U 0.980 0.890 0.990 1.000
C 1.000 0.860 0.990 0.950

Table 3: Invertibility test for ARG0, Both INNs with
AutoEncoder setup can achieve high ratios, indicating
stable invertibility with or without cluster supervision.

418

Disentanglement between PRED clusters. Next,419

we analyze the disentanglement between predicate420

(PRED) clusters. As shown in Figure 4, although421

the disentanglement of PRED clusters is not as high422

as ARG0, the latent space with cluster supervision423

still performs better than both the unsupervised424

case and the Optimus model. In Table 4, the super-425

vised INN model achieves better disentanglement,426

and both unsupervised and supervised could obtain427

a higher ratio. We also provide the experimental428

results of ARG1 disentanglement in Appendix B.429

Disentanglement between ARG0,1,2 clusters.430

The experiments up to this point investigated the431

separation between the same pred-argument type432

but different content clusters. Next, we explore the433

separability of different pred-argument types with434

the same content. We thus focus on the animal clus-435

ter, and investigate the disentanglement between436

Figure 4: PRED: t-SNE plot (blue: are, green: cause,
red: is, purple: require). PCA plot is in Figure 13.

PRED: disentanglement proxy metrics (forward: T )
classifier train accuracy precision recall f1 score

KNN
O 0.911 0.914 0.910 0.911
U 0.869 0.873 0.865 0.868
C 0.922 0.927 0.918 0.922

NB
O 0.865 0.866 0.866 0.865
U 0.873 0.874 0.871 0.872
C 0.903 0.903 0.902 0.903

SVM
O 0.902 0.902 0.903 0.902
U 0.905 0.906 0.902 0.904
C 0.910 0.912 0.909 0.910

Table 4: Forward evaluation for predicate clusters, the
invertibility ratio and statistical significance test are pro-
vided in Table 14 and 18.

ARG0-animal, ARG1-animal, and ARG2-animal. 437

As illustrated in Figure 5, the animal clusters with 438

different pred-argument types can be separated af- 439

ter cluster-supervised training, which indicates that 440

the INN model can capture the difference between 441

the same content with different pred-argument type 442

in the case of similar topic, indicating the INN- 443

based approach could jointly learn separable em- 444

beddings w.r.t. role-content and content alone.

Figure 5: Animal: t-SNE plot (blue: ARG0-animal,
green: ARG1-animal, red: ARG2-animal), PCA plot is
provided in Figure 14.

445
Table 5 and 15 show the disentanglement metrics 446

and the invertibility ratio, respectively. Similarly to 447

the previous experiment, the supervised case out- 448

performs both the unsupervised and the Optimus 449

models. Both INNs can achieve an invertibility 450

ratio of at least 90%. 451

4.2 Disentanglement Decoding Evaluation 452

Finally, we evaluate the disentangled sentence ge- 453

ometry from the perspective of sentence generation. 454

We specifically focus on linear interpolation as it 455

can provide more efficient traversal between sen- 456
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Animal: disentanglement metrics (f1 score)
train KNN NB SVM

O 0.960 0.928 0.946
U 0.958 0.930 0.947
C 0.967 0.937 0.950

Table 5: Forward evaluation for Animal, we only show
f1 since the same value across different metrics. Results
indicate improved separation across role clusters.

tences and clusters than other traversal approaches457

(e.g., Ornstein-Uhlenbeck), commonly used in the458

NLP domain (Li et al., 2020b) and in the evaluation459

of disentanglement (Bengio, 2013).460

Interpolation localisation. Firstly, we evaluate the461

localisation of latent interpolation that interpolates462

a path zt = z1 ·(1−t)+z2 ·t with t increased from463

0 to 1 by a step size of 0.1, where z1 and z2 repre-464

sent the latent representations of source and target465

sentences. As a result, 9 sentences are generated on466

each interpolation step. On a latent space with bet-467

ter token-level role-content separation, given two468

sentences with the same role-content as endpoints,469

we can observe that the intermediate sentence can470

hold the same role-content during interpolation.471

In terms of qualitative evaluation, Table 6 pro-472

vides the interpolation paths of cluster-supervised473

INN and Optimus, as for Optimus, we can observe474

that the intermediate explanations could transition475

smoothly from source to target for argument. How-476

ever, the predicate is more abruptly changed, in-477

dicating lower predicate-content disentanglement478

(e.g., predicate-require and predicate-eat). Instead,479

the supervised INN can fix the predicate-require480

during interpolation, indicating better separability481

between different predicate-content results in better482

generation control. More examples are provided483

in Table 22 and 23. We then quantitatively evalu-

ARG0-animal ARG0-human PRED-require PRED-cause
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ra
tio

Interpolation Controllability

supervised INN
vanilla Optimus
unsupervised INN

Figure 6: Interpolation control evaluation, we can ob-
serve that supervised INN with better semantic separa-
bility can lead to better localised semantic control.

484
ate the localisation of interpolation. We randomly485

select 200 sentence pairs from the dataset holding486

interpolation localisation: predicate-require

source: humans require freshwater for survival

Optimus:
1. humans require water and food through fossil fuels
2. humans require water for survival
3. humans produce small amounts of consumer food
4. human has a positive impact on a plant’s survival
5. humans convert food into animal prey
6. humans make food for themselves by eating
7. animals require food for survival
8. animals require nutrients from the air
9. humans eat plants for food
10. animals require food for survival

Cluster-supervised INN:
1. humans require water for survival
2. nonhumans require water for survival
3. animals require water and food
4. animals require water to survive
5. animals require water to live
6. animals require food for survival
7. animals require food for survival
8. animals require food for survival
9. animals require food for survival
10. animals require food to survive

target: animals require food to survive

Table 6: Interpolation examples, indicating the cluster-
supervised INN can provide better localised/symbolic
semantic control. We also report the interpolations of
AutoEncoder and unsupervised INN in Table 21.

the same role-content and report the ratio of inter- 487

mediate sentences with the same role-content as 488

inputs. As illustrated in Figure 6, the intermedi- 489

ate sentences from the supervised INN can better 490

hold the same role-content as inputs, especially for 491

predicate which usually has a lower effect on dis- 492

tributional sentence semantics (Zhang et al., 2022), 493

indicating that our supervision can lead to better 494

latent space separability and generation control. 495

Interpolation smoothness. Moreover, we quanti- 496

tatively evaluate the latent space geometry via in- 497

terpolation smoothness metrics (IS, Zhang et al. 498

(2024)), which calculates the ratio between the 499

ideal semantic distance (i.e., the aligned se- 500

mantic distance between source and target sen- 501

tences) and the actual semantic distance (i.e., the 502

sum of semantic distance between adjacent sen- 503

tences during interpolation). A higher ratio indi- 504

cates that the actual path aligns better with the 505

ideal path, suggesting better semantic-geometric 506

properties. The metric is defined as: IS = 507

E(s0,...,sT )∼P
δ(align(s0,sT ))∑T

t=0 δ(align(st,st+0.1))
where s0, ..., sT 508

is the sequence of sentences during interpolation, 509

δ and align are sentence similarity and alignment 510
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Evaluation Metrics avg IS↑ max IS↑ min IS↑
DAE (Vincent et al., 2008) 0.144 0.330 0.055
AAE (Makhzani et al., 2015) 0.142 0.284 0.054
LAAE(Rubenstein et al., 2018) 0.172 0.347 0.056
DAAE (Shen et al., 2020) 0.055 0.061 0.023
β-VAE (Higgins et al., 2016) 0.198 0.379 0.041
AdaVAE (Tu et al., 2022) 0.085 0.105 0.050
Della (Hu et al., 2022) 0.253 0.416 0.155
Optimus (Li et al., 2020b) 0.220 0.525 0.130
AutoEncoder (Bert-GPT2) 0.259 0.585 0.165
INN (U) (our) 0.251 0.540 0.159
INN (C) (our) 0.282 0.607 0.206

Table 7: Geometrical examination via IS metric.

functions, respectively, which are performed via511

Word Mover’s Distance (Zhao et al., 2019). We512

choose the standard language VAE baselines (i.e.,513

the prior is the std. Gaussian distribution). Their514

implementation details are provided in Appendix A.515

We randomly sample 200 sentence pairs and report516

the IS metric. As illustrated in Table 7, our model517

can deliver smoother interpolations comparatively518

to the baselines, indicating semantic disentangle-519

ment can lead to better latent space geometry.520

5 Related Work521

Sentence representation. Sentence representa-522

tions are usually trained in supervised (Conneau523

et al., 2017; Reimers and Gurevych, 2019), con-524

strastive (Giorgi et al., 2021; Yan et al., 2021;525

Chuang et al., 2022), or generation-oriented (Wang526

et al., 2021; Wu and Zhao, 2022; Chuang et al.,527

2022) fashion. Recent work (Huang et al., 2023)528

explored the compositional sentence representation529

for improved explainability and generation. How-530

ever, these works still lack the emphasis on the531

geometric interpretation and control of the underly-532

ing sentence space, which this work focused on.533

Sentence disentanglement. In the Natural Lan-534

guage Generation domain, most previous investi-535

gations explored the disentanglement between two536

specific linguistic perspectives, such as sentiment-537

content (John et al., 2019; Li et al., 2022), semantic-538

syntax (Bao et al., 2019), and negation-uncertainty539

(Vasilakes et al., 2022), or syntactic disentangle-540

ment (Mercatali and Freitas, 2021; Felhi et al.,541

2022). In this work, we provide a formal-542

geometrical lens, with the support of argument543

structures as a sentence representation model, for544

sentence disentanglement targeting for localised545

semantic control. This work is the first integra-546

tion of flow-based INN mechanisms to improve547

disentanglement, separation and semantic control548

of sentence spaces.549

INNs in NLP. Şahin and Gurevych (2020) concen- 550

trate on modelling morphological inflection and 551

lemmatization tasks, utilizing INN to learn a bi- 552

jective transformation between the word surface 553

and its morphemes. Li et al. (2020a) proposed 554

BERT-flow, transforming sentences from a BERT 555

sentence space to a standard Gaussian space. Ding 556

and Gimpel (2021) deployed flow-based INN to en- 557

rich VAE prior distribution, while Gu et al. (2023) 558

use flow mechanisms to control attributes in style 559

transfer tasks. This work focused on semantic sepa- 560

rability, geometrical operations and control over the 561

distributed representation of sentences. Moreover, 562

this work is the first to explore geometrical data 563

augmentation to support semantic disentanglement. 564

6 Conclusions and Future Work 565

This work focused on an INN-based mechanism 566

to support better disentangled and separated latent 567

sentence spaces over language autoencoders. By 568

aligning the predicate-argument structure of sen- 569

tences to the latent representations, we aimed to 570

build a bridge between the formal and distributional 571

semantics perspectives for sentence representation. 572

We define the sentence semantic disentanglement 573

from the perspective of formal semantics, align- 574

ing the predicate-argument structure to disentan- 575

glement and cluster separation properties, and ex- 576

ploiting the invertibility and bijection properties of 577

INNs to facilitate such alignment. Experimental re- 578

sults indicate that the invertibility mechanisms can 579

transform the distributed hidden space of an autoen- 580

coder into a latent space where AST-level syntactic 581

and semantic transformations can be localised, in- 582

terpolated and controlled. Secondly, we propose a 583

supervision approach, which leads to an improved 584

disentangled and separated space. This property 585

can facilitate localised interpolation control. Lastly, 586

we utilise these geometric properties to support a 587

semantically controlled data augmentation to assist 588

the disentanglement process. 589

Since our work connects distributional and for- 590

mal semantics via disentanglement, one future di- 591

rection is to explore the safety and control of the for- 592

mal semantic properties of Large Language Mod- 593

els. Besides, recent work (Liu et al., 2023) revealed 594

that distinct factors can be composed by modelling 595

the moving of latent vectors via ordinary differen- 596

tial equations, which can be adapted to sentence 597

representations to deliver more complex sentence 598

transformations within the latent space. 599
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7 Limitations600

This work focused on the disentangled sen-601

tence representations geometry to deliver lo-602

calised/semantic/formal semantic control. While603

this work is motivated by providing more localised604

distributed representations, which can positively605

impact the safety and coherence of generative mod-606

els, few scoping observations need to be estab-607

lished:608

1. The specific safety guarantees of these models609

are not fully established.610

2. In the Image domain, the generative factors of611

disentangled latent image spaces can be controlled612

by simply resampling (e.g., Ornstein-Uhlenbeck613

random walk) over the corresponding dimensions614

(Higgins et al., 2017; Kim and Mnih, 2018) or615

by traversing within geometrical boundaries (Jeon616

et al., 2019). Those techniques cannot be directly617

adopted in latent sentence spaces.618

3. While the language autoencoder with unsuper-619

vised INN exhibit a distinct learning pattern with620

regard to semantic distribution, further understand-621

ing is required in terms of information bottleneck622

properties (Saxe et al., 2018) and on the seman-623

tic distribution of unsupervised INNs in language624

modelling tasks.625

4. Furthermore, this study exclusively focused626

on a corpus of sentences which are conceptually627

dense ((Dalvi et al., 2021)). The exploration of its628

performance on other types of sentences, including629

sentences with complex clausal-phrasal construc-630

tions, or sentences with non-compositional idioms,631

is yet to be undertaken.632
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A Experiment setting1025

Dataset. Table 8 displays the statistical informa-1026

tion of the datasets used in the experiment. The1027

data of the two datasets partially overlap, so only1028

the unique explanations are selected as the exper-1029

imental data. Table 9 illustrates the semantic,

Corpus Num data. Avg. length
WorldTree (Jansen et al., 2018a) 11430 8.65

EntailmentBank (Dalvi et al., 2021) 5134 10.35

Table 8: Statistics from explanations datasets.
1030

structure, and topic information of explanatory sen-1031

tences over the latent space.1032

The rationale for choosing explanatory sen-1033

tences is that they are designed for for-1034

mal/localised/symbolic semantic inference task in1035

natural language form, which provides a seman-1036

tically complex and yet controlled experimental1037

setting, containing a both well-scoped and diverse1038

set of target concepts and sentence structures, pro-1039

viding a semantically challenging yet sufficiently1040

well-scoped scenario to evaluate the syntactic and1041

semantic organisation of the space. More details1042

about semantic structure and lexical information1043

are provided in Table 9 and 10.1044

Data Augmentation. Algorithm 1 illustrates the1045

detailed process of data augmentation. The key1046

aspect of data augmentation is to keep the data dis-1047

tribution unchanged while increasing the size of the1048

dataset. Therefore, during traversal, we only sam-1049

ple the value whose probability density is between1050

0.495 and 0.505. In other words, for each original1051

explanation, we only traverse its close neighbours1052

over the latent space. We increased the number of1053

explanations in each role-content cluster to 30001054

and kept the balance of each role-content category.1055

We provide more qualitative examples in Table 11.1056

Moreover, we visualise latent semantic distribution1057

before and after augmentation in Figure 7. As we1058

can observe, the data augmentation can maintain1059

the semantic distribution unchanged. For example,1060

PRED-is (red colour in the right column) is widely1061

distributed over the latent space before and after1062

augmentation. ARG0-something (purple colour in1063

the left column) is far from other clusters with or1064

without data augmentation in latent space.1065

Downstream Classifier. In this experiment, we1066

apply three downstream classifiers, including non-1067

parametric classifier: k-nearest neighbours (KNN)1068

and parametric classifiers: Naive Bayes (NB) and1069

Support Vector Machine (SVM), to evaluate the1070

Algorithm 1 Data Augmentation

Define: R as the role set (ARG0, PRED, ...).
Define: C as the content set (vocabulary).
Define: S as the explanation corpus (sentences).
Define: s = [(c1, r1), ..., (ci, ri)] ∈ S, ci ∈
C, ri ∈ R as a sentence.
Define: (ct, rt) | rt ∈ R, ct ∈ C as the
target role-content (e.g., ARG1-animal).
Define: St = ∀s ∈ S | ∃(ck, rk) = (ct, rt)
as the set of sentences with the target role-
content.
Define: E(s) : S → Rn as encoder (embed-
ding) function.
Define: D(vec) : Rn → S as the explanation
decoded from Decoder D.
Define: L: list for keeping augmented sentences.
Define: SRLer(s): semantic role label annota-
tor for s.
for all (si, sj) ∈ St, si ̸= sj do

vec = average(E(si), E(sj))
for all vec[i] ∈ vec do

vec[i] = N(0, 1) # neighbour traversal
sn = D(vec) # new sentence
if sn /∈ L AND R ∈ SRLer(sn) then

put sn in L.
end if

end for
end for
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Cluster Theme, Pattern, and Explanatory sentences
0 Theme: physics and chemistry. Pattern: if then and as. E.g., if a substance is mixed with another substance then

those substances will undergo physical change.
1 Theme: country, astronomy, and weather. E.g., new york state is on earth
2 Theme: physics and chemistry. Pattern: is a kind of. E.g., light is a kind of wave.
3 Theme: biology. E.g., a mother births offspring.
4 Theme: synonym for verb. Pattern: means and is similar to. E.g., to report means to show.
5 Theme: astronomy. E.g., the solar system contains asteroids.
6 Theme: animal/plant. Pattern: is a kind of. E.g., a seed is a part of a plant.
7 Theme: item. E.g., a telephone is a kind of electrical device for communication.
8 Theme: synonym for life. Pattern: means and is similar to. E.g., shape is a kind of characteristic.
9 Theme: geography. Pattern: is a kind of. E.g., a mountain is a kind of environment.
10 Theme: animal and plant. Pattern: if then and as. E.g., if a habitat is removed then that habitat is destroyed.
11 Theme: scientific knowledge. Pattern: (;), number and /. E.g., freezing point is a property of a ( substance ;

material ).
12 Theme: item. Pattern: is a kind of object. E.g., a paper is a kind of object.
13 Theme: chemistry and astronomy. E.g., oxygen gas is made of only oxygen element.
14 Theme: general about science. Pattern: (;). E.g., seed dispersal has a positive impact on ( a plant ; a plant ’s

reproduction).
15 Theme: item. Pattern: is a kind of. E.g., fertilizer is a kind of substance.
16 Theme: physics and chemistry. Pattern: (;). E.g., the melting point of oxygen is -3618f ; -2188c ; 544k.
17 Theme: animal. E.g., squirrels live in forests.
18 Theme: nature. E.g., warm ocean currents move to cooler ocean regions by convection.
19 Theme: life. E.g., pond water contains microscopic living organisms.

Table 9: Semantic, structure, topic information of explanatory sentences, where the cluster is the categories of
k-means classifier.

Figure 7: t-SNE plot for Data augmentation
(top: original dataset distribution, bottom: aug-
mented dataset distribution), (left: ARG0-animal(blue),
human(green), plant(red), something(purple); mid-
dle: ARG1-food(blue), oxygen(green), sun(red), wa-
ter(purple); right: PRED-are(blue), cause(green),
is(red), require(purple).

separability of latent representation. Those clas-1071

sifiers and classification metrics are implemented1072

based on scikit-learn package (Pedregosa et al.,1073

2011) with default hyper-parameters. We train1074

those classifiers on the training set (×60%) and1075

evaluate them on the test set (×40%). For multi-1076

class classification, we set macro for precision, re-1077

call, and f1 since macro-averaged metric for each1078

class is calculated independently, and then the aver-1079

age is taken, which ensures that the performance of1080

the model in each class contributes equally to the 1081

final metric, regardless of the class size. 1082

Visualizer. In this experiment, we implement t- 1083

SNE and PCA visualisation based on Yellowbrick 1084

library (Bengfort and Bilbro, 2019)3. We empiri- 1085

cally set decompose_by = 4 for all cases. How- 1086

ever, we found no significant difference between 1087

different decompose_by parameters. 1088

Baselines for Interpolation Smoothness. In the 1089

experiment, we implement five LSTM-based au- 1090

toencoders, including denoising AE (Vincent et al. 1091

(2008), DAE), β-VAE (Higgins et al., 2016), ad- 1092

versarial AE (Makhzani et al. (2015), AAE), label 1093

adversarial AE (Rubenstein et al. (2018), LAAE), 1094

and denoising adversarial autoencoder (Shen et al. 1095

(2020), DAAE). Their implementation relies on the 1096

open-source codebase available at the URL 4. As 1097

for transformer-based VAEs, we implement Opti- 1098

mus (Li et al., 2020b), AdaVAE (Tu et al., 2022)5, 1099

and Della (Hu et al., 2022)6. All baseline models 1100

undergo training and evaluation with the hyper- 1101

parameters provided by their respective sources. 1102

A latent dimension of 32 is specified to ensure a 1103

3https://www.scikit-yb.org/en/latest/api/text/
tsne.html

4https://github.com/shentianxiao/
text-autoencoders

5https://github.com/ImKeTT/AdaVAE
6https://github.com/OpenVLG/DELLA
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Semantic Tags Prop. % Description and Example
ARGM-DIR 0.80 Directionals. E.g. all waves transmit energy from one place to another
ARGM-PNC 0.08 Purpose. E.g. many animals blend in with their environment to not be seen

by predators
ARGM-CAU 0.05 Cause. E.g. cold environments sometimes are white in color from being

covered in snow
ARGM-PRP 1.30 Purpose. E.g. a pot is made of metal for cooking
ARGM-EXT 0.04 Extent. E.g. as the amount of oxygen exposed to a fire increases the fire will

burn longer
ARGM-LOC 4.50 Location. E.g. a solute can be dissolved in a solvent when they are combined
ARGM-MNR 2.00 Manner. E.g. fast means quickly
ARGM-MOD 9.80 Modal verbs. E.g. atom can not be divided into smaller substances
ARGM-DIS 0.07 Discourse. E.g. if something required by an organism is depleted then that

organism must replenish that something
ARGM-GOL 0.20 Goal. E.g. We flew to Chicago
ARGM-NEG 1.20 Negation. E.g. cactus wrens building nests in cholla cacti does not harm the

cholla cacti
ARGM-ADV 6.70 Adverbials
ARGM-PRD 0.20 Markers of secondary predication. E.g.
ARGM-TMP 7.00 Temporals. E.g. a predator usually kills its prey to eat it
O - Empty tag.
V 100 Verb.
ARG0 32.0 Agent or Causer. E.g. rabbits eat plants
ARG1 98.5 Patient or Theme. E.g. rabbits eat plants
ARG2 60.9 indirect object / beneficiary / instrument / attribute / end state. E.g. animals

are organisms
ARG3 0.60 start point / beneficiary / instrument / attribute. E.g. sleeping bags are designed

to keep people warm
ARG4 0.10 end point. E.g. when water falls from the sky that water usually returns to the

soil

Table 10: Semantic Role Labels that appear in explanations corpus.

Role-content Augmented sentences

ARG0-plant
plants use sunlight often to make food for themselves
plants produce light in the winter by photosynthesizing
green plants contain ( water ; food )
plants take in oxygen from the air
a plant requires water in order to perform photosynthesis
some plants grow organically
plants use soil as a source of water

ARG1-water
water is liquid by volume
salt water is a kind of solution
water is two things together
water is boiling in the pot
water is an ( inexhaustible ; wasteable ) resource
water is an ( electrical ; electrical energy ) insulator
water is a part of soup

ARG2-animal
a hurricane is a kind of animal
a bird is a kind of animal
a sperm whale is a kind of animal
a wren is a kind of animal
a dog is a kind of native animal
a chameleon is a kind of animal

PRED-require
making tools requires using sharp tools
plants require resources to provide food for themselves
a system requires electrical energy to operate
crops require specialized environments to grow
cooking requires food from human food chain
producing an object requires chemical energy
living things require energy from the sun for survival
growth requires the production of more cells

Table 11: Qualitative evaluation of geometrical data
augmentation.

uniform and equitable comparative analysis.1104

Autoencoder. In this work, we employ an autoen-1105

coder architecture with the same configuration as1106

described in (Li et al., 2020b)7. The encoder com- 1107

ponent is based on BERT (Devlin et al., 2018), 1108

while the decoder component is based on GPT2 1109

(Radford et al., 2019). The latent space dimension 1110

is set to 32 (low-dimension) as Michlo et al. (2023) 1111

revealed that strong compression, such as strong 1112

KL regularisation term in ELBO, can lead to the 1113

phenomenon of disentanglement of images. 1114

To establish the connection between the encoder 1115

and decoder, the input sentence x is first encoded 1116

by BERT into the latent space, denoted as N(µ,Σ). 1117

The parameters µ and Σ are trainable and deter- 1118

mine the mean and covariance of the Gaussian dis- 1119

tribution. Next, a sample z ∼ N(µ,Σ) is passed 1120

through a multi-layer perceptron called W . This 1121

step expands the dimensionality of z to obtain a 1122

fixed-length embedding h ∈ RD×L×H , where D 1123

represents the dimensions of the heads, L is the 1124

number of heads, and H is the number of hidden 1125

layers. The latent space injection can be described 1126

as: 1127

Attention(Q,K, V ) = softmax(
Q[z;K]T√

d
)[z;V ] 1128

7https://github.com/ChunyuanLI/Optimus
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Figure 8 provides a visual representation of the1129

connection between BERT and GPT2 within the1130

AutoEncoder architecture.

Figure 8: Latent sentence injection.

1131

INN. The INN consists of 10 invertible blocks.1132

Each is built from three layers, including an affine1133

coupling (Dinh et al., 2016), permutation layer,1134

and ActNorm (Kingma and Dhariwal, 2018). Fig-1135

ure 9 displays one single invertible block. The1136

model was implemented using the FrEIA library1137

(Ardizzone et al., 2018-2022) 8. As for training1138

hyperparameters of INN, firstly, both input and out-1139

put have the same dimensions as the latent space1140

dimension of the autoencoder. Secondly, inside1141

the affine coupling block, the sub-network is MLP1142

with 512 as the hidden dimension. Thirdly, we use1143

AdamW (Loshchilov and Hutter, 2017) to optimise1144

the model where the learning rate is 5e-04 in the1145

experiment.

Figure 9: INN one single block.

1146
The forward process of the affine coupling layer1147

can be described as follows:1148

xa, xb = split(x)

log s, t = mθ(xb)

s = exp(log s)

ya = s⊙ xa + t

yb = xb

y = concat(ya, yb)

(1)1149

8https://github.com/VLL-HD/FrEIA

Where mθ is a two-layer neural network. x and y 1150

are the input and output. The reversed process is: 1151

ya, yb = split(y)

log s, t = mθ(yb)

s = exp(log s)

xa = (ya − t)/s

xb = yb

y = concat(xa, xb)

(2) 1152

B Additional Supervision Results 1153

Disentanglement between ARG1 clusters We con- 1154

sider four ARG1 clusters, including ARG1-food, 1155

ARG1-oxygen, ARG1-sun, ARG1-water, and evalu- 1156

ate model performance following the same proce- 1157

dure. Figure 10 displays the distributions of four 1158

role-content clusters over the latent space. With 1159

similar observations as before, the INN cluster- 1160

supervised training strategy can learn better dis- 1161

entanglement between ARG1 clusters. Table 12

Figure 10: ARG1: t-SNE plot (blue: food, green: oxy-
gen, red: sun, purple: water). Supervision (right) in-
duces separability comparable with ARG0. PCA plot is
provided in Figure 12.

1162
and 13 show the disentanglement metrics and in- 1163

vertibility ratio, respectively. With similar obser- 1164

vations as the previous experiment: all classifiers 1165

trained over the supervised latent representation 1166

outperform both the unsupervised INN model and 1167

Optimus, and both unsupervised and supervised 1168

cases can achieve higher ratios (at least 0.95). 1169

Invertibility ratio. Table 13, 14, and 15 report the 1170

invertibility test for ARG1, PRED, and ARG0,1,2 1171

clusters, respectively. We can observe that INN 1172

with both training approaches can perform stable 1173

invertibility. 1174

Traversal decoding for Animal clusters. Table 16 1175

shows the decoded explanations traversed around 1176

the central point of each cluster in the latent space 1177

of cluster-supervised INN. 1178

Traversal decoding for cluster connection. Ta- 1179

ble 17 displays the decoded middle points between 1180

clusters. It is also observable that there are low- 1181

density embedding regions at the transition (con- 1182
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ARG1: disentanglement proxy metrics (forward: T )
classifier train accuracy precision recall f1 score

KNN
O 0.934 0.934 0.933 0.933
U 0.914 0.914 0.914 0.913
C 0.954 0.954 0.954 0.954

NB
O 0.904 0.910 0.902 0.904
U 0.922 0.922 0.922 0.922
C 0.957 0.957 0.957 0.957

SVM
O 0.951 0.951 0.951 0.950
U 0.953 0.953 0.952 0.953
C 0.959 0.959 0.959 0.959

Table 12: Forward evaluation for ARG1, consistent
results on different classifiers indicate that supervision
can perform better semantic disentanglement.

ARG1: invertibility ratio (backward: T ′)
train food oxygen sun water

U 0.990 0.980 0.950 1.000
C 0.960 0.950 0.960 1.000

Table 13: backward evaluation for ARG1 clusters. un-
supervised INN (U), and supervised INN (S).

nection) between two clusters. We decode the mid-1183

dle datapoints between animal and human clusters1184

and list them in Table 17. From those examples,1185

we can observe that such explanations are related1186

to both animal and human. This result implies that1187

the explanations may be geometrically represented1188

in a similar way as they were originally designed1189

in the WorldTree corpus (maximising lexical over-1190

laps for pred-arg alignments within an explanation1191

chain) for supporting multi-hop inference tasks.1192

Principal component analysis (PCA) visualisa-1193

tion. In addition to the non-linearised t-SNE plot,1194

we also provide linearised visualisation via PCA1195

(Shlens, 2014). Figure 11,12,13, and 14 visualize1196

the separation of ARG0, ARG1, PRED, and animal.1197

Similar to the observation before, cluster supervi-1198

sion can lead to better separation and cluster.

Figure 11: PCA visualization for ARG0.
1199

C Statistical Significance Tests for PRED1200

Downstream Classifiers1201

Statistical significance testing is a standard statis-1202

tical tool devised to ensure that experimental re-1203

sults are not coincidental and reliable. Following1204

PRED: invertibility test (backward: T ′)
train is are cause require

U 1.000 0.950 0.970 0.800
C 1.000 0.880 0.900 0.820

Table 14: backward evaluation for predicate clusters.
unsupervised INN (U), and supervised INN (S).

Animal: invertibility ratio (backward: T ′)
train ARG0 ARG1 ARG2

U 0.990 0.990 0.900
C 0.970 0.960 0.920

Table 15: Backward evaluation for Animal.

Traversing Animal clusters

1: animals must escape from predators
2: animals require air to breathe
3: an animal requires warmth for survival

1: animals are small in size
2: animals usually are not carnivores
3: animals are a part of an environment

1: a rabbit is a kind of animal
2: an otter is a kind of animal
3: a horse is a kind of animal

Table 16: Traversal in each cluster (top: ARG0-Animal,
middle: ARG1-Animal, bottom: ARG2-Animal).

Cluster connection

1. humans sometimes hunt animals that are covered
in fur
2. animals / human habitats require food
3. an animal may be bred with a human for food
4. animals eat humans
5. a human can not eat algae and other animals

Table 17: Middle explanations between ARG0-animal
and ARG0-human.

Figure 12: PCA visualization for ARG1.

Figure 13: PCA visualization for PRED.

17



Figure 14: PCA visualization for Animal.

the work (Dror et al., 2018)9, we provide statisti-1205

cal significance tests to rigorous and quantitatively1206

evaluate the stability of trainable downstream clas-1207

sifiers, which indirectly indicates the representation1208

capability.1209

Our attention was directed towards PRED clus-1210

ters due to the comparatively decreased perfor-1211

mance of downstream classifiers within this cat-1212

egory as PRED usually contains less semantic in-1213

formation (Zhang et al., 2022). We select accuracy1214

metric, set α = 0.05, and choose bootstrap statisti-1215

cal test which was used with a variety of NLP tasks1216

(Ouchi et al., 2017; Wu et al., 2017).1217

As illustrated in Table 18, (1) the U-C pair con-1218

sistently yields a diminished significance value,1219

suggesting reliable classification performance re-1220

sulting from superior representational capabilities1221

facilitated by the AutoEncoder with INN configu-1222

ration, compared with Optimus. (2) the scores of1223

(O-C) pairs are consistently lower than those of (O-1224

U) pairs, indicating our supervision (C) can better1225

represent semantic information than unsupervised1226

INN. We refer (Dror et al., 2018) for an in-depth1227

illustration of statistical significance tests in NLP.

Statistical significance tests for PRED
classifier source Bootstrap (p-value)↓

KNN
O-C 0.0155
U-C 0.0000
O-U 1.0000

NB
O-C 0.0000
U-C 0.0000
O-U 0.2268

SVM
O-C 0.3594
U-C 0.0000
O-U 1.0000

Table 18: Statistical significance tests for downstream
classifiers (O: Optimus, U: unsupervised INN, and C:
cluster supervised INN). We highlight the best signifi-
cant test value, indicating reliable classification perfor-
mance derived from better representation capability.

1228

D Ablation of Data Augmentation1229

PRED semantic role. Firstly, we analyse the effect1230

of our supervision approach on PRED semantic1231

9https://github.com/rtmdrr/
testSignificanceNLP/tree/master

role with three lexical contents without data aug- 1232

mentation, including are (×449), cause (×380), 1233

and require (×262). The rationale for their se- 1234

lection is that they are less frequent in corpus 1235

and partially overlap in latent space. Moreover, 1236

the contents under PRED usually have less effect 1237

on the contextual semantics (Zhang et al., 2022). 1238

Those difficulties allow us to fairly analyse the 1239

effect of our supervision approach. Following 1240

a similar order, we first visualise the t-SNE and 1241

PCA plots in Figure 15. As we can observe, the 1242

cluster-supervised approach can better represent 1243

the cluster and separation for different contents 1244

under PRED semantic role label without data aug- 1245

mentation. Next, we apply downstream classifiers 1246

to evaluate cluster separation. As illustrated in Ta- 1247

ble 19, our cluster-supervised approach results in 1248

better classification performance, indicating better 1249

disentanglement.

Figure 15: Ablation: t-SNE plot (top), PCA plot
(bottom) (left: Optimus, middle: unsupervised, right:
cluster-supervised) where blue: PRED-are, green:
PRED-cause, red: PRED-require.

1250

PRED: disentanglement proxy metrics
classifier train accuracy precision recall f1 score

KNN
O 0.858 0.847 0.844 0.846
U 0.837 0.849 0.827 0.830
C 0.965 0.963 0.961 0.962

NB
O 0.839 0.823 0.833 0.826
U 0.901 0.895 0.891 0.893
C 0.977 0.974 0.975 0.974

SVM
O 0.876 0.863 0.866 0.865
U 0.954 0.953 0.949 0.950
C 0.967 0.965 0.967 0.966

Table 19: Ablation: disentanglement proxy metrics for
PRED-are, PRED-cause, and PRED-require.

ARG0 semantic role. Next, we provide the same 1251

analyse for fewer frequent ARG0 clusters: ARG0- 1252

animal (×126), ARG0-human (×43), ARG0-plant 1253
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(×77), and ARG0-something (×186). As illus-1254

trated in Figure 16, cluster supervision can lead1255

to better role-content separation/disentanglement.1256

Moreover, we can observe that cluster-supervision1257

leads to better proxy disentanglement metrics in1258

Table 20.1259

Furthermore, compared with Table 2, the in-1260

corporation of latent representation with data aug-1261

mentation results in enhanced classification perfor-1262

mance. This observation implies that our data aug-1263

mentation technique can more effectively capture1264

semantic information, thereby aiding downstream1265

classifiers.

Figure 16: Ablation: t-SNE plot (top), PCA plot
(bottom) (left: Optimus, middle: unsupervised, right:
cluster-supervised) where blue: ARG0-animal, green:
ARG0-human, red: ARG0-plant, purple: ARG0-
something.

ARG0: disentanglement proxy metrics
classifier train accuracy precision recall f1 score

KNN
O 0.890 0.890 0.850 0.867
U 0.890 0.896 0.834 0.858
C 0.919 0.907 0.858 0.877

NB
O 0.855 0.809 0.784 0.792
U 0.936 0.916 0.905 0.910
C 0.965 0.958 0.950 0.954

SVM
O 0.843 0.630 0.691 0.656
U 0.895 0.847 0.770 0.782
C 0.901 0.935 0.779 0.790

Table 20: Ablation: disentanglement proxy metrics for
ARG0-animal, ARG0-human, ARG0-plant, and ARG0-
something.

1266

E Controlled Interpolation1267

In tables 22 and 23, we provide more controllable1268

interpolation examples. Those examples reveal that1269

the latent space with better role-content separation1270

from supervised INN can provide better interpola-1271

tion control, indicating better latent space geometry.1272

1273

Interpolation localisation: predicate-require

source: humans require freshwater for survival

AutoEncoder:
1. humans require water to survive
2. marine mammals require great amounts of water
3. animals require oxygen to survive
4. animals require water for survival
5. animals must eat water to survive
6. animals require water and food
7. animals require water for survival
8. animals must eat to survive
9. animals require food for survival
10. animals must eat food to survive

Unsupervised INN:
1. nonhumans require water to survive
2. marine animals require food for survival
3. animals must breath to survive
4. animals require water for survival
5. animals require water from their ecosystems
6. animals require water for survival
7. animals must eat food for survival
8. animals require food for survival
9. animals require food for survival
10. animals require food for survival

target: animals require food to survive

Table 21: Interpolation examples where top and bottom
sentences are source and target, respectively.

F INNs: Explanation Reconstruction 1274

Table 24 shows some reconstructed explanations 1275

from AutoEncoder, unsupervised INN, and super- 1276

vised INN, respectively. 1277
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Interpolation localisation: predicate-is

source: the sun is in the northern hemisphere

1. the sun is located in the northern hemisphere
2. the sun is in the northern hemisphere
3. the sun is made of air around the sun
4. the sun is a source of sunlight for organisms
5. the sun is a source of sunlight for birds
6. the sun is a source of energy for organisms living in an arctic environment
7. the sun is a source of food for plants
8. food is a source of oxygen ; water for plants
9. food is a source of energy for plants by producing heat
10. food is a source of energy for a plant or animal / living thing

1. the sun is the dominant star in the night sky
2. the sun is closer to the earth than it is to the sun
3. the sun is a star in the night sky
4. the sun is good for the environment by providing sunlight to plants
5. the atmosphere is an environment for intensive farming
6. the respiratory system carries oxygen to the rest of the body
7. food contains nutrients ; water ; food energy
8. food is the nutrient for ( plants ; animals )
9. producers are a source of energy for producers by weathering
10. food is a part of a plant / animals / living things

target: food is a source of energy for animals / plants

Table 22: Interpolation examples (top: supervised INN, bottom: Optimus).

Interpolation localisation: argument-animals and predicate-require

source: animals require food to survive

1. animals require water to survive
2. animals require food for survival
3. animals require food for survival
4. animals require nutrients from food
5. an animal requires food for survival
6. an animal requires food for survival
7. an animal requires nutrients from producers
8. an animal requires nutrients for survival
9. an animal requires nutrients from food
10. an animal requires nutrients from producers

1. animals need sunglasses for protection
2. animals live in an environment
3. animals need food to thrive
4. animals require energy for survival
5. a consumer uses some of the food that is available
6. only a producer eats plants
7. a human produces its own food
8. an animal requires nutrients in a source of food to survive
9. an animal requires energy to perform photosynthesis
10. an animal requires nutrients to grow

target: an animal requires nutrients from producers

Table 23: Interpolation examples (top: supervised INN, bottom: Optimus).
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Augmented explanations BERT-GPT2 unsupervised INN supervised INN
a animal requires water for
survival

a animal requires water for
survival

a animal requires water for
survival

a animal requires water for
survival

an animal requires a mate for
survival

an animal requires a mate to
reproduce

an animal requires a mate to
reproduce

an animal requires a repro-
ductive system for survival

some animals sometimes
hunt for prey

some animals prey on other
animals

some animals sometimes
catch prey

some animals sometimes
hunt for prey

an animal requires energy of
its own to move

an animal requires energy
from somewhere to move

an animal requires energy to
move

an animal requires energy for
movement

an animal requires energy to
run

an animal requires energy to
run

an animal requires energy to
run

an animal requires energy to
run

animals live in their habitats animals live in their habitats animals live in their habitat animals live in their habitat
animals must eat animals to
survive

animals must eat to survive animals must eat other ani-
mals to survive

animals must eat to survive

animals taste flavors animals taste flavors animals taste flavors animals taste flavors
animals eat plants animals eat plants animals eat plants animals eat plants
an animal requires nutrients
to grow and heal

an animal requires nutrients
in soil for survival

an animal requires nutrients
to grow and repair

an animal needs to store fat
to grow

animals require oxygen to
grow

animals require oxygen to
grow

animals require oxygen to
breath

animals require oxygen for
survival

an animal needs to breathe in
order to survive

an animal requires food for
survival

a animal needs to breathe to
survive

an animal requires water and
food to survive

humans cause the disease humans cause the disease humans cause the disease humans cause the disease
humans have a negative im-
pact on the environment

humans have a negative im-
pact on the ecosystem

humans have a negative im-
pact on the environment

humans have a negative im-
pact on the environment

humans require water to sur-
vive

humans require water to sur-
vive

humans require water for sur-
vival

humans require water for sur-
vival

humans produce offspring humans produce offspring humans eat plants humans produce offspring
humans have lived on earth humans live in the solar sys-

tem
humans live in the solar sys-
tem

humans live in the biosphere

humans use fossil fuels for
energy

humans use fossil fuels to
make energy

humans use fossil fuels to
make energy

humans use natural gas to
make energy

humans eat green plants humans eat green plants humans eat green plants humans eat green plants
humans eat fruit humans eat fruit humans eat fruit humans eat fruit
humans sometimes eat plants
or animals

humans sometimes eat plants
and animals

living things sometimes eat
insects / animals

animals sometimes eat seeds
from trees

a plant absorbs light energy
for photosynthesis

a plant absorbs sunlight for
photosynthesis

an flower requires energy to
grow and provide warmth to
the skin

a plant absorbs light for pho-
tosynthesis

a plant absorbs water from
the air into its roots

a plant absorbs water from
the air into its body

a leaf absorbs water from the
air through the leaves

a plant absorbs water and nu-
trients from the air

a plant uses energy to grow a plant requires energy for
growth

a plant requires energy to
grow

a plant requires energy to
grow

plant reproduction occurs in
the spring

plant reproduction occurs in
the spring

plant reproduction begins
during seed dispersal

plant reproduction begins in
spring

plants require water and sun-
light to grow

plants require water and sun-
light to grow

plants require sunlight to
grow and survive

plants require water and sun-
light to grow

a plant requires a habitat for
survival

a plant needs a habitat for sur-
vival

a plant requires a habitat for
survival

a plant requires a habitat for
survival

Table 24: Explanation reconstruction. From left to right are augmented explanations, decoded explanations from
AutoEncoder, explanations from unsupervised INN, and that from supervised INN, respectively.
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