
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POSITIONAL ENCODER GRAPH QUANTILE NEURAL
NETWORKS FOR GEOGRAPHIC DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Positional Encoder Graph Neural Networks (PE-GNNs) are a leading approach
for modeling continuous spatial data. However, they often fail to produce cali-
brated predictive distributions, limiting their effectiveness for uncertainty quan-
tification. We introduce the Positional Encoder Graph Quantile Neural Network
(PE-GQNN), a novel method that integrates PE-GNNs, Quantile Neural Net-
works, and recalibration techniques in a fully nonparametric framework, requiring
minimal assumptions about the predictive distributions. We propose a new net-
work architecture that, when combined with a quantile-based loss function, yields
accurate and reliable probabilistic models without increasing computational com-
plexity. Our approach provides a flexible, robust framework for conditional den-
sity estimation, applicable beyond spatial data contexts. We further introduce a
structured method for incorporating a KNN predictor into the model while avoid-
ing data leakage through the GNN layer operation. Experiments on benchmark
datasets demonstrate that PE-GQNN significantly outperforms existing state-of-
the-art methods in both predictive accuracy and uncertainty quantification.

1 INTRODUCTION

Large spatial datasets are collected in a wide range of applications in economics (Anselin, 2022),
meteorology (Bi et al., 2023), urban transportation (Lv et al., 2014; Derrow-Pinion et al., 2021;
Kashyap et al., 2022), social networks (Xu et al., 2020), e-commerce (Sreenivasa & Nirmala, 2019)
and other fields. Gaussian Processes (GPs) (Rasmussen & Williams, 2006; Cressie & Wikle, 2011)
are a fundamental tool for modelling spatial data on continuous domains. They are flexible and
interpretable models for unknown functions, both in spatial and more general regression settings.
However, with time complexity O(n3) and storage complexity O(n2), naive GP methods quickly be-
come intractable for large datasets. This has led to a large range of approximate inference methods,
such as those based on sparse approximations to covariance or precision matrices (Reinhard Furrer
& Nychka, 2006; Lindgren et al., 2011), low rank approximations (Cressie et al., 2022) or nearest
neighbour approximations (Vecchia, 1998; Datta et al., 2016; Katzfuss & Guinness, 2021).

Given the difficulty of GP computations, it’s of interest to explore scalable methods for large spatial
datasets using neural networks (NNs) and to enhance their ability to quantify uncertainty. A state-of-
the-art method for making spatial predictions using Graph Neural Networks (GNNs) is the Positional
Encoder Graph Neural Network (PE-GNN) of Klemmer et al. (2023). Our contribution is to make
three key modifications to the PE-GNN architecture to enhance its ability to make accurate spatial
predictions and to quantify uncertainty. These modifications will be explained further below.

NNs are popular in data modeling and prediction tasks like computer vision and natural language
processing (NLP). However, traditional NNs struggle to handle spatial dynamics or graph-based
data effectively. GNNs (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017) offer
a powerful and scalable method for applying NNs to graph-structured data. The idea is to share
information through the edges of a graph, allowing nodes to exchange information during learning.
GNNs are versatile and can uncover nonlinear relationships among inputs, hidden layers, and each
node’s neighborhood information. The success of GNNs in spatial applications largely depends on
the spatial graph construction, including choice of distance metric and the number of neighboring
nodes, and traditional GNNs often struggle to model complex spatial relationships. To address

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

this, Klemmer et al. (2023) introduced the PE-GNN, which enhances predictive performance in
spatial interpolation and regression. However, PE-GNN is not designed to provide a full probabilistic
description of the target’s distribution, and assuming a Gaussian distribution for predictions can lead
to poorly calibrated intervals, such as 80% intervals that fail to contain the true outcome 80% of
the time. Recently, Bao et al. (2024) proposed a new framework called Spatial Multi-Attention
Conditional Neural Processes (SMACNPs) for spatial small sample prediction tasks. SMACNPs
use GPs parameterized by NNs to predict the target variable distribution, which enables precise
predictions while quantifying the uncertainty of these predictions.

Methods based on quantile regression are an alternative approach to probabilistic forecasting mak-
ing rapid progress in recent years. Si et al. (2022) introduced a novel architecture for estimating
generic quantiles of a conditional distribution, proposing a set of objective functions that lead to en-
hancements in density estimation tasks. In one dimension, this method produces quantile function
regression and cumulative distribution function regression. Kuleshov & Deshpande (2022) argue
that the method of Si et al. (2022) is inefficient with high-dimensional predictors. To address this,
they modify the original formulation to incorporate a post hoc recalibration procedure whereby an
auxiliary model recalibrates the predictions of a trained model. The first model outputs features,
usually summary statistics like quantiles, representing a low-dimensional view of the conditional
distribution. The auxiliary model, the recalibrator, uses these features as input to produce calibrated
predictions using Si et al.’s quantile function regression framework. The main drawback is that it
requires training two separate models, each needing its own training set.

Our work makes three contributions. (1) We propose a new architecture that merges the two-step
procedure of Kuleshov & Deshpande (2022) into a single model by postponing the concatenation of
the τ value proposed by Si et al. (2022). In this way, we enhance the network’s ability to model un-
certainty and introduce a regularization mechanism. The model becomes robust to high-dimensional
predictor spaces, even though few assumptions are made about the form of the target’s conditional
distribution. This change allows a single model to fully describe the predictive conditional distribu-
tion and to generate quantile predictions and prediction intervals as byproducts. It can be applied
to any context, not just spatial regression or GNNs. We show how to integrate this strategy into the
PE-GNN framework to create an intrinsically calibrated model with no extra computational cost.
(2) We introduce a structural change to PE-GNN. Instead of applying the GNN operator to the con-
catenation of the nodes’ features and the spatial embedding, we apply it only to the features. (3) In
PE-GNN, the GNN operator uses neighbours’ features to create new node representations but does
not include the target value of neighboring nodes. Our third contribution introduces the mean target
value of a node’s neighbours as a feature after the GNN layers, closer to the output. This allows the
model to use neighboring observations of the target variable when making predictions.

The structure of this work is as follows: Section 2 offers a brief background overview, Section 3
outlines the proposed method for geographic data prediction, Section 4 shows experimental results
on three real-world datasets, and Section 5 concludes.

2 BACKGROUND

Positional Encoder Inspired by the Transformer architecture (Vaswani et al., 2017) for geo-
graphic data (Mai et al., 2020), PE-GNN (Klemmer et al., 2023) employs a PE with two compo-
nents: a sinusoidal transformation and a fully-connected NN. The first is a deterministic transfor-
mation formed by the concatenation of sinusoidal functions, including variations in frequency and
scale. The spatial dimensions (typically represented as latitude and longitude) are handled sep-
arately. The second component is a fully-connected NN, denoted NN(ΘPE), taking the output
produced by the sinusoidal transformation as input and processing it through a fully-connected NN.
Let CB = [c1, . . . , cnB

]⊤ be the matrix containing the spatial coordinates of a batch of datapoints,
typically of dimension nB × 2, where each ci corresponds to the pair (latitudei, longitudei). This
transformation results in the desired vector space representation, thereby generating the coordinate
embedding matrix Cemb

B = PE(CB , σmin, σmax,ΘPE) = NN(ST (CB , σmin, σmax),ΘPE).

Graph Neural Network GNNs are powerful and scalable solutions for representation learning
and inference with graph-structured data. They leverage the topological structure of correlations
between nearby graph nodes and represent each node in a latent space embedding suitable for the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

specific downstream task (Wu et al., 2022). Popular GNN architectures use this graph structure to
update the embeddings of each node, considering both the features of each node and its neighbors,
in an iterative process (Wu et al., 2022). The first step comprises aggregating features from each
node’s neighbours. After aggregation, we combine each node’s prior representation with the output
of the first step. The initial embedding of each node is its feature vector, so H

(0)
B = XB . Then, for

each GNN layer k ∈ {1, . . . ,K}, an iteration of the two step process described above is executed.

The most popular GNN architectures follow this backbone, but differ in the way they aggregate
neighbours messages and update the embeddings. Graph Convolutional Networks (GCNs) (Kipf
& Welling, 2017) are inspired by the convolution operation from Convolutional Neural Networks
(CNNs). For weighted graphs, GCN layer k has the following update equation

H
(k)
B = f (k)

(
D

−1/2
B [AB + IB]D

−1/2
B H

(k−1)
B W (k)

)
, for k ∈ {1, . . . ,K}. (1)

Here, f (k) is an activation function (e.g., ReLU) and W (k) is a matrix of learnable parameters, while
the adjacency matrix AB describes the connectivity of the constructed graph, where unconnected
nodes have a value of 0, and connected nodes have an edge weight computed from their distance.
DB is the so-called degree matrix and IB denotes the identity matrix.

Positional Encoder Graph Neural Network Klemmer et al. (2023) proposed a novel approach
for applying GNNs to spatial data: PE-GNN. A PE was introduced that takes the set of spatial coor-
dinates for each datapoint as input and produces a vector representing the learned spatial embedding.
This vector is then column concatenated with the node features before application of the GNN op-
erator. Thus, for a given batch B of randomly sampled datapoints, the input to the first GNN layer
is H(0)

B = concat
(
XB ,C

emb
)
. PE-GNN also predicts the Local Moran’s I (Anselin, 1995) as an

auxiliary task (Klemmer & Neill, 2021). Another innovation lies in the training process, as PE-GNN
uses a batch-based procedure. At each training step, a random batch B of nodes is sampled, given by
{p1, . . . , pnB

} ∈ B. Using only the nodes belonging to the batch, the entire process of constructing
the training graph, generating the spatial embedding, column concatenating with the features, and
applying the GNN operator is carried out. The loss function used by Klemmer et al. (2023) is given
by LB = MSE (ŷB ,yB) + λMSE (I(ŷB), I(yB)), where λ denotes the auxiliary task weight.

Quantile regression Koenker & Bassett Jr (1978) proposed a linear quantile regression model to
estimate conditional distribution quantiles. It uses the pinball loss ρτ (ri) = max (τri, (τ − 1)ri),
where ri = yi − q̂i(τ), q̂i(τ) = Xiβ̂, and τ is the desired cumulative probability associated with
the predicted quantile q̂i(τ). The pinball loss for the i-th observation is ρτ (ri). The loss over
a dataset is the average ρτ (ri) value over all datapoints. A natural extension of quantile linear
regression is quantile neural networks (QNNs). This approach is illustrated in Figure 1a, which
seeks to estimate the conditional quantiles for a pre-defined grid (τ1, . . . , τd). Each quantile is
estimated by an independent model (Figure 1a). This can lead to quantile predictions with quantile
crossing (e.g., a median prediction lower than the first quartile prediction).

Rodrigues & Pereira (2020) proposed an approach that outputs multiple predictions: one for the
expectation and one for each quantile of interest (Figure 1b). The loss function is:

L =
1

d+ 1

MSE (ŷ,y) +

n∑
i=1

d∑
j=1

ρτj

(
yi − q̂i(τ

j)
)

n

 . (2)

Si et al. (2022) proposed a method to generate a model that is independent of quantile selection
(Figure 1c). For each datapoint sampled during training, d Monte Carlo samples τ ∼ U(0, 1) are
drawn. Each sample is concatenated with the datapoint features to obtain a corresponding quantile
estimate, so for each datapoint there are d predicted quantiles. The loss function is similar to Eqn. 2,
but they predict random quantiles L = 1

n·d
∑n

i=1

∑d
j=1 ρτj

i
(yi − q̂i(τ

j
i)). As the network learns, it

becomes able to provide a direct estimate to any quantile of interest. Hence, this procedure outputs
an inherently calibrated model suitable for conditional density estimation. However, Kuleshov &
Deshpande (2022) argue this method is inefficient in mid-to-high predictor space dimensions.

Kuleshov & Deshpande (2022) adapted the architecture from Si et al. (2022) into a two-step process
for larger predictor spaces (Figure 1d). First, a model is trained to take the original features as inputs

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Non-linear quantile regression using NN. (b) Non-linear multiple quantile regression.

(c) Non-linear quantile function regression. (d) Two-step density estimation.

Figure 1: (a) For each quantile of interest, a separate NN is trained. (b) Rodrigues & Pereira (2020):
one NN outputs d+1 predictions: one for the expectation and d for the quantiles. (c) Si et al. (2022):
a single NN trained to predict any generic quantile of the conditional distribution. (d) Kuleshov &
Deshpande (2022): two-step procedure: the first model outputs a low-dimensional representation of
the conditional distribution, which a recalibrator then uses to produce calibrated predictions.

and generate low-dimensional representations of the predicted distribution. Next, a recalibrator is
trained using these new features by minimizing the estimated expected pinball loss over τ . During
inference, the recalibrator takes the new features and an arbitrary τ as inputs to produce the quantile
prediction. This method is highly dependent on the choice of recalibrator features.

3 METHOD

In this work, we propose a novel approach to spatial data prediction tasks: the Positional Encoder
Graph Quantile Neural Network (PE-GQNN). Algorithm 1 shows the step-by-step procedure to
train a PE-GQNN model, and Figure 2 illustrates its complete pipeline. Here, each rectangle labeled
"GNN" and "LINEAR" represents a set of one or more neural network layers, with the type of each
layer defined by the title inside the rectangle. At each layer, a nonlinear transformation (e.g. ReLU)
may be applied. Each datapoint pi comprises three components pi = {yi,xi, ci}. The component yi
is the target variable, and as the focus here is regression, then yi is a continuous scalar. Additionally,
xi is the feature vector and ci contains the geographical coordinates associated with observation i.

After initializing the model and hyperparameters, the first step of PE-GQNN is to randomly sample
a batch B of datapoints, p1, . . . , pnB

. The batch can be fully represented by the target yB(nB×1),
features XB(nB×p), and coordinates matrices CB(nB×2), respectively. The next step uses the matrix
of geographical coordinates CB = [c1, . . . , cnB

]
⊤ to obtain spatial embeddings for each datapoint

(Algorithm 1, Step 5). This process receives CB as input, and after passing through deterministic
sinusoidal transformations and a fully-connected NN, outputs the spatial embedding matrix of the
batch Cemb

B (nB×u), containing the spatial context of each pair of coordinates. CB is also used to
compute the distance between each pair of datapoints (Algorithm 1, Step 6). From these distances

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 PE-GQNN training

Require:
Training data target, features, and coordinates matrices: y(n×1), X(n×p), and C(n×2).
A positive integer k defining the number of neighbors considered in the spatial graph.
Positive integers tsteps and nB , the number of training steps and the batch size.
Positive integers u, g, and s, the embedding dimensions considered in, respectively, the PE, the
GNN layers, and the layer where we introduce τ and ȳ.
An activation function f(·) for τ .

Ensure:
A set of learned weights for the model initialized at Step 1.

1: Initialize model with random weights and hyperparameters.
2: Set optimizer with hyperparameters.

3: for b← 1 to tsteps do ▷ Batched training
4: Sample minibatch B of nB datapoints: XB(nB×p), CB(nB×2), yB(nB×1).
5: Input CB(nB×2) into PE, which outputs the batch’s spatial embedding matrix Cemb

B (nB×u).

6: Compute the great-circle distance between each pair of datapoints from CB .
7: Construct a graph using k-nearest neighbors from the distances computed in Step 6.
8: Set AB as the adjacency matrix of the graph constructed in Step 7.
9: for i← 1 to nB do

10: Using AB , compute ȳi =
1
k

∑k
j=1 yj , where j = 1, . . . , k are the neighbors of i.

11: end for
12: Set ȳB = [ȳ1, . . . , ȳnB

]
⊤.

13: Apply GNN layers to the features XB(nB×p), followed by fully-connected layers to reduce
dimensionality. This step outputs a feature embedding matrix Xemb

B (nB×g).
14: Column concatenate Xemb

B (nB×g) with Cemb
B (nB×u), which results in LB(nB×(g+u)).

15: Apply fully-connected layers to reduce LB(nB×(g+u)) to ϕB(nB×s).

16: Create a vector with values sampled from U(0, 1): τB(nB×1) = [τ1, . . . , τnB
]
⊤.

17: Column concatenate ϕB with f (τB) and ȳB to create ϕ̃B(nB×(s+2)).
18: Predict the target quantile vector [q̂1(τ1), . . . , q̂nB

(τnB
)]
⊤ using ϕ̃B .

19: Compute loss LB = 1
nB

∑nB

i=1 ρτi (yi − q̂i(τi)).
20: Update the parameters of the model using stochastic gradient descent.
21: end for

and a predefined number of nearest neighbors, a graph can be constructed, with each datapoint as a
node and edge weights computed from the distances, leading to the batch adjacency matrix AB .

At Step 13 of Algorithm 1, the first distinction between PE-GQNN and PE-GNN arises: instead of
using the concatenation of the feature matrix and the spatial embedding as the input for the GNN
operator, we apply the GNN operator only to the feature matrix XB . One or more fully-connected
layers are then used to reduce the feature embedding dimensionality. This process receives the
constructed graph and the batch feature matrix XB(nB×p) as input and yields an embedding matrix
of features as output: Xemb

B (nB×g). This modification applies the GNN operators exclusively to
the features, without smoothing out the PEs. The GNN layers can be of any desired type. Step 14
of Algorithm 1 performs a column concatenation between the feature embedding Xemb

B (nB×g) and
the output obtained from the PE: Cemb

B (nB×u) (Figure 2). This concatenation results in the matrix
LB(nB×(g+u)). After that, the other innovations of PE-GQNN come into play.

First, we use one or more fully-connected layers (Algorithm 1, Step 15) to reduce the dimensionality
of LB , making it suitable for two of the three innovations in PE-GQNN. This set of fully-connected
layers outputs the matrix ϕB(nB×s), which is then combined with ȳB and τB . ȳB represents a
vector with one scalar for each datapoint in the batch, containing the mean target variable among
the training neighbours for each node. It is computed using the graph constructed in previous steps

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: PE-GQNN compared to PE-GNN and GNN.

(Algorithm 1, Step 10), and has dimensions nB × 1. It is comparable to a vector of predictions
generated by a KNN regression model, where neighbours are determined using the distance calcu-
lated from geographical coordinates. Here, we used the simple average due to its relationship with
KNN prediction; however, one could use a weighted average via the adjacency matrix AB . We
introduce this input at a later stage to avoid data leakage. If the GNN operator received ȳB as input,
after completing the message passing process in each GNN layer, the true node target value would
inadvertently be transmitted to its neighbours, creating potential data leakage (Appleby et al., 2020).

In the same layer where ȳB is introduced, we apply a similar approach to Si et al. (2022) to make PE-
GQNN an inherently calibrated model suitable for probabilistic and quantile predictions. For each
batch B, we create a nB×1 vector τB(nB×1) = [τ1, . . . , τnB

]⊤ of random U(0, 1) draws (Algorithm
1, Step 16). Then, we column concatenate ϕB with f (τB) and ȳB to create ϕ̃B(nB×(s+2)) (Algo-
rithm 1, Step 17), where f(·) is an activation function. Here we propose use of f(·) = logit(·),
to facilitate the network’s learning. Subsequently, forward propagation is computed (Algorithm 1,
Step 18) in one or more fully-connected layers, outputting predicted quantiles for each datapoint in
the batch. The batch loss is the one proposed by Si et al. (2022), but with d = 1 for the τ values.

This procedure aims to improve the model’s ability to learn the conditional probability distribution of
the target variable, enhancing uncertainty estimation and quantile predictions. Instead of introducing
τ values alongside features at the network’s input, as suggested by Si et al. (2022), we delay their
entry into a reduced latent dimension to boost learning. This adjustment makes PE-GQNN suitable
for both low- and high-dimensional predictor spaces. It also improves on the Kuleshov & Deshpande
(2022) approach by merging the two-network process into a single, intrinsically calibrated model.

Incorporating τ values into the model architecture improves its ability to model uncertainty and
serves as a regularization mechanism (Rodrigues & Pereira, 2020). The use of pinball loss for
quantile regression acts as a natural regularizer, producing a detailed description of the predictive
density beyond just mean and variance estimation. For predictions, the quantile of interest, τ , must
be given, along with the basic data components (e.g. τ = 0.25 gives the first quartile). If interest is
in predicting multiple quantiles for the same observation, the input can be propagated up to the layer
where τ is introduced. For each quantile of interest, propagation can be limited to the final layers.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Target domain The final layer should use an activation function coherent with the domain of the
target variable, ensuring model outputs are valid for target distribution support. E.g., an exponential
function could be appropriate if the target variable is continuous, unbounded and positive.

Quantile crossing This phenomenon occurs when estimated quantile functions for different quan-
tile levels (τ) intersect, violating the requirement that higher quantiles be greater than or equal to
lower quantiles. In PE-GQNN, by utilizing the same latent representation up to the layer where the
quantile level (τ) is introduced, the architecture adopts a hard-parameter sharing multi-task learning
framework. This severely mitigates the problem of quantile crossings by constraining the flexibility
of independent quantile regression neural network models. If τ is introduced at the prediction layer,
it is guaranteed that quantile crossings will be absent, as the layer equation would be

q̂i(τ) = f

bias+ wττ + wȳi ȳi +

neurons∑
j=1

wjuj

 , ∀i ∈ 1, . . . , nB . (3)

Here, neurons denotes the number of neurons in the prediction layer, excluding τ and ȳi. bias,
wτ , wȳi

, and {wj} are the prediction layer parameters, and {uj} are the activation values from
the previous layer. Commonly, f is chosen to be monotonic, resulting in a monotonic relationship
between τ and q̂i(τ). When τ is introduced at a layer proximal to, but preceding, the prediction
layer, the results in Section 4 suggest our approach is not prone to suffer from quantile crossing.

Number of Monte Carlo samples When applying the framework proposed by Si et al. (2022), we
chose to use d = 1 for the τ values. Let L(θ, τ,x, y) be the loss function for a given quantile τ ∼
U(0, 1) and an observed pair (x, y) ∼ Ddata, where Ddata denotes the full data generative process.
On each training iteration, we minimize LB , which, by the Law of Large Numbers, converges
to L̃(θ) = Eτ,x,yL(θ, τ,x, y), as the batch size, nB , goes to infinity. Therefore, the gradients
converge to the same value for any d, provided that nB → ∞. This choice (d = 1) simplifies the
implementation without sacrificing performance, as shown in Section 4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

PE-GQNN was implemented using PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019). We conducted comprehensive simulations to explore the prediction performance
and other properties of the proposed model, comparing it with state-of-the-art methods. Computa-
tion was performed on an Intel i7-7500U processor with 16 GB of RAM, running Windows 10.

Candidate models The experiment was designed to compare six primary approaches for address-
ing spatial regression problems across three distinct real-world datasets. Table 1 lists each candidate
model and their applicable datasets. All models were trained using the Adam optimizer (Kingma &
Ba, 2015), early stopping and, for all GNN-based models, k = 5 nearest-neighbours.

Table 1: Summary of candidate models.

Approach Model Type Components Loss DatasetsPE Moran’s I τ Structure ȳ

I GNN GNN No No No No No MSE All
II PE-GNN λ = best GNN Yes Yes No No No MSEy + λMSEI(y) All
III PE-GQNN τ GNN Yes No Yes No No Pinball California
IV PE-GQNN τ , Structure GNN Yes No Yes Yes No Pinball California
V PE-GQNN GNN Yes No Yes Yes Yes Pinball All
VI SMACNP GP No No No No No Log Likelihood All but 3D road

Approach I involves the traditional application of GNNs to geographic data. Three types of GNN
layers were considered: GCNs (Kipf & Welling, 2017), GATs (Veličković et al., 2018), and GSAGE
(Hamilton et al., 2017). For each of these, the architecture remains consistent to facilitate perfor-
mance comparisons: two GCN/GAT/GSAGE layers with ReLU activation and dropout, followed by
a linear prediction layer.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) GCN. (b) GAT. (c) GSAGE.

Figure 3: Validation error curves on the California Housing dataset, measured by the MSE metric.

Approach II involves the application of PE-GNN (Klemmer et al., 2023) with optimal weights for
each dataset and layer type combination, as demonstrated by the experimental findings of Klemmer
et al. (2023). The GNN architecture used is the same as for approach I. It was implemented using
the code available at: https://github.com/konstantinklemmer/pe-gnn.

Approach III is similar to PE-GNN but augmented with the first innovation proposed in this study:
the quantile regression framework described in Section 3 is applied. Approach IV is similar to III,
but augmented with an additional innovation: the structural alteration in the model’s architecture,
where the GNN operator is applied only to the features. Approach V, which is the primary focus of
this research, explores the utilization of PE-GQNN. The PE and GNN layers’ architectures remain
identical to the previous approaches, with any alterations limited to the proposed innovations.

Finally, a benchmark approach that does not use GNNs but was recently proposed for modelling
spatial data will be considered as approach VI: SMACNPs. This approach, proposed by Bao et al.
(2024), has demonstrated superior predictive performance, surpassing GPs models in the three real-
world datasets considered. This model was implemented following the specifications of Bao et al.
(2024), using the code available at: https://github.com/bll744958765/SMACNP.

Approaches I and II do not inherently provide predicted conditional distributions. However, as
they optimize the MSE metric, they implicitly learn a Maximum Likelihood Estimate (MLE) of a
Gaussian model. Thus, the predictive distribution considered for these approaches was a Gaussian
distribution centered on the point prediction with variance equal to the MSE of the validation set.
For computational simplicity in the experiments, instead of calculating ȳB for each batch, we pre-
calculated ȳ using the entire training set.

Performance metrics We evaluate predictive accuracy using Mean Squared Error (MSE) and
Mean Absolute Error (MAE). To assess calibration of the predictive distributions, we use Mean Pin-
ball Error, MPE = 1

n

∑n
i=1 ρτi (yi − q̂i(τi)), where τi ∼ U(0, 1), and the Mean Absolute Distance

of the Empirical Cumulative Probability, MADECP = 1
99

∑99
j=1

∣∣τ j − 1
n

∑n
i=1 1

[
yi ≤ q̂i(τ

j)
]∣∣.

For quantile predictions of a calibrated model for a given τ , the proportion of observed values less
than or equal to the predicted quantile should approximate τ . Evaluating the MADECP helps deter-
mine whether the predicted quantiles are accurate and consistent across the entire space.

4.2 CALIFORNIA HOUSING

This dataset comprises pricing information for >20,000 residential properties in California, recorded
during the 1990 U.S. census (Pace & Barry, 1997). The main objective is a regression task: predict
housing prices, y, through the incorporation of six predictive features, x, and geographical coordi-
nates, c. The predictive features are neighborhood income, house age, number of rooms, number
of bedrooms, occupancy and population. All models were trained and evaluated using 80% of the
data for training, 10% for validation, and 10% for testing. In the case of SMACNP, to adhere to
the specifications of Bao et al. (2024), a training subsample was extracted to represent 10% of the
entire dataset. The validation MSE curves throughout training are shown in Figure 3. The number
of training epochs and final test dataset performance metrics are in Table 2.

8

https://github.com/konstantinklemmer/pe-gnn
https://github.com/bll744958765/SMACNP

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance metrics on the California Housing test set.

Model Epochs Parameters MSE MAE MPE MADECP
GCN 441 1,313 0.0222 0.1101 0.0403 0.0475
PE-GCN λ = best 170 24,129 0.0179 0.0935 0.0354 0.0450
PE-GQCN τ 179 25,217 0.0179 0.0914 0.0351 0.0428
PE-GQCN τ , Structure 264 26,169 0.0138 0.0800 0.0302 0.0287
PE-GQCN 76 26,201 0.0114 0.0686 0.0272 0.0262
GAT 398 1,441 0.0227 0.1099 0.0410 0.0586
PE-GAT λ = best 120 24,290 0.0183 0.0930 0.0352 0.0476
PE-GQAT τ 136 25,345 0.0179 0.0926 0.0355 0.0413
PE-GQAT τ , Structure 261 26,297 0.0140 0.0829 0.0312 0.0193
PE-GQAT 68 26,329 0.0114 0.0685 0.0268 0.0254
GSAGE 348 2,529 0.0170 0.0945 0.0349 0.0569
PE-GSAGE λ = best 222 27,426 0.0114 0.0732 0.0280 0.0464
PE-GQSAGE τ 243 28,481 0.0113 0.0686 0.0266 0.0478
PE-GQSAGE τ , Structure 224 27,385 0.0100 0.0632 0.0248 0.0314
PE-GQSAGE 160 27,417 0.0089 0.0596 0.0229 0.0288
SMACNP 70 748,482 0.0160 0.0881 0.0466 0.1481

As shown in Table 2, PE-GQNN achieves state-of-the-art performance metrics, with major im-
provements over traditional GNN, PE-GNN and SMACNP. For the GSAGE layers, PE-GQSAGE
achieved the lowest MSE, MAE and MPE. For this type of layer, which gave the best results over-
all, we still encounter considerable relative improvements from PE-GQSAGE in comparison with
PE-GSAGE, with a reduction of 22% in MSE, 19% in MAE, 18% in MPE, and 38% in MADECP.
We can also explore in-depth, the contribution of each specific innovation. The τ innovation, which
corresponds to the application of the quantile regression framework proposed by Si et al. (2022),
improved the calibration of quantile predictions, reducing MPE and MADECP. The structural inno-
vation, which involves applying the GNN operator only to the features, is instrumental in enhancing
prediction performance and improving the calibration, as evidenced by reduced MSE, MAE, MPE
and MADECP. Finally, the use of training neighbours’ target mean as a feature introduced at one
of the last network layers also further improved the model. This last innovation also accelerated
convergence during model training, requiring fewer epochs.

(a) PE-GQSAGE densities. (b) ECPs for the test set.

Figure 4: (a) PE-GQSAGE predicted densities of 10 observations sampled from the California Hous-
ing test set. (b) ECP for each τ value used for the California Housing test set.

Figure 4 presents plots that elucidate the behavior of the PE-GQSAGE quantile predictions. Figure
4a illustrates the predicted density of a subsample of 10 observations from the test set. For each
observation of this sample, the cumulative distribution function was approximated via the quantile
predictions using τ values in [0.001, 0.002, . . . , 0.999]

⊤. While parametric models presume a rigid
structure for their outputs (such as a Gaussian distribution), which constrains their expressiveness,
for PE-GQNN, no assumptions are made about the form of the predictive distribution. However, as
shown in Figure 4a, despite the absence of explicit model restrictions, the model produced symmet-
ric distributional shape across predictions, similar to a Gaussian distribution, in this case.

For all test set observations, we verified that no quantile crossings were observed in any of the PE-
GQNN models, i.e., all predicted quantiles are monotonically increasing with respect to τ , aligning
with the expectations described in Section 3.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Lastly, Figure 4b displays the empirical cumulative probability (ECP) for the test dataset quantile
predictions using each of the 99 τ values in [0.01, 0.02, . . . , 0.99]⊤. This type of plot was proposed
by Kuleshov et al. (2018). The closer a model gets to the dashed diagonal line, the closer the τ
values and the ECP. The Gold Standard represents one Monte Carlo draw from a perfectly specified
model, where for each quantile level, the ECP is the observed success rate in n Bernoulli trials
with a success probability of τ , where n is the number of test set instances. It is evident that PE-
GQSAGE has by far the best calibration performance. This is particularly notable when compared
to SMACNP, which exhibits substantial calibration deficiencies due to its tendency to overestimate
the variance component.

4.3 ALL DATASETS

Experiments were conducted on two other geographic datasets used by Klemmer et al. (2023) and
Bao et al. (2024). The Air Temperature dataset (Hooker et al. (2018)) contains geographical coordi-
nates for ∼3,000 meteorological stations worldwide, with the goal of predicting mean temperatures
(y) using mean precipitation levels (x). Models were trained with 80% of the data, with 10% for
validation and testing each, while SMACNP used a 30% subsample for training, following the spec-
ifications of Bao et al. (2024). The 3D road dataset (Kaul et al. (2013)), includes > 430,000 points
with latitude, longitude, and altitude for the Jutland, Denmark road network. The task is to interpo-
late altitude (y) using latitude and longitude (c). The data were split into 90% for training, 1% for
validation, and 9% for testing. SMACNP metrics are not reported due to high computational costs.

Table 3: Performance metrics from three different real-world datasets.

Model California Housing Air Temperature 3D road
MSE MAE MPE MADECP MSE MAE MPE MADECP MSE MAE MPE MADECP

GCN 0.0222 0.1101 0.0403 0.0475 0.0224 0.1158 0.0427 0.0334 0.0170 0.1029 0.0358 0.0560
PE-GCN λ = best 0.0179 0.0935 0.0354 0.0450 0.0045 0.0467 0.0189 0.0640 0.0032 0.0406 0.0151 0.0476
PE-GQCN 0.0114 0.0686 0.0272 0.0262 0.0025 0.0327 0.0119 0.0713 0.0001 0.0053 0.0022 0.0439
GAT 0.0227 0.1099 0.0410 0.0586 0.0233 0.1166 0.0434 0.0497 0.0170 0.1030 0.0359 0.0601
PE-GAT λ = best 0.0183 0.0930 0.0352 0.0476 0.0058 0.0566 0.0209 0.0960 0.0035 0.0430 0.0163 0.0551
PE-GQAT 0.0114 0.0685 0.0268 0.0254 0.0025 0.0340 0.0143 0.0677 0.0001 0.0053 0.0022 0.0545
GSAGE 0.0170 0.0945 0.0349 0.0569 0.0223 0.1152 0.0431 0.0361 0.0170 0.1031 0.0358 0.0582
PE-GSAGE λ = best 0.0114 0.0732 0.0280 0.0464 0.0037 0.0449 0.0169 0.0720 0.0032 0.0422 0.0146 0.0417
PE-GQSAGE 0.0089 0.0596 0.0229 0.0288 0.0023 0.0326 0.0130 0.0785 0.0001 0.0054 0.0022 0.0786
SMACNP 0.0160 0.0881 0.0466 0.1481 0.0018 0.0290 0.0391 0.2160 - - - -

Table 3 showcases the experimental results obtained from all three datasets: California Housing, Air
Temperature, and 3D road. Each GNN layer’s performance is evaluated across three approaches: the
traditional GNN, PE-GNN, and PE-GQNN. The PE-GQNN models incorporate all three innova-
tions discussed in Section 3. Additionally, we include the SMACNP results as a benchmark model
based on GPs. PE-GQNN consistently outperforms both traditional GNN and PE-GNN across
all datasets and GNN backbones. In every dataset, the PE-GQNN innovations lead to significant
reductions in MSE, MAE, and MPE. In the California Housing dataset, PE-GQNN consistently out-
performs SMACNP in predictive accuracy and provides enhanced uncertainty quantification across
all types of GNN layers. Conversely, for the Air Temperature dataset, SMACNP achieves the lowest
MSE and MAE but suffers from significantly uncalibrated predictions, reflected by a much higher
MPE and MADECP compared to PE-GQNN.

5 CONCLUSION

In this work, we have proposed the Positional Encoder Graph Quantile Neural Network (PE-GQNN)
as an innovative framework to enhance predictive modeling for geographic data. Through a series
of rigorous experiments on real-world datasets, we have demonstrated the significant advantages
of PE-GQNN over competitive methods. The empirical results underscored the capability of PE-
GQNN to achieve lower MSE, MAE, and MPE across all datasets and GNN backbones compared
to traditional GNN and PE-GNN. Notably, PE-GQNN demonstrated substantial improvements in
predictive accuracy and uncertainty quantification, as evidenced by its consistent performance in
quantile calibration metrics such as MPE and MADECP. The PE-GQNN framework’s ability to pro-
vide a full description of the predictive conditional distribution, including quantile predictions and
prediction intervals, provides a notable improvement in geospatial machine learning. PE-GQNN
provides a solid foundation for future advancements in the field of geospatial machine learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Luc Anselin. Local indicators of spatial association - LISA. Geographical analysis, 27(2):93–115,
1995.

Luc Anselin. Spatial econometrics. Handbook of Spatial Analysis in the Social Sciences, pp. 101–
122, 2022.

Gabriel Appleby, Linfeng Liu, and Li-Ping Liu. Kriging convolutional networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34(04), pp. 3187–3194, 2020.

Li-Li Bao, Jiangshe Zhang, and Chunxia Zhang. Spatial multi-attention conditional neural pro-
cesses. Neural networks : the official journal of the International Neural Network Society, 173:
106201, 2024. URL https://api.semanticscholar.org/CorpusID:268189461.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. Nature, 619(7970):533–538, 2023.

N. Cressie and C.K. Wikle. Statistics for Spatio-Temporal Data. CourseSmart Series. Wiley, 2011.

Noel Cressie, Matthew Sainsbury-Dale, and Andrew Zammit-Mangion. Basis-function models in
spatial statistics. Annual Review of Statistics and Its Application, 9:373–400, 2022.

Abhirup Datta, Sudipto Banerjee, Andrew O Finley, and Alan E Gelfand. Hierarchical nearest-
neighbor Gaussian process models for large geostatistical datasets. Journal of the American Sta-
tistical Association, 111(514):800–812, 2016.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc
Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta prediction with graph neural
networks in google maps. In Proceedings of the 30th ACM international conference on informa-
tion & knowledge management, pp. 3767–3776, 2021.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric,
2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

Josh Hooker, Gregory Duveiller, and Alessandro Cescatti. A global dataset of air temperature de-
rived from satellite remote sensing and weather stations. Scientific Data, 5(1):1–11, 2018.

Anirudh Ameya Kashyap, Shravan Raviraj, Ananya Devarakonda, Shamanth R Nayak K, Santhosh
KV, and Soumya J Bhat. Traffic flow prediction models–a review of deep learning techniques.
Cogent Engineering, 9(1):2010510, 2022.

Matthias Katzfuss and Joseph Guinness. A general framework for Vecchia approximations of Gaus-
sian processes. Statistical Science, 36(1):124 – 141, 2021.

Manohar Kaul, Bin Yang, and Christian S Jensen. Building accurate 3d spatial networks to enable
next generation intelligent transportation systems. In 2013 IEEE 14th International Conference
on Mobile Data Management, volume 1, pp. 137–146. IEEE, 2013.

Diederik Kingma and Jimmy Ba. ADAM: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Konstantin Klemmer and Daniel B Neill. Auxiliary-task learning for geographic data with au-
toregressive embeddings. In Proceedings of the 29th International Conference on Advances in
Geographic Information Systems, pp. 141–144, 2021.

11

https://api.semanticscholar.org/CorpusID:268189461

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Konstantin Klemmer, Nathan S Safir, and Daniel B Neill. Positional encoder graph neural networks
for geographic data. In International Conference on Artificial Intelligence and Statistics, pp.
1379–1389. PMLR, 2023.

Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica: journal of the Econo-
metric Society, pp. 33–50, 1978.

Volodymyr Kuleshov and Shachi Deshpande. Calibrated and sharp uncertainties in deep learning
via density estimation. In ICML, pp. 11683–11693, 2022.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. In International conference on machine learning, pp. 2796–2804.
PMLR, 2018.

Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between Gaussian fields and
Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of
the Royal Statistical Society Series B: Statistical Methodology, 73(4):423–498, 2011.

Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow predic-
tion with big data: A deep learning approach. IEEE Transactions on Intelligent Transportation
Systems, 16(2):865–873, 2014.

Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. Multi-scale represen-
tation learning for spatial feature distributions using grid cells. In International Conference on
Learning Representations, 2020.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33
(3):291–297, 1997.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32,
2019.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

Marc G Genton Reinhard Furrer and Douglas Nychka. Covariance tapering for interpolation of large
spatial datasets. Journal of Computational and Graphical Statistics, 15(3):502–523, 2006.

Filipe Rodrigues and Francisco C Pereira. Beyond expectation: Deep joint mean and quantile regres-
sion for spatiotemporal problems. IEEE Transactions on Neural Networks and Learning Systems,
31(12):5377–5389, 2020.

Phillip Si, Volodymyr Kuleshov, and Allan Bishop. Autoregressive quantile flows for predictive
uncertainty estimation. In International Conference on Learning Representations, 2022.

BR Sreenivasa and CR Nirmala. Hybrid location-centric e-commerce recommendation model using
dynamic behavioral traits of customer. Iran Journal of Computer Science, 2(3):179–188, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

A. V. Vecchia. Estimation and model identification for continuous spatial processes. Journal of the
Royal Statistical Society: Series B (Methodological), 50(2):297–312, 1998.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations, 2018.

Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Xiaojie Guo. Graph neural networks: Foundation,
frontiers and applications. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4840–4841, 2022.

Shuai Xu, Xiaoming Fu, Jiuxin Cao, Bo Liu, and Zhixiao Wang. Survey on user location prediction
based on geo-social networking data. World Wide Web, 23(3):1621–1664, 2020.

12

	Introduction
	Background
	Method
	Experiments
	Experimental setup
	California Housing
	All datasets

	Conclusion

