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ABSTRACT

Understanding complex three-dimensional (3D) structures of graphs is essential
for accurately modeling various properties, yet many existing approaches struggle
with fully capturing the intricate spatial relationships and symmetries inherent
in such systems, especially in large-scale, dynamic molecular datasets. These
methods often must balance trade-offs between expressiveness and computational
efficiency, limiting their scalability. To address this gap, we propose a novel
Geometric Tensor Network (GotenNet) that effectively models the geometric
intricacies of 3D graphs while ensuring strict equivariance under the Euclidean
group E(3). Our approach directly tackles the expressiveness-efficiency trade-off by
leveraging effective geometric tensor representations without relying on irreducible
representations or Clebsch-Gordan transforms, thereby reducing computational
overhead. We introduce a unified structural embedding, incorporating geometry-
aware tensor attention and hierarchical tensor refinement that iteratively updates
edge representations through inner product operations on high-degree steerable
features, allowing for flexible and efficient representations for various tasks. We
evaluated models on QM9, rMD17, MD22, and Molecule3D datasets, where the
proposed model consistently outperforms state-of-the-art methods in both scalar
and high-degree property predictions, demonstrating exceptional robustness across
diverse datasets, and establishes GotenNet as a versatile and scalable framework
for 3D equivariant Graph Neural Networks.

1 INTRODUCTION
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Figure 1: Comparison of GotenNet and base-
line models on the QM9 dataset.The x-axis
shows the logarithmic MAE across all tar-
gets, while the y-axis shows the standard-
ized MAE. Lower values on both axes indi-
cate better performance, with the ideal per-
formance point being at the lower-left cor-
ner. Points marked as S, B, and L represent
represent small, base, and large model size
variations of the GotenNet, respectively.

Accurately modeling 3D molecular systems is increas-
ingly crucial in areas such as drug discovery (Jing
et al., 2021; Nguyen et al., 2021; Huang et al., 2020;
Chen et al., 2020; Yang et al., 2022; Zhang et al., 2022;
2021), materials science (Pablo-García et al., 2023;
Reiser et al., 2022), and structural biology (Zhang
et al., 2022; 2021). These tasks require a precise un-
derstanding of the spatial configurations and symme-
tries inherent in molecular structures, as these factors
are fundamental to predicting molecular properties.
While predicting scalar molecular properties, such as
energy and stability, is challenging, predicting molec-
ular forces is particularly difficult due to the vector
nature of forces and their dependence on local geomet-
ric environments (Klicpera et al.; Liao & Smidt, 2023;
Wang et al., 2024; 2023b; Du et al., 2023). Traditional
graph neural networks (GNNs), while effective for
general graph-structured data, face challenges in han-
dling the geometric and topological complexities of
3D molecular systems, where achieving equivariance
remains a significant challenge (Satorras et al.; Jing
et al., 2021; Aykent & Xia, 2023; Thomas et al., 2018).
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Recent advances in equivariant neural networks have led to two distinct approaches (Han et al., 2024):
scalarization-based models and high-degree steerable models. Scalarization-based models (Satorras
et al.; Schütt et al., 2021; Du et al., 2023; Thölke & De Fabritiis, 2022) operate by projecting 3D
geometric information into scalar features before reconstruction, offering computational efficiency
and scalability for large-scale applications. However, this projection process may limit expressiveness
in capturing complex geometric patterns, particularly in scenarios requiring precise understanding of
spatial relationships and symmetries. On the other hand, high-degree steerable models (Batzner et al.,
2022; Batatia et al., 2022b; Musaelian et al., 2023; Batatia et al., 2022a; Qiao et al., 2022; Liao &
Smidt, 2023; Liao et al., 2024) achieve impressive performance through irreducible representations
(irreps) and Clebsch-Gordan (CG) transforms, enabling direct manipulation of geometric features in
higher-resolution representation spaces. Despite their theoretical rigor and strong performance, these
models incur significant computational overhead due to their reliance on complex tensor operations
(Cen et al., 2024; Liao & Smidt, 2023; Liao et al., 2024). This fundamental dichotomy between
computational efficiency and geometric expressiveness presents a critical challenge in the field: how
to achieve both qualities while maintaining strong performance across diverse molecular properties.

Fundamental breakthroughs in theoretical understanding have revealed promising directions for
addressing this challenge. Rather than relying on explicit CG coefficients, recent advances have
illuminated how inner product operations can effectively capture similar geometric relationships (Cen
et al., 2024) while being computationally more tractable. This insight suggests the potential for more
efficient architectures that maintain the expressiveness of high-degree representations without the
computational burden of explicit CG transforms. However, translating this theoretical understanding
into practical architectures remains challenging – it requires not only a novel formulation of geometric
operations but also careful consideration of how to maintain numerical stability and computational
efficiency at scale. The challenge is evident in existing models’ inability to bridge the gap between
scalarization-based and high-degree steerable approaches while maintaining practical applicability.
Most current architectures (Han et al., 2024; Wang et al., 2024; Liao & Smidt, 2023; Liao et al., 2024)
either compromise on expressiveness for efficiency or forfeit computational tractability for geometric
accuracy, leaving a clear divide between models optimized for scalar property prediction and those
designed for force field calculations, with few achieving strong performance in both domains.

To address these challenges, we propose a novel framework, the Geometric Tensor Network (Goten-
Net). Our approach focuses on addressing the trade-off between expressiveness and efficiency. First,
we introduce an efficient representation and embedding strategy designed specifically using geometric
tensors, eliminating the need for irreps and CG transforms, thereby reducing computational com-
plexity without sacrificing the expressiveness required for modeling intricate 3D structures. Second,
we present the geometry-aware tensor attention and hierarchical tensor refinement mechanisms.
These mechanisms enhance transformer-based architectures by refining edge representations through
high-degree steerable features, enabling the self-attention mechanism to leverage refined geometric
relationships in determining node interactions. This refinement process enriches the attention weights
with granular geometric information, allowing for more precise modeling of spatial relationships in
molecular structures. These innovations allow the model to represent molecular properties across
multiple scales, adapting to both broad patterns and fine-grained molecular details. As shown in
Figure 1, our model consistently outperforms baselines on the QM9 dataset, excelling in both standard
MAE and log MAE metrics. This highlights GotenNet’ ability to maintain accuracy for large-scale
properties while ensuring precision for smaller-scale ones, resulting in strong overall performance
across diverse molecular properties.

Through rigorous evaluations on benchmark datasets—QM9, Molecule3D, rMD17, and MD22—our
approach consistently outperforms state-of-the-art methods, even in its smallest configuration, estab-
lishing GotenNet as a versatile and scalable framework for future developments in 3D equivariant
graph neural networks. The demonstrated robustness in predicting both scalar and higher degree
tensor properties highlights its broad potential for applications in fields such as drug discovery,
materials science, and molecular dynamics simulations.

2 RELATED WORK

The field of machine learning for molecular representation learning has seen significant advancements
in recent years (Gasteiger et al., 2020; Liu et al.; Gasteiger et al.; Wang et al.; Liao & Smidt, 2023;
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Liao et al., 2024), especially for the development of Graph Neural Networks (GNNs) for predicting
quantum mechanical properties and simulating molecular dynamics. These approaches can be broadly
categorized into two main groups: invariant GNNs and equivariant GNNs.

2.1 INVARIANT GNNS

Invariant GNNs focus on extracting rotation and translation invariant features from molecular
graphs (Xie & Grossman, 2018; Unke & Meuwly; Gasteiger et al., 2020; Gasteiger et al.; Schütt et al.;
Liu et al.; Wang et al.; Klicpera et al.). DimeNet (Gasteiger et al., 2020) introduced the concept of
directional message passing, embedding messages between atoms instead of atoms themselves. This
approach allowed the incorporation of angular information while maintaining rotational equivariance.
GemNet (Klicpera et al.) extended this idea by incorprating dihedral angles and SphereNet (Liu et al.)
integrated torsion information efficiently in the message passing scheme. ComENet (Wang et al.)
built upon these approaches, introducing a novel message passing scheme that operates within 1-hop
neighborhoods and achieves both global and local completeness in incorporating 3D information.

2.2 EQUIVARIANT GNNS

Equivariant GNNs, on the other hand, directly model rotational equivariance and translational
invariance in their architectures (Thomas et al., 2018; Kondor et al., 2018; Schütt et al., 2021; Jing
et al., 2021; Thölke & De Fabritiis, 2022; Wang et al., 2024; Le et al., 2022; Du et al., 2022; 2023;
Aykent & Xia, 2023; Wang et al., 2023b). Current equivariant GNNs can be divided into two primary
approaches based on their feature processing strategies (Han et al., 2024): scalarization-based models
and high-degree steerable models. Scalarization-based models focus on deriving invariant scalar
features from 3D coordinates and then reconstructs directional information for equivariant updates
(Han et al., 2024; Satorras et al.). Several models have successfully implemented this strategy: PaiNN
(Schütt et al., 2021) incorporated both scalar and vectorial features in its message passing framework,
LEFTNet (Du et al., 2023) developed local frame-based representations with structural encodings,
and TorchMD-NET (Thölke & De Fabritiis, 2022) introduced an equivariant transformer architecture
that processes scalar and vector features separately.

The high-degree steerable models leverage high-degree representations and CG tensor products
for molecular modeling (Batzner et al., 2022; Batatia et al., 2022b; Musaelian et al., 2023; Batatia
et al., 2022a; Qiao et al., 2022; Liao & Smidt, 2023; Liao et al., 2024). SE(3)-Transformer (Fuchs
et al., 2020) pioneered this direction by introducing attention mechanisms with high-degree steerable
features, though computational limitations arose from tensor product operations. Subsequent works
like NequIP (Batzner et al., 2022) and MACE (Batatia et al., 2022b) introduced approaches using CG
coefficients for equivariance, while Allegro (Musaelian et al., 2023) introduced a local equivariant
architecture using iterated tensor products. Equiformer (Liao & Smidt, 2023) introduced SE(3)
equivariance into Transformers through depth-wise tensor products and MLP-based attention mecha-
nisms. Building on this work, EquiformerV2 (Liao et al., 2024) enhanced computational efficiency for
high-degree representations by incorporating eSCN (Passaro & Zitnick, 2023), although its Fibonacci
grid sampling approach incurs an O(L3) computational overhead in achieving quasi-equivariance.
While these methods show impressive performance, their computational overhead remains significant.

Recent approaches have explored alternative methods to capture geometric information without
relying on tensor products and CG coefficients, offering more computationally efficient solutions.
ViSNet (Wang et al., 2024) established connections between inner products and Legendre polynomials
through vector-scalar interactive message passing, though focusing on first-degree steerable features.
SO3KRATES (Frank et al., 2024) demonstrated that certain applications of CG coefficients are equiv-
alent to inner products of high-degree steerable features, achieving notable performance in property
prediction tasks through their equivariant transformer architecture. HEGNN (Cen et al., 2024) further
developed these concepts by introducing a scalarization approach using inner products to incorporate
high-degree steerable features. This approach proved capable of capturing complete angular informa-
tion between edge pairs and demonstrating enhanced model robustness in dynamics tasks. Our work
advances this direction by introducing geometry-aware tensor attention, which employs a concise
formulation of inner product operations combined with hierarchical refinement mechanisms. Goten-
Net represents a significant advancement in bridging the critical gap between scalarization-based and
high-degree steerable models. Through its novel architectural design, GotenNet achieves superior
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Figure 2: Architecture of GotenNet. The overall framework (a) includes an embedding, an interaction
module, and decoder; (b) shows the geometry-aware tensor attention (GATA); (c) illustrates the
hierarchical tensor refinement (HTR); and (d) presents the node embedding. In the figure, + denotes
addition, · denotes dot product, ⊕ denotes aggregation, (·, ·) denotes concatenation, ◦ denotes element-
wise (Hadamard) product, LN denotes layer normalization, φ denotes the radial basis functions, and
γ denotes differentiable functions such as MLPs.

performance in real-world molecular property prediction and force field calculations across diverse
datasets.

3 GOTENNET

In this section, we introduce the key components of GotenNet. We first outline the efficient initial-
ization and embedding design tailored for geometric tensors, which eliminates the need for irreps
and CG transforms, reducing computational overhead. Next, we present our geometry-aware tensor
attention and hierarchical tensor refinement mechanisms, which refine edge representations and
enhance traditional dot product attention, enabling accurate and scalable predictions of molecular
properties.

3.1 EQUIVARIANT GEOMETRIC TENSOR REPRESENTATIONS

Molecular property modeling requires accurate representation of both 3D spatial relationships and
chemical interactions. The main challenges lie in encoding node-level and edge-level information
while preserving the geometric and topological features of molecular structures. Our tensor-based
geometric approach addresses these challenges by creating representations that maintain rotational
and translational symmetries, efficiently capturing both local atomic interactions and global molecular
patterns.

Geometric Tensor Notations. In our model, we distinguish between edge scalar features and
edge tensor representations, employing spherical harmonics to initialize the latter. The edge tensor
representation r̃

(l)
ij is initialized based on the relative positions p⃗i and p⃗j of nodes i and j, capturing

spatial information from rank 0 to Lmax. Specifically, r̃ij = {r̃(0), r̃(1), . . . , r̃(Lmax)}, where each
r̃(l) represents l-degree spherical harmonic functions. The components of r̃ij follow a hierarchical
structure of increasing geometric complexity. At the most basic level, r̃(0)ij = ∥p⃗i − p⃗j∥ captures
the scalar distance between nodes, providing rotation and translation invariant information. The
first-degree component r̃(1)ij = (p⃗i − p⃗j)/∥p⃗i − p⃗j∥ encodes directional information, introducing

rotational equivariance. For l ≥ 2, each r̃
(l)
ij comprises (2l + 1) functions derived from spherical

4
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harmonics of degree l, where the degree determines the transformation behavior under rotations, and
the parity of l determines the behavior under inversion. These functions chosen to capture complex
spatial relationships and rotational symmetries inherent in molecular structures. Leveraging the
inherent normalization property of spherical harmonics, each r̃(l) for l ≥ 1 is naturally normalized,
ensuring consistent scaling across different representations.

We denote the geometric node tensors into two types of features: scalar features h ∈ Rdne which
remain invariant under transformations, and high-degree steerable features X̃(l) ∈ R(1+2l)×dne

whose transformations depend on their degree l where dne denotes node embedding dimension.
These representations are initialized and updated through message passing phases using the edge
tensor representation r̃ij and edge scalar features tij as input. The notation X̃ without a specified
degree l refers to the collection of features with degrees from 1 to Lmax. This initialization strategy
enables our model to effectively capture, process, and propagate complex structural information.

Our initialization and feature design ensure equivariance throughout the network. A geometric tensor
field maps 3D points to tensor quantities that transform equivariantly under geometric transformations,
combining both invariant scalars and steerable features. Each layer of GotenNet processes these tensor
fields through equivariant operations while preserving E(3) transformations, with the final layer
producing either equivariant geometric features or invariant representations as required by the task.
This composition of equivariant operations ensures that the entire network maintains equivariance,
with complete proofs provided in the Appendices A, B, and C.

3.2 UNIFIED STRUCTURAL EMBEDDING: INTEGRATING CONTENT AND GEOMETRY

Our approach introduces a unified structure embedding that captures intrinsic atomic properties and
relational information through an integrated node-edge interaction mechanism. By employing a
dual representation strategy, we incorporate local geometric structure through node-edge interaction.
This allows the model to simultaneously process both semantic and geometric information, enabling
efficient message passing for both nodes and edges.

Node Scalar Feature Initialization. Node scalar features are obtained through a two-step process
involving message passing and representation updates. Information from neighboring nodes is
aggregated as:

mi =
∑

j∈N (i)

zjAnbr ◦
(
φ(r̃

(0)
ij )Wndp ◦ ϕ(r̃(0)ij )

)
, (1)

where z denotes the one-hot encoding of the atomic number, ◦ denotes element-wise product, and
Anbr ∈ R|Z|×dne is a learnable embedding matrix for neighbor atoms with maximum atomic number
|Z|. The radial basis functions φ(r̃(0)ij ) encode the distance between nodes i and j, which are then

projected through Wndp. A cutoff function ϕ(r̃
(0)
ij ) is applied to modulate the influence of distant

neighbors.

The initial node scalar feature is defined as:

hi,init =

(
σ
(

LN
(
(ziAna,mi)Wnrd

)))
Wnru. (2)

Here, Ana ∈ R|Z|×dne is a learnable embedding matrix for node atoms, σ denotes a non-linear
activation function and (·, ·) denotes concatenation operation. The concatenated node atom embedding
and aggregated neighbor information undergo a series of transformations: node representation
projections (Wnrd, Wnru), and layer normalization (LN).

Edge Scalar Feature Initialization. Edge scalar features are computed by combining node features
with distance-based edge attributes:

tij,init = (hi,init + hj,init) ◦

(
σ
(

LN
(
φ(r̃(0)ij)Werd

)))
Weru. (3)

Edge attributes are processed through down-projection Werd and up-projection Weru, enabling the
integration of node-level features and spatial relationships. This formulation captures complex
interactions between nodes while maintaining equivariance under molecular transformations.
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High-degree Steerable Feature Initialization. The high-degree steerable features X̃ initialized
during initial interaction layer with the following formulation:

{o(l)
ij,init}

Lmax

l=1 = split
(

seaij + (tij,initWrs,init) ◦ γs(hj,init) ◦ ϕ(r̃(0)ij ), dne

)
,

X̃
(l)
i,init =

⊕
j∈N (i)

(
o
(l)
ij,init ◦ r̃

(l)
ij

)
,

(4)

where seaij is self-attention with geometric encoding, Wrs,init ∈ Rded×dne is a learnable weight
matrix, γs : Rdne → RLmax×dne is a differentiable function, and the split function decomposes the
input tensor into dne-dimensional segments. These segments are used as different coefficients for
each l-degree steerable features.

⊕
denotes a permutation-invariant aggregation function.

3.3 GEOMETRY-AWARE TENSOR ATTENTION

We introduce a novel module called Geometry-Aware Tensor Attention (GATA), which enhances the
attention mechanism in graph neural networks by incorporating spatial information. GATA captures
the geometric relationships between nodes to improve attention-driven message passing.

The GATA module combines self-attention with geometric encoding to generate rich node interaction
representations. We compute the query (q), key (k), and value (v) representations:

qi = hiWq, kj = hjWk, vj = γv(hj), (5)

where Wq,Wk ∈ Rdne×dne are learnable weight matrices, and γv : Rdne → RS×dne is a differen-
tiable function (e.g., MLP). The S variable introduced to generate different coefficients for each
degree of steerable features and formulated as (1+2×Lmax). The attention coefficients αij between
nodes i and j using the dot product of the query vector qi and a geometry-infused key vector, which
is obtained via an element-wise product of kj and a transformed edge embedding:

seaij =
exp(αij)∑

k∈N (i) exp(αik)
vj , where αij = qi

(
kj ◦ σk(tijWre

)
)T . (6)

Here, σk denotes a non-linear activation function, and Wre ∈ Rded×Cne is a learnable weight
matrix that transforms the edge scalar features. To incorporate spatial and directional information,
we augment the attention mechanism with geometric encoding. The GATA operation combines
self-attention with geometric features and is then split into S components:

os
ij , {o

d,(l)
ij }Lmax

l=1 , {ot,(l)
ij }Lmax

l=1 = split(seaij + (tijWrs) ◦ γs(hj) ◦ ϕ(r̃(0)ij ), dne), (7)

where Wrs ∈ Rded×(S·dne) is a learnable weight matrix, γs : Rdne → RS×dne is a differentiable
function, and the split function decomposes the input tensor into dne-dimensional segments. We
define ∆hi and ∆X̃ as the residues, which are calculated by: high-degree steerable features:

∆hi =
⊕

j∈N (i)

(os
ij), ∆X̃

(l)
i =

⊕
j∈N (i)

(
o
d,(l)
ij ◦ r̃(l)ij + o

t,(l)
ij ◦ X̃(l)

j

)
. (8)

Here, each degree l ∈ [1, Lmax] contributes its own component of steerable features weighted by their
respective coefficients od,(l)

ij and o
t,(l)
ij . Finally updated representations using residues calculated

with:
hi = hi +∆hi, X̃

(l)
i = X̃

(l)
i +∆X̃

(l)
i , (9)

By infusing geometric information into the attention mechanism, GATA allows the model to better
capture spatial dependencies and fine-grained node interactions, leading to improved performance in
molecular property predictions, as demonstrated in Section 4.

3.4 HIERARCHICAL TENSOR REFINEMENT

The Hierarchical Tensor Refinement (HTR) component processes graph-structured data through
multi-scale analysis and layer-wise refinement. High-degree steerable features are projected to query
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and key representations using degree-specific SO(3)-equivariant linear transformation (Deng et al.,
2021; Du et al., 2023; Wang et al., 2024) as shown in Equation (10):

ẼQ
(l)

i = X̃
(l)
i Wvq, ẼK

(l)

j = X̃
(l)
j W

(l)
vk , for l ∈ {1, . . . , Lmax}, (10)

where Wvq,W
(l)
vk ∈ Rded×dxpd are tensor query and key projection matrices, respectively. Here,

Wvq is a shared projection matrix across degrees, while W
(l)
vk is degree-spesific. To maintain equiv-

ariance, we apply uniform weights across the spatial dimensions for each representation dimension.
These projections aggregate angular and magnitude information between nodes across tensor degrees,
defined as:

wij = AggLmax

l=1

(
(ẼQ

(l)

i )⊤ẼK
(l)

j

)
, (11)

where wij ∈ Rdxpd represents the aggregated similarity between nodes i and j, and AggLmax

l=1 denotes
an aggregation operation. The aggregated information updates edge representations through a residual
connection:

tij = wijWedp + tijWeru, (12)

where Wedp ∈ Rdxpd×ded is an edge projection matrix, Weru ∈ Rded×ded is a residual update
projection matrix. dxpd is chosen larger than ded for richer intermediate representations. The weight
matrices Wedp and Weru apply the same values across the tensor dimensions, ensuring the model’s
equivariance is preserved.

3.5 EQUIVARIANT FEED-FORWARD (EQFF) NETWORKS

The EQFF blocks, employed after GATA, facilitates efficient channel-wise interaction while main-
taining equivariance. The module separates scalar and high-degree steerable features, combining
them with non-linear mappings:

EQFF(h, X̃(l)) =
((

h+m1

)
,
(
X̃(l) + (m2 ◦ X̃(l)Wvu)

))
,

where m1,m2 = split2
(
γm
(
||X̃(l)Wvu||2,h

))
.

(13)

Here γm denote differentiable functions such as MLPs, Wvu denotes learnable weight matrices,
(·, ·) denotes concatenation, and || · ||2 denotes L2 norm. The EQFF module operates on the tensor
representations while separating the scalar and high-degree steerable features and combining them
through element-wise operations. The use of γm enables the model to learn complex non-linear
mappings, enhancing its expressiveness (Elfwing et al., 2018; Ramachandran et al., 2017).

4 EXPERIMENTS

In this section, we compare the performance of GotenNet with other state-of-the-art methods. Experi-
ments were conducted with an NVIDIA A100 GPU with 80GB video memory, 512GB RAM, and an
AMD EPYC 7713P CPU. We evaluated models on QM9, rMD17, MD22, and Molecule3D datasets.
The best results are bolded and the second best are underlined. Additional details on hyperparameters
and scalability, as well as additional experiments, can be found in the Appendix E.

4.1 QM9 DATASET

Dataset. The proposed method is evaluated against a comprehensive set of baselines using the QM9
dataset(Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). These baselines include Cormorant
(Anderson et al., 2019), ClofNet (Du et al., 2022), NMP (Gilmer et al., 2017), EGNN (Satorras
et al.), SEGNN (Brandstetter et al., 2022), PaiNN (Schütt et al., 2021), DimeNet++ (Gasteiger et al.),
ComENet (Wang et al.), SphereNet (Liu et al.), LEFTNet (Du et al., 2023), EQGAT (Le et al., 2022),
ET (Thölke & De Fabritiis, 2022), HDGNN (An et al., 2024), Geoformer (Wang et al., 2023a),
Equiformer (Liao & Smidt, 2023), and EquiformerV2 (Liao et al., 2024). Due to space constraints,
Table 1 presents only the ten baseline methods with the lowest std. MAEs, while the complete
comparison is provided in Appendix H Table 8.
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Table 1: Performance comparisons on QM9 dataset. † denotes using different data partitions.

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE std. log
Units ma3

0 meV meV meV mD mcal
mol K meV meV ma2

0 meV meV meV % -

PaiNN† 45 45.7 27.6 20.4 12.0 24 7.35 5.98 66 5.83 5.85 1.28 1.01 -5.85
DimeNet++† 44 32.6 24.6 19.5 29.7 23 7.56 6.53 331 6.28 6.32 1.21 0.98 -5.67
SphereNet† 46 31.1 22.8 18.9 24.5 22 7.78 6.33 268 6.36 6.26 1.12 0.91 -5.73
LEFTNet 48 40 24 18 12 23 7 6 109 7 6 1.33 0.91 -5.82
EQGAT 53 32 20 16 11 24 23 24 382 25 25 2.00 0.86 -5.28
ET 59 36.1 20.3 17.5 11 26 7.62 6.16 33 6.38 6.15 1.84 0.84 -5.90
HDGNN† 46 32 18 16 17 23 11 10 342 8.12 8.34 1.21 0.80 -5.64
Geoformer 40 33.8 18.4 15.4 10 22 6.13 4.39 28 4.41 4.43 1.28 0.75 -6.12
Equiformer 46 30 15.4 14.7 12 23 7.63 6.63 251 6.74 6.59 1.26 0.70 -5.82
EquiformerV2 47 29.0 14.4 13.3 9.9 23 7.57 6.22 186 6.49 6.17 1.47 0.67 -5.87

GotenNetS 35 23.2 16.3 14.7 7.5 20 5.51 3.86 26 3.76 3.82 1.15 0.62 -6.27
GotenNetB 33 21.3 15.2 13.5 7.3 20 5.33 3.52 25 3.49 3.49 1.10 0.58 -6.33
GotenNetL 30 19.9 13.7 12.2 7.7 19 4.98 3.36 21 3.33 3.37 1.08 0.54 -6.39

Model Performance and Size Scaling Analysis. We evaluate three model variants - small (S), base
(B), and large (L) - to analyze both performance and scaling behavior, with detailed specifications in
Appendix E. As shown in Table 1, even our smallest variant GotenNetS outperforms baseline methods
on ten out of twelve targets while surpassing baselines on std. MAE and log MAE. GotenNetB
demonstrates further improvements, achieving best performance on ten targets and significantly
improving aggregated metrics, reducing standard MAE by over 13% and log MAE by 3% compared
to the best baseline results. The largest variant GotenNetL achieves state-of-the-art performance
across all metrics, although the relative improvement decreases compared to GotenNetB , which
suggests that dataset size may become a limiting factor for larger models. To investigate scaling to
larger datasets, we conduct experiments in Section 4.2 on the Molecule3D dataset, which contains
more than 3 million molecules - an order of magnitude larger than QM9. These comprehensive
results establish GotenNet as the new state-of-the-art while revealing important insights about model
scaling behavior.

Table 2: Performance comparisons on Molecule3D dataset.

Split Random Scaffold
Task µ εHOMO εLUMO ∆ε std. log ∆ε

GIN-Virtual .0882 .0692 .0632 .1036 .0592 -2.87 .2371
SchNet .0532 .0275 .0265 .0428 .0263 -3.66 .1511
DimeNet++ .0293 .0240 .0190 .0306 .0188 -4.01 .1214
SphereNet .0288 .0239 .0183 .0301 .0184 -4.03 .1182
ComENet .0345 .0288 .0252 .0326 .0220 -3.84 .1273
PaiNN .0196 .0263 .0197 .0307 .0182 -4.08 .1208
ET .0223 .0199 .0194 .0303 .0170 -4.13 .1282
LEFTNet .0151 .0183 .0157 .0275 .0145 -4.32 .1317
SaVeNet-L .0136 .0159 .0143 .0239 .0128 -4.44 .1082
Geoformer - - - .0202 - - .1135

GotenNet .0103 .0108 .0112 .0165 .0103 -4.65 .1002
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Figure 3: Comparison of training latency
of the models with respect to node count
on the Molecule3D dataset.

4.2 MOLECULE3D DATASET

Dataset. We further evaluate our model on the Molecule3D dataset (Xu et al., 2021). This dataset
contains over 29× more graphs than QM9, with approximately 1.6× and 1.9× increases in the average
number of nodes and edges per graph, providing an ideal benchmark for both model performance and
computational scaling. We compare against diverse baseline models, including GIN-Virtual (Wang
et al.), SchNet (Schütt et al.), DimeNet++ (Gasteiger et al.), SphereNet (Liu et al.), ComENet (Wang
et al.), PaiNN (Schütt et al., 2021), ET (Thölke & De Fabritiis, 2022), LEFTNet (Du et al., 2023),
SaVeNet (Aykent & Xia, 2023), and Geoformer (Wang et al., 2023a).

Model Performance on Large-Scale Data. As shown in Table 2, GotenNet maintains its superior
performance even on this larger Molecule3D dataset, achieving the lowest errors across all tasks,
including µ, εHOMO, εLUMO, and ∆ε. Notably, GotenNet surpasses the previous best model, SaVeNet-
L, by a significant margin of 24% in µ and more than 32% in εHOMO. The best log error of -4.65 in
the random split further demonstrates the model’s robustness on larger datasets.
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Table 3: Comprehensive comparison of various molecular modeling methods on MD22 dataset.
The results are reported in MAE of energy (kcal/mol) and forces (kcal/mol/Å) denoted as E and F,
respectively. |G| denotes the size of the graphs in terms of node count.

Molecule |G| sGDML ET Allegro MACE Equiformer ViSNet QuinNet E-LSRM V-LSRM SO3KRATES GotenNetS GotenNetB

Tetrapeptide 42 E 0.3902 0.1121 0.1019 0.0620 0.0828 0.0796 0.0840 0.0780 0.0654 0.337 0.0589 0.0501
F 0.7968 0.1879 0.1068 0.0876 0.0804 0.0972 0.0681 0.0887 0.0902 0.244 0.0719 0.0600

DHA 56 E 1.3117 0.1205 0.1153 0.1317 0.1788 0.1526 0.1200 0.0878 0.0873 0.379 0.0642 0.0575
F 0.7474 0.1209 0.0732 0.0646 0.0506 0.0668 0.0515 0.0534 0.0598 0.242 0.0505 0.0421

Stachyose 87 E 4.0497 0.1393 0.2485 0.1244 0.1404 0.1283 0.2300 0.1252 0.1055 0.442 0.0751 0.0673
F 0.6744 0.1921 0.0971 0.0876 0.0635 0.0869 0.0543 0.0632 0.0767 0.435 0.0512 0.0427

AT-AT 60 E 0.7235 0.1120 0.1428 0.1093 0.1309 0.1688 0.1400 0.1007 0.0772 0.178 0.0640 0.0557
F 0.6911 0.2036 0.0952 0.0992 0.0960 0.1070 0.0687 0.0881 0.0781 0.216 0.0632 0.0525

AT-AT-CG-CG 118 E 1.3885 0.2072 0.3933 0.1578 0.1510 0.1995 0.3800 0.1335 0.1135 0.345 0.0964 0.0959
F 0.7028 0.3259 0.1280 0.1153 0.1252 0.1563 0.1273 0.1065 0.1063 0.332 0.0824 0.0773

Buckyball
catcher 148 E 1.1962 0.5188 0.5258 - 0.3978 0.4421 0.5624 - 0.4220 0.381 0.3391 0.3088

F 0.6820 0.3318 0.0887 - 0.1114 0.1335 0.1091 - 0.1026 0.237 0.0858 0.0797
Double-walled
nanotube 370 E 4.0122 1.4732 2.2097 - 1.1945 1.0339 1.8130 - 1.8230 0.993 1.0279 0.6641

F 0.5231 1.0031 0.3428 - 0.2747 0.3959 0.2473 - 0.3391 0.727 0.2558 0.1888

Computational Efficiency Analysis. Beyond performance metrics, scaling to larger datasets requires
efficient handling of increased graph sizes. We analyze computational efficiency by measuring
training time across varying node counts (10-140 nodes per graph). Figure 3 compares GotenNet
with competitive attention-based baselines including Geoformer (Wang et al., 2023a), Equiformer
(Liao & Smidt, 2023), and EquiformerV2 (Liao et al., 2024). Full experimental setup details are
provided in Appendix F. The x-axis shows the node count, while the y-axis shows the training time per
batch in milliseconds. The results show GotenNet maintains efficient scaling at higher node counts,
while baseline methods like Geoformer, despite strong performance on smaller graphs, become
computationally intensive due to their dense O(n2) representations. Both GotenNetS and GotenNetB
variants maintain consistent efficiency across all node counts, demonstrating their suitability for
large-scale applications where computational overhead is critical.

4.3 MD22 DATASET

Dataset. The MD22 dataset (Chmiela et al., 2023) contains molecular dynamics trajectories for seven
systems, , with atom counts from 42 to 370, across four biomolecule and supramolecule classes.
It presents challenges in system size, flexibility, and nonlocality, making it a key benchmark for
scalability and accuracy in molecular force field models. Following the data splits from (Chmiela
et al., 2023), we evaluate GotenNetagainst several baselines, including sDGML (Chmiela et al.,
2018), ET (Thölke & De Fabritiis, 2022), Allegro (Musaelian et al., 2023), MACE (Batatia et al.,
2022b), Equiformer (Liao & Smidt, 2023), ViSNet (Wang et al., 2024), QuinNet (Wang et al., 2023b),
SO3KRATES (Frank et al., 2024), and LSRM (Li et al., 2024) along with its variants E-LSRM
(Equiformer-LSRM) and V-LSRM (ViSNet-LSRM).

Results. The MD22 dataset poses significant challenges due to its wide range of molecule sizes,
requiring accurate predictions of both energy and forces. We showed results of MD22 dataset in
Table 3. Our proposed model, GotenNet , consistently outperforms state-of-the-art methods across all
evaluated molecules, demonstrating superior performance in both energy and force predictions.

For molecules such as Tetrapeptide and AT-AT, GotenNet achieves notable reductions in energy errors,
with improvements of 19.2% and 27.8% over the previous best models, respectively. Simultaneously,
force prediction errors are reduced by up to 27.2%, underscoring GotenNet’s balanced performance
across both metrics. In more complex cases, such as the Buckyball catcher and Double-walled
nanotube, GotenNet sets new benchmarks, reducing energy errors by over 35% and force errors by
up to 31.9%. These results highlight the robustness and versatility of GotenNet in handling diverse
molecular structures, establishing it as a leading model in both energy and force prediction.

4.4 RMD17 DATASET

Dataset. The rMD17 dataset (Christensen & Von Lilienfeld, 2020) is a revised version of the MD17
benchmark, featuring 10 small organic molecules with 100,000 conformations per molecule. It serves
as a key benchmark for evaluating machine learning models’ ability to predict molecular energies
and forces across diverse conformations. We follow the standard split (Christensen & Von Lilienfeld,
2020) of 950 training, 50 validation, and the remaining conformations for testing, the results are
averaged over five predefined splits to ensure robust evaluation.
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Table 4: The table presents MAE for energy (kcal/mol) and forces (kcal/mol/Å) on the rMD17 dataset.

Molecule NequIP ACE UNiTE Allegro BOTNet MACE TensorNet GotenNet

Aspirin E 0.0530 0.1407 0.0553 0.0530 0.0530 0.0507 0.0553 0.0364
F 0.1891 0.4128 0.1753 0.1683 0.1960 0.1522 0.2052 0.1338

Azobenzene E 0.0161 0.0830 0.0254 0.0277 0.0161 0.0277 0.0161 0.0125
F 0.0669 0.2514 0.0969 0.0600 0.0761 0.0692 0.0715 0.0500

Benzene E 0.0009 0.0009 0.0016 0.0069 0.0007 0.0092 0.0005 0.0005
F 0.0069 0.0115 0.0168 0.0046 0.0069 0.0069 0.0069 0.0048

Ethanol E 0.0092 0.0277 0.0143 0.0092 0.0092 0.0092 0.0115 0.0071
F 0.0646 0.1683 0.0853 0.0484 0.0738 0.0484 0.0807 0.0482

Malonaldehyde E 0.0184 0.0392 0.0254 0.0138 0.0184 0.0184 0.0184 0.0129
F 0.1176 0.2560 0.1522 0.0830 0.1338 0.0945 0.1245 0.0830

Naphthalene E 0.0208 0.0208 0.0106 0.0046 0.0046 0.0115 0.0046 0.0039
F 0.0300 0.1176 0.0600 0.0208 0.0415 0.0369 0.0369 0.0240

Paracetamol E 0.0323 0.0922 0.0438 0.0346 0.0300 0.0300 0.0300 0.0212
F 0.1361 0.2929 0.1637 0.1130 0.1338 0.1107 0.1361 0.0929

Salicylic acid E 0.0161 0.0415 0.0168 0.0208 0.0184 0.0208 0.0184 0.0161
F 0.0922 0.2145 0.0876 0.0669 0.0992 0.0715 0.1061 0.0763

Toluene E 0.0069 0.0254 0.0104 0.0092 0.0092 0.0115 0.0069 0.0048
F 0.0369 0.1499 0.0577 0.0415 0.0438 0.0346 0.0392 0.0254

Uracil E 0.0092 0.0254 0.0134 0.0138 0.0092 0.0115 0.0092 0.0074
F 0.0715 0.1522 0.0876 0.0415 0.0738 0.0484 0.0715 0.0450

Results. As shown in Table 4, GotenNet outperforms other models in 75% of tasks and ranks second
in the remaining, excelling in both energy and force predictions. GotenNet sets new benchmarks for
molecules such as Aspirin, Azobenzene, Ethanol, Paracetamol, and Toluene, demonstrating balanced
improvements across energy and force predictions. These results highlight GotenNet’s robustness and
its ability to accurately model molecular properties, outperforming prior methods on rMD17 dataset.

4.5 ABLATION STUDY

Table 5: Ablation study on QM9 dataset.

# L Lmax SE SEA GE HTR std log

4 2 ✓ ✓ ✓ ✓ 0.67 -6.21
6 1 ✓ ✓ ✓ ✓ 0.68 -6.17
6 2 ✗ ✓ ✓ ✓ 0.67 -6.17
6 2 ✓ ✗ ✓ ✓ 0.65 -6.23
6 2 ✓ ✓ ✗ ✓ 0.83 -5.96
6 2 ✓ ✓ ✓ ✗ 0.64 -6.20
6 2 ✓ ✓ ✓ ✓ 0.61 -6.26
12 2 ✓ ✓ ✓ ✓ 0.56 -6.34

Table 5 presents the results of the ablation study,
highlighting the impact of various components
on the performance of GotenNet. The inclu-
sion of structural embedding (SE), self-attention
(SEA), geometric encoding (GE), and HTR gen-
erally leads to improved results, as shown in
rows 1, 7, and 8, where the model achieves the
lowest std MAE and log MAE. The removal of
any one of these components results in a signifi-
cant degradation in performance, particularly in
the cases without geometric encoding (row 4) or
reducing Lmax (row 2). The full model with 12 layers (row 8) achieves the best performance, with
the lowest std MAE of 0.56 and log MAE of -6.34. This demonstrates the combined effectiveness of
all components for model scalability.

5 CONCLUSION

We presented GotenNet, a framework for modeling 3D molecular structures that strikes a balance
between expressiveness and efficiency by integrating geometric tensor representations with innovative
components, including unified structure embedding, geometry-aware tensor attention, and hierarchical
tensor refinement. GotenNet consistently outperforms state-of-the-art methods across four benchmark
datasets. It also demonstrates scalability and computational efficiency, making it highly suitable
for large-scale molecular systems. These results establish GotenNet as a versatile and powerful
framework for 3D equivariant graph neural networks. Future work could further enhance its scalability
to larger molecular systems and explore applications in molecular dynamics and materials science.
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APPENDIX

A PROOF: EQUIVARIANCE OF GEOMETRIC TENSOR

Equivariance of Geometric Tensor: Let T : M → T be a geometric tensor field, and g ∈ E(3) be
an element of the Euclidean group. Then T is equivariant under g if:

(g · T )(p) = ρ(g)T (g−1 · p)

where ρ is a representation of E(3) on the space of tensors T .

Proof. To prove the equivariance of the geometric tensor field, we start by recalling the definition of
equivariance. A tensor field T : M → T is equivariant under the group action of g ∈ E(3) if, for all
points p ∈ M ,

T (g · p) = ρ(g)T (p),

where ρ(g) is a representation of the group element g on the space T .

Now, consider the action of the group element g ∈ E(3) on T . By the definition of the group action
of g on the tensor field T , we have:

(g · T )(p) = T (g−1 · p).

Next, we apply the representation ρ(g) to the transformed tensor T (g−1 · p). By the equivariance
condition, we require that:

(g · T )(p) = ρ(g)T (g−1 · p).
This completes the proof, as we have shown that the transformed tensor field g · T is related to the
original tensor field T by the representation ρ(g), satisfying the equivariance condition.

B PROOF: GOTENNET PRESERVE THE EQUIVARIANCE PROPERTY

Proof. We will prove that layer operations in GotenNet preserve the equivariance property of geo-
metric tensor fields under the action of the Euclidean group E(3). To this end we will prove that each
component used in GotenNet preserves the invariance/equivariance properties.

First we will prove that the initial node and edge representations are invariant under the action of
the Euclidean group E(3). We’ll consider each component separately. The node embedding process
consists of two main steps: message passing and representation update. We’ll show that both steps
are invariant under E(3). The message passing equation in node embedding is:

mi =
∑

j∈N (i)

zjAnbr ◦
(
φ(r̃(0)ij)Wndp ◦ ϕ(r̃(0)ij)

)
.

Under the action of g ∈ E(3) zj is invariant as it’s an atomic number. r̃ij,init is invariant as it’s the
distance between nodes i and j. N (i) is invariant as the set of neighbors doesn’t change under rigid
transformations. Therefore, mi is invariant under E(3). The node representation update is defined
as:

hi,init =

(
σ
(

LN
(
(ziAna,mi)Wnrd

)))
Wnru.

Here, zi is invariant, mi is invariant (as shown above), and all other operations (concatenation, linear
transformations, layer normalization, and activation) are invariant. Thus, hi is invariant under E(3).
The node embedding is followed by edge embedding and the initial edge representation is computed
as:

tij,init = (hi,init + hj,init) ◦

(
σ
(

LN
(
φ(r̃

(0)
ij )Werd

)))
Weru.

We’ve already shown that hinit is invariant. The distance rij,init is also invariant under E(3). The
operations φ, LN, σ, and linear transformations are all invariant. Therefore, tij,init is invariant under
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E(3). Thus, we have shown that both the initial node representations hi,init and edge representations
tij,init are invariant under the action of the Euclidean group E(3).

After the initialization step the next module is GATA. Therefore, we will prove that the GATA module
and the subsequent operations in the interaction layer preserve equivariance under the action of the
Euclidean group E(3). The query, key, and value Computation as defined in Equation (5), we have:

qi = hiWq, kj = hjWk, vj = γv(hj),

hi and hj are scalar (0-degree steerable features) representations, which are invariant under E(3).
The linear transformations Wq and Wk, and the function γv, preserve this invariance. Thus, qi, kj ,
and vj are invariant under E(3). The attention coefficients are defined in Equation (6), the attention
coefficient αij is computed as:

αij = qi
(
kj ◦ σk(tijWre

)
)T .

We’ve shown that qi and kj are invariant. tij is an edge embedding, which is invariant under E(3).
The operations σk, ◦, and matrix multiplication preserve invariance. Therefore, αij is invariant under
E(3). The self-attention operation in Equation (6) defined as:

seaij =
exp(αij)∑

k∈N (i) exp(αik)
vj .

Since αij and vj are invariant, and the softmax operation preserves invariance, seaij is invariant
under E(3). Geometric Encoding defined in Equation (7), we have:

os
ij , {o

d,(l)
ij }Lmax

l=1 , {ot,(l)
ij }Lmax

l=1 = split(seaij + (tijWrs) ◦ γs(hj) ◦ ϕ(r̃(0)ij ), dne).

seaij , tij , hj , and r̃
(0)
ij are all invariant under E(3). The operations Wrs, γs, ϕ, ◦, and split preserve

this invariance. Therefore, os
ij , {od,(l)

ij }Lmax

l=1 and {ot,(l)
ij }Lmax

l=1 are invariant under E(3). Finally, node
tensor representation updated with Equation (8), we have:

∆hi =
⊕

j∈N (i)

(os
ij), ∆X̃

(l)
i =

⊕
j∈N (i)

(
o
d,(l)
ij ◦ r̃(l)ij + o

t,(l)
ij ◦ X̃(l)

j

)
.

Here, hi, os
ij , {od,(l)

ij }Lmax

l=1 and {ot,(l)
ij }Lmax

l=1 are invariant under E(3). Specifically, {od,(l)
ij }Lmax

l=1

and {ot,(l)
ij }Lmax

l=1 are sets of invariant coefficients, where for each degree l of steerable features,

we have distinct invariant scalars od,(l)
ij and o

t,(l)
ij . r̃(l)ij and X̃j are high-degree steerable features

that transform equivariantly under E(3). The ◦ operation between invariant scalars and equivariant
tensors preserves equivariance. Specifically, since ◦ multiplies the same invariant values over the
spatial dimension of the high-degree tensors, this operation preserves equivariance. To see this, let
g ∈ E(3) be a transformation, s be an invariant scalar, and T be an equivariant tensor. Then:

g(s ◦ T ) = g(sT ) = sg(T ) = s ◦ g(T ).
This shows that the ◦ operation commutes with the group action, preserving equivariance. The
permutation-invariant aggregation function

⊕
(such as summation or averaging) preserves equivari-

ance because it operates independently on each degree of the tensor, maintaining their transformation
properties under E(3). Therefore, the scalar ∆hi remains invariant, while the high-degree steerable
features X̃(l) transform equivariantly under E(3). Thus, we have shown that the interaction layer
preserves the equivariance of the input representations under the action of the Euclidean group E(3).
Thus, we have shown that the interaction layer preserves the equivariance of the input representations
under the action of the Euclidean group E(3).

Next, we will prove that the HTR component preserves equivariance under the action of the Euclidean
group E(3). We’ll consider each operation in the HTR component. Tensor projections as defined in
Equation (10), we have:

ẼQ
(l)

i = X̃
(l)
i Wvq, ẼK

(l)

j = X̃
(l)
j W

(l)
vk , for l ∈ {1, . . . , Lmax},

X̃
(l)
i and X̃

(l)
j are high-degree tensors that transform equivariantly under E(3). The projection

matrices Wvq and W
(l)
vk apply uniform weights across the spatial dimensions for each representation
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dimension. This uniform application preserves equivariance because it commutes with the action of
E(3). Let g ∈ E(3) be a transformation:

g(X̃
(l)
i Wvq) = (g(X̃

(l)
i ))(Wvq) = (g(X̃

(l)
i Wvq)).

The same holds for ẼK
(l)

j . Therefore, ẼQ
(l)

i and ẼK
(l)

j transform equivariantly under E(3).
Aggregation of angular and magnitude information from Equation (11), we have:

wij = AggLmax

l=1

(
(ẼQ

(l)

i )⊤ẼK
(l)

j

)
.

The operation (ẼQ
(l)

i )⊤ẼK
(l)

j is an inner product between equivariant tensors. Crucially, both

ẼQ
(l)

i and ẼK
(l)

j are subject to the same global rotation and translation under the action of E(3).
Let g ∈ E(3) be a transformation. Then:

(g(ẼQ
(l)

i ))⊤g(ẼK
(l)

j ) = (D(l)(r) · ẼQ
(l)

i )⊤(D(l)(r) · ẼK
(l)

j )

= (ẼQ
(l)

i )⊤(D(l)(r))⊤D(l)(r) · ẼK
(l)

j

= (ẼQ
(l)

i )⊤ẼK
(l)

j · ηl.

Here, D(l)(r) represents the Wigner D-matrix of degree l, which is the appropriate representation
for the transformation of spherical tensors under rotations. The matrix D(l)(r) is unitary, meaning
(D(l)(r))⊤D(l)(r) = I . The factor ηl = ±1 accounts for the parity transformation, where η = −1
for improper rotations and η = 1 for proper rotations, with the exponent l determining the overall
sign based on the spherical harmonic degree. This demonstrates that the inner product transforms
covariantly under the full O(3) symmetry group, with the parity factor properly accounting for
improper rotations. The aggregation

⊕
over these covariant scalars preserves the transformation

properties, ensuring that wij transforms appropriately under both rotations and inversions. The edge
representation update is given by:

tij = wijWedp + tijWeru,

wij is invariant, as shown in the previous step, and tij is an edge embedding, which is also invariant
under E(3). Since both wij and tij are invariant scalars, their multiplication with the weight matrices
Wedp and Weru preserves invariance. The addition of two invariant quantities also results in an
invariant quantity. Therefore, we can conclude:

g(tij) = g(wijWedp + tijWeru) = wijWedp + tijWeru = tij

Thus, tij is invariant under E(3). Thus, we have shown that the Hierarchical Tensor Refinement
component preserves the equivariance of the input representations under the action of the Euclidean
group E(3). The high-degree tensors transform equivariantly, while the scalar quantities and edge
embeddings remain invariant.

Finally, we will prove that the EQFF (Equivariant Feed-Forward) blocks preserve equivariance under
the action of the Euclidean group E(3). Consider each operation in the EQFF component as described
in Equation (13). The input scalars h is invariant under E(3) as it represents scalar features, while
X̃ transforms equivariantly under E(3) as it represents high-degree steerable features. Next, we
examine the computation of m1 and m2:

m1,m2 = split2(γm(||X̃(l)Wvu||2,h)).

The operation X̃(l)Wvu preserves equivariance as it applies the same linear transformation across all
spatial dimensions. The L2 norm of this equivariant tensor field, ||X̃(l)Wvu||2, is invariant under
E(3). To see this, let g ∈ E(3) be a transformation. Then ||g(X̃(l)Wvu)||2 = ||R · (X̃(l)Wvu)||2 =

||X̃(l)Wvu||2, where R is the rotation matrix corresponding to g. The translation component doesn’t
affect the norm. The concatenation (||X̃(l)Wvu||2,h) is of two invariant quantities, resulting in
an invariant vector. As γm is applied to an invariant input, its output is also invariant. Finally,
splitting this invariant vector results in invariant components m1 and m2. Now, we analyze the
EQFF operation:

EQFF(h, X̃(l)) =
((

h+m1

)
,
(
X̃(l) + (m2 ◦ X̃(l)Wvu)

))
.
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The term h+m1 is a sum of two invariant quantities, resulting in an invariant scalar. The operation
m2 ◦X̃(l)Wvu preserves equivariance because m2 is an invariant scalar and X̃(l)Wvu is equivariant.
The element-wise product of an invariant scalar with an equivariant tensor is equivariant. Conse-
quently, X̃(l) + (m2 ◦ X̃(l)Wvu) is a sum of two equivariant tensors, resulting in an equivariant
tensor. Hence, EQFF returns tuple of updated representations for scalar and high-degree steerable
features.

Thus, we have shown that the EQFF operation preserves the equivariance of the input representations
under the action of the Euclidean group E(3). The scalar part remains invariant, while the high-degree
steerable features transform equivariantly.

Hence, we have shown that each major component of the GotenNet architecture preserves the
equivariance property under the action of the Euclidean group E(3). The initial node and edge
embeddings are invariant under E(3). The GATA module, including its self-attention mechanism and
geometric encoding, maintains the invariance of scalar quantities and the equivariance of high-degree
steerable tensors. The Hierarchical Tensor Refinement (HTR) component preserves equivariance in its
tensor projections and ensures that edge updates remain invariant. Finally, the EQFF blocks maintain
the overall equivariance structure by preserving the invariance of scalar parts and the equivariance of
high-degree steerable features. In each of these components, we have demonstrated how the various
operations interact with the group action of E(3) to preserve the required invariance and equivariance
properties.

C PROOF: EQUIVARIANCE OF GOTENNET

Equivariance of GotenNet: If all layers of GotenNet are equivariant, then the entire network is
equivariant.

Proof. We will prove this by induction on the number of layers in the network.

Base Case (Layer 1): Let T 1 : M → T 1 represent the output of the first layer of the network. Since
the first layer is equivariant by assumption, we have that for all g ∈ E(3),

(g · T 1)(p) = ρ(g)T 1(g−1 · p).

Thus, the first layer preserves equivariance.

Inductive Step: Assume that the output of layer l, denoted by T l, is equivariant. That is, for all
g ∈ E(3),

(g · T l)(p) = ρ(g)T l(g−1 · p).
We need to show that layer l + 1, denoted by T l+1, is also equivariant. Let Φl+1 represent the
operation of the (l + 1)-th layer. Then T l+1 = Φl+1 ◦ T l. Since the (l + 1)-th layer is also assumed
to be equivariant, we have:

(g · T l+1)(p) = ρ(g)T l+1(g−1 · p).

The equivariance of T l+1 follows from the equivariance of T l and Φl+1, as the composition of
equivariant functions is also equivariant. Explicitly:

(g · T l+1)(p) = (g · (Φl+1 ◦ T l))(p)

= Φl+1((g · T l)(p))

= Φl+1(ρ(g)T l(g−1 · p))
= ρ(g)Φl+1(T l(g−1 · p))
= ρ(g)T l+1(g−1 · p)

Hence, by the principle of mathematical induction, we have shown that if all individual layers in
the GotenNet are equivariant, then for any number of layers, the final output of the network, being
the composition of these equivariant layers, is also equivariant. This result relies on the property
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that the composition of equivariant functions is itself equivariant. Specifically, we have shown that
T l+1 = Φl+1◦T l, and the equivariance of both Φl+1 and T l ensures the equivariance of T l+1. Hence,
the entire network is equivariant. This theorem, combined with the previous proof of component-wise
equivariance (see Appendix B), establishes the overall equivariance of the GotenNet architecture,
ensuring its consistency under Euclidean transformations of the input space.

D REPRODUCIBILITY STATEMENT

The details on components of the architecture, hyper-parameters, and model variations are outlined in
Section E. The code used to reproduce the experiments will be available. All datasets used in this
study are publicly available; the access instructions will be included in the source code. We have
included information on the computational resources used for our experiments, including hardware
specifications and software versions, to facilitate reproducibility of our results.

Table 6: Hyper-parameters for the datasets GotenNet compared against the baselines. The parameters
are for GotenNetB if multiple variations exists.

Hyper-parameters QM9 Molecule3D MD22 rMD17

Optimizer AdamW AdamW AdamW AdamW
Learning rate scheduling Linear warmup with reduce on plateau
Warmup steps 10,000 5,000 1,000 1,000
Maximum learning rate [6e−5, 1e−4] 1e−4 [4e−5, 1e−4] 2e−4
Learning rate decay 0.8 0.8 0.8 0.8
Learning rate patience 15 5 30 30
Loss function MSE L1 MSE MSE
Gradient clipping 10 - 5 10
Batch size 32 256 4 4
Number of epochs 1,000 300 3,000 3,000
Weight decay 0.01 0.01 0.01 0.01
Dropout rate 0.1 0.1 0.1 0.1
Node dimension (dne) 256 384 [256, 384] 192
Edge dimension (ded) 256 384 [256, 384] 192
Edge refinment dimension (dxpd) 256 384 768 768
Lmax 2 2 2 2
Number of Layers 6 12 [6, 8] 12
Number of RBFs 64 32 32 64
Number of Attention Heads 8 8 8 8
Cutoff radius 5.0 5.0 [4.0, 5.0] 5.0

E TRAINING DETAILS AND HYPER-PARAMETERS

Table 6 presents the comprehensive set of hyper-parameters employed in our experiments across
various datasets. These parameters were carefully selected to optimize model performance and ensure
fair comparisons with baseline methods. For the GotenNet architecture, we primarily report the
parameters for the base (GotenNetB) variation where multiple model sizes exist. The optimization
process utilized the AdamW optimizer across all datasets, coupled with a linear warmup strategy
and learning rate reduction on plateau. This adaptive learning rate approach allows for more stable
training and improved convergence.

The learning rates were fine-tuned for each dataset, with QM9 and MD22 employing a range of
maximum learning rates to account for the diverse nature of their target properties. Molecule3D
and rMD17 datasets, on the other hand, used fixed maximum learning rates of 1e−4 and 2e−4,
respectively. To mitigate overfitting and promote generalization, we implemented weight decay (0.01)
and dropout (0.1) consistently across all datasets. The choice of loss function varied, with Mean
Squared Error (MSE) being the predominant choice, except for Molecule3D, which utilized the L1
loss.
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The model architecture parameters, such as dne, ded, and dxpd, were adjusted based on the complexity
of the dataset and the specific prediction tasks. For instance, MD22 and rMD17 datasets, which
involve more complex molecular dynamics simulations, employed larger edge refinement dimensions
(768) compared to QM9 and Molecule3D (256 and 384, respectively). The number of layers in the
model also varied, with Molecule3D and rMD17 using deeper architectures (12 layers) compared to
QM9 and MD22 (6 layers for the base model).

It is worth noting that for QM9, we experimented with different model sizes by varying the number
of layers (4, 6, and 12 for S, B, and L variations, respectively). Similarly, for MD22, we explored a
more compact model variation by reducing the number of layers to 4 and halving the representation
dimensions. These variations allow us to investigate the trade-offs between model complexity and
performance across different molecular property prediction tasks.

The consistent use of 8 attention heads and a Lmax of 2 across all datasets suggests that these
parameters provide a good balance between computational efficiency and model expressiveness
for a wide range of molecular modeling tasks. The cutoff radius, predominantly set at 5.0 Å (with
some variations in MD22), was chosen to capture relevant atomic interactions while maintaining
computational feasibility.

F EFFICIENCY EXPERIMENT DETAILS

The efficiency experiments are conducted by sampling graphs from the Molecule3D dataset. Using
a real-world dataset provides realistic neighborhoods for the nodes computed with a radius graph,
which is more beneficial than using a synthetic dataset. The graph sampling process involves selecting
graphs with a predetermined node count. If no graph is available for a given node count, we sample
the larger graphs with the closest node count and subsample the nodes to satisfy the node limitation.
If the number of graphs is less than desired, we oversample the graphs for experimentation.

After creating a dataset for each node count, we conduct experiments by first warming up the models
without timing for 5,000 steps. Then, we start timing the forward and backward passes for the
subsequent 5,000 steps. The final values are obtained by averaging the timings over the total number
of steps. It is important to note that the timings are measured per batch. Each batch consists of a fixed
number of graphs, and the reported timings represent the average time taken to process a single batch
during the training process.

This experimental setup ensures a fair comparison of the scalability properties of GotenNet and the
baseline models, providing insights into their efficiency in handling graphs of varying sizes. By
measuring the training time per batch, we can accurately assess how the computational overhead
scales with increasing graph sizes, independent of the number of epochs or the total dataset size.

G COMPUTATIONAL COMPLEXITY ANALYSIS

We present a comprehensive analysis of computational efficiency across state-of-the-art models,
examining training requirements, inference speed, and model complexity. Table 7 compares these
metrics across different architectures under standardized conditions.

Our analysis reveals several key insights about computational efficiency across models. First, training
protocols show significant variation across architectures - from Equiformer’s relatively lightweight
approach to Geoformer’s more intensive requirements. Equiformer (Liao & Smidt, 2023) and
EquiformerV2 (Liao et al., 2024) employ 300 epochs with batch sizes of 128 and 48/64 respectively,
requiring 1.48 and 2.85/2.94 GPU days for completion. Geoformer (Wang et al., 2023a) utilizes a
batch size of 32 for up to 600 epochs with early stopping, theoretically requiring 5.05 GPU days for
full training. This variation reflects different trade-offs between computational demands and model
expressiveness.

GotenNet demonstrates superior efficiency across multiple metrics. The smallest variant, GotenNetS ,
achieves competitive performance with just 6.1M parameters while requiring minimal computational
resources (0.75 GPU days average training time). This efficiency extends to both training and
inference latencies, with GotenNetS achieving the lowest latencies in both categories (80ms and
37ms respectively).
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Table 7: Computational complexity comparison of different methods. Training and inference
latency are measured with batch size of 128 samples. Training time is reported in GPU days
(min/avg/max/limit). Time per epoch is in seconds. Latency measurements are in milliseconds. Best
results are in bold.

Model Batch Time per Training Time (GPU days) Training Inference Trainable Std. Log
Size Epoch (s) min avg max limit Latency Latency Parameters MAE MAE

Equiformer 128 425 1.48 1.48 1.48 1.48 421 150 3.5M 0.70 -5.82
EquiformerV2 64 821 2.85 2.85 2.85 2.65 918 341 11.2M 0.67 -5.87
EquiformerV2 48 847 2.94 2.94 2.94 2.65 918 341 11.2M 0.67 -5.87
Geoformer 32 436 - - - 5.05 759 264 50.6M 0.75 -6.12

GotenNetS 32 117 0.41 0.75 1.34 1.35 80 37 6.1M 0.67 -6.21
GotenNetB 32 180 0.75 1.15 1.92 2.08 120 56 9.2M 0.61 -6.26
GotenNetL 32 291 1.37 1.87 2.33 3.37 244 112 18.3M 0.56 -6.34

Notably, even as model capacity increases, GotenNet maintains its efficiency advantages. GotenNetL
(18.3M parameters) demonstrates remarkable scalability, requiring only 1.87 GPU days average
training time while achieving 42% faster inference and 25% faster training compared to the closest
competitor, Equiformer.

These results demonstrate that GotenNet’s architectural innovations - particularly its efficient handling
of geometric tensor representations - translate to practical advantages across all operational metrics.
The consistent performance improvements across model scales suggest that GotenNet’s approach to
balancing expressiveness and efficiency is fundamentally sound, making it particularly suitable for
real-world applications where computational resources are constrained.

H COMPREHENSIVE PERFORMANCE COMPARISON ON QM9 DATASET

Table 8 provides a comprehensive comparison of the performance of various baseline models against
our proposed GotenNet on the QM9 dataset. This extended table includes a full list of baseline
methods, offering a detailed assessment across all molecular property prediction tasks. The results
showcase how GotenNet consistently surpasses existing models in both energy and force predictions,
further highlighting its robustness and scalability. By including a wider range of baseline comparisons
in this appendix, we aim to give a clearer view of GotenNet’s advantages in different metrics and
provide a more exhaustive evaluation for the QM9 dataset.

I MD22 VISUALIZATIONS

Figure 4 visualizes the mean absolute errors (MAE) for energy and forces across molecules in the
MD22 dataset. The x-axis represents the energy error (kcal/mol), and the y-axis denotes the force
error (kcal/mol/Å). Each point corresponds to a model, with performance improving as the point
approaches the origin (0,0), where lower values indicate better performance for both metrics. Our
proposed GotenNet consistently outperforms the baseline models, achieving the best performance
across all molecules, as evidenced by its closer proximity to the origin compared to competing
methods.

J RMD17 VISUALIZATIONS

Figure 5 presents the MAE for energy and force predictions across nine molecules in the rMD17
dataset, including Aspirin, Azobenzene, Benzene, Ethanol, Malonaldehyde, Naphthalene, Paraceta-
mol, Uracil, and Toluene. The x-axis represents energy error (kcal/mol), and the y-axis denotes force
error (kcal/mol/Å). Each point corresponds to a model’s performance on a specific molecule, where
better performance is indicated by proximity to the origin (0,0) — reflecting lower errors in both
metrics. Our proposed GotenNet demonstrates consistent superiority over baseline models, achieving
the lowest errors across all nine molecules, as evidenced by its closer alignment with the origin
compared to other methods.
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Table 8: Performance comparisons on QM9 dataset. † denotes using different data partitions.

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE std. log
Units ma3

0 meV meV meV mD mcal
mol K meV meV ma2

0 meV meV meV % -

Invariant models

Cormorant 85 61 34 38 38 26 20 21 961 21 22 2.03 2.14 -4.75
NMP 92 69 43 38 30 40 19 17 180 20 20 1.50 1.78 -5.08
DimeNet++† 44 32.6 24.6 19.5 29.7 23 7.56 6.53 331 6.28 6.32 1.21 0.98 -5.67
ComENet† 45 32.4 23.1 19.8 24.5 22 7.98 6.86 259 6.82 6.69 1.20 0.93 -5.69
SphereNet† 46 31.1 22.8 18.9 24.5 22 7.78 6.33 268 6.36 6.26 1.12 0.91 -5.73

Scalarization-based models

ClofNet 63 53 33 25 40 27 9 9 610 9 8 1.23 1.37 -5.37
EGNN 71 48 29 25 29 31 12 12 106 12 11 1.55 1.23 -5.43
PaiNN† 45 45.7 27.6 20.4 12.0 24 7.35 5.98 66 5.83 5.85 1.28 1.01 -5.85
LEFTNet 48 40 24 18 12 23 7 6 109 7 6 1.33 0.91 -5.82
EQGAT 53 32 20 16 11 24 23 24 382 25 25 2.00 0.86 -5.28
ET 59 36.1 20.3 17.5 11 26 7.62 6.16 33 6.38 6.15 1.84 0.84 -5.90
Geoformer 40 33.8 18.4 15.4 10 22 6.13 4.39 28 4.41 4.43 1.28 0.75 -6.12

High-order steerable models

SEGNN 60 42 24 21 23 31 15 16 660 13 15 1.62 1.08 -5.27
HDGNN† 46 32 18 16 17 23 11 10 342 8.12 8.34 1.21 0.80 -5.64
Equiformer 46 30 15.4 14.7 12 23 7.63 6.63 251 6.74 6.59 1.26 0.70 -5.82
EquiformerV2 47 29.0 14.4 13.3 9.9 23 7.57 6.22 186 6.49 6.17 1.47 0.67 -5.87

Pre-trained models

Transformer-M 37 27.4 17.5 16.2 37 22 9.63 9.39 75 9.41 9.37 1.18 0.86 -5.74
SE(3)-DDM 46 40.2 23.5 19.5 15 24 7.65 7.09 122 6.99 6.92 1.31 0.93 -5.76
3D-EMGP 57 37.1 21.3 18.2 20 26 9.30 8.70 92 8.60 8.60 1.38 0.92 -5.68
Coord 52 31.8 17.7 14.3 12 20 6.91 6.45 450 6.11 6.57 1.71 0.76 -5.75
Frad(VRN) 42 27.7 17.9 13.8 11 21 6.03 6.01 354 5.35 5.41 1.63 0.71 -5.85
Frad(RN) 37 27.8 15.3 13.7 10 20 6.19 5.55 342 5.62 5.33 1.42 0.66 -5.91

Hybrid geometric models

GotenNetS 35 23.2 16.3 14.7 7.5 20 5.51 3.86 26 3.76 3.82 1.15 0.62 -6.27
GotenNetB 33 21.3 15.2 13.5 7.3 20 5.33 3.52 25 3.49 3.49 1.10 0.58 -6.33
GotenNetL 30 19.9 13.7 12.2 7.7 19 4.98 3.36 21 3.33 3.37 1.08 0.54 -6.39

K FUTURE WORK AND EXTENSIONS

While GotenNet has demonstrated strong performance in molecular property prediction, several
promising directions exist for future research and extensions. The architecture can naturally extend to
other spatial data where geometric relationships significantly influence node interactions, such as point
cloud processing, protein structure analysis, and dynamic molecular simulations. These applications
share the fundamental requirement of processing geometric relationships while preserving symmetries,
making them natural candidates for our framework. From an architectural perspective, the model
could be enhanced through the incorporation of scale equivariance, exploration of higher-order
features beyond second degree, and development of sparse implementations for larger systems.
Memory efficiency improvements could also enable applications to even larger-scale systems. On
the theoretical front, future work could focus on developing formal analyses of the expressiveness-
efficiency trade-off, understanding generalization properties of geometric tensor representations.
These potential extensions maintain GotenNet’s core principle of balancing expressiveness and
efficiency while broadening its applicability across different domains of geometric deep learning.
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Figure 4: Mean absolute error of the molecules for energy and forces.
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Figure 5: Mean absolute error of the molecules on rMD17 dataset for energy and forces.
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