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ABSTRACT

We identify a loss plateau at the start of training in the three synthetic settings of
in-context linear regression, sparse parity, and fact memorization. While careful
tweaks to the optimization algorithm can mitigate these plateaus, we find that a
simpler orthogonal approach of lowering the data diversity, and in doing so, bi-
asing the training distribution away from the test distribution, counter-intuitively
also speeds up training. This connection between data diversity and training speed
holds for three different diversity-reducing interventions across our varied syn-
thetic settings. Our findings offer a new perspective on data filtering and curricu-
lum learning for training machine learning models.

1 INTRODUCTION

How do we train neural networks faster, or avoid periods of slow progress during learning? The
canonical answer points to extensive work on optimization, aiming to accelerate training via effi-
cient optimizers for deep neural networks and theory for both convex and non-convex settings. In
this work, we demonstrate that in a variety of settings, learning plateaus can be traced to issues with
optimization. Our key finding is that this same effect of mitigating loss plateaus by better optimiza-
tion can be achieved via a family of interventions on the data distribution that are simple and even
naive, yet powerful.

We consider three synthetic tasks – in-context linear regression, sparse parity, and fact memorization
– each marked by an initial phase of slow or plateaued learning, followed by abrupt learning to low
loss. We begin by demonstrating that these plateaus can be avoided with suitable interventions
on optimization: by biasing or removing interference between batch gradients we can mitigate the
initial phase of slow learning.

The fact that tweaking the optimization algorithm suffices to mitigate these plateaus suggests it
may be possible to develop more sophisticated optimization schemes that seamlessly handle such
plateaus out-of-the-box. We take an orthogonal approach: we focus on the data being optimized
over. We demonstrate that extremely simple yet astonishingly counter-intuitive data interventions
can have a similar effect to complicated and subtle interventions on the optimization process.

While much work on the related topic of data filtering aims to find heuristics for high-quality data
points that represent particularly salient or meaningful parts of the test distribution, our work is
different in that we draw data randomly in our interventions, from distributions that are often further
from the test distribution.

This is best illustrated with an example from our first synthetic setting: in-context learning of linear
regression, where a Transformer is trained to take in sequences [x1, wx1, · · · , xk, wxk, xquery] for
random xi, infer the latent task vector w, and output a predicted regression estimate ŷquery = wxquery.
The task vectors w are drawn from a specific distribution, and our goal is to learn the in-context ridge
solution, which is the correct solution for Gaussian w. When training on this test distribution for w,
the model eventually learns the optimal solution after an initial learning plateau. Figure 1 illustrates
how biasing the training distribution by reducing data diversity (the number of task vectors we train
with) can mitigate the learning plateau altogether. There is no free lunch, of course, as learning the
optimal solution to the biased training distribution eventually does poorly on the test distribution of
interest.
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Figure 1: Lowering task diversity can accelerate improvement on test loss. In our in-context
linear regression setup, the test distribution has an infinite set of tasks. We construct less diverse
training distributions where we randomly subsample a fixed set of tasks. Surprisingly, training on
these less diverse data distributions improve the test loss quicker at the start of training compared to
training on the test distribution.

In this work, we present an associated family of such data interventions that have qualitatively
similar effects. We show that simple and counterintuitive data interventions can match or outperform
involved optimization interventions in accelerating training on a variety of synthetic tasks. This
poses a tantalizing set of questions for future work on curricula, data filtering, optimization, and
more, which we discuss in detail.

2 SETUP

In this section, we characterize the data distribution and training for the three synthetic settings we
consider: in-context linear regression, sparse parity, and fact memorization. Given the range of our
settings, we introduce each one with a short description and then a lengthier explanation of the setup.
We provide a more detailed description below for those who are interested, though readers may feel
comfortable skipping directly to Section 3 after reading the intuitive descriptions.

2.1 IN-CONTEXT LINEAR REGRESSION

In in-context linear regression, we train a transformer where each training sample is a sequence of
(x, y) points in Rd, where y = w⊤x + ϵ for some noise ϵ, and we train it to generalize to a new
input at the end of the sequence and predict yquery from xquery by inferring w in context.

Data setup. We are interested in learning functions f ∈ F that map inputs x ∈ Rd to outputs
y ∈ R. Our setup closely follows Kotha et al. (2024), focusing on linear regression for noisy data
where every function is given by fw : x 7→ ⟨w, x⟩ for a fixed w ∈ Rd. We are given a set of samples
S of variable length k from 0 to maximum length N such that

S = {(x1, y1), . . . , (xk, yk)} , (1)

with yi = fw(xi)+ ϵi and ϵi ∼ N (0, σ2). From this, a model estimates the output yquery for a given
input xquery. We will refer to an instance from our function class fw as a task, and when it is clear
from context, we will refer to tasks by the associated weight vector w. All inputs will be sampled
from the normal distribution via xi ∼ N (0, Id).

Training. We consider auto-regressive models Tθ that take in a sequence of tokens, each in Rd,
to produce a real-valued output. For samples S generated under w as in Equation 1, we feed Tθ the
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prompt [x1, y1, . . . , xk, yk, xquery]
1 and take its output as a prediction of yquery. When appropriate,

we will refer to the xi’s in the prompt as X ∈ Rk×d and the yi’s as y ∈ Rk. We train and evaluate
Tθ with respect to a weight distribution D via the quadratic loss. Further details in Appendix B.1.

L(θ,D) =

N∑
k=0

E
w∼D

xi∼N (0,Id)

ϵi∼N (0,σ2)

[
(Tθ ([x1, y1, . . . , xk, yk, xquery])− yquery)

2
]
. (2)

by sampling a fresh batch of x,w, ϵ in each step. Under the quadratic loss, the optimal output is
E [fw(xquery) + ϵ | X, y] = ⟨E [w | X, y] , xquery⟩.

Test distribution. For this synthetic task, we will fix the test distribution to have each weight
vector drawn from a Gaussian distribution, with weight w ∼ N (0, Id). In this case, the optimal
solution is to perform ridge regression, or

w∗(X, y) = E [w | X, y] =

(
X⊤X +

σ2

τ2
Id

)−1

X⊤y. (3)

2.2 SPARSE PARITY

Data Setup Following prior work (Kearns, 1998; Barak et al., 2022), we consider inputs x that
are points on the d-dimensional hypercube {0, 1}d where the output is given by the product of k bits
χk(x) =

∏k
i=1 xi.

Training We train a 3-layer MLP to minimize the prediction loss under mean squared error when
samples are drawn from D.

L(θ,D) = Ex∼D

[
(fθ(x)−

k∏
i=1

xi)
2

]

Test Distribution For the test distribution, we will sample inputs uniformly from the d-
dimensional hypercube. This constitutes a maximal diversity input distribution.

2.3 FACT MEMORIZATION

We train a transformer autoregressively to output the right fact, given an (s, r) subject relation pair,
with the added insertion of random noise tokens. To do the task properly it needs to memorize the
facts and learn the structure of the objective, as well as learn to ignore the noise.

Data Setup We consider a setup designed to simulate learning facts from a text corpus (Ghosal
et al., 2024). Following prior works on knowledge graphs (Petroni et al., 2019; Elsahar et al., 2018),
we model facts as consisting of triplets of subject-entity, relation-type, and answer-answer entity. We
construct a synthetic language with a set of subject tokens S, relation tokens R, answer tokens A and
noise tokens N (i.e. the total token space T = S ∪R∪A∪N ). We assume that different relations
induce a distinct set of plausible answers (i.e. A = ∪r∈RAr) and that there is a predetermined
ground-truth mapping ϕ((s, r)) → a which determines the answer corresponding to every subject
relation pair. We generate documents, d, by sampling a subject s ∼ S, a relation r ∼ Unif(R), and
a set of knoise noise tokens sampled i.i.d. as n1, ..., nknoise ∼ Unif(N ). Then, the document is the
token sequence

d = [s, r, n1, ..., nknoise , ϕ((s, r))] (4)

Intuitively, the same underlying fact can be represented in multiple styles/formats in the pretraining
corpus. We use the noise tokens to represent these axes of variation that are “irrelevant” to the
knowledge graph structure. In this setup, we consider the learning of each subject s as a separate
task.

1Every 1-dimensional token is right-padded with d− 1 zeroes
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Training Similar to the ICL-LR setting, we study an autoregressive model Tθ mapping from se-
quences of tokens in the token-space T to produce a next-token prediction. We train with the stan-
dard auto-regressive language modelling objective on document d = [s, r, n1, ..., nknoise , ϕ(s, r)],
where di denotes the i-th token of document d.

L(θ,D) =

N∑
k=0

E
s∼D

r∼Unif(R)
ni∼Unif(N )

[− log Tθ(dk+1|d0, ..., dk)] (5)

We detail model and hyperparameter implementation details in Appendix B.3.

Test Distribution For the test distribution, in addition to sampling a relation and noise tokens, we
uniformly sample a subject so that s ∼ Unif(S). We compute the factual memorization accuracy
of our model by prompting with all but the last token in the document (i.e [s, r, n1, ..., nknoise ]) and
checking for an exact match between the greedy-decoding and ground truth answer ϕ((s, r)). In
practice, we measure this accuracy by explicitly considering all subject relation pairs (with different
noise tokens for each sample).

3 LOSS PLATEAUS AND HOW TO MITIGATE THEM VIA OPTIMIZATION

Many synthetic settings are affected by loss plateaus, where the model makes little to no progress on
the loss and then has a phase of abrupt learning even when the train and test distribution are same.
We find that in our settings, these plateaus are not intrinsic, and we can intervene on the gradients
in the optimization procedure to bypass them and learn quickly. Our interventions are motivated by
the intuition that interference is causing slow learning, where gradients from different data points
and batches have low similarity and high variance, so the model makes overall slow progress. This
hypothesis is difficult to check in all our settings due to the pitfalls of measuring variance when
using adaptive optimizers, but we effectively use this intuition to speed up training.
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Figure 2: Effect of biasing the gradients. In
this intervention, we induce a correlation be-
tween batch gradients by adding a small frac-
tion γ of a previous gradient to the current gra-
dient. We find that this destabilizes training for
high values of γ, while improving training for
medium values of γ, before approaching stan-
dard training at γ = 0.
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Figure 3: Effect of PCGrad on training dy-
namics We apply PCGrad, an algorithm de-
signed to reduce gradient interference by pro-
jecting the gradients onto each other. We find
that this results in faster improvement on a step-
count basis, even though it is computationally
slower.

Biasing batch gradients. We modify our training procedure to reduce gradient variance in the
following way.

1. Throughout training, we maintain a gradient bias gbias, which we store as the batch gradient
at a given step, updated every n steps (where n = 100 for in context linear regression and
sparse parity, n = 25 for the facts setting).

2. For each step, we take the gradient gt at that step and instead take a gradient update with
gradient gt + γg′, where γ controls the extent to which we bias training.

In practice, this intervention helps speed up learning across our settings (Figure 2) for the right
amount of biasing γ. Too high, and the model loses training signal, but too low and we recover
normal training.

PCGrad. We also successfully apply PCGrad ((Yu et al., 2020)), an algorithm from multi task
reinforcement learning that aims to make gradients of different samples orthogonal at each step of
training.

1. For the loss on sample i of each batch, compute its sample gradient gi.

2. For each gi, project it iteratively so it doesn’t interfere with every other gj , i.e. take a step

with gradient gPC
i = gPC

i − gPC
i ·gj
||gj ||2 gj

We apply this intervention to in-context linear regression. We find that this speeds up training in
terms of the number of steps, despite the fact that we run it at a 4x lower batch size for memory and
efficiency reasons (Figure 3). With less data and less steps, PCGrad induces a strong speedup relative
to baseline. It is surprising that a technique designed for reinforcement learning works so well out
of the box in this in context learning setting. This also validates our intuition that a phenomenon
of interference is slowing down training, as PCGrad was built to solve for interference in RL. We
discuss an additional intervention of training different layers with different learning rates in Figure
12.

4 LOWERING DIVERSITY CAN ACCELERATE TRAINING

In the previous section, we showed how the plateau can be removed by intervening on the optimiza-
tion. We consider a purely data-driven approach to get the same effect, by lowering the diversity
of the data. This may be reducing the interference described previously, enabling faster early-time
progress, as this class of interventions also successfully removes the loss plateau:

• Decreasing the number of tasks or samples in the data distribution

• Sampling from the data with a randomly assigned power law instead of uniformly

• Increasing the correlation between tasks sampled (for in-context linear regression)

Our interventions have two surprising properties that defy traditional intuition about data selection.
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Figure 4: Effect of varying the number of
tasks. For each setting, we randomly subsam-
ple the data. For in-context linear regression and
fact memorization, we select k tasks out of a to-
tal of ∞ and 100 tasks, respectively. For sparse
parity, we select a random ρ fraction of the data
to be subsampled and run for 1

ρ epochs. We
find that lowering the number of tasks increases
early-time improvement at the cost of eventual
memorization.

1. Biasing away from the test distribution: The training distributions we select are further
from the original distribution used to measure test loss. The model is learning faster even
when this gap is increased!

2. Datapoint agnostic: Our data selection strategies do not discriminate between datapoints
and do not use any notion of quality or difficulty reminiscent of classical work on filtering
and curriculum learning (refer to Section 5.1 for a detailed treatment).

In the following sections, we detail how our three interventions increase training speed across our
synthetic settings. For all of the following training runs, we average over 5 seeds, except for linear
regression experiments due to compute constraints.

4.1 LOWERING THE NUMBER OF TASKS OR SAMPLES

Our simplest intervention is randomly subsampling the data, either by subsampling tasks (when
possible) or individual data points. We pick a subsample before training and then only take gradient
steps on this data. Therefore, at the same number of steps, we will have seen less tasks, but trained
on each one for more steps (Figure 4). We outline the exact subsampling mechanism for the three
tasks below.

Linear regression. Instead of drawing every sample from the Gaussian N (0, Id), we consider
training over a ”fixed” set of weights, sampling w uniformly from Wk = {w1, . . . , wk}. Each wi

is one sample from the true task distribution of N (0, Id). We denote the discrete distribution we
obtain Dk. Though we recover the Gaussian distribution as k −→ ∞, ridge regression is no longer
optimal for finite k. The Bayes optimal estimator for Dk is:

w∗
k(X, y) =

∑
w∈Wk

wφ ((y −Xw)/σ)∑
w∈Wk

φ ((y −Xw)/σ)
(6)

where φ (·) is the density of the standard multivariate normal distribution (derivation found in (Kotha
et al., 2024)). This estimator effectively infers which of the k tasks generated the data and then
predicts for that one.
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Figure 5: Effect of varying the Zipf expo-
nent. For each distribution, we vary the rank
frequency exponent, with α = 0 being uniform
and increasing α converging to a single task.
We find that for a medium value of α, there is
a speedup over either extreme.

We observe (Figure 1) that for low task count, the model simply memorizes the finite set and never
generalizes. For large enough task count the loss trajectory simply approaches that of training on
infinite tasks. However, there is an intermediate regime where the model initially makes progress
to a generalizing solution before eventually converging to a memorizing solution that does not
generalize.

Sparse parity. We precompute a dataset D of bit strings uniformly sampled from the hypercube,
and train several MLPs on random subsets of varying size. The sizes are measured as fractions of
the entire dataset, which in turn has its size matched to the number of steps times batch size. Each
subset of fraction ρ is traine on 1/ρ time so that the same number of points are seein in each case.
Lower ρ correspond to increasingly offline (many epoch) training, and we find that ρ ≪ 1 results
faster training, though as ρ → 0 no learning takes place.

Fact memorization. In the fact-memorization setting, we test the impact of truncating the sup-
port of the subject distribution to k entities. Concretely, during training we replace D with
Dk = {s1, ..., sk}, but leave the remainder of the data-generating process and the test distribu-
tion unmodified. In Figure 4, we observe that training on the truncated distribution mitigates the
initial plateau in test-accuracy (measured on all subjects) that we observe when training on D. How-
ever the models trained on the truncated distribution eventually stop improving in accuracy, simply
because their training is omitting certain facts that must be memorized. Nevertheless, our findings
replicate the intuition observed in the other settings: training on a less-diverse subset of the training
distribution makes faster initial progress.

4.2 POWER LAW SAMPLING

We test other ways of modifying the sampling distribution and intervene on the data by sampling
from the Zipf distribution rather than the uniform one. Given k tasks/samples, we randomly sample
each with probability proportional to 1

iα for frequency parameter α and randomly assigned index i ∈
[k]. Setting α = 0 recovers the default uniform sampling distribution, while increasing α approaches

7
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Figure 6: Effect of biasing the covariance ma-
trix. In this intervention, we take the covariance
matrix for in-context linear regression tasks and
interpolate it with a rank 1 matrix. β = 0 cor-
responds to standard training, while β = 1 cor-
responds to minimally diverse data. Intermedi-
ate values of β learn much faster than either ex-
treme.

the minimally diverse distribution of a single task/sample. We observe that across settings there is
an intermediate value of α where we recover this diversity speedup, shown in Figure 5.

In-context linear regression. For this setting, we first fix a large number of tasks from the Gaus-
sian distribution so the dynamics would resemble the continuous case (Figure 1). Then, instead of
uniformly sampling from this set of tasks to generate inputs (like Section 4.1), we sample according
to the Zipf distribution. We get the fastest improvement in loss for α = 1, with slower improvement
when α is lower or higher.

Sparse parity. For a dataset of size D, instead of drawing batches uniformly at random, we draw
them according to a Zipf distribution with parameter α, and sweep α, so that some batches are
consistently drawn more often. It does not matter which batches are drawn repeatedly, just that
some batches are drawn more repeatedly, to see faster training.

Fact memorization. We plot the fact memorization curves when subjects are sampled according to
Zipf distribution. Concentrating on the early training setting, we observe that making the distribution
more long tailed (i.e. increasing α) speeds up the initial stage of learning. Later in training, values of
α that are too high saturate or learn very slowly, similarly to when we truncate the subject distribution
in Section 4.1. Interestingly, for α = 1, we observe that facts are memorized significantly faster than
the uniform case (α = 0).

4.3 INCREASING TASK CORRELATION

In-context linear regression samples the tasks from a Gaussian with identity covariance, which
means that each task dimension is independent. We can lower diversity in this setting by induc-
ing arbitrary correlations between task dimensions. To do this, we sample a vector v on the unit
sphere and then interpolate between an identity covariance matrix and the rank 1 matrix vv⊤ such
that

w ∼ N (0, (1− β)Id + βvvT )

where β controls the extent of the bias in the distribution. This approach is conceptually similar to
our gradient biasing approach in Figure 2: instead of increasing the correlation between gradients,
we increase the correlation between tasks, and this induces a similar effect (Figure 6). This particular
task structure is not present in the other settings, so we only apply it to in-context linear regression.

4.4 SUMMARY OF DATA INTERVENTIONS

Across our data interventions, we observe that there is an “optimal” amount of biasing where initial
learning is sped up relative to the baseline. Above this amount, the biasing will bring us too far
from our original distribution such that the model simply fits the biased data instead of approaching
the generalizing solution. Below this amount of biasing, we approach normal training without the
intervention. This highlights a more general pattern across our interventions: lowering data diver-
sity trades off correctly specifying the objective for faster early progress, inducing a speedup in an
intermediate regime where the model can do both.
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5 RELATED WORK

5.1 DATA SELECTION AND CURRICULUM LEARNING

A number of prior works study the benefits of curating or ordering the examples seen during training.
Many prior works on data selection aim to identify a subset of high quality data by quantifying the
contribution of individual data points, such as influence functions (Koh & Liang, 2020), datamodels
(Ilyas et al., 2022; Engstrom et al., 2024), distance to margin (Sorscher et al., 2023), gradient metrics
(Paul et al., 2023), data quality filters (Brown et al., 2020; Gadre et al., 2023; Li et al., 2024; Maini
et al., 2024), and reweighting domains (Xie et al., 2023; Chen et al., 2023; Thrush et al., 2024). An-
other line of work instead intervenes on the order that data points are seen during training, typically
in increasing order of difficulty. Hacohen & Weinshall (2019) obtains example difficulty scores
from a pretrained model when training on image classification while Tay et al. (2019) uses example
length as a proxy and applies curriculum learning in a reading comprehension task. (Wu et al., 2021)
performs a meta-analysis finding that curricula are rarely helpful for training on real data. Pentina
et al. (2014) examines curriculum learning in a multi-task setting by identifying shared information
between tasks. Similarly, Zhang et al. (2020) uses a value function to identify tasks at the frontier
of the policy’s ability. In contrast to these settings, our data interventions improve training without
discriminating between datapoints whatsoever.

5.2 SYNTHETIC SETTINGS AND ABRUPT LEARNING

Though we are the first to formalize this phenomenon, a number of prior synthetic settings show
hints of lower diversity benefiting training. For example, related effects have been observed in
meta-learning MNIST with a biased distribution (Kirsch et al. (2022), Figure 8), in-context learning
digit recognition with a Zipf distribution (Chan et al. (2022), Figure 6c), in-context linear regression
with subsampled tasks (Kotha et al., 2024; Raventós et al., 2023), and grokking modular arithmetic
(He et al. (2024), Figure 3b). Reddy (2023) make a similar finding on the emergence of induction
heads. Although these works also find that long-tailed data distributions induce in-context learning,
they do not consider the impact of data on training speed, as we do. Moreover, we study and connect
the impact of the training distribution on settings qualitatively different from in-context learning.

5.3 OPTIMIZATION INTERVENTIONS

Several works have focused on accelerating optimization for training. McCandlish et al. (2018)
studies the impact of batch size, identifying that the signal to noise-ratio of gradients controls the
appropriate choice of batch size. Jastrzebski et al. (2020); Faghri et al. (2020) examine the role of
learning rate, finding that smaller learning rates can contribute to poor conditioning and higher levels
of gradient noise. Singh et al. (2023); Raventós et al. (2023) examine the role of ℓ2 regularization
specifically for in-context learning problems and find that the presence of regularization can induce
in-context learning capabilities, even in the presence of lower task diversity or larger model capac-
ity. Another related line of work has studied optimization challenges in multi-task learning. Schaul
et al. (2019) finds that coupling between a policy and the data-generation process in reinforcement
learning can lead to plateaus. Yu et al. (2020) observes that interference between gradients in multi-
task learning can inhibit training and proposes a optimization intervention to correct this. Fu et al.
(2024) aims to break loss plateaus by intervening on how optimization affects parameters. Collec-
tively, these works demonstrate the significant role optimization parameters play in enabling efficient
training. In this work, however, we showcase a simple intervention on the data with similar effects
to some of these interventions in the settings we study.

6 DISCUSSION

In this work, we present a counter-intuitive finding: lowering the diversity of the training data by
simple random subsampling can accelerate training for a general class of settings. Learning in these
settings can also be sped up with a single optimization intervention, targeted at reducing interference.
These results position data diversity as a rich way of understanding and controlling the optimization
landscape without extra information about the individual samples of the distribution or complicated
optimization interventions.
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Our initial work here suggests there may be interesting connections between the data distribution
and the optimization landscape of the model, due to the fact that intervening on them allows us to
get the same speedup. Moreover, we observe that decreasing the task count in the in-context linear
regression setting decreases gradient interference (Figure 8), which we measure by looking at the
similarity of the model gradient on random, distinct batches. This supports the idea that these two
levers are acting on some shared mechanism of interference. Exploring this connection in future
work may enrich our understanding of training dynamics, abrupt learning, and the finegrained role
of data distributional properties in training.

• Diversity-reducing interventions work for real data: If reducing diversity can improve
training speed for real data, this would have exciting implications for many of the training
runs we do today. For example, curriculum learning (Bengio et al., 2009) has faced little
success for standard supervised learning (Wu et al., 2021). However, standard curricula
typically use a heuristic notion of difficulty. The perspective of dataset diversity introduced
in this work can inspire new, curriculum-like interventions going beyond these heuristics.

• Diversity-reducing interventions do not work for real data: It is a real possibility that
the phenomena observed in this work does not transfer to real-world settings. This moti-
vates a follow-up question: What property of real-world data makes it different from our
synthetic tasks? It is possible that the correlations in real task distributions have a differ-
ent structure, or that they already exhibit a power-law data distribution? For example, it
is widely hypothesized that the frequency with which facts are observed during language
model pretraining follows a power law distribution (Kandpal et al., 2023; Mallen et al.,
2023). Similarly, prior work on in-context learning has hypothesized the role of the power-
law distribution in its formation (Chan et al., 2022). Understanding the properties that
diversity controls is an important direction for future work.

We hope that our observations can inspire future work in fundamentally understanding our synthetic
settings and investigating the potential (or lack thereof) for data-driven training speedups.

7 LIMITATIONS

Our experiments are purely observational and although we provide some initial speculation and
results, we do not claim to have strong understanding of the underlying phenomena resulting in
these speedups. For example, we do not provide theoretical results concerning the nature of the
speedup, but hope that this inspires interesting future work studying this phenomenon. Furthermore,
we limit our analysis to three synthetic setups and it may not generalize to other machine learning
problems. This limits the applicability of these findings, though there is a strong possibility these
insights can inspire data-driven interventions in domains outside of these settings. Furthermore,
though our experiments are consistent across settings, the conducted experiments can be broader
across hyperparameters of the training algorithm, problem setting, and intervention. We hope that
these initial results are taken as inspiration for understanding machine learning algorithms instead
of ready-to-apply methods for today.

8 REPRODUCIBILITY STATEMENT

We will open-source the code necessary to recreate these experiments to encourage future research
on understanding the fundamental principle behind the speedup.

9 ETHICS STATEMENT

In this work, we work on generically improving the speed of training machine learning models.
Our result currently only applied to synthetic settings with little practical impact, though the impact
would be similar to any generic optimization routine in terms of training speed. Lowering the
diversity of the data might potentially lower the coverage of under-represented groups in real data,
which merits future research.

10
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Figure 7: Curriculum learning over number
of tasks/samples. For each setting, we vary the
proportion of data subsampled over the course
of training, increasing the diversity over the
course of training. We find that using such a
curriculum can achieve the best of both worlds,
with faster test loss reduction early in training
with convergence to optimal test loss at the end
of training.

A CURRICULUM LEARNING EXPERIMENTS

For each setting, we introduce a curriculum over the number of subsampled tasks/samples, where
we progressively increase the diversity of the distribution over the course of training. We implement
this in the following way across our different settings

In-context linear regression. We start with 32 tasks for 30 steps and double the number of tasks
every 20 steps. When we double the number of tasks from k to 2k, we retain the original k tasks
and add k new ones.

Sparse parity. We start with 2% data diversity, or ρ = 0.02, until 100 steps, at which point we
switch to all the data or = 1.0.

Factuality. We start with k = 20 tasks until 100 steps, at which point we switch to the full set of
k = 100 tasks for the remainder of training.

Results. We find that this intervention is competitive or better than any other subsampling strategy
at every step count, indicating that regardless of the compute budget, it is best to use this curriculum.
This indicates we can achieve the best of both worlds–fast test loss improvement at the start of
training, and a better generalizing solution by the end of training.
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Figure 8: Cosine similarity of model gradients on random batches, averaged over seeds. Note
that at a given run this measure is very noisy across runs and can quickly vary from −0.5 to .5,
suggesting the instability in this early training.

B EXPERIMENTAL SETUP

B.1 IN CONTEXT LINEAR REGRESSION DETAILS

We train 22.4M parameter GPT2 family models with an embedding dimension of 256, 12 layers and
8 attention heads. We use the Adam optimizer with β1 = 0.9, β2 = 0.999, a learning rate of 1e− 4,
and a batch size of 128.

To generate our linear regression data we sample 41 20-dimensional points per sequence, and use a
noise std σ2 = 1.

B.2 SPARSE PARITY DETAILS

We take 50000 steps of training on sparse parity inputs of dimension 20, where the product of 6 bits
defines the final answer. We train a three layer MLP with hidden layers of dimension 40, mapping
R20 → R1. We train with SGD using learning rate 0.1 and batch size 20.

B.3 FACTUALITY SETTING DETAILS

We train a small transformer with 6 layers and 6 heads and embedding dimension 192. We train with
a learning rate of 5e-5 and a batch size of 64. We use the Adam optimizer with β1 = 0.9, β2 = 0.95.

C MISC

C.1 TRACKING COSINE SIMILARITY OF GRADIENTS FOR DIFFERENT TASK COUNTS

To check whether gradient interference is related to lowering diversity, we track the cosine similarity
of gradients over the course of training with different task counts. In line with expectations, we see
that for higher task count, the cosine similarity is much lower, while for lower task counts, all the
gradients are pointing in similar directions. This shows observational evidence that reducing the
tasks may be improving optimization by reducing gradient interference.

C.2 SCALING THE BATCH SIZE WITH THE NUMBER OF TASKS PRESERVES THE SPEEDUP

If the phenomenon at play within the setting of in-context linear regression is one of interference
across tasks, it makes sense to check whether the effect persists if you scale the batch size propor-
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Figure 9: Learning curves varying k in in context linear regression, where we scale batch size
with k. We check if our speedup persists if we scale the batch size B with k, keeping k

B constant.
We report the loss in terms of the number of datapoints seen for a fair comparison, and see that lower
k indeed still does better.
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Figure 10: Staircase intervention for sparse
parity. Training on approximate staircase func-
tions χk+ϵ

∑
j<k χj instead of the test function

χk accelerates learning of the test function χk.

tionally to the number of tasks. This gives us the opportunity to check for a given batch size whether
the interference is just related to having more tasks to sample from within a batch.

We observe in figure 9 that scaling the batch size proportionally with the number of tasks we subsam-
ple does not reverse this low diversity speedup, highlighting that there is a richer form of interference
at play.

C.3 STAIRCASE INTERVENTION FOR SPARSE PARITY

Taking inspiration from the work of (Abbe et al., 2021), we hypothesize that biasing the training
distribution towards the staircase function Sk =

∑
j χj while downweighting the coefficients of all

monomials χj by a factor ϵ allows us to “climb the staircase” to learn the monomial faster, while
incurring only a small penalty for learning lower-order coefficients with power ϵ. Formally, we
train on χk +

∑
j<k ϵχj , and find there exists a range of ϵ > 0 such that this reaches low loss

faster than training on just χk, with learning curves/speedups qualitatively resembling those of other
interventions.
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Figure 11: Maximal learning rate training for
the Zipf distribution for sparse parity. We
push the learning rate to the maximum value
without instability and find that the speedup per-
sists in this setting.
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C.4 MAXIMAL LEARNING RATE FOR SPARSE PARITY ZIPF

To check that our effects are not a product of badly tuned hyperparameters, we push the learning
rate up to its maximal stable value of 0.1, and see that α = 0.75 still learns faster, averaged over
seeds, than α = 0.

C.5 FREEZING THE READOUT LAYER FOR IN-CONTEXT LINEAR REGRESSION

In the in-context learning setting, we noticed that when we decomposed the similarity of the random
gradients (mentioned in Appendix B.3) in terms the model layers (simply separating out the normal-
ized dot product terms in the sum), most of the noise and spiking concentrated in the readout layer
that projects to the model output.

So we did an intervention where we train with this layer frozen, and do observe a moderate speedup,
although less pronounced than in our other settings.
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