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ABSTRACT

The current evaluation of mathematical skills in LLMs is limited, as existing
benchmarks are relatively small, primarily focus on elementary and high-school
problems, or lack diversity in topics. Additionally, the inclusion of visual elements
in tasks remains largely under-explored.
To address these gaps, we introduce U-MATH, a novel benchmark of 1,125
unpublished open-ended university-level problems sourced from teaching materials.
It is balanced across six core subjects, with 20% of problems requiring image
understanding. Given the open-ended nature of U-MATH problems, we employ
an LLM to judge the correctness of generated solutions. To this end, we release
µ-MATH, an dataset to evaluate the LLMs’ capabilities in judging solutions.
The evaluation of general domain, math-specific, and multimodal LLMs highlights
the challenges presented by U-MATH. Our findings reveal that LLMs achieve a
maximum accuracy of only 53% on text-based tasks, with even lower 30% on
visual problems. The solution assessment proves challenging for LLMs, with the
best LLM judge having an F1-score of 76% on µ-MATH
During review, we publish the U-MATH and µ-MATH datasets on OSF.1.

Example: Differential Calculus.

U-MATH Problem:
The function s(t) = 2 · t3 − 3 · t2 − 12 · t+ 8 represents the position of a particle traveling along a
horizontal line.
1. Find the velocity and acceleration functions.
2. Determine the time intervals when the object is slowing down or speeding up.

Reference Solution (shortened):
The velocity is v(t) = s′(t) = 6 · t2 − 6 · t− 12 , zeros of the v(t) are t = −1, 2.

The acceleration is a(t) = v′(t) = 12 · t− 6 , zero of the a(t) is t = 1
2

.
It speeds up when v(t) and a(t) have the same sign, and slows down when opposite.

Interval v(t) a(t) Behavior
(−∞,−1) > 0 < 0 Slowing down
(−1, 1

2
) < 0 < 0 Speeding up

( 1
2
, 2) < 0 > 0 Slowing down

(2,∞) > 0 > 0 Speeding up

Accounting for non-negative time, speed up on (0, 1/2) and (2,∞) , slow down on (1/2, 2) .

Figure 1: U-MATH covers university-level topics and require multiple steps to solve. A random sample is
provided: reference solution is shortened to save space. In this example, common model errors is overlooking
the non-negativity of time.

1 INTRODUCTION

Mathematical reasoning is a fundamental domain for assessing the true capabilities of Large Language
Models (LLMs) to reason (Ahn et al., 2024). While existing benchmarks like GSM8K (Cobbe et al.,

1https://osf.io/jpsa4/?view_only=d588b9fa862345cb98ccf7238a157cea
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2021) and MATH (Hendrycks et al., 2021) provide valuable insights, they primarily focus on school-
level mathematics. This leaves a significant gap in understanding how LLMs perform on more
advanced, university-level problems. Moreover, these benchmarks are becoming saturated, as GPT-4,
using advanced prompting techniques, has achieved over 92% success rate on GSM8K and 80% on
MATH (Achiam et al., 2023).

Recent works, such as CHAMP (Mao et al., 2024) and MathOdyssey (Fang et al., 2024), aim to
introduce more challenging problems but are limited in size (<400 samples) and lack comprehensive
topic coverage. The most challenging problems stem from school-level competitions or olympiads,
missing the crucial middle ground of university-level coursework that reflects academic demands.

Furthermore, there is a growing interest in assessing multi-modal LLMs’ abilities to perform mathe-
matical reasoning involving visual elements (Ahn et al., 2024). Large datasets like MathVista (Lu
et al., 2023), We-Math (Qiao et al., 2024), or MathVerse (Zhang et al., 2024) provide an extensive set
of (mostly) visual tasks but may lack university-level problems and often rely on multiple-choice
validation, leading to easier problems and faster saturation of benchmarks.

In turn, evaluating complex free-form answers remains a significant challenge for the field (Hendrycks
et al., 2021). Current methods often rely on LLM judges to assess problems, which introduces
potential biases and inconsistencies (Zheng et al., 2023). Errors introduced by automatic evaluators
are often overlooked in popular benchmarks. This oversight makes it impossible to account for judge
biases, which detracts from the reliability of the evaluation results.

Recent studies also indicate that evaluation of mathematical solutions is a demanding task (Zeng
et al., 2023; Xia et al., 2024) and that an LLM’s ability to judge mathematical solutions is correlated
with its problem-solving performance (Stephan et al., 2024), further signifying the importance of
evaluations designed to asses the evaluators themselves — also called meta-evaluations.

Popular datasets for the task of mathematical meta-evaluation are PRM800K (Lightman et al., 2023),
MR-GSM8K (Zeng et al., 2023) and MR-MATH (Xia et al., 2024). However, these are all based on
the GSM8K and MATH datasets, still leaving a gap in meta-evaluations for university-level problems.

Aiming to bridge these gaps and provide a comprehensive evaluation of LLMs’ mathematical
capabilities, we introduce U-MATH (University Math) and a supplementary meta-evaluation dataset,
which we refer to as µµµ-MATH (Meta U-MATH). Our main contributions are:

1. U-MATH Benchmark (Section 3): We open-source a set of 1,125 of university-level
problems collected from actual coursework with final answers and solutions. About 20% of
problems require image understanding to be solved. The text-only part of the benchmark
is balanced across 6 key subjects: Precalculus, Algebra, Differential Calculus, Integral
Calculus, Multivariable Calculus, and Sequences&Series.

2. µ-MATH Meta-Evaluation Benchmark (Section 3.3): Additionally, we introduce a set
of 340 meta-evaluation tasks sourced from U-MATH problems and designed to rigorously
assess the quality of LLM judges. We manually select approximately 30% of the U-MATH
problem statements and golden answers, supplying them with LLM-generated solutions, and
label them based on whether the generated solutions are correct or not. The benchmark is
designed to be challenging for LLM judges yet representative of the typical university-level
math grading tasks.

3. Comparison of Models (Section 4): We conduct a comparative analysis of various open-
source and proprietary LLMs on U-MATH. Our analysis highlights the high performance of
specialized models in text-only problems and the superiority of proprietary models in visual
tasks with the best U-MATH accuracy of 49%. Additionally, we examine several popular
LLMs on µ-MATH to assess their ability to judge free-form mathematical problems. Our
results show the best model achieving the macro F1-score of 76%.

We release the U-MATH and µ-MATH benchmarks under a permissive license to facilitate further
research and ensure reproducibility.
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2 BACKGROUND

Enhancing and evaluating the mathematical reasoning capabilities of LLMs is essential in AI research
(Ahn et al., 2024). Studies show that finetuning with mathematical and code-related data enhances
models’ general skills (Prakash et al., 2024). Mathematical tasks require logical thinking and
multi-step problem-solving, thus improving overall reasoning abilities in LLMs (Chen et al., 2024).

This leads to the problem of evaluating LLM’s math abilities. Despite the significant progress,
many existing benchmarks are limited in scope, focusing primarily on school-level mathematics or
limited in size and topic coverage. Table 1 summarizes popular text-only and visual mathematical
benchmarks.

Dataset Levels %Uni. Level #Test %Visual %Free Form
Answer

MMLUMath (Hendrycks et al., 2020) E H C 0 1.3k 0 0
GSM8k (Cobbe et al., 2021) E 0 1k 0 0
MATH (Hendrycks et al., 2021) H O 0 5k 0 100
MiniF2F (Zheng et al., 2021) E H O 0 244 0 100
OCWCourses (Lewkowycz et al., 2022) U 100 272 0 100
ProofNet (Azerbayev et al., 2023) C U ≈50 371 0 100
CHAMP (Mao et al., 2024) H 0 270 0 100
MathOdyssey (Fang et al., 2024) H U O 26 387 0 100

MMMUMath (Yue et al., 2023) C 0 505 100 0
MathVista (Lu et al., 2023) E H C 0 5k 100 46
MATH-V (Wang et al., 2024) E H O 0 3k 100 50
We-Math (Qiao et al., 2024) E H U ≈20 1.7k 100 0
MathVerse (Zhang et al., 2024) H 0 4.7k 83.3 45

U-MATH (this work) U 100 1.1k 20 100

Table 1: Existing Auto-evaluation Math benchmarks with corresponding test samples published, visual samples
percent, and percent of multiple-choice questions. Level denotes E Elementary to Middle School, H High
School, C College, U University, O Different Olympiads.

Textual Mathematical Benchmarks. Early efforts to assess LLMs’ mathematical abilities have
emerged in datasets like MathQA (Amini et al., 2019) and the mathematics subset of MMLU
(Hendrycks et al., 2020). These early benchmarks emphasized the importance of operation-based
reasoning in solving mathematical word problems, typically in a multiple-choice format. Nowadays,
even smaller models (e.g., 7B parameters) have achieved high scores on these tasks (Li et al., 2024b),
suggesting that these benchmarks are becoming saturated. In response, more comprehensive datasets
have emerged, such as GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), or MGSM
(Shi et al., 2022) (multilingual version of 250 GSM8K samples). These popular benchmarks are
crucial for evaluating LLMs’ mathematical reasoning skills. However, they primarily focus on
school-level problems, which may not fully assess the depth of mathematical reasoning.

Recent efforts attempt to address more advanced mathematical concepts. MathOdyssey (Fang et al.,
2024) with competition problems, OCWCourses (Lewkowycz et al., 2022) from actual MIT courses,
and ProofNet (Azerbayev et al., 2023) focusing on proofs aim to evaluate undergraduate-level or
olympiad-level knowledge. However, these datasets are constrained by their small sizes (e.g., 387, 272,
and 371 samples), limiting their statistical robustness and topic coverage. For example, MathOdyssey
is limited to 101 samples in university-level topics (Calculus, Algebra, and Diff. Equations and
Statistics). Other specialized datasets like MiniF2F (Zheng et al., 2021) provide valuable parallel
corpora in formal languages, while CHAMP (Mao et al., 2024) offers helpful context and hints,
but both are similarly limited in scale with 244 and 270 samples. Additionally, both heavily rely
on already published resources: CHAMP sources material from a book, while MiniF2F re-uses
international olympiads and MATH dataset problems. An attempt to provide a more robust evaluation,
GHOSTS (Frieder et al., 2024) dataset, provides 728 problems (both from other datasets and new
ones) but does not provide reference solutions and answers, focusing instead on human evaluation,
making cheap automatic evaluation impossible.

The current datasets are either too small, leading to higher measurement errors, or focus mainly
on elementary and high school math, leaving a gap in evaluating LLMs’ proficiency in advanced
university-level math topics.
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Visual Mathematical Benchmarks. As multimodal LLMs gain prominence, there is a growing
need for visual mathematical benchmarks (Zhang et al., 2024; Qiao et al., 2024). Early efforts in this
domain focus primarily on geometric problems, as seen in datasets like GeoQA (Chen et al., 2022b),
UniGeo (Chen et al., 2022a), and Geometry3K (Lu et al., 2021). These datasets have a narrow focus
that does not encompass the breadth of mathematical visual reasoning required at advanced levels.

More recent benchmarks attempt to broaden the scope of visual mathematical evaluation. One of the
first comprehensive attempts is the mathematical subset of MMMU (Yue et al., 2023), which offers
505 college-level multiple-choice questions, all with images. However, its multiple-choice format
limits the complexity of problems that can be posed. MathVista (Lu et al., 2023) collects 28 existing
datasets and introduces 3 new datasets with a total of 5k samples (1k testmini samples). However, as
shown by Qiao et al. (2024), it faces challenges with data quality due to its compilation from older
datasets.

The latest benchmarks, such as MATH-V (Vision) (Wang et al., 2024) and We-Math (Qiao et al.,
2024), extend this approach to collect 3k and 1.7k visual samples, respectively. However, both
datasets rely on multiple-choice questions in the test set, leading to faster saturation. MathVerse
(Zhang et al., 2024) further extends this approach, relying on visual elements and providing some
simple text problems with 1.2k brand-new samples. Among these, only the We-Math dataset includes
university-level mathematical problems.

Our U-MATH dataset improves on existing benchmarks with 225 of 1,125 university-level problems
that require visual elements (graph, table, diagram) to be solved. This balanced ratio ensures models
are challenged to handle both traditional and visual problem-solving without over-relying on visuals,
mirroring real-world scenarios.

Large Language Models for Mathematics. The application of LLMs to mathematical problem-
solving shows promising results, particularly with models like GPT-3.5 and GPT-4 demonstrating
strong reasoning abilities for complex tasks such as those in the MATH dataset (Achiam et al., 2023).
While open-source models initially lagged in performance on advanced mathematical tasks, the
Llama-3.1 (Dubey et al., 2024) is approaching parity with proprietary models. The most popular
benchmarks, MATH and GSM8K, are nearing saturation, with Llama 3.1 405B achieving scores
of 73.8% and 96.8%, respectively. Similarly, a Qwen2.5-Math-72B model (Yang et al., 2024b;
Team, 2024) reach 85.9% on MATH while Qwen2-Math-72B (Yang et al., 2024a) reaches 96.7% on
GSM8k.

To enhance LLMs’ mathematical capabilities, researchers develop various prompt-based methods (Liu
et al., 2021). These include techniques for encouraging chain-of-thought generation (Wei et al., 2022),
selecting final results from multiple sampled outputs (Wang et al., 2022), and using external tools such
as calculators, WolframAlpha or Python interpreters (Gao et al., 2023) to reduce arithmetic errors.
Additionally, instruction tuning during pre-training has been identified as a key factor in improving
performance (Wang et al., 2017). While these approaches show promise, their effectiveness on
university-level problems still needs to be explored due to the lack of suitable large-scale benchmarks.

Mathematical solution verification. Evaluating mathematical solutions is uniquely challenging
due to the open-ended nature of answers and the inherent ambiguity in mathematical expressions.
Consequently, many benchmarks opt for multiple-choice formats due to their grading simplicity.
However, this approach often simplifies tasks, providing hints that models can exploit (Li et al.,
2024c; Pezeshkpour and Hruschka, 2023).

While free-form evaluation using LLM judges is widespread (Zheng et al., 2023), it is known to
introduce potential errors (Zheng et al., 2023), since evaluating mathematical solutions is a complex
task in its own right (Zeng et al., 2023; Xia et al., 2024). These evaluation errors are largely overlooked
and unaccounted for, limiting the reliability of inferences drawn from such evaluations.

Hence, it is important to be able to estimate the performance of automatic evaluators and to choose the
most adequate among them. Recent studies show that evaluation performance is correlated with but
does not equal problem-solving performance (Stephan et al., 2024). This underscores the importance
of benchmarks designed specifically to asses the evaluators — also called meta-evaluations.

There are existing benchmarks that are well-suited for meta-evaluations. PRM800K (Lightman et al.,
2023) contains 800K annotated steps from 75K solutions to 12K MATH dataset problems, designed
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to confuse reward models. FELM (Zhao et al., 2024) provides GPT-3.5 annotations for solutions to
208 GSM8K and 194 MATH problems. MR-GSM8K (Zeng et al., 2023) and MR-MATH (Xia et al.,
2024) introduce meta-evaluation datasets focused on the GSM8K and MATH datasets, respectively.
However, these are either based on elementary to high-school level problems or feature specifically
competition-style math, leaving a gap in meta-evaluations on complex and practical university tasks.

To address this, we introduce µ-MATH— a meta-evaluation dataset based on a subset of U-MATH
problems. It provides LLM-generated solutions with verified labels, enabling precise and fine-grained
assessment of LLMs’ evaluation abilities.

3 U-MATH

We present U-MATH (stands for University Math) — a benchmark designed to challenge LLMs with
problems requiring deep understanding and advanced reasoning. The problems span 6 core topics
and range in difficulty and number of questions. A subset of 20% of problems includes images to
test the models’ ability to interpret and reason with graphical information. Reference solutions and
answers accompany all problems.

Accuracy is the primary performance metric for U-MATH, its text-only problems (U-MATHT)
and problems that include a visual component (U-MATHV). The main performance measure for
µ-MATH is macro-F1.

We use an LLM as a judge (Zheng et al., 2023) to measure the accuracy of the free-form answers
against the golden solutions. A problem is considered solved only if all required questions are
answered and all requested items (e.g., all saddle points) are correctly identified.

3.1 DATASET COLLECTION

To create a benchmark that authentically reflects university-level mathematics, we collaborate with
[ANONYMIZED], a platform providing learning content and software for top US universities spe-
cialized in mathematics. The problems are sourced from ongoing courses across various institutions
currently run on the [ANONYMIZED] platform. Problems and solutions are crafted by subject matter
experts and represent real-world academic standards. These samples are unpublished and have not
been exposed to any external sources. Thus, the dataset could not be leaked to current LLMs.

We employ a multi-stage filtering process to select challenging problems from tens of thousands of
available samples. First, we filter out problems with short solutions (< 100 characters) and problems
in multiple-choice format. As LLMs are not designed to perform arithmetic calculations and are
prone to errors (Hendrycks et al., 2021; Lewkowycz et al., 2022), we focus on testing mathematical
reasoning rather than calculations. We filter out problems marked as allowing calculator usage. As
for the visual problems selection, we chose to keep problems with a single image for convenience.

Next, we employ several small LLMs (LLaMA-3.1-8B (Dubey et al., 2024), Qwen2-7B (Yang et al.,
2024a), Mistral-7B (Jiang et al., 2023), Mathstral-7B, NuminaMath-7B (Beeching et al., 2024)) to
solve the problems. We select 175 most challenging problems for each subject based on the average
problem solution rate. We randomly select 150 samples for the public test, keeping the rest for the
private set. For this step, we use the same pipeline as described in Section4. This way, we ensure that
none of the individual models influence problem selection largely and that there is no overfitting to a
specific LLM.

Next, we enlist a team of paid experts from the [ANONYMIZED], who actively teach various
Calculus courses. The experts verify that each problem is suitable either for assessing the subject
knowledge expected of college or university students or for testing prerequisite knowledge.
The team thoroughly reviewed and affirmed that the selected problems meet these criteria.

3.2 DATASET STATISTICS

The U-MATH benchmark comprises 1,125 carefully curated and validated mathematical problems.
These problems are distributed across 6 core subjects with about 20% of the tasks incorporating visual
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elements, such as graphs, tables, and geometric figures, mirroring the multi-modal nature of real-
world mathematical problems: Precalculus (Review), Algebra, Differential Calculus (+Differential
Equations), Integral Calculus, Multivariable Calculus, and Sequences & Series.

Math Subject #Textual #Visual Avg. Questions Avg. Answers
Algebra 150 30 1.93 1.28
Differential Calculus 150 68 2.37 1.15
Integral Calculus 150 80 1.09 1.01
Multivariable Calculus 150 28 1.74 1.09
Precalculus 150 13 1.51 1.23
Sequences and Series 150 6 1.36 1.00

All 900 225 1.66 1.12

Table 2: Average number of questions per problem and answers per question in U-MATH.

Table 2 summarizes the distribution of problems across different subjects. The average is 1.7 questions
per problem (e.g., local minima, maxima, and increasing intervals are asked), and the average of 1.1
answers per question (for example, the number of saddle points in the correct answer).

3.3 META-EVALUATION FRAMEWORK (µ-MATH)

Mathematical problem evaluation is not straightforward. Even simple expressions like x · 0.5 may
have valid forms like x

2 , x ÷ 2, x/2, or unsimplified variants like 9x/18. In practice, evaluating
free-form solutions requires testing expression equivalence in much less trivial cases, especially with
more advanced problems (refer to Section A.3 in Appendix for an example).

To systematically study the ability of LLMs to evaluate free-form mathematical solutions on advanced,
university-level problems, we introduce the µµµ-MATH (Meta U-MATH) benchmark. It consists of a
curated subset of U-MATH samples, supplied with LLM-generated solutions — both correct and not.
The solutions are labeled using a combination of manual inspection and automated verification via
[ANONYMIZED]-API, which allows to test formal equivalence of mathematical expressions.

We selected 340 U-MATH problems (around 30%) based on their assessment difficulty to create
a challenging meta-evaluation set. This benchmark does not aim to reflect the overall U-MATH
distribution but rather provides a robust test for LLM judges. We focused on text-only problems,
excluding those needing images, due to the limited size of the labeled U-MATH subset. The Qwen2.5-
Math-7B model was used for solution generation, with about 15% of the solutions being intentionally
incorrect. Ultimately, we have 340 samples in µ-MATH— one for each of the U-MATH-sourced
problems.

A tested model is provided with a problem statement, a reference answer, and a solution to evaluate.
We treat this as a binary classification task, using the macro-averaged F1-score as the primary
metric to minimize the effect of class imbalance. Additionally, we report Positive Predictive Value
(PPV or Precision) and True Positive Rate (TPR or Recall) for the positive class as well as Negative
Predictive Value (NPV) and True Negative Rate (TNR) for the negative class, offering a finer-grained
performance evaluation.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

We select some top-performing recent LLMs to evaluate.

All LLMs are tested using the same prompts and settings for fair comparison. The LLMs are restricted
to a single generation of 4096 tokens with the temperature set to 0. We employ chain-of-thought
(CoT) prompting (Wei et al., 2022) to encourage models to ‘think’ before providing an answer.
Images are included directly in the prompts for multimodal LLMs. To text-only LLMs the problem
description is provided as-is without visual elements. Refer to Appendix C.1 for the full prompts.
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Model Source Size(s) Visual Open-weights
Mathstral-v0.1 (Mistral.ai, 2024) 7B
NuminaMath-CoT (Beeching et al., 2024) 7B
LLaMA-3.1 (Dubey et al., 2024) 8B, 70B
Qwen2-Math (Yang et al., 2024a) 7B, 72B
Qwen2.5-Math (Yang et al., 2024b) 7B, 72B
Qwen2.5 (Team, 2024) 7B, 72B
Pixtral-12B-2409 (Mistral AI, 2024) 12B
LLAVA One Vision(Qwen2-7B) (Li et al., 2024a) 8B
Qwen2-VL (Yang et al., 2024a) 7B, 72B
gpt-4o-2024-05-13 (OpenAI, 2024) unknown

Gemini-1.5-Pro-002 (Team et al., 2024) unknown

Table 3: LLMs name, version and sizes used for our experiments.

We report accuracy based on widely available gpt-4o-2024-05-13 as-a-judge for the final results,
despite this not being the best model, yet conservative in false negative rate (as discussed in Sec-
tion 4.2.2). The judge is presented with the problem statement, golden answer, and generated
solutions. The temperature is set to 0. The judge is asked to extract the ‘student’s answer’, make
derivations that may be necessary, and compare solutions. After this ‘reasoning phase’, we ask the
judge to provide a Yes/No response in the same chat, which we interpret as a desired binary metric.
Refer to Appendix C.2 for full judge prompt.

4.2 RESULTS

Table 4 summarizes the performance of text-only and multimodal LLMs on the U-MATH benchmark.

Model U-MATH
U-MATH Algebra Diff. C. Integral C. Multivar C. Precalculus Seq.& Series
T V T V T V T V T V T V* T V*
900 225 150 30 150 80 150 68 150 28 150 13 150 6

Text-only models
Mathstral-7B-v0.1 16.36 20.1 1.3 56.0 3.3 4.0 1.5 2.0 1.2 6.0 0.0 40.7 0.0 12.0 0.0
Llama-3.1-8B 15.47 19.0 1.3 52.0 3.3 4.7 2.9 1.3 0.0 10.0 0.0 36.7 0.0 9.3 0.0
Qwen2.5-7B 32.18 39.8 1.8 77.3 3.3 14.0 0.0 10.7 1.2 34.7 7.1 72.7 0.0 29.3 0.0
Qwen2-Math-7B 28.62 35.1 2.7 77.3 3.3 9.3 1.5 8.0 2.5 23.3 7.1 70.7 0.0 22.0 0.0
Qwen2.5-Math-7B 33.24 41.0 2.2 64.0 0.0 16.7 1.5 21.3 0.0 35.3 7.1 72.0 7.7 36.7 16.7

Llama-3.1-70B 26.13 32.0 2.7 70.0 10.0 10.0 0.0 5.3 2.5 25.3 3.6 55.3 0.0 26.0 0.0
Qwen2.5-72B 34.04 41.9 2.7 69.3 0.0 25.3 0.0 10.7 1.2 39.3 14.3 70.0 0.0 36.7 16.7
Qwen2-Math-72B 35.20 43.6 1.8 80.0 0.0 22.7 0.0 16.0 2.5 32.0 0.0 76.7 0.0 34.0 33.3
Qwen2.5-Math-72B 41.16 50.6 3.6 73.3 3.3 33.3 0.0 23.3 7.5 48.7 3.6 82.0 0.0 42.7 0.0

Multimodal models
Qwen2-VL-7B 17.33 20.3 5.3 51.3 6.7 8.7 10.3 1.3 1.2 6.0 3.6 44.0 7.7 10.7 0.0
LLaVA-OV(Qwen2-7B) 14.40 17.8 0.9 48.7 0.0 4.7 1.5 0.7 0.0 7.3 3.6 36.7 0.0 8.7 0.0
Pixtral-12B-2409 15.64 18.1 5.8 46.7 16.7 4.7 10.3 0.7 1.2 6.7 0.0 41.3 0.0 8.7 0.0

Qwen2-VL-72B 26.93 30.1 14.2 70.0 13.3 11.3 20.6 5.3 7.5 18.7 21.4 58.7 15.4 16.7 0.0
GPT-4o 36.53 41.8 15.6 80.0 16.7 22.0 14.7 11.3 13.8 38.7 25.0 68.0 15.4 30.7 0.0
Gemini-1.5-Pro 48.89 53.4 30.7 84.7 56.7 37.3 27.9 27.3 22.5 42.7 28.6 81.3 46.2 47.3 16.7

Table 4: Comparison of models’ accuracy on our U-MATH benchmark and its subjects. Scores for various
mathematical categories, including text and visual analysis, are displayed. For each subject 2 numbers are
provided - text-only (T) and visual (V) problems. Asterisk denotes a small number of samples (< 15). Free-form
solutions judged by gpt-4o-2024-05-13. Images are not included in the prompt for text-only models, only the
problem statement. Bold indicates the best result in each group.

Among text-only models, the math-specific model Qwen2.5-Math-72B achieves the highest overall
accuracy at 41.2%, showcasing strong mathematical reasoning capabilities. In the multi-modal model
group, Gemini-1.5-pro-002 leads with an overall accuracy of 48.9%, highlighting the advantages
of integrating visual processing. In contrast, LLaVA-OV-Qwen2-7B lacks mathematical abilities in
visual and textual tasks with 15.6% on a U-MATH benchmark. Building on these results, several key
trends emerge:
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• Model Size vs. Specialization: Larger models expectedly outperform smaller ones. However,
the small specialized model Qwen2.5-Math-7B surpasses or performs on par with 10 times
larger models like Qwen2.5-72B or LLaMA-3.1-70B and the leading model Gemeni-1.5-Pro in
Multivariable Calculus. Similarly, Pixtral-12B performs consistently worse than minor Qwen2-
VL-7B, indicating a lack of university-level data in training.

• Textual vs. Visual Problem-Solving: Across multimodal models, text-only problems’ accuracy
vastly exceeds visual problems, highlighting areas for further improvement. The text-only models
can solve a small percentage of visual problems, primarily due to guessing or judging errors
discussed in Section 4.2.2.

• Proprietary vs. Open-weights model: Proprietary models like GPT-4o and Gemini still offer
top or competitive performance but lack transparency and flexibility. At the moment, the gap is
evident in visual comprehension. Open-weight models like Qwen-Math have taken a big step
toward hitting top performance.

4.2.1 SUBJECT-SPECIFIC RESULTS

We analyze model performance across different mathematical subjects to uncover underlying trends.
The models excel in Precalculus and Algebra, particularly on text-based problems, aligning with
previous findings and benchmark saturations (Ahn et al., 2024). However, they struggle with visual
problems in these areas, indicating a need for better visual-symbolic integration. In Sequences and
Series, models demonstrate strong performance on abstract, formula-based text tasks, reflecting the
logical structure of the subject. However, insufficient visual training data limits a complete evaluation
of their capabilities in this domain.

In contrast, the models show moderate success in Differential and Multivariable Calculus text tasks,
highlighting challenges in handling abstract, multi-dimensional concepts, especially in visual form.
Integral Calculus poses the most significant difficulty, with lower performance in both text and visual
tasks. Interpreting curves and areas proves particularly challenging, emphasizing the necessity for
more focused multimodal training. Additionally, the extensive expressions common in Integral
Calculus problems often confuse the models, diminishing their effectiveness.

4.2.2 META-EVALUATION (µ-MATH)

In this section, we present the results of our experiments on evaluating the performance of LLMs
judging mathematical solution correctness. Using the µ-MATH benchmark, we compare several
top-performing models, as displayed in Table 5.

Model U-MATHT
µ-MATH

F1macro TPR TNR PPV NPV
Mathstral-7B-v0.1 21.1 56.56 65.40 66.67 91.75 25.37
LLaMA-3.1-8B 19.0 58.29 68.86 64.71 91.71 26.83
Qwen2-Math-7B 35.1 65.01 87.20 45.10 90.00 38.33
Qwen2.5-Math-7B 41.0 66.90 85.81 52.94 91.18 39.71
Qwen2.5-7B 39.8 63.89 85.81 45.10 89.86 35.94

LLaMA-3.1-70B 32.0 66.27 74.05 80.39 95.54 35.35
Qwen2-Math-72B 43.6 73.03 92.39 52.94 91.75 55.10
Qwen2.5-Math-72B 50.6 69.95 86.85 58.82 92.28 44.12
Qwen2.5-72B 41.9 75.74 89.27 68.63 94.16 53.03

gpt-4o-2024-05-13 41.8 70.62 78.89 82.35 96.20 40.78
Gemini-1.5-pro-002 53.4 64.92 79.93 60.78 92.03 34.83

Table 5: Comparison of different models on the µ-MATH benchmark. Presented are standard binary classification
metrics — Macro F1-score (F1), True Positive Rate (TPR), True Negative Rate (TNR), Positive Predictive Value
(PPV), and Negative Predictive Value (NPV), with F1 as the primary one. U-MATH Text accuracy score from
Table 4 is added for comparison of model’s performance as a math solver vs as a math judge. Bold indicates the
best result for each column.

The results of our meta-evaluation experiments highlight several challenges in using LLMs to judge
mathematical solutions. No model consistently excels across all the tasks, with the best-performing
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model, Qwen2.5-72B, achieving an F1-score of 75.74, which still leaves significant room for
improvement.

The Qwen2-Math specialist model often outperforms GPT-4o while displaying qualitatively different
behavior. Qwen2-Math has the highest true positive rate and the lowest true negative rate among
the similar-size models, while GPT-4o exhibits the opposite pattern. This aligns with manual
observations, which indicate that GPT-4o focuses more on matching final answers and often cannot
perform complex derivations, making it a more conservative judge and increasing the rate of false
negative judgments. In contrast, Qwen2-Math ‘follows the solution’ and excels at mathematical
transformations, but this also leads to higher hallucination risk and more false positives.

Increased mathematical problem solving ability does not necessarily lead to lower judgment errors.
For example, Qwen2.5-Math outperforms Qwen2-Math on U-MATH tasks but does not show a
considerable advantage on the µ-MATH tasks. This too is in line with manual examinations revealing
that Qwen2.5-Math is overly specialized in problem-solving, which impairs its ability to follow
instructions properly and judge solutions. For instance, the model often starts solving the problem
from scratch instead of evaluating the solution. This indicates that finding a balance between
domain-specific skills and general capabilities is essential.

This point is further illustrated by the Qwen2.5 generalist model’s highest overall classification score:
it strikes a good balance between learning from general domain data and mathematical data produced
by specialist models.

5 CONCLUSION

In this paper, we introduced U-MATH, a novel benchmark designed to evaluate the mathematical
reasoning capabilities of LLMs at the university level. U-MATH comprises 1,125 unpublished
open-ended problems sourced from actual teaching materials, balanced across 6 core mathematical
subjects, with 20% of the problems requiring image understanding. Additionally, we presented
µµµ-MATH, a meta-evaluation dataset aimed at assessing the ability of LLMs to evaluate free-form
mathematical solutions.

Our experiments with general-domain, math-specific, and multimodal LLMs revealed significant
challenges in advanced mathematical reasoning and visual problem-solving. The best-performing
models achieved an accuracy of only 53% on text-based tasks and even lower, 30%, on visual
problems for Gemini-1.5-pro-002 model. Furthermore, the task of solution assessment has proven
to be challenging for LLMs, with the highest µ-MATH F1-score being 76% for Qwen2.5-72B,
indicating room for improvement in LLMs’ evaluation capabilities and highlighting that widely used
GPT-4o is not a silver bullet for judging.

Limitations. While U-MATH offers a substantial and diverse set of university-level problems, it
does not cover the full breadth and depth of advanced mathematical topics taught at universities.
The carefully curated selection may introduce biases, potentially favoring certain problem types or
difficulty levels (e.g., more accessible topics like Precalculus and Algebra). The inclusion of only
20% visual problems limits the assessment of LLMs’ capabilities in visual mathematical reasoning.
Additionally, relying on LLMs for problem-solving and solution evaluation introduces potential
biases and inaccuracies, as models may struggle with complex derivations or misinterpret instructions,
as evidenced by our findings with the µ-MATH dataset. The µ-MATH meta-evaluation dataset,
while valuable, encompasses only about 30% of the U-MATH samples and targets exclusively non-
visual problems by its design. Moreover, since we use a single model to generate solutions that are
then labeled, the benchmark may be less diverse and representative. These factors may limit the
exhaustiveness of our assessment of LLMs’ evaluation capabilities and the accuracy of judge’s error
rates for our primary benchmark.

Future Work. Future research can focus on enhancing LLM performance by integrating existing
tool-augmented models and exploring their effectiveness on U-MATH and µ-MATH tasks. For
instance, incorporating external tools, such as formal solvers, could improve complex textual and
multimodal reasoning capabilities. Additionally, our findings indicate that widely used models
like GPT-4o are not a silver bullet for solution evaluation; thus, developing specialized (finetuned)
models or techniques for more accurate and unbiased assessment is a promising direction. Expanding
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the µ-MATH dataset and incorporating formal verification methods could further refine evaluation
processes. Moreover, exploring mathematical assessment as a skill in its own right by examining the
generalization of our findings to other benchmarks could lead to significant advancements.

By open-sourcing U-MATH, µ-MATH, and the evaluation code, we aim to facilitate further research
in advancing the mathematical reasoning capabilities of LLMs and encourage the development of
models better equipped to tackle complex, real-world mathematical problems.

ETHICS STATEMENT

We collected all data in U-MATH and µ-MATH with appropriate permissions, ensuring no personal
or proprietary information is included. The datasets consist solely of mathematical problems and
solutions, without any sensitive content. The annotators from [ANONYMIZED] are employed in
the partner laboratory with [ANONYMIZED]; their annotation time is fully compensated at a fair
hourly rate. We open-sourced the datasets and code under suitable licenses to support transparency
and research advancement. There are no conflicts of interest associated with this work.

REPRODUCIBILITY STATEMENT

All datasets and code will be available on GitHub. Detailed descriptions of dataset collection and
processing are in Section 3. The experimental setup, including model configurations and prompts, is
outlined in Section 4, with full prompts provided in Appendices C.1 and C.2. These resources enable
replication of our experiments.
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A PROBLEM EXAMPLES

A.1 U-MATH PROBLEMS

Example 1: Algebra.

Write a logarithmic equation corresponding
to the graph shown. Use log3(x) as a parent
function:

The final answer: −3 · log3(x+ 4)

Example 2: Integral Calculus.

Solve the integral:∫
−9 · 3

√
x

9 · 3
√
x2 + 3 ·

√
x
dx

− 2

27
· ln

(
1

3
·
∣∣1 + 3 · 6

√
x
∣∣)

− 1

3
· 6
√
x
2 − 3

2
· 6
√
x
4
+

2

3
· 6
√
x
3

+
2

9
· 6
√
x+ C

Example 3: Precalculus Review.

Find a formula for f(x), the sinusoidal func-
tion whose graph is shown below:

The final answer:
f(x) = −4 · cos

(
1
2
·
(
x− π

4

))
+ 4

Example 4: Multivariable Calculus.

E is located inside the cylinder x2 + y2 = 1
and between the circular paraboloids z = 1−
x2 − y2 and z = x2 + y2. Find the volume of
E.

Volume = π
4

Example 5: Multivariable Calculus.

The graph of the polar rectangular region D is
given. Express the region D in polar coordi-
nates:

1. The interval of r is [3, 5]
2. The interval of θ is

[
3
4
· π, 5

4
· π

]

Example 6: Differential Calculus.

Sketch the curve:

y =
x3

6 · (x+ 3)2

Provide the following:
1. The domain (in interval notation)
2. Vertical asymptotes
3. Horizontal asymptotes
4. Slant asymptotes
5. Intervals where the function is increasing
6. Intervals where the function is decreasing
7. Intervals where the function is concave up
8. Intervals where the function is concave down
9. Points of inflection

1. The domain: (− inf,−3) ∪ (−3, inf)
...

Figure 2: Example text-only and visual problems from the U-MATH benchmark, illustrating the topic, problem,
and golden answer.
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A.2 U-MATH PROBLEM AND SOLUTION

Example: Differential Calculus.

U-MATH Problem:
The function s(t) = 2 · t3 − 3 · t2 − 12 · t+ 8 represents the position of a particle traveling along a
horizontal line.
1. Find the velocity and acceleration functions.
2. Determine the time intervals when the object is slowing down or speeding up.

Golden answer:
1. The velocity function v(t) = 6 · t2 − 6 · t− 12 and acceleration function a(t) = 12 · t− 6
2. The time intervals when the object speeds up

(
0, 1

2

)
, (2,∞) and slows down

(
1
2
, 2
)

Reference solution:
The velocity is the derivative of the position function:

v(t) = s′(t) = 6t2 − 6t− 12

The acceleration is the derivative of the velocity function:

a(t) = v′(t) = 12t− 6

To determine when the object is speeding up or slowing down, we compare the signs of v(t) and a(t).
Step 1: Find the Zeros of v(t) and a(t)
First, solve for v(t) = 0:

6t2 − 6t− 12 = 0 ⇒ t2 − t− 2 = 0 ⇒ (t− 2)(t+ 1) = 0

Thus, t = 2 and t = −1.
Next, solve for a(t) = 0:

12t− 6 = 0 ⇒ t =
1

2

Step 2: Analyze the Signs of v(t) and a(t)
We analyze the signs of v(t) and a(t) on the intervals determined by t = −1, t = 1

2
, and t = 2.

Interval v(t) a(t) Behavior
(−∞,−1) > 0 < 0 Slowing down
(−1, 1

2
) < 0 < 0 Speeding up

( 1
2
, 2) < 0 > 0 Slowing down

(2,∞) > 0 > 0 Speeding up

Step 3: Account for non-negative time

The object is speeding up on
(
0,

1

2

)
and (2,∞) and slowing down on

(
1

2
, 2

)
.

Figure 3: An example problem from the U-MATH benchmark, illustrating the problem, reference solution and
golden answer.
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A.3 µ-MATH META-EVALUATION

Example: Integral Calculus.

U-MATH Problem:
Solve the integral: ∫

20 · cos(−10 · x)3

21 · sin(−10 · x)7 dx

Golden answer:

C +
1

21
·
(
1

2
· (cot(10 · x))4 + 1

3
· (cot(10 · x))6

)
LLM-generated answer:

−3 sin(10x)2 − 2

126 sin(10x)6
+ C

Golden judge label: correct
Comment:
The reference answer and the submitted one can be simplified, respectively, to

C +
cot4(10x)

42
+

cot6(10x)

63
and C +

cot6(10x)

63
+

cot4(10x)

42
+

1

126
,

which differ by a constant term of 1/126.

Figure 4: An example problem from the µ-MATH meta-evaluation benchmark, illustrating the comparison
between the golden (reference) answer and the answer generated by an LLM.
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B SUB-TOPICS DISTRIBUTION

The U-MATH dataset cover variety of topics across 6 core subjects. Below is the count of unique
topics per subject:

• Differential Calculus: 51 unique topics
• Sequences and Series: 28 unique topics
• Integral Calculus: 35 unique topics
• Precalculus Review: 19 unique topics
• Algebra: 74 unique topics
• Multivariable Calculus: 53 unique topics
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Subject Topic Count Topic Name
Differential Calculus 29 Curve Sketching

13 Limits
12 One-Sided Limits
12 L’Hospital’s Rule
11 Increasing and Decreasing Functions
11 Higher Derivatives
10 Applications of Derivatives (Local Extrema)
10 Concavity
9 Product Rule
7 Critical Numbers

Sequences and Series 40 Taylor Series
30 Fourier Series
18 Maclaurin Series
12 Approximating Constants Using Power Series
6 Radius of Convergence (Center of Convergence)
5 Differentiate Power Series
4 Error in Approximation
4 Approximating Integrals Using Power Series
3 Series
3 Sum of Numerical Series

Integral Calculus 83 The Substitution Rule
24 Antiderivatives
10 Volumes of Solids of Revolution About the X-Axis
9 Trigonometric Substitutions and Inverse Substitutions
9 Integrate Respect Independent Variable
7 Applications of Integrals
7 Single Variable Surface Area Integrals
6 Volume of Solids of Revolution About the Y-Axis
5 Integration by Parts
4 The Definite Integral Definition

Precalculus Review 55 Trigonometric Functions
24 Zeros
11 Inverses of Functions
8 Inequalities
7 Equations with Exponents and Logarithms
7 Properties of Functions
6 Exponential Functions
6 Logarithmic Functions
6 Linear Modeling
5 Complex Numbers

Algebra 18 Equations and Inequalities
13 Polynomial Equations
8 Find Composition of Two Functions
7 Polynomials
6 Find Slope Line
6 Applications of Exponential Function
6 Quadratic Equations
6 Divide Rational Expressions
6 Solve Linear Equation
5 Zeros of Polynomials

Multivariable Calculus 13 Triple Integrals
11 Lagrange Multipliers
9 Double Integrals in Polar Coordinates
8 Derivatives of Parametric Equations
8 Integrals of Multivariable Functions
8 Double Integral Over General Region
6 Classification of Critical Points
6 Limit of 2 Variable Function
6 Plane Parametric Polar and Conic Equations
5 Applications of Double Integrals

Table 6: Top 8 Topics for Each Subject.

C PROMPTS

C.1 PREDICTION PROMPT
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Solution CoT Prompt.

System:
You are an expert in mathematics.

User:
Solve the following problem. Make sure to show your work before giving the final answer.

Problem:
{{problem text}}

Comment:
Images (if present) are passed with native for provider API schema. For OpenAI-compatible endpoints
it is image_url field.a

ahttps://platform.openai.com/docs/guides/vision

Figure 5: Prediction for comparing student’s answer and reference answer

C.2 JUDGMENT PROMPT
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Judgment CoT Prompt.

System:
You are a math teacher responsible for grading student’s homework. You need to compare the student’s
final answer with the provided reference answer to determine if the student’s answer is correct. You
should not consider any additional reasoning or explanations given.
Instructions:
1. Equivalence: If the student’s answer is mathematically equivalent to the reference answer (e.g., 1.5
vs. 3/2 or a2 − b2 vs. (a+ b)(a− b) or (1, 2), (4, 5) vs (1, 2) ∪ (4, 5), the answer should be judged
as correct.
2. Approximations: Do not accept approximate answers unless the problem explicitly allows them,
however more precise answer should be accepted (e.g., 2 · π when the reference answer is 6.2832).
3. Multiple Parts: For problems with multiple questions or parts, ALL parts must be correct for the
overall answer to be correct.
4. Missing answer: Missing answers and general form answers should be considered incorrect unless
the problem explicitly allows them. (e.g. all points should be found, all values asked should be provided
etc.).
5. All the problem constraints have to be fulfilled (e.g., if the problem asks for 3 Taylor series terms, the
student needs to provide exactly 3; or if the point(s) are asked the student need to provide point with all
coordinates, e.g. (x, y)).
6. Reference Answer: Assume the provided reference answer is always correct. Do not attempt to solve
the problem yourself.

Provide a clear and concise evaluation without adding extra information or solving the problem yourself.

User: {{image, if any}}
Please compare the student’s answer with the provided reference answer.
Problem:
{{problem text}}

Reference Answer:
{{golden answer}}

Student’s Answer:
{{generated answer}}

—
For each question or part:
1. Write the reference answer and the student’s final answer.
2. Make any derivations or transformations that may be necessary to compare the reference answer and
the student’s answer.
3. Only then perform the comparison.
After comparing all parts, provide a final judgment is the student’s answer correct or incorrect.

Assistant:
{{CoT solution}}

User:
Now, summarize the judgment above in single word. Is the student answer fully correct? Please answer
with a SINGLE word — either Yes or No

Assistant:
{{extracted answer}}

Figure 6: Judgment for comparing student’s answer and reference answer
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