
Under review as a conference paper at ICLR 2024

LUMOS: LEARNING AGENTS WITH UNIFIED DATA,
MODULAR DESIGN, AND OPEN-SOURCE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce LUMOS, a novel framework for training language agents that em-
ploys a unified data format and a modular architecture based on open-source large
language models (LLMs). LUMOS consists of three distinct modules: planning,
grounding, and execution. The planning module breaks down a task into a se-
ries of high-level, tool-agnostic subgoals, which are then decomposed into a set of
low-level actions via the grounding module. These actions are subsequently ex-
ecuted by the execution module, utilizing a range of off-the-shelf tools and APIs.
In order to train these modules effectively, high-quality annotations of subgoals
and actions were collected and are made available for fine-tuning open-source
LLMs for various tasks such as complex question answering, web tasks, and math
problems. Leveraging this unified data and modular design, LUMOS not only
achieves comparable or superior performance to current, state-of-the-art agents,
but also exhibits several key advantages: (1) LUMOS surpasses GPT-4/3.5-based
agents in complex question answering and web tasks, while equalling the perfor-
mance of significantly larger LLM agents on math tasks; (2) LUMOS outperforms
open-source agents created through conventional training methods and those using
chain-of-thoughts training; and (3) LUMOS is capable of effectively generalizing
to unseen interactive tasks, outperforming larger LLM-based agents and even ex-
ceeding performance of specialized agents.

1 INTRODUCTION

Language agents, which employ the insights gained by language models (LMs) to address com-
plex reasoning problems, carry out executable actions and interact with external tools or environ-
ments. They have evolved into crucial elements of AI systems targeted at solving complex interac-
tive tasks. These tasks can range from question-answering (Yang et al., 2018; Geva et al., 2021), to
web tasks (Deng et al., 2023; Zhou et al., 2023), and mathematical reasoning (Cobbe et al., 2021).
The inherent challenge of these tasks springs from their typical demand for long-horizon planning
and interactive reasoning abilities.

Prior agent frameworks (Yao et al., 2022b; Shinn et al., 2023; Lin et al., 2023; Patil et al., 2023;
Lu et al., 2023; Liu et al., 2023b) have primarily relied on closed-source large language model
(LLM) APIs such as OpenAI’s GPT-4 and ChatGPT (OpenAI, 2023; 2022). Though powerful,
these LLM APIs can be prohibitively expensive, particularly for tasks with long contexts such as
web tasks, where encoding HTMLs is a necessity. Compounding these issues, these model APIs are
seldom deterministic, making agent reproduction challenging. Furthermore, the lack of transparency
in these closed-source LLMs results in limited understanding of their architectures and internal
behaviors. We argue that such reliance on closed-source LLM-based agents is not conducive to
the growth of the research community, suggesting a shift towards the use of open-source LLMs.
However, recent studies (Xu et al., 2023a; Liu et al., 2023a; Zeng et al., 2023) indicate that agents
built with open-source LLMs significantly lag behind those using GPT-4 in terms of performance.

In this paper, we propose LUMOS1, a general language agent framework with a unified data for-
mat and a modular design, built on open-source LLMs. Contrary to conventional fine-tuning (Chen
et al., 2023; Zeng et al., 2023), our focus resides on designing a modular framework for developing

1“Lumos” is a spell from the Harry Potter series that produces light from the caster’s wand.

1

Under review as a conference paper at ICLR 2024

Open-LLM-based
Planning module

Open-LLM-based
Grounding module Execution module

All Actions All Execution Results All Subgoals

LUMOS-O formulation

Subgoal Actions -th

Open-LLM-based
Planning module

Open-LLM-based
Grounding module

Subgoal t: Query
the living period
of Lowell Sherman

LUMOS-I formulation

Action t-1: R1 = KnowledgeQuery(Lowell Sherman);
Action t-2: R2 = ParagraphRetrieval(R1, Query:
What is the living period of Lowell Sherman?
Action t-3: R3 = QA([R2], Query: What is the
living period of Lowell Sherman?)

Execution module

Execution Result -th

 Generate -th subgoal

Complex Question Answering

Math Tasks

Web Tasks

Interactive Code Generation

Text Games

LUMOS is applicable to:

… ……

(a) Overview of our proposed LUMOS formulations – LUMOS-Onetime
(LUMOS-O) and LUMOS-Iterative (LUMOS-I) (see details in §2).

Subgoal 1: Query the living period of Lowell
Sherman.
- … … …
- Action 1-3: R3 = QA([R2], How long did

Lowell Sherman live?) = 46 years
Subgoal 2: Query the living period of
Jonathan Kaplan.
- … … …
- Action 2-3: R6 = QA([R5], How long did

Jonathan Kaplan live?) = 75 years
Subgoal 3: Compare their living periods.
- … … …
- Action 3-1: R7 = Calculator(R3 > R6)

Multi-Domain
Ground-Truth

Reasoning Steps

Training Pipeline

Open-LLM-based
Planning module

Open-LLM-based
Grounding module

LLM Annot.
Conversion

 Subgoals
 & Actions

 Subgoals
& Exe. Results

Train

Train

(b) The process of acquir-
ing annotations for train-
ing planning and grounding
modules (see details in §3).

Figure 1: Overall architecture, formulations and training pipeline of LUMOS. The figure example is
about answering a complex QA question “Who lives longer, Lowell Sherman or Jonathan Kaplan?”

language agents. LUMOS consists of three modules: a planning module � , a grounding module - ,
and an execution module { . The planning module dissects a complex task into a sequence of high-
level subgoals. The grounding module subsequently translates these generated subgoals into a series
of low-level actions, which the execution module, a collection of off-the-shelf tools for problem-
solving like calculators and search engines, executes. We propose two interaction formulations for
implementing language agents, LUMOS-Onetime (LUMOS-O) and LUMOS-Iterative (LUMOS-I). As
illustrated in Figure 1a, LUMOS-O is an efficient formulation that generates all the subgoals and ex-
ecutable actions using a single inference call in a one-pass fashion. On the other hand, LUMOS-I
is an iterative formulation that generates one subgoal at a time based on its previous intermediate
execution results and environment updates, thereby creating a more adaptive agent.

In addition, LUMOS utilizes a unified data format that encompasses multiple task types, thereby
enabling the developed agent framework to conveniently support a range of interactive tasks. These
include, but are not limited to, question answering, mathematics, coding, web browsing, and em-
bodied simulation. This format is advantageous as it facilitates cross-task generalization. To obtain
high-quality annotations for training LUMOS, we convert the rationale behind decision-making steps
of existing benchmarks into a unified format (Fig. 1b). This conversion is achieved with the aid of
GPT-4, ensuring that these steps share a universally-applicable formulation that is in line with the
modular design we described earlier. Our proposed unified data representation aids not only in
the efficient acquisition of high-quality training data for agents, but also in facilitating cross-task
generalization for these agents. For both the planning and grounding modules, we have collected
approximately 40K training annotations. These comprise one of the largest open-source resources
for agent fine-tuning available. The training annotations could serve as an invaluable resource for
universally enhancing any open-source LLMs with agent capabilities.

Our extensive evaluation affirms that LUMOS provides state-of-the-art or parallel performance across
various complex interactive tasks, including QA, web, and mathematics tasks. We consolidate our
contributions and results as follows:

A General Agent Framework with High-Quality Data. We introduce a modular agent learning
framework that trains open-source LLMs with unified data, aimed at representing complex inter-
active tasks. LUMOS continually outclasses other learning methods such as the chain-of-thoughts
fine-tuning and integrated agent training. Our unified task representation along with our gathered
data (comprising 40K high-quality subgoal/action annotations for three prevalent task types) can be
instrumental for future research in developing open-source agents for complex interactive tasks.

State-of-the-Art Performance. LUMOS surpasses GPT-based agents in complex QA and web tasks.
Particularly, LUMOS exhibits a 3.5-8.1% LLM accuracy increase over GPT-3.5-turbo-based agents
on HotpotQA (Yang et al., 2018) with only 7B-scale base models (a previously unseen dataset for
LUMOS) and a substantial improvement on StrategyQA (Geva et al., 2021). It also shows a 5.0%
enhancement in success rate over GPT-4 on Mind2Web. Interestingly, it even outperforms contem-
poraneous agents that have been fine-tuned with in-domain HotpotQA and Mind2Web annotations,
with examples including FiReAct (Zeng et al., 2023) and AgentLM (Zeng et al., 2023). In mathemat-
ics tasks such as GSM8K (Cobbe et al., 2021) and SVAMP (Patel et al., 2021), LUMOS effectively
competes against agents constructed on substantially larger LLMs.

2

Under review as a conference paper at ICLR 2024

Cross-Task Generalization. LUMOS generalizes well to unseen tasks and actions. When evaluated
on an unseen task, namely WebShop (Yao et al., 2022a), a text game for online shopping, LUMOS
surpasses the performance of larger LLM-based agents (for instance, WizardLM-30B (Xu et al.,
2023b)) by approximately 20 reward points and also delivers a notable 5-10 reward point improve-
ment over domain-specific agents. This suggests that LUMOS can easily generalize across tasks,
hinting at potential benefits for a wide spectrum of language agent applications.

2 LUMOS: A MODULAR AGENT FRAMEWORK

2.1 LUMOS AGENT ARCHITECTURE

To solve a complex interactive task, it is necessary to decompose the task into a series of subgoals.
These subgoals should then be converted into sequences of executable actions before being carried
out. This process corresponds to the planning, grounding, and execution modules in our framework.

� Planning Module (PM). This module is designed to dissect a complex task into a series of high-
level subgoals, expressed in natural language. For example, a question such as “Who lived longer,
Lowell Sherman or Jonathan Kaplan?” necessitates three subgoals, as illustrated in Figure 1b: (1)
Determine the lifespan of ‘Lowell Sherman’; (2) Ascertain the lifespan of ‘Jonathan Kaplan’; (3)
Compare their lifespans and provide an answer. The devised subgoals assist in breaking down a
complex task into low-level actions in an interpretable and tool-agnostic manner.

- Grounding Module (GM). The purpose of this module is to transform the high-level subgoals
produced by the PM into low-level executable actions. For instance, the GM translates the subgoal,
“Query the living period of Lowell Sherman,” into one or more actions. These actions could
be KnowledgeQuery(Lowell Sherman), or QA([R2], Query: ‘‘What is the living period
of Lowell Sherman?’’). Here, R2 refers to the previously retrieved knowledge that may be helpful
in answering the query. The grounding module can be easily customized and updated to learn new
actions without updating the planning module, thus significantly improving the flexibility of agent
development.

{ Execution Module (EM). The Execution Module (EM) is a program that parses actions into a
series of operations. It deploys a variety of off-the-shelf tools, including APIs, neural models, and
virtual simulators. The module functions by interacting with these tools and the external environ-
ment. For instance, the execution module could call the Wikipedia API or Google Search APIs to
accomplish the KnowledgeQuery action, thereby enabling the system to query a document.

The main characteristic of the LUMOS framework is the interaction among the planning, grounding,
and execution modules. We propose two formulations promoting enhanced communication between
these three modules: LUMOS-Onetime (LUMOS-O) and LUMOS-Iterative (LUMOS-I).

2.2 LUMOS-ONETIME (LUMOS-O)

The LUMOS-Onetime (LUMOS-O) formulation is an efficient method that generates all subgoals
and grounded actions simultaneously. As depicted in Figure 2a, this formulation uses the planning
module to generate all three subgoals in a single inference call, without requiring interaction with the
other two modules. We then pass all the generated subgoals at the same time to the grounding mod-
ule, which translates them into a sequence of low-level actions without any interaction with the exe-
cution modules. Given both the task and the three subgoals, the grounding module can produce low-
level actions, such as KnowledgeQuery(Lowell Sherman) and ParagraphRetrieve(..., Query:
How long did Lowell Sherman live?).

In addition to the task description and subgoals, we also provide action interfaces to the ground-
ing module as inputs. These action interfaces define the functionalities of actions and their valid ar-
guments, guiding the grounding module to produce executable actions. For example, we provide the
grounding module with the action definition, SolveEquation(equation): Solve a previously
set equation and return the solution, which is implemented by math APIs.

More formally, the overall planning and grounding process of LUMOS-O is illustrated in Figure 2a.
In the planning phase, the task description T is input into the planning module, given the parameters
of the module θplan. This generates an output series of subgoals, expressed as S = θplan(T) =

3

Under review as a conference paper at ICLR 2024

Planning module

Grounding module

Execution module

 Task description:
 Action interfaces:

Subgoals

 Task description:

Actions

Exe. results:

LUMOS-O formulation

(a) Inputs & outputs of each module in LUMOS-O
formulation.

Planning module

Grounding module

Execution module

 Task description:
 Previous subgoals:
 Previous actions:
 Action interface:

Subgoal:

 Task description:
 Previous results:
 Previous subgoals:

Action:

 -th iter. for LUMOS-I formulation

Exe. result:

(b) Inputs & outputs of each module for the t-th iter-
ation in LUMOS-I formulation.

Figure 2: Overview of the inputs & outputs contents for the modules in LUMOS.

{s1, ..., sn}. In the grounding phase, grounded actions are obtained via A = θground(T, I, S), with
reliance on the task description, action interface I = {i1, ..., ik}, and the subgoals generated by the
planning module. Here, θground represents the parameters of the grounding module.

2.3 LUMOS-ITERATIVE (LUMOS-I)

LUMOS-Iterative (LUMOS-I) is a formulation that generates one subgoal and its corresponding ex-
ecutable actions in each iteration. When generating the current t-th subgoal, the planning module
requires the previous planned subgoals and the execution results of their grounded actions. The
execution results assist the planning module to be aware of the dynamic environmental change and
thus decide actions according to the most up-to-date environments. LUMOS-I has the advantage of
being flexible in adapting to the environmental change.

Take the complex QA task as an example when answering the question “Which state was the
U.S. president in 2014 born in?”: in the first iteration, the planning module will produce
“Subgoal 1: Query who the U.S. president in 2014 was”. This subgoal is passed to
the grounding module to generate the corresponding query actions, and obtain the executed results
“Obama”. The planning module then takes “Obama” along with the prior planning context as input
to generate the next subgoal “Subgoal 2: Query which state Obama was born”. Planning
upon the latest execution results would mitigate the risk of introducing a non-existent object in the
environment or a random entity during the reasoning process.

We demonstrate a single iteration of planning and grounding process of LUMOS-I in Figure 2b. In
order to plan t-th subgoal, we input the 1) task description T , 2) prior subgoals {s1, ..., st−1}, and
3) their executed results {e1, ..., et−1} into the planning module. We concatenate them in the format
of T, s1, e1, ..., st−1, et−1 where the most recent subgoals and their results are placed in the end,
as they have higher influence for planning t-th subgoal. The generated output would be the t-th
subgoal, st = θplan(T, s1, e1, ..., st−1, et−1). After the t-th subgoal is obtained, it will be directly
incorporated into grounding module together with the prior grounding history and action interface I
to generate the next set of executable actions, At = θground(T, I, s1, A1, ..., st−1, At−1, st). Note
that At is an executable action list, as the high-level subgoal might be decomposed into multiple low-
level actions. We finally put the low-level actions At into execution module and the final execution
result et can be sent back for planning (t+ 1)-th subgoal.

3 LEARNING TO PLAN & GROUND WITH OPEN-SOURCE LLMS

To guide planning and grounding modules to generate subgoals and valid low-level actions under
our specified formulations, we fine-tune the two modules to produce the expected outputs.

Training the modules requires high-quality task descriptions, subgoals, and low-level actions. To
equip smaller LLMs with instruction-following ability, prior works leverage methods such as Self-
Instruct (Wang et al., 2023b) to synthesize instructions, inputs and outputs based on few-shot exam-
ples. However, these methods are not suitable for generating high-quality annotations for complex
interactive tasks. For example, GPT-4 can only achieve around 20% step success rate in a web agent
benchmark Mind2Web (Deng et al., 2023; Liu et al., 2023a). Relying on such methods to generate
complex interactive task annotations may introduce noise and degrade the annotation quality.

Instead of creating annotations with API-based LLMs directly, we exploit LLMs as a “style transfer”
tool to convert ground-truth intermediate reasoning steps in existing benchmarks into the expected
format in LUMOS formulations. We notice that there are several complex interactive tasks annotated

4

Under review as a conference paper at ICLR 2024

with either human-written solutions or structured action sequences. For example, PRM800K (Light-
man et al., 2023) is a math dataset containing the solution steps written in natural language, inter-
leaved with formulas; Musique (Trivedi et al., 2022) and StrategyQA (Geva et al., 2021) are com-
plex QA datasets annotated with decomposed questions, supporting facts, and relevant Wikipedia
paragraph indices; Mind2Web includes ground-truth action sequences. They provide LLMs with
fundamental information that sufficiently contributes to the annotation conversion.

3.1 CONVERSION PROMPTS

To help LLMs better follow the annotation conversion instructions, we add 4-/5-shot examples in
conversion prompts (see Appendix F for prompt details). We discuss the important properties of
these in-context examples. The notations of the converted annotations have hat over letters.

Action Space. Action space defines the available actions that LLMs could ground to. Table 6 shows
a comprehensive list of action definitions and their implementations.

Ground-Truth Intermediate Reasoning Steps. We provide LLMs with ground-truth intermediate
reasoning steps in existing benchmarks. With these as a reference, LLMs are able to summarize
high-level subgoals and synthesize corresponding actions according to the given action space.

Subgoals and Corresponding Actions. When converting ground-truth reasoning steps into our
expected annotations, it is necessary to provide LLMs with examples about how to distill the high-
level subgoals from the reasoning steps and map them into corresponding actions. In the in-context
examples, we manually decompose a complex task into several high-level subgoals according to the
context of ground-truth reasoning steps. Under each high-level subgoal, we write down multiple
corresponding actions that help to accomplish the subgoal (see examples in Appendix F). Given the
aligned exemplar subgoals and actions in the prompt, LLMs would emulate to generate subgoals
and their paired actions when converting annotations for new tasks.

As the executed results of prior subgoals might be useful in future action implementation, we
interlink the grounded actions in the in-context examples to allow context-dependent execution.
One typical example of the interlinked actions is R1 = KnowledgeQuery(Zombies); R2 =
ParagraphRetrieve(R1, Query: What color skin are zombies typically depicted
with?). The agent could first find the relevant paragraphs in the zombie knowledge page. Written
in interlinked style, the second paragraph retrieval action is able to receive the knowledge about
zombies (R1) as the context, and performs query-based retrieval.

Intermediate Executed Results of Subgoals. The intermediate executed results Ê play an im-
portant role in increasing LUMOS’s adaptability to environmental changes. Some datasets (e.g.,
GSM8K, Mind2Web) offer execution results in their reasoning steps, including the computation re-
sults of formulas and the HTML code after operating on a website. We leverage them as Ê. For
the datasets without any execution results, their reasoning steps actually contain the relevant doc-
uments that include the clues for solving subgoals. We take an annotated example in StrategyQA
dataset. Although the direct answer of the decomposed question “What color skin are zombies
typically depicted with?” is not provided, the annotation contains a related fact “Zombies are
often depicted as green in pallor.” that mentions the answer “green”. Thus, for each
in-context example, we concatenate the relevant documents (e.g., “Zombies are often depicted
as green in pallor.”) as well as our manually captured execution results (e.g., “green”) in
the conversion prompts. When converting new samples into our expected annotations, LLMs would
automatically extract answers from the given documents as the executed results.

After prompting LLMs with the conversion prompts, we can acquire the key elements in training
annotations, including subgoals Ŝ, their corresponding actions Â and execution results Ê.

3.2 TRANSFERRING ANNOTATIONS INTO CONVERSATIONS

Finally, to build the interaction between planning and grounding modules, we organize the annota-
tions into conversational format:

Conversational Planning Module Annotation. As shown in Figure 3a, we first play a user role to
provide the task T̂ and an instruction that guides the module to generate subgoals. For LUMOS-O

5

Under review as a conference paper at ICLR 2024

formulation, the planning module should reply all the annotated subgoals Ŝ at once. There would
be no further conversation needed.

LUMOS-I requires multi-turn conversational style. The planning module appends the first ground-
truth subgoal ŝ1 with index “Subgoal 1” in the beginning. We then act as user again and put the
executed results of ŝ1 with prefix “The executed result for Subgoal 1 is ”. Similarly,for
the rest turns, we assume ourselves as user, tell the execution results êt−1 of the last subgoal ŝt−1 to
planning module, and ask whether the planning should be stopped; The response would be whether
the planning should stop; if no, the response should contain a new ground-truth subgoal ŝt.

Conversational Grounding Module Annotation. Shown in Figure 3b, we also first play a user
role to provide the task T̂ , action space and interfaces Î . For LUMOS-O formulation, we feed all the
subgoal annotations Ŝ in the first user prompt. All the action annotations Â would be the response
of the user instruction. For LUMOS-I formulation, we provide the current ground-truth subgoal ŝt,
with prefix “Subgoal to be grounded: ”. Its response would be ŝt’s corresponding actions Ât.

3.3 TRAINING WITH CONVERTED ANNOTATIONS

As LUMOS training annotations are conversational, we formulate them in the format of
{x1, y1, ..., xi, yi, ..., xn, yn}, where xi is i-th user prompt and yi indicates its ground-truth re-
sponses. Following Wang et al. (2023a), during training process, we feed each entire multi-turn
annotation into a decoder-only model while merely calculating the decoding loss on the tokens of
ground-truth responses Y = {y1, ..., yi, ..., yn}. We apply binary masking on the user prompt tokens
to prevent computing loss on them. The final loss function is L = −

∑
j log pθ(tj | t<j)×1(tj ∈ Y)

where tj denotes j-th input token and 1(·) is a Boolean indicator function.

4 EXPERIMENTS

We present the details of our experimental setup, including annotation conversion, module training,
and the tools used in our execution module. To demonstrate the effectiveness of LUMOS, we eval-
uate LUMOS by: 1) comparing LUMOS with larger open-source LLM agents and GPT-based agent
frameworks, 2) contrasting LUMOS against other potential open-source agent baselines, 3) mani-
festing LUMOS’s generalizability on an unseen task that involves new environments and actions,
and finally 4) assessing the quality of LUMOS training annotations.

4.1 EXPERIMENTAL SETUP

Data Collection. Utilizing the conversion prompts discussed in Section 3.1, we employ GPT-
4 (OpenAI, 2023) to perform annotation conversion on the high-quality ground-truth reasoning steps
present in existing benchmarks. Appendix A provides a list of the data sources used for annotation
conversion. These include a diverse range of complex interactive tasks, such as math, complex QA
and web tasks. After filtering out the annotations that contain mismatched parentheses, invalid exe-
cution outputs or excessively lengthy outputs, we obtain 39,441 and 39,558 annotations for training
the planning and grounding modules, respectively. Detailed statistics are provided in Appendix A.

Training. We adopt LLAMA-2-7B and LLAMA-2-13B as the base models for both the planning
and grounding modules. In all of our experiments, we implement training over two epochs with a
learning rate of 2× 10−5. Details regarding the training process can be found in Appendix B.

Action Space. To solve the complex interactive tasks, we integrate commonly used actions into
the pre-defined action spaces. Each action can be perceived as a function that inputs intermediate
results as arguments and outputs text. Further details of the execution module’s supported executable
actions are included in Appendix E.

4.2 OVERALL PERFORMANCE

We evaluate our agents across an array of complex interactive tasks, such as complex QA, web, and
math tasks. We conduct this evaluation in accordance with the setting conventions established by
AgentBench (Liu et al., 2023a) and ReWOO (Xu et al., 2023a) when evaluating LUMOS (see Ap-
pendix D). The overall performance on each task type is displayed in Table 1. It’s worth noting that

6

Under review as a conference paper at ICLR 2024

Agents Web Task
Mind2Web

GPT/API-based Agents

GPT-3.5-turbo† 15.7
Claude† 21.0
GPT-4† 22.6

Open-source Agents

Baichuan-13B-chat† 2.3
WizardLM-30B† 3.1

Koala-13B† 6.0
AgentLM-70B♡ 13.5

LUMOS-IWeb 27.6
LUMOS-IWeb-13B 31.3

(a) Performance on web tasks. The metric is step-
wise success rate (%).

Agents Math Tasks
GSM8K SVAMP

Open-source Agents

AgentLM-13B♡ 32.4 -
Code-Llama (PoT)-13B¶ 36.1 60.0

Platypus-30B¶ 37.8 51.7
ReWOO-open‡ ≈38 -

Orca-Platypus-13B¶ 38.4 56.9
Alpaca-7B‡ ≈39 -

Galactica-30B¶ 41.7 41.6

LUMOS-OMath 50.5 65.5
LUMOS-IMath 47.1 63.6

LUMOS-OMath-13B 55.4 69.3

(b) Performance on math tasks in accuracy (%).

Agents Agent Model QA Tool Complex QA Tasks
StrategyQA HotpotQA (LLM Acc. / EM)

GPT/API-based Agents

GPT-3.5-CoT‡ GPT-3.5-turbo GPT-3.5-turbo 56.0 37.8 / 22.4
ReAcT‡ GPT-3.5-turbo GPT-3.5-turbo 64.6 40.8 / 32.4
ART∗ GPT-3 GPT-3 66.4 - / -

ReWOO‡ GPT-3.5-turbo GPT-3.5-turbo 66.6 42.4 / 30.4

Open-source Agents

ReWOO-open‡ LLAMA-7B GPT-3.5-turbo ≈56 ≈37 / -
AgentLM‡♡ LLAMA-2-7B LLAMA-2-7B - - / 22.3
FiReAct‡♠ LLAMA-2-7B LLAMA-2-7B - - / 26.2
FiReAct‡♠ CodeLLAMA-34B CodeLLAMA-34B - - / 27.8

LUMOS-OQA LLAMA-2-7B GPT-3.5-turbo 60.6 39.2 / 24.9
LUMOS-IQA LLAMA-2-7B GPT-3.5-turbo 65.7 45.9 / 29.4
LUMOS-IQA LLAMA-2-13B GPT-3.5-turbo 65.3 50.2 / 31.4
LUMOS-IQA LLAMA-2-7B GPT-4 72.4 56.8 / 36.0

(c) Performance on complex QA tasks. The evaluation metric for StrategyQA and HotpotQA is accuracy
(%), and LLM accuracy / Exact Match (%), respectively.

Table 1: Overall performance on diverse complex interactive tasks. Baseline results are reported in
†Liu et al. (2023a), ‡Xu et al. (2023a), ∗Paranjape et al. (2023), ¶Yue et al. (2023), ♡Zeng et al.
(2023) and ♠Chen et al. (2023), respectively.

in Table 1, task-specific agents like LUMOS-IX are trained using task-specific data corresponding to
task type X (e.g., Web, Math, QA). The details for performance evaluation is shown in Appendix D.

LUMOS vs. GPT-based Agents. Although LUMOS is built on LLAMA-2-7B and LLAMA-2-13B,
it does not inherently underperform the strong GPT-4/3.5-based agents. Specifically, LUMOS-I
delivers superior performance by 5.0% over GPT-4 on the Mind2Web dataset, and a 3.5% increase
in LLM accuracy over the GPT-based ReWOO agent on the HotpotQA dataset when employing
GPT-3.5-turbo as the implementation of the QA tool to ensure fair comparisons. The emphasis for
these experiments was to draw a fair comparison with existing performance benchmarks.

LUMOS vs. Larger Open-Source Agents. We have conducted comparisons of LUMOS with other
existing agents powered by open-source LLMs. According to our observations, LUMOS consistently
outperforms various open-source LLM agents across all five datasets. Despite the fact that the base
models of the compared language agents are approximately 2− 4× larger than LUMOS in terms of
model size, LUMOS significantly excels in performance. Specifically, 7B LUMOS-I achieves 24.5%
and 14.1% step success rate improvements over WizardLM-30B and AgentLM-70B, respectively,
on the Mind2Web dataset. Additionally, LUMOS-I provides a 1.6% higher EM than CodeLLAMA-
34B (Roziere et al., 2023). It is relevant to point out that despite ReWOO and FiReAct being fine-
tuned with in-domain HotpotQA annotations, LUMOS-I, without any fine-tuning using HotpotQA
annotations, still presents an impressive improvement. In particular, LUMOS-I surpasses the 7B-
scale FiReAct by 3.2% EM. A similar trend is also observed on Math tasks.

4.3 ABLATION ANALYSIS ON MODULAR TRAINING OF AGENTS

In this subsection, we evaluate the effectiveness of the modular design in LUMOS. We train models
using the same base model and data, but with different training methods - Chain-of-Thoughts
(CoT) Training: For a given task T , the agent learns to produce both the chain-of-thoughts solution

7

Under review as a conference paper at ICLR 2024

Agents Web Task
Mind2Web

Integrated Training 25.3

LUMOS-IWeb 27.6

(a) Web tasks.

Agents Math Tasks
GSM8K SVAMP

CoT Training 40.4 52.2
Integrated Training 45.5 61.7

LUMOS-OMath 50.5 65.5
LUMOS-IMath 47.1 63.6

(b) Math tasks.

Agents Complex QA Tasks
StrategyQA HotpotQA

CoT Training 58.3 22.1
Integrated Training 62.3 39.6

LUMOS-OQA 60.6 39.2
LUMOS-IQA 65.7 45.9

(c) Complex QA tasks.

Table 3: Comparison among different formulations of training language agents. The metric for
HotpotQA is LLM accuracy (%). All the experiments are based on LLAMA-2-7B.

and the final answer directly; Integrated Agent Training: For a given task T , the agent learns to
generate all the subgoals and actions using the same model. The execution modules remains the
same. This training paradigm is adopted in ReWOO-open, FiReAct and AgentLM.

Agents Unseen Task
WebShop

Open-source Agents

Baichuan-13B-chat† 5.7
Koala-13B† 6.0

WizardLM-30B† 10.6
Vicuna-v1.1-13B† 12.6

ChatGLM2† 19.4
Vicuna-v1.3-33B† 23.9
Vicuna-v1.5-13B† 41.7

OpenChat-v3.2-13B† 46.9
Claude-instant† 49.7

Domain-specific Agents

LUMOS-IWeb 34.7
LUMOS-IMath 30.1
LUMOS-IQA 33.5

LUMOS-IAll 39.8
LUMOS-IAll-13B 50.3

Table 2: Performance on the unseen task,
WebShop. The metric is the average re-
ward defined in Yao et al. (2022a). † in-
dicates the results reported in the two ver-
sions of AgentBench (Liu et al., 2023a).

From Table 3, both LUMOS-I and LUMOS-O signifi-
cantly outperform CoT Training2. Moreover, LUMOS
formulations also perform better than the integrated for-
mulation that solely relies on a single model to perform
planning and grounding. It highlights the importance of
disentangling the skills for subgoal planning and action
grounding during the agent training.

4.4 LUMOS ON UNSEEN TASKS

Given that LUMOS deploys a unified format to represent
complex interactive tasks, we envision it to possess su-
perior cross-task generalization ability. In other words,
when faced with a task that was not present in the train-
ing data, LUMOS can adapt to it more effectively with
few-shot examples.

In order to examine the generalization ability of LU-
MOS, we use WebShop (Yao et al., 2022a) as the un-
seen task. It should be noted that WebShop does not
qualify as a Web task by the definition we used earlier,
which incorporates HTML pages and simulates opera-
tions such as clicking and typing. WebShop more closely resembles a text game3, with its shopping
environment and action space considerably differing from those covered in the training annotations
of LUMOS. To adjust LUMOS to this new task, we supplement the input of the planning and ground-
ing modules with two-shot examples, enabling them to learn how to generate subgoals and ground
to new sets of available actions (for more details, see Appendix G).

Training Data Complex QA
StrategyQA HotpotQA

Downstream Perf. of Training Different Data

ReWOO-Planner Data ≈57 ≈37
LUMOS-IQA Data 58.3 38.1
Perf. Using High-Level and Low-Level Subgoal Annots.

LUMOS-IQA

w/ Low-Level Subgoals 63.3 44.3

LUMOS-IQA Data 65.7 45.9

Table 4: Comparison between the 7B-sized agents
trained with different annotations.

As demonstrated in Table 2, LUMOS-I achieves
a 5-10% higher average reward than domain-
specific agents on WebShop. Moreover,
it significantly outperforms larger language
agents such as WizardLM-30B and Vicuna-
v1.1-13B (Chiang et al., 2023). For 13B-scale
LUMOS-I, it even surpasses Vicuna-v1.3-33B
and API-based Claude-instant4. This suggests
that unified training enables agents to improve
their cross-task generalization capacity, thereby
enhancing their ability to plan for unseen tasks
and action types.

2Note that we do not implement CoT training on web tasks, as updates to the environment (e.g., changes to
HTML) are necessary intermediaries for planning subsequent actions.

3WebShop utilizes four actions in its training annotations: Search, FeatureRetrieve, Pick, and Click.
The argument of Click is a shopping item, differing from the argument for Click in Mind2Web which includes
an HTML element description.

4https://www.anthropic.com/product.

8

https://www.anthropic.com/product

Under review as a conference paper at ICLR 2024

4.5 FURTHER ANALYSIS ON TRAINING ANNOTATIONS

In the analysis of annotations, we aim to address two questions pertinent to quality and format
decisions. Q1: How good are our converted training annotations? Q2: Would adopting low-
level subgoals be more effective than using high-level subgoals?

Assessment of Annotation Quality. We assess the quality of our annotations by training models
with these annotations and evaluating the agents’ performance. We conduct a comparison with
ReWOO-Planner annotations, another source of training annotations for language agents. These
annotations, which are constructed based on HotpotQA and TriviaQA (Joshi et al., 2017) using Self-
Instruct method. To foster a fair comparison, we train the base model of ReWOO-Planner, LLAMA-
7B, using LUMOS annotations. We sample 2,000 training data to keep the same size with ReWOO-
Planner’s annotations. Given that ReWOO-Planner data exclusively relies on QA benchmarks, we
primarily focus on complex QA tasks for our comparison. Shown in Table 4, our training annotations
yield a 2.3% improvement in EM and 1.1% in LLM accuracy when compared to the ReWOO-
Planner on StrategyQA and HotpotQA. Note that even though the ReWOO-Planner data is based on
HotpotQA, it still does not outperform LUMOS on HotpotQA. It further proves the effectiveness of
our proposed annotation conversion method.

Low-Level Subgoal vs. High-Level Subgoal. As described in §2, we ask LLMs to generate high-
level subgoals corresponding to one or many low-level actions. An alternative annotation could be
one where each subgoal corresponds solely to one low-level action, i.e., the subgoal is “low-level”.
We direct LLMs to create these annotations with low-level subgoals by modifying the annotation
conversion prompt to fit the format where a subgoal is strictly linked to one action. Table 4 reveals
a decrease after replacing high-level subgoals with low-level ones across both the QA datasets. This
result hence reaffirms the appropriateness of our initial subgoal design.

5 RELATED WORK

Language Agents. Empowered by reinforcement learning, language agents have been previously
deployed in text game environments, such as TextWorld (Côté et al., 2019) and LIGHT (Urbanek
et al., 2019). With the advancement of LLMs, language agents have shown potential in solving
diverse complex interactive tasks. ReAct (Yao et al., 2022b) introduced a prompting method that
shaped LLMs as language agents and grounded them in an external environment. Subsequently,
several methods (Shen et al., 2023; Lu et al., 2023; Xu et al., 2023a; Lin et al., 2023; Liu et al.,
2023b) aimed at improving agent performance and increasing their applicability in diverse scenarios.
However, these agents mainly rely on closed LLMs, lacking of the consideration of affordability,
reproducibility and transparency issues when being applied on complex interactive tasks. We focus
on exploring 1) the training paradigms that enable open LLMs to tackle complex tasks, and 2) new
processes to generate high-quality training annotations adhering to these paradigms.

Improving Small Models for Building General Agents. Knowledge distillation (Hinton et al.,
2015) aims at transferring knowledge from larger models to smaller models. Several recent works
have utilized LLMs to generate explicit training data for fine-tuning smaller models (Bosselut et al.,
2019; West et al., 2022; Wang et al., 2023b; Brahman et al., 2023; Li et al., 2023). However, we
observed that directly generating annotations for training planning and grounding modules may
introduce a large number of errors, given that LLMs (e.g., GPT-4) behave badly on some complex
interactive tasks (Liu et al., 2023a). Instead, we use LLMs to transform the diverse gold reasoning
steps into LUMOS format to acquire large-scale high-quality data to train agents.

6 CONCLUSION

We introduce LUMOS, a language agent learning framework. We propose two training formulations,
LUMOS-I and LUMOS-O, which promote collaboration among agent modules to solve complex
interactive tasks. To obtain annotations for training modules, we use LLMs to transform reasoning
steps in existing benchmarks into a unified format applicable within the LUMOS framework. Built
solely on LLAMA-2-7B/13B, LUMOS performs better than GPT-series agents on QA and web tasks,
and competes with 2 − 4× larger agents on math tasks. We also show that LUMOS outperforms
potential agent training formulations and exhibits superior generalization on unseen interactive tasks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, and Yejin
Choi. COMET: Commonsense transformers for automatic knowledge graph construction. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4762–4779, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1470. URL https://aclanthology.org/P19-1470.

Faeze Brahman, Chandra Bhagavatula, Valentina Pyatkin, Jena D Hwang, Xiang Lorraine Li, Hi-
rona J Arai, Soumya Sanyal, Keisuke Sakaguchi, Xiang Ren, and Yejin Choi. Plasma: Making
small language models better procedural knowledge models for (counterfactual) planning. arXiv
preprint arXiv:2305.19472, 2023.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning. arXiv preprint arXiv:2310.05915, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Computer Games: 7th Workshop, CGW 2018, Held in Con-
junction with the 27th International Conference on Artificial Intelligence, IJCAI 2018, Stockholm,
Sweden, July 13, 2018, Revised Selected Papers 7, pp. 41–75. Springer, 2019.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070,
2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions
of the Association for Computational Linguistics, 9:346–361, 2021. doi: 10.1162/tacl a 00370.
URL https://aclanthology.org/2021.tacl-1.21.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/P17-1147.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 6769–6781, Online, November 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.
emnlp-main.550.

Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, and Yejin Choi. Symbolic
chain-of-thought distillation: Small models can also “think” step-by-step. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

10

https://aclanthology.org/P19-1470
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/2021.tacl-1.21
https://aclanthology.org/P17-1147
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550

Under review as a conference paper at ICLR 2024

pp. 2665–2679, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.150. URL https://aclanthology.org/2023.acl-long.150.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Prithviraj Ammanabrolu, Faeze Brahman, Shiyu Huang,
Chandra Bhagavatula, Yejin Choi, and Xiang Ren. Swiftsage: A generative agent with fast and
slow thinking for complex interactive tasks. ArXiv preprint, abs/2305.17390, 2023. URL https:
//arxiv.org/abs/2305.17390.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023a.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. Bolaa: Benchmarking and orchestrating
llm-augmented autonomous agents. arXiv preprint arXiv:2308.05960, 2023b.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. arXiv preprint arXiv:2304.09842, 2023.

OpenAI. ChatGPT. 2022. URL https://openai.com/blog/chatgpt.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language models.
arXiv preprint arXiv:2303.09014, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580, 2023.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multi-
hop questions via single-hop question composition. Transactions of the Association for Computa-
tional Linguistics, 10:539–554, 2022. doi: 10.1162/tacl a 00475. URL https://aclanthology.
org/2022.tacl-1.31.

Jack Urbanek, Angela Fan, Siddharth Karamcheti, Saachi Jain, Samuel Humeau, Emily Dinan, Tim
Rocktäschel, Douwe Kiela, Arthur Szlam, and Jason Weston. Learning to speak and act in a
fantasy text adventure game. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 673–683, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1062. URL https://aclanthology.
org/D19-1062.

11

https://aclanthology.org/2023.acl-long.150
https://arxiv.org/abs/2305.17390
https://arxiv.org/abs/2305.17390
https://openai.com/blog/chatgpt
https://aclanthology.org/2022.tacl-1.31
https://aclanthology.org/2022.tacl-1.31
https://aclanthology.org/D19-1062
https://aclanthology.org/D19-1062

Under review as a conference paper at ICLR 2024

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi
Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels
go? exploring the state of instruction tuning on open resources. arXiv preprint arXiv:2306.04751,
2023a.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13484–13508, Toronto, Canada, July 2023b. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.754. URL https://aclanthology.org/2023.
acl-long.754.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena Hwang, Liwei Jiang, Ronan Le Bras, Ximing
Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language
models to commonsense models. In Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
4602–4625, Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.
18653/v1/2022.naacl-main.341. URL https://aclanthology.org/2022.naacl-main.341.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan Xu.
Rewoo: Decoupling reasoning from observations for efficient augmented language models. arXiv
preprint arXiv:2305.18323, 2023a.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
Daxin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
arXiv preprint arXiv:2304.12244, 2023b.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question an-
swering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 2369–2380, Brussels, Belgium, October-November 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022b.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

12

https://aclanthology.org/2023.acl-long.754
https://aclanthology.org/2023.acl-long.754
https://aclanthology.org/2022.naacl-main.341
https://aclanthology.org/D18-1259

Under review as a conference paper at ICLR 2024

APPENDIX

A STATISTICS OF CONVERTED TRAINING ANNOTATIONS

As discussed in §4.1, the data sources for constructing training annotations cover a broad range of
complex interactive tasks. Table 5 shows the benchmarks leveraged for annotation conversion, along
with the task type information.

To train agents like LUMOS-IMath mentioned in Table 1b, we need to leverage the annotations
converted from 19778 data specific to maths domain. For training a unified agent such as LUMOS-I,
we would use the annotations transformed from all the listed data as training set.

B DETAILS OF TRAINING MODULES

Task Types Datasets # Conversion # Total

Math
PRM800K 10000

19778GSM8K 7473
ASDiv 2305

Complex QA Musique 17632 19409StrategyQA 1777

Web Mind2Web 1009 1009

Table 5: Statistics of data sources for conversion.

We describe additional details about
our training experiments. We set the
maximum sequence length to 1024.
We also apply linear warmup for 3%
of the total training steps to adjust
the learning rate. All the training
experiments are implemented with 2
NVIDIA 80GB A100 GPUs.

C ILLUSTRATION
OF ANNOTATION
ORGANIZATION

D DETAILS OF PERFORMANCE EVALUATION

Metrics. Here we mainly discuss the special metrics adopted to evaluate the agent performance.
For HotpotQA, instead of merely using strict exact matching, we follow Xu et al. (2023a) to also
use GPT-4 as an evaluator to judge whether the predicted answer shares the same semantics with
the gold answer. We call this metric as LLM accuracy, frequently mentioned in §4. For Mind2Web,
we adopt the same metric step success rate used for AgentBench evaluation. A step is deemed
successful solely when both the chosen HTML tag and predicted action type exactly match the gold
action. For WebShop, we leverage the reward utilized in both AgentBench and original WebShop
paper, which quantify the similarity between gold and predicted products with regard to product
titles and selected attributes.

Evaluation Data. Following Xu et al. (2023a), we only evaluate 300 and 1000 randomly selected
examples from StrategyQA and HotpotQA evaluation set, respectively. The results reported in Ta-
ble 1c are the average performance on three different sets of sampled data. Regarding Mind2Web,
we only evaluate on the “cross-domain” test set that AgentBench utilizes for evaluation. For Web-
Shop, we evaluate the first 500 instances from the entire test set as AgentBench used to do.

E EXECUTION TOOLS ASSOCIATED WITH ACTION SPACES

For each available action defined in the action spaces, there are at least one associated backend
execution tools that help to implement the actual grounded actions.

Displayed in Table 6a, for complex QA tasks, we rely on Wikipedia and Google search to help
us locate relevant entity knowledge. Besides, we leverage a pre-trained semantic matching model
dpr-reader-multiset-base5 used in Dense Passage Retrieval (DPR) (Karpukhin et al., 2020) to
capture relevant paragraphs according to the given query. Following ReWOO (Xu et al., 2023a),

5https://huggingface.co/facebook/dpr-reader-multiset-base.

13

https://huggingface.co/facebook/dpr-reader-multiset-base

Under review as a conference paper at ICLR 2024

Subgoal 1: Query the living period of Lowell Sherman.

- Action 1-1: R1 = KnowledgeQuery(Lowell Sherman)

- Action 1-2: R2 = ParagraphRetrieval(R1, Query: …)

- Action 1-3: R3 = QA([R2], Query: …) = 46 years

Subgoal 2: Query the living period of Jonathan Kaplan.

- Action 2-1: R4 = KnowledgeQuery(Jonathan Kaplan)

- Action 2-2: R5 = ParagraphRetrieval(R4, Query: …)

- Action 2-3: R6 = QA([R5], Query: …) = 75 years

Subgoal 3: Compare their living periods.

- Action 3-1: R7 = Calculator(R3 > R6)

- …

<|user|>
Please provide a reasonable subgoal-based plan to solve the
given task.
Task: Who lives longer, Lowell Sherman or Jonathan Kaplan?

<|assistant|>
Subgoal 1: Query the living period of Lowell Sherman.

<|user|>
The execution result of Subgoal 1 is 46 years. Should we
keep planning?

<|assistant|>
No, I will keep planning. Subgoal 2: Query the living
period of Jonathan Kaplan.

<|user|>
The execution result of Subgoal 2 is 75 years. Should we
keep planning?

…

Organize subgoals & execution results into conversation format

Final planning module annotation

We find relevant facts: Lowell Sherman passed away at

the age of 46. Jonathan Kaplan passed away at the age

of 75. We need to answer these questions: … … 3) Is #2

greater than #1? … …

LLM-based annotation conversion

Ground-truth reasoning steps in existing datasets

(a) Final planning module annotation organized from the converted subgoals & execution results.

Subgoal 1: Query the living period of Lowell Sherman.

- Action 1-1: R1 = KnowledgeQuery(Lowell Sherman)

- Action 1-2: R2 = ParagraphRetrieval(R1, Query: …)

- Action 1-3: R3 = QA([R2], Query: …) = 46 years

Subgoal 2: Query the living period of Jonathan Kaplan.

- Action 2-1: R4 = KnowledgeQuery(Jonathan Kaplan)

- Action 2-2: R5 = ParagraphRetrieval(R4, Query: …)

- Action 2-3: R6 = QA([R5], Query: …) = 75 years

Subgoal 3: Compare their living periods.

- Action 3-1: R7 = Calculator(R3 > R6)

- …

<|user|>
Please ground the given subgoal to corresponding executable
actions for solving the given task.

[action space + action interfaces]

Task: Who lives longer, Lowell Sherman or Jonathan Kaplan?
Subgoal to be grounded: Subgoal 1: Query the living period
of Lowell Sherman.

<|assistant|>
R1 = KnowledgeQuery(Lowell Sherman); R2 =
ParagraphRetrieval(R1, Query: …); R3 = QA([R2], Query: …)

<|user|>
Subgoal to be grounded: Subgoal 2: Query the living period
of Jonathan Kaplan.

<|assistant|>
R4 = KnowledgeQuery(Jonathan Kaplan); …

…

Organize subgoals & low-level actions into conversation format

Final grounding module annotation

We find relevant facts: Lowell Sherman passed away at

the age of 46. Jonathan Kaplan passed away at the age

of 75. We need to answer these questions: … … 3) Is #2

greater than #1? … …

LLM-based annotation conversion

Ground-truth reasoning steps in existing datasets

(b) Final grounding module annotation organized from the converted subgoals & actions.

Figure 3: Process of converting converted subgoals, actions, and executions into the final conversa-
tional training annotations for LUMOS-I formulation.

we also include GPT-series model as a simple QA tool to answer the query based on our retrieved
knowledge.

Demonstrated in Table 6b, for web tasks, the actions are real mouse and keyboard operations includ-
ing typing, clicking and selecting HTML tags. To locate the relevant HTML tags to be operated,
following AgentBench evaluation, we use a pre-trained DeBERTa model6 that ranks and retrieves
the tags according to the current action we would perform.

As shown in Table 6c, for maths tasks, the main execution tool is WolframAlpha API 7 as it is
capable of performing a large collection of mathematical functions such as calculating formulas
and solving equations. For complex mathematical operations such as sorting, we would leverage
OpenAI Codex (Chen et al., 2021) to generate a short code snippet for execution.

For WebShop unseen task, the actions include Search, FeatureRetrieve, Pick, and Click.
The implementation of Search and Click relies on the embedded implementation already pro-

6https://huggingface.co/osunlp/MindAct CandidateGeneration deberta-v3-base.
7https://www.wolframalpha.com/.

14

https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://www.wolframalpha.com/

Under review as a conference paper at ICLR 2024

Task Type Action Types Function Descriptions Implementation

Complex QA

KnowledgeQuery(Entity) -> Knowledge Query the entity knowledge Wikipedia, Google Search

ParagraphRetrieval(Knowledge, Query)
-> Paragraphs

Retrieve relevant paragraphs
according to the query dpr-reader-multiset-base

QA(Context, Query) -> Answer
Answer the query based on

the given context GPT-series/open LLMs

Calculator(Expression) -> Value Calculate given math expressions WolframAlpha

(a) Actions used in complex QA tasks.

Task Type Action Types Function Descriptions Implementation

Web

Click(Env, Query) -> Tag Locate the tag to be clicked according to the query

HTML SimulatorType(Env, Query, Text) -> Tag, Text
Locate the relevant tag according to the query

and output the typed text

Select(Env, Query, Text) -> Tag, Text
Locate the relevant tag according to the query

and output the selected option

(b) Actions used in web tasks.

Task Type Action Types Function Descriptions Implementation

Math

Calculator(Expression) -> Value Calculate given math expressions

WolframAlpha
SetEquation(Expression) -> Equation Set equations based on given expressions

SolveEquation(Equation) -> Solutions Solve the set equations

Define(Variable) -> Variable Define a variable

SolveInequality(Inequality) -> Solutions Solve the given inequality

Code(Function Description) -> Code Generate codes for math functions gpt-3.5-turbo

Count(List) -> Number Count the element number in a list Python

(c) Actions used in math tasks.

Table 6: Action space and execution module implementations for complex interactive tasks.

vided in official WebShop virtual environment8. FeatureRetrieve and Pick are based on
dpr-reader-multiset-base, which helps to select the most relevant items and their item features
according to the query.

F IN-CONTEXT EXAMPLES IN CONVERSION PROMPTS

As discussed in §3.1, in-context examples are helpful to instruct LLMs to generate annotations in
our expected format. For each of the training task types, we showcase one in-context example to
help readers better understand how the prompting conversion method works and the format of our
expected annotations. We highlight subgoals and their corresponding actions and execution results
with yellow, red and blue, respectively.

8https://github.com/princeton-nlp/WebShop.

15

https://github.com/princeton-nlp/WebShop

Under review as a conference paper at ICLR 2024

F.1 IN-CONTEXT EXAMPLE FOR OBTAINING MATH TASK ANNOTATIONS

Please convert natural language plans into a series of subgoals and their corresponding
actions that lead to the successful implementation with respect to the given instructions.
Please use ‘R[number]’ to represent the intermediate results for each subgoal, without
generating any exact values. Please also use functions to represent the corresponding
actions. For the actions, they must be one of ‘Calculator’, ‘SetEquation’, ‘SolveEquation’,
‘SolveInequality’, ‘Count’, ‘Code’, and ‘Define’.

Example 1:

Task: Peter goes to the store to buy a soda. The soda costs $.25 an ounch. He brought $2
with him and leaves with $.50. How many ounces of soda did he buy?

Natural language plan:
He spend $1.5 on soda because 2 - .5 = 1.5 He bought 6 ounces of soda because 1.5 / .25 =
6

Subgoal-based plan:
Subgoal 1: Calculate how much the soda costs in total.
Action 1-1: R1 = Calculator(2 - 0.5) = 1.5

Subgoal 2: Calculate the ounces of soda the price per ounch.
Action 2-1: R2 = Calculator(R1 / 0.25) = 6

16

Under review as a conference paper at ICLR 2024

F.2 IN-CONTEXT EXAMPLE FOR OBTAINING COMPLEX QA TASK ANNOTATIONS

Please convert natural language plans into a series of subgoals and their corresponding
actions that lead to the successful implementation with respect to the given instructions.
Please use ‘R[number]’ to represent the intermediate results for each subgoal, without
generating any exact values. Please also use functions to represent the corresponding
actions. For the actions, they must be one of one of ‘KnowledgeQuery’, ‘ParagraphRetrieve’,
‘QA’, ‘Calculator’ and ‘Code’.

Example 1:

Task: Are more people today related to Genghis Khan than Julius Caesar?

Natural language plan:
We find relevant facts: Julius Caesar had three children. Genghis Khan had sixteen
children. Modern geneticists have determined that out of every 200 men today has DNA that
can be traced to Genghis Khan. We need to answer these questions: 1. How many kids did
Julius Caesar have? (Can be answered based on paragraph ‘Julius Caesar-75’) 2. How many
kids did Genghis Khan have? (Can be answered based on paragraph ‘Genghis Khan-17’) 3. Is
#2 greater than #1? Based on these evidences and decomposed questions, the answer is True.

Subgoal-based plan:
Subgoal 1: Obtain the number of the kids that Julius Caesar had.
Action 1-1: R1 = KnowledgeQuery(Julius Caesar) = WikipediaPage(Julius Caesar)
Action 1-2: R2 = ParagraphRetrieve(R1, Query: How many kids did Julius Caesar have?) =
Paragraph(Julius Caesar-75).
Action 1-3: R3 = QA([R2], Question: How many kids did Julius Caesar have?) = 3.

Subgoal 2: Obtain the number of the kids that Genghis Khan had.
Action 2-1: R4 = KnowledgeQuery(Genghis Khan) = WikipediaPage(Genghis Khan).
Action 2-2: R5 = ParagraphRetrieve(R4, Query: How many kids did Genghis Khan have?) =
Paragraph(Genghis Khan-17).
Action 2-3: R6 = QA([R5], Question: How many kids did Genghis Khan have?) = 16.

Subgoal 3: Determine if Genghis Khan had more kids.
Action 3-1: R7 = Calculator(R6 > R3) = True

17

Under review as a conference paper at ICLR 2024

F.3 IN-CONTEXT EXAMPLE FOR OBTAINING WEB TASK ANNOTATIONS

Since the data source for converting annotations, Mind2Web, already provides the ground-truth
execution results after each action, as discussed in §3.1, we do not ask LLMs to capture each action’s
execution results. Therefore, there are no parts highlighted with blue in the in-context example.

Please convert natural language plans into a series of subgoals and their corresponding
actions that lead to the successful implementation with respect to the given instructions.
Please use ‘R[number]’ to represent the intermediate results for each subgoal, without
generating any exact values. Please also use functions to represent the corresponding
actions. For the actions, they must be one of they must be one of ‘TYPE’, ‘CLICK’, and
‘SELECT’.

Example 1:

Task: Find a Ricky Kej track to listen and share which has been added in the last year and
is between 2 to 10 minutes.

Natural language plan:
[searchbox] Search −→ TYPE: Ricky Kej; [link] Search for ‘‘Ricky Kej’’ −→ CLICK; [link]
Tracks −→ CLICK; [link] Added any time −→ CLICK; [link] Past year −→ SELECT; [link]
Any length −→ CLICK; [link] 2-10 min −→ CLICK; [link] To listen to −→ CLICK; [link]
To share −→ CLICK

Subgoal-based plan:
Subgoal 1: Type Ricky Kej to search his songs.
Action 1-1: R1 = TYPE(Env, QUERY: Type Ricky Kej to search his songs, TEXT: Ricky Kej)

Subgoal 2: Click on the option to search for Ricky Rej.
Action 2-1: R2 = CLICK(R1, QUERY: Click on the option to search for Ricky Rej)

Subgoal 3: Choose tracks as the search category.
Action 3-1: R3 = CLICK(R2, QUERY: Choose tracks as the search category)

Subgoal 4: Find the region to adjust the added time of our interested track.
Action 4-1: R4 = CLICK(R3, QUERY: Find the region to adjust the added time of our interested
track)

Subgoal 5: Choose the last year as the added date.
Action 5-1: R5 = SELECT(R4, QUERY: Choose the last year as the added date, TEXT: Past
year)

Subgoal 6: Find the region to adjust the track length of our interested track.
Action 6-1: R6 = CLICK(R5, QUERY: Find the region to adjust the track length of our
interested track)

Subgoal 7: Choose 2 to 10 minutes as the track length.
Action 7-1: R7 = CLICK(R6, QUERY: Choose 2 to 10 minutes as the track length)

Subgoal 8: Listen to our searched track.
Action 8-1: R8 = CLICK(R7, QUERY: Listen to our searched track)

Subgoal 9: Share our searched track.
Action 9-1: R9 = CLICK(R8, QUERY: Share our searched track)

18

Under review as a conference paper at ICLR 2024

G IN-CONTEXT EXAMPLE FOR ADAPTING MODULES TO UNSEEN TASK —
WEBSHOP

As discussed in §4.4, the in-context examples are used for helping modules understand how to plan
and ground to novel available actions. Mentioned in Appendix E, WebShop involves four unseen
actions in training annotations: Search, FeatureRetrieve, Pick, and Click. The definition of
Click is different from the one defined for web task. In WebShop task, the argument of Click is
the item index. However, Click’s input arguments in Mind2Web include an HTML environment
description and a specific query regarding the goal of click action. We showcase one in-context
WebShop-related example used for the inference of planning and grounding modules, respectively.

G.1 IN-CONTEXT WEBSHOP-RELATED EXAMPLE FOR PLANNING MODULE

<|user|>
Please provide a reasonable subgoal-based plan to solve the given task.
Task: Find me slim fit, loose fit women’s tops, tees & blouses with long sleeve, short
sleeve with color: a01#black, and size: large, and price lower than 50.00 dollars

<|assistant|>
Subgoal 1: Search two relevant items and the product names according to the instruction.

<|user|>
The execution result for Subgoal 1 is b09s3bn15c - Mens Linen Shirt,Men’s Striped Shirts
Casual Short Sleeve Button Down Shirts Regular Fit Hawaiian Shirts Beach Tees Tops **
b094q7b3ss - Women Cold Shoulder Tops, Summer Butterfly Print Shirts Fashion Casual Short
Sleeve Plus-Size Tunic Top Tee and Blouse.

<|assistant|>
Subgoal 2: Select the most relevant features of item b09s3bn15c.

<|user|>
The execution result for Subgoal 2 is short, casual, shoulder.

<|assistant|>
Subgoal 3: Select the most relevant features of item b094q7b3ss.

<|user|>
The execution result for Subgoal 3 is black, large, x-large.

<|assistant|>
Subgoal 4: Pick up the most related one from the two relevant items according to the
product names and their features.

<|user|>
The execution result for Subgoal 4 is b094q7b3ss.

<|assistant|>
Subgoal 5: Buy this item by selecting its relevant features.

<|user|>
The execution result for Subgoal 5 is Done.

19

Under review as a conference paper at ICLR 2024

G.2 IN-CONTEXT WEBSHOP-RELATED EXAMPLE FOR GROUNDING MODULE

<|user|>
Please ground the given subgoal to corresponding executable actions for solving the given
task. The grounded actions must be the one in available action list.

The available action list is ‘Search’, ‘FeatureRetrieve’, ‘Pick’ and ‘Click’.
Search(Query): Search related items according to the Query; FeatureRetrieve(Feature list,
Query): Select the most relevant features from Feature list according to Query;
Pick(Item names, Item features, Query): Pick the most relevant item from Item names
according to Query, Item names and Item features; Click(Item): Click the Item to check
more information.

Task: Find me slim fit, loose fit women’s tops, tees & blouses with long sleeve, short
sleeve with color: a01#black, and size: large, and price lower than 50.00 dollars
Subgoal to be grounded: Subgoal 1: Search two relevant items and the product names according
to the instruction.

<|assistant|>
R1 = Search(Find me slim fit, loose fit women’s tops, tees & blouses with long sleeve,
short sleeve with color: a01#black, and size: large, and price lower than 50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 2: Select the most relevant features of item b09s3bn15c.

<|assistant|>
R2 = Click(b09s3bn15c); R3 = FeatureRetrieve(R2, Query: Find me slim fit, loose fit women’s
tops, tees & blouses with long sleeve, short sleeve with color: a01#black, and size: large,
and price lower than 50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 3: Select the most relevant features of item b094q7b3ss.

<|assistant|>
R4 = Click(< prev); R5 = Click(b094q7b3ss); R6 = FeatureRetrieve(R5, Query: Find me slim
fit, loose fit women’s tops, tees & blouses with long sleeve, short sleeve with color:
a01#black, and size: large, and price lower than 50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 4: Pick up the most related one from the two relevant
items according to the product names and their features.

<|assistant|>
R7 = Pick(Item names: R1, Item features: [R3, R6], Query: Find me slim fit, loose fit
women’s tops, tees & blouses with long sleeve, short sleeve with color: a01#black, and
size: large, and price lower than 50.00 dollars)

<|user|>
Subgoal to be grounded: Subgoal 5: Buy this item by selecting its relevant features.

<|assistant|>
R8 = Click(< prev); R9 = Click(R7); R10 = Click(black); R11 = Click(large); R12 =
Click(x-large); R13 = Click(buy now)

20

	Introduction
	[width=1em, trim=0 0 0 0, clip]figure/lumosicon.png Lumos: A Modular Agent Framework
	Lumos Agent Architecture
	Lumos-Onetime (Lumos-O)
	Lumos-Iterative (Lumos-I)

	Learning to Plan & Ground with Open-Source LLMs
	Conversion Prompts
	Transferring Annotations into Conversations
	Training with Converted Annotations

	Experiments
	Experimental Setup
	Overall Performance
	Ablation Analysis on Modular Training of Agents
	Lumos on Unseen Tasks
	Further Analysis on Training Annotations

	Related Work
	Conclusion
	Statistics of Converted Training Annotations
	Details of Training Modules
	Illustration of Annotation Organization
	Details of Performance Evaluation
	Execution Tools Associated with Action Spaces
	In-Context Examples in Conversion Prompts
	In-Context Example For Obtaining Math Task Annotations
	In-Context Example For Obtaining Complex QA Task Annotations
	In-Context Example For Obtaining Web Task Annotations

	In-Context Example for Adapting Modules to Unseen Task — WebShop
	In-Context WebShop-Related Example for Planning Module
	In-Context WebShop-Related Example for Grounding Module

