
Under review as a conference paper at ICLR 2024

BOOSTING DATASET DISTILLATION WITH THE ASSIS-
TANCE OF CRUCIAL SAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, massive datasets have significantly driven the advancement of
machine learning at the expense of high computational costs and extensive storage
requirements. Dataset distillation (DD) aims to address this challenge by learning
a small synthetic dataset such that a model trained on it can achieve a comparable
test performance as one trained on the original dataset. This task can be formu-
lated as a bi-level learning problem where the outer loop optimizes the learned
dataset and the inner loop updates the model parameters based on the distilled
data. Different from previous studies that focus primarily on optimizing the inner
loop in this bi-level problem, we delve into the task of dataset distillation from
the perspective of sample cruciality. We find that discarding easy samples and
keeping the hard ones that are difficult to be represented by the learned synthetic
samples in the outer loop can be beneficial for DD. Motivated by this observation,
we further develop an Infinite Semantic Augmentation (ISA) based dataset dis-
tillation algorithm, which discards some easier samples and implicitly enriches
harder ones in the semantic space through continuously interpolating between
two target feature vectors. Through detailed mathematical derivation, the joint
contribution to training loss of all interpolated feature points is formed into an
analytical closed-form solution of an integral that can be optimized with almost
no extra computational cost. Experimental results on several benchmark datasets
demonstrate the effectiveness of our approach in reducing the dataset size while
preserving the accuracy of the model. Furthermore, we show that high-quality
distilled data can also provide benefits to downstream applications, such as con-
tinual learning and membership inference defense. The code can be found at
https://github.com/to_be/released.

1 INTRODUCTION

Deep learning has achieved remarkable success in various fields including computer vision (Rombach
et al., 2022; He et al., 2022), neural language processing (OpenAI, 2023; Taori et al., 2023), protein
structure prediction (Bordin et al., 2023; Lin et al., 2023) thanks to the recent advances in technology
and availability of massive real-world data. However, the storage and usage of these data can be
very resource-intensive and time-consuming (Lei & Tao, 2023). Therefore, the need for efficient
and scalable methods for handling and processing large datasets has become increasingly pressing.
Dataset distillation (DD) addresses this challenge by learning a small set of synthetic examples from
a large dataset such that a model trained on it can achieve a comparable test performance as one
trained on the original dataset (Zhou et al., 2022; Loo et al., 2023). In this way, not only can the
storage and training budgets be reduced, but the highly condensed and synthetic nature can also
benefit various downstream applications, such as continual learning (De Lange et al., 2021), neural
architecture search (Elsken et al., 2019), and privacy-preserving tasks (Park et al., 2022).

Dataset distillation was firstly studied from the perspective of matching the characteristic of the
original dataset, such as distribution matching (DM) (Zhao & Bilen, 2023; Zhao et al., 2023), gradient
matching (GM) (Zhao et al., 2021), training trajectory matching (MTT) (Cazenavette et al., 2022;
Du et al., 2022), etc.. For example, MTT (Cazenavette et al., 2022) proposes to match segments
of parameter trajectories trained on synthetic data with segments of pre-recorded trajectories from
models trained on original data and thus avoid being short-sighted or difficult to optimize. While these
matching-based methods require pre-defined surrogate objectives that may introduce some bias and
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may not accurately reflect the true objective (Zhou et al., 2022), the recently developed meta-learning
based approaches (Loo et al., 2023; 2022; Nguyen et al., 2021) treat the dataset distillation as a
bi-level optimization problem with an inner objective to update model parameters on the synthetic set
and an outer (meta) objective to refine the distilled sets via meta-gradient updates. With the nested
loop, the synthetic dataset gradually converges towards one of the optimal solutions. However, the
inner loop for updating model parameters is typically achieved through multiple steps of gradient
descent for neural networks, making the whole process quite time-consuming. To address this issue,
many researchers have made considerable efforts. One representative work can be the kernel ridge
regression (KRR) (Song et al., 2022) method, which replaces the neural network in the inner loop
with a kernel model and bypasses the recursive back-propagation of the meta-gradient for efficiency.

In this paper, different from studies that focus on optimizing the strategy of the inner loop, we explore
what kind of target data is crucial for DD in the outer loop. As the storing budget is quite limited (even
only one synthetic sample per class), it is almost impossible to preserve all the information in the
original dataset. This makes us wonder whether we should make a compromise to focus on learning
from the majority of data points around the center to ensure the good performance on these data. On
the contrary, what would happen if we discard some of these samples? To answer these questions, we
conduct extensive experiments and find that samples that are difficult to be represented by the learned
synthetic samples in the outer loop are more crucial for DD. Based on this observation, we further
develop an infinite semantic augmentation (ISA) based dataset distillation algorithm, which discards
some easier samples and implicitly enriches harder ones in the semantic space through continuously
interpolating between two target feature vectors to reduce the influence of the majority of samples
around the center. It is worth noting that the joint contribution to training loss of all interpolated
feature points is formed into an analytical closed-form solution of an integral, which means we can
utilize all interpolated semantic features for dataset distillation with almost no extra computational
costs. Extensive experiments on several benchmark datasets show that the proposed method can
enhance the dataset distillation performance as well as the applications in both continual learning and
privacy-preserving tasks. To this end, we make three major contributions:

• We explore the dataset distillation from the perspective of crucial samples and experiments
show that hard samples are more valuable for this task.

• Based on the above finding, we develop an infinite semantic augmentation based dataset
distillation algorithm that considers an infinite number of virtual samples between two real
samples without extra computational cost.

• We show the effectiveness of the proposed method in dataset distillation tasks, as well as
applications, including continual learning and privacy preservation.

2 METHOD

2.1 DATASET DISTILLATION AS BI-LEVEL OPTIMIZATION

Given a large labeled dataset T = {(xi, yi)}
|T |
i=1 where xi is the i-th image and yi is the corresponding

label. |T | is the number of samples in this dataset. Denote the expected risk of model f parameterized
by θ on data distribution D asRD(θ):

RD(θ) = E(x,y)∼D[L(fθ(x), y)]. (1)

where L(fθ(x), y) is the objective function for computing validation loss. The goal of dataset
distillation (DD) is to learn a small synthetic dataset S = {(xi, yi)}

|S|
i=1 (|S| ≪ |T |) so that the test

performance of models trained on S is similar to that on T . That is, the expectation of model’s
validation loss L trained with algorithm A(S, θ0) by the training set S under different initialized
network parameter θ0 from model pool Pθ should be similar to that of T :

Eθ0∼Pθ
[RD(A(T , θ0))] ≃ Eθ0∼Pθ

[RD(A(S, θ0))]. (2)
Since the data distribution D is unknown, a practical way to estimate the expected risk is by the
empirical riskRT (θ). In consequence, the objective of DD can be converted to minimizeRT (A(S)).
To this end, the dataset distillation can be formulated as the following bi-level optimization problem:

S∗ := argmin
S

Eθ0∼Pθ
[RT (A(S, θ0))]︸ ︷︷ ︸

outer loop

, where A(S, θ0) := argmin
θ
RS(θ

0)︸ ︷︷ ︸
inner loop

.
(3)
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Baseline Discarding easy onesDiscard hard Discard easy Number of training steps

Figure 1: Left: Accuracy performances on training networks under different situations. “Ori”
indicates the original results. We first discard the 10%, 20%, 30% samples with the largest MSE loss
in each batch to drop the hardest samples (green). The performance gets dropped compared to the
original ones (blue). In contrast, when the easiest samples are discarded (red), the performances get a
boost. Middle: Distributions of synthetic images learned by the original baseline and baseline with
discarding easy samples. The orange, blue, green points are the real images of three classes while the
stars are the corresponding learned synthetic images. Right: “hard -> easy” indicates adopting the
harder samples to make predictions of easier ones with Eq. 4 and vice versa.

The inner loop optimizes the model parameters based on the synthetic dataset S. During the outer
loop iteration, the synthetic set is optimized by minimizing the model’s risk in terms of the target
dataset T . With the nested loop, the synthetic dataset gradually converges towards one of the optimal
solutions. In the following paper, we denoteRT (A(S, θ0)) = L(A(S, θ0), T ) for simplify and the
meta-training loss is usually defined as:

L(A(S, θ0), T ) = 1

2
||YT −Kθ

XT XS
(Kθ

XSXS
+ λI)−1YS ||22, s.t. θ = A(S, θ0). (4)

(XT , YT ) and (XS , YS) are the inputs and labels of target data T and distilled synthetic data S
respectively. λ controls the regularization strength. The conjugate kernel is defined by the inner
product of the neural network features as Kθ

XT XS
= fθ(XT )fθ(XS)

T .

2.2 DATASET DISTILLATION WITH CRUCIAL SAMPLES

As illustrated in Eq. 3 that the inner loop optimizes the model parameters based on the synthetic
dataset S, it requires multiple steps of gradient descent for neural networks and is quite time-
consuming. Therefore, previous studies focus primarily on optimizing the inner loop of the above
bi-level problem (Song et al., 2022; Loo et al., 2022; Zhou et al., 2022; Loo et al., 2023). Different
from these researches, we delve into the task of DD from the perspective of sample cruciality in the
outer loop and pay attention to exploring what kind of samples from the original dataset are critical
for DD. Since the number of distilled samples is quite limited (even only one per class), it is almost
impossible to preserve all the information in the original dataset. This makes us wonder whether we
should make a compromise to focus on the majority of data points around the center to ensure good
performances on these data. On the contrary, what would happen if we discard these samples?

To answer these questions, we conduct experiments on CIFAR10 dataset (Krizhevsky et al., 2009)
(IPC=10 where IPC is the number of images per class) by discarding p ∗ 100% percent target
samples (p ∈ (0, 1)) in terms of sample hardness according to their meta-training loss in Eq. 4. Higher
loss indicates greater hardness. As shown in Figure 1 (Left), we first discard the 10%, 20%, 30%
samples with the largest loss from Eq. 4 in each batch to drop the hardest samples (p = 0.1, 0.2, 0.3)
that are difficult to be represented by the learned synthetic ones. It can be observed that the test
accuracy in this scenario (green) gets a drop compared to the original ones (blue). On the contrary,
when we drop the easiest 10% of samples, the model’s performance (red) gets a boost on all settings.
These indicate that the hard samples are more crucial for dataset distillation.

To investigate this phenomenon, we explore it from the perspective of data manifold and information.
Regarding the data manifold, we show the distributions of synthetic images learned by the original
baseline and baseline with discarding easy samples in Figure 1 (Middle). The results demonstrate an
increased overlap between the generated images (represented by stars) and the original dataset (repre-
sented by dots) after discarding some easy samples, thereby depicting a better representation of the
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Algorithm 1 Dataset distillation with the Assistance of Crucial Samples
Require: T : the target labeled dataset; p: discard percent; ϵ: distance controlling parameter

1: Initialization: S = (XS , YS), a model poolM with m models {θi}mi=1
2: while no converged do
3: Sample a model uniformly from the model poolM: θi ∼M
4: Sample a target batch uniformly from the labeled dataset: (XT , YT ) ∼ T
5: Compute the meta-training loss L using Eq. 4
6: Discard p ∗ 100% percent easiest samples according to L to get the new XT
7: Compute the new loss La with Eq. 7 as the joint contribution of infinite many virtual samples
8: Update the distilled data S : XS ← XS − α∇La, and YS ← α∇La

9: Train the model θi on the current distilled data S
10: Reinitialize the model θi if θi has been updated more than K steps
11: end while

manifold. As for the information perspective, to find out whether the harder samples have contained
information in easier samples, we divide the target data into two splits and use the harder ones to make
predictions for easier ones with Eq. 4. The MSE loss is 0.0661, as shown in Figure 1(Right). This loss
indicates that the information in harder samples is enough for making precise predictions for easier
samples. In contrast, when we use the easier samples to predict the harder ones, the loss is 0.1430.
Therefore, harder samples cannot be replaced by simple samples. We also step further to compare the
diversity of synthetic images with the recall value, which is a commonly used metric in generative
tasks for evaluating the diversity of generative model (Sajjadi et al., 2018; Naeem et al., 2020). Higher
recall indicates greater diversity. After incorporating the process of discarding easier samples in the
outer loop, the recall value notably grows from 0.84 to 0.89. This improvement suggests an enhanced
diversity in the synthetic samples. More details can be found in the supplementary.

2.3 CRUCIAL SAMPLE EXTENSION WITH SEMANTIC AUGMENTATION

The above finding reveals that reducing redundancy in easy samples and taking more crucial samples
into consideration can be beneficial for improving the diversity of synthetic samples and better
depicting the data manifold in the dataset distillation tasks. Therefore, adopting sample extension
methods to create more valuable virtual samples may help for improving task performance. Actually,
there have been various data extension methods such as CutMix (Yun et al., 2019), MixUp (Zhang
et al., 2017) that have demonstrated to be effective in enhancing the performance of deep learning
models across various tasks such as image classification, object detection, etc.. However, previous
studies have found that data augmentations during the dataset distillation can induce instability (Zhou
et al., 2022; Loo et al., 2023) and introduce little help. As a result, seldom do they adopt these
strategies in the training procedure of this task. Many studies show that the application failures of
MixUp can be caused by the low-quality problem in the input space and propose to conduct MixUp
in feature layers to alleviate this issue (Verma et al., 2019; Venkataramanan et al., 2022). However,
never have them been validated in the DD task. Furthermore, similar to the vallina MixUp, they still
consider only one virtual sample per forward pass, leading to potential inefficiencies.

To address the aforementioned challenges, we put forward an infinite semantic augmentation method
that enables the augmentation of an infinite number of virtual samples in the semantic space by
continuously interpolating between two target feature vectors. Denote z = fθ(x) as the corresponding
feature vectors of x extracted by f , which is parameterized with θ. Let z′ represent the feature vector
of another sample x′. Given a hyperparameter α ∈ [0, ϵ] where ϵ ∈ [0, 1] controls the distance
between virtual samples and the start point, we augment the training data in the feature space by
linearly interpolating between ẑ = αz+ (1− α)z′, and integrate the loss function with respect to
α. This approach allows us to consider a wide range of virtual samples simultaneously, which is
different from usual MixUp methods that sample one α per batch. Furthermore, the contribution of
augmented samples to the loss function can be calculated analytically, which does not require extra
computational costs. In the following, we introduce the calculation of the loss function in detail.

Denote ω = (Kθ
XSXS

+ λI)−1YS , then the loss for a single sample (x, y) ∼ T in Eq. 4 is

Ls(x,y) =
1

2
||y− fθ(x)fθ(XS)

Tω||22. (5)
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Table 1: Distillation performance in term of test accuracy (%) on several benchmark datasets.
IPC DSA DM KIP RFAD MTT FRePo Ours

MNIST
1 88.7±0.6 89.9±0.8 90.1±0.1 94.4±1.5 91.4±0.9 93.0±0.4 93.2±0.4

10 97.9±0.1 97.6±0.1 97.5±0.0 98.5±0.1 97.3±0.1 98.6±0.1 98.5±0.1
50 99.2±0.1 98.6±0.1 98.3±0.1 98.8±0.1 98.5±0.1 99.2±0.0 99.2±0.0

F-MNIST
1 70.6±0.6 71.5±0.5 73.5±0.5 78.6±1.3 75.1±0.9 75.6±0.3 77.1±0.4

10 84.8±0.3 83.6±0.2 86.8±0.1 87.0±0.5 87.2±0.3 86.2±0.2 86.0±0.2
50 88.8±0.2 88.2±0.1 88.0±0.1 88.8±0.4 88.3±0.1 89.6±0.1 89.5±0.1

CIFAR-10
1 36.7±0.8 31.0±0.6 49.9±0.2 53.6±1.2 46.3±0.8 46.8±0.7 48.4±0.4

10 53.2±0.8 49.2±0.8 62.7±0.3 66.3±0.5 65.3±0.7 65.5±0.4 67.2±0.4
50 66.8±0.4 63.7±0.5 68.6±0.2 71.1±0.4 71.6±0.2 71.7±0.2 73.8±0.0

CIFAR-100
1 16.8±0.2 12.2±0.4 15.7±0.2 26.3±1.1 24.3±0.3 28.7±0.1 31.2±0.2

10 32.3±0.3 49.2±0.8 28.3±0.1 33.0±0.3 40.1±0.4 42.5±0.2 46.4±0.5
50 42.8±0.4 43.6±0.4 - - 47.7±0.2 44.3±0.2 49.4±0.3

T-ImageNet 1 6.6±0.2 3.9±0.2 - - 8.8±0.3 15.4±0.3 19.8±0.1
10 - 12.9±0.4 - - 23.2±0.2 25.4±0.2 27.0±0.3

The join contribution to training loss of all interpolated feature points between (x,y) and another
data point (x′,y′) is

La(x, y) =
1

ϵ

∫ ϵ

0

||(z+αδ1)XSω−(y+αδ2)||22dα =
1

ϵ

∫ ϵ

0

||(zXSω−y)+α(δ1XSω−δ2)||22dα,
(6)

where δ1 = z′ − z, δ2 = y′ − y.

Denote A = zXSω − y and B = δ1XSω − δ2, we have

La(x, y) = A2 + ϵAB +
1

3
ϵ2B2. (7)

We recognize that the first item is the original outer-loop loss of sample (x, y). The last two terms
summarize the contribution of all samples interpolating between x and x′. It is straightforward to
verify that the last two terms vanish when ϵ = 0. The whole algorithm can be found in Algorithm 1.

(a) Cifar100(32) (b) TinyImageNet(64) (c) Image-Nette and -Woof(128)

Figure 2: Example distilled images. 32, 64, 128 are the corresponding resolutions.

3 EXPERIMENTS

Implementation Details. We eastablish our algorithm based on FRePo (Zhou et al., 2022) by default
and compare our method to several state-of-the-art dataset distillation methods on various benchmark
datasets. ϵ = 1.0 and p = 0.2 for all experiments. Following other methods (Nguyen et al., 2021;
Zhou et al., 2022), the λ is set to be 10−6Tr(Kθ

XSXS
). All the distilled data are evaluated using five

random initialized neural networks and we report the mean and standard deviation.
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Table 2: Test accuracy (%) performance of CIFAR-10 with 10 images per class distilled datasets
evaluated on different network architectures. NN, DN, IN, and BN stand for no normalization, default
normalization, Instance Normalization, Batch Normalization respectively. FRePo* refers to the
results reproduced with the officially released code by distilling the datasets and evaluating on them.

Train Arch Evaluation Architecture
Conv Conv-NN ResNet-DN ResNet-BN VGG-BN AlexNet

DSA Conv-IN 53.2±0.8 36.4±1.5 42.1±0.7 34.1±1.4 46.3±1.3 34.0±2.3
DM Conv-IN 49.2±0.8 35.2±0.5 36.8±1.2 35.5±1.3 41.2±1.8 34.9±1.1
MTT Conv-IN 64.4±0.9 41.6±1.3 49.2±1.1 42.9±1.5 46.6±2.0 34.2±2.6
KIP Conv-NTK 62.7±0.3 58.2±0.4 49.0±1.2 45.8±1.4 30.1±1.5 57.2±0.4

FRePo* Conv-BN 65.9±0.4 65.9±0.4 53.2±0.8 50.9±0.6 55.4±0.5 62.3±0.6
Ours Conv-BN 67.2±0.4 67.2±0.4 54.5±1.3 51.1±1.3 54.6±0.5 64.9±0.2

Table 3: Distillation performance in term of test accuracy (%) for ImageNet subsets.

IPC ImageNette (128x128) ImageWoof (128x128) ImageNet (64x64)
1 10 1 10 1 2

Random Subset 23.5±4.8 47.7±2.4 14.2±0.9 27.0±1.9 1.1±0.1 1.4±0.1
MTT (Cazenavette et al., 2022) 47.7±0.9 63.0±1.3 28.6±0.8 35.8±1.8 - -

FRePo (Zhou et al., 2022) 48.1±0.7 66.5±0.8 29.7±0.6 42.2±0.9 7.5±0.3 9.7±0.2
Ours 49.6±0.6 67.8±0.3 30.8±0.5 43.8±0.6 8.0±0.2 10.7±0.1

3.1 STANDARD BENCHMARKS

Distillation Performance. We first evaluate our method on five standard benchmark datasets in-
cluding MNIST (10 classes) (LeCun et al., 1998), Fashion-MNIST (10 classes) (Xiao et al., 2017),
CIFAR10 (10 classes) (Krizhevsky et al., 2009), CIFAR100 (100 classes) (Krizhevsky et al., 2009),
Tiny-ImageNet (200 classes) (Le & Yang, 2015). Following the same setting with most previous meth-
ods, the number of synthetic images per class (IPC) is set to be 1, 10, 50 for the first four datasets and
1, 10 for Tiny-ImageNet. We compare our method with six baseline dataset distillation algorithms
including both matching-based methods like Differentiable Simese Augmentation (DSA) (Zhao
& Bilen, 2021), Distribution Matching (DM) (Zhao & Bilen, 2023), Matching Training Trajecto-
ries (MTT) (Cazenavette et al., 2022) and bi-level optimization based method including Kernel-
Inducing-Points (KIP) (Nguyen et al., 2021), Random Feature Approximation (RFAD) (Loo et al.,
2022), neural Feature Regression (FRePo) (Zhou et al., 2022). The results are listed in Table 1. It can
be observed that our method can achieve the state-of-the-art performance, validating the effectiveness
of the proposed method. The synthetic images can be found in Figure 2.

Cross-architecture Generalization. One desirable characteristic of distilled datasets is the ability
to generalize effectively to unseen training architectures. Therefore, we evaluate the generalization
ability of our distilled datasets on CIFAR10 under 10 images per class setting. Following prior
work, we evaluate our models on the ResNet-18 (He et al., 2016), VGG11 (Simonyan & Zisserman,
2014), and AlexNet (Krizhevsky et al., 2017) with evaluation on various normalization layers such
as using no normalization (NN), batch normalization (BN) (Ioffe & Szegedy, 2015), and instance
normalization (IN) (Ulyanov et al., 2016). As shown in Table 2, our approach can achieve high
generalization ability while we hold a good performance on the original architecture.

Experiments on ImageNet Dataset. With the rapid development in computer vision, a good
performance on higher-resolution datasets is crucial for practice. As such, we step further to ex-
plore the performance on ImageNet (Deng et al., 2009). In line with FRePo (Zhou et al., 2022)
and MTT (Cazenavette et al., 2022), we consider two ImageNet subsets: ImageNette and Image-
Woof (Howard). Both of them consist of 10 classes with a resolution of 128x128. The results in
Table 3 demonstrate that our approach is capable of enhancing the performance of our baseline FRePo.
To evaluate how well the proposed method scales to more complex label spaces, we also consider
the full ImageNet-1K dataset with 1000 classes (Deng et al., 2009), resized to 64x64. The results in
Table 3 also indicate the practicability of our proposed methodology.
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3.2 ABLATION STUDIES.

Ablation Studies on Each Proposed Module. To validate the effectiveness of the proposed Infinite
Semantic Augmentation (ISA) and the discarding strategy, we add each component individually to
the baseline method. Results in Figure 3(a) show that both components can help to improve the
performances. Furthermore, we show the performances under various ϵ to verify the effectiveness
of the proposed ISA for virtual sample extension. As shown in Figure 3(b), the test accuracy gets a
boost from 65.5% to 66.4% as the ϵ increases. This makes sense since larger step sizes can take more
virtual samples into consideration. We also compare the performance with the MixUp strategy, as
shown in Figure 3(c), the proposed extension method (66.4%) can hold a better performance than the
vallina MixUp (65.81%). When compared with the single step-based semantic augmentation whose
test accuracy is 65.95%, our approach still holds an advantage. These indicate the effectiveness of
the proposed extension method. Besides, we observe that the proposed ISA can also enhance the
generalization ability of synthetic images, which is witnessed by Figure 3(d) as expected since ISA
can be regarded as a regularizer that can alleviate the overfitting problem.
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Figure 3: Ablation studies of individual components.

Table 4: Test accuracies of applying our module
to other DD methods. * indicates the results are
reproduced with officially released codes.

IPC Method RFAD* FRePo* RCIG*

1 Normal 52.1±0.1 46.8±0.7 53.9±0.5
+Ours 54.8±0.0 48.4±0.4 54.2±0.3

10 Normal 65.3±0.1 65.5±0.4 67.3±0.3
+Ours 67.0±0.1 67.2±0.4 68.0±0.6

50 Normal 69.8±0.2 71.7±0.2 73.5±0.2
+Ours 70.2±0.2 73.8±0.0 73.8±0.4

Effectiveness on Other Methods In this paper,
we provide a concise and effective approach to
improve the performance of the existing dataset
distillation methods. We mainly show the ef-
fectiveness of applying our module on FRePo.
Since the proposed method focuses on exploring
what kind of target data from the original dataset
is more crucial for dataset distillation. It is or-
thogonal to methods that developed with differ-
ent bi-level optimization algorithms. Therefore,
we also evaluate the performances of combining
our module with various state-of-the-art dataset
distillation methods such as RFAD (Loo et al.,
2022), RCIG (Loo et al., 2023) in Table 4, which
suggests that the proposed method can bring improvements and indicates the practicability of our
method. More experiments on matching-based methods can be found in Appendix (Section F).

3.3 APPLICATIONS

Continual Learning: Given the high condensed nature of synthetic data generated by dataset
distillation, they could serve as a critical component of continual learning algorithm (De Lange et al.,
2021) that can help to mitigate the issue of catastrophic forgetting problem by condensing the past
knowledge into a replay buffer. Indeed, there have been successful applications of dataset distillation
in the continual learning scenario (Zhao & Bilen, 2021; 2023). To find out whether the proposed
method can do some help in this scenario, we follow MTT (Zhao & Bilen, 2021) and FRePo (Zhou
et al., 2022) that set up the baseline based on GDumb (Prabhu et al., 2020) which greedily stores
class-balanced training examples in memory and train model from scratch on the latest memory only.
In this case, the continual learning performance is solely reliant on the quality of the replay buffer. In
our experiment, we conduct class-incremental learning on CIFAR100 with 5 and 10 step increments,
while gradually increasing the buffer size by 20 images per class. To ensure consistency, we follow
the same class division as MTT and FRePo and compare our method with approaches including
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(d) MIA: AUC

Figure 4: (a,b) Multi-class accuracies (↑) across all classes observed up to a certain time point in
Continual Learning (CL). (c,d) Test accuracy (↑) and attack AUC (↓) during each training steps. As
the AUC is high in real data trained scenario, it is relatively small in distilled data trained scenarios.

Table 5: AUC of five attackers on models trained on the real and distilled data. The model trained on
the real data is vulnerable to MIAs, while the model trained on the distilled data is robust to MIAs.

Test Acc(%) Attack AUC
Threshold LR MLP RF KNN

Real 99.2 ± 0.1 0.99 ± 0.01 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.97 ± 0.00
Subset 96.8 ± 0.2 0.52 ± 0.00 0.50 ± 0.01 0.53 ± 0.01 0.55 ± 0.00 0.54 ± 0.00
DSA 98.5 ± 0.1 0.50 ± 0.00 0.51 ± 0.00 0.54 ± 0.00 0.54 ± 0.01 0.54 ± 0.01
DM 98.3 ± 0.0 0.50 ± 0.00 0.51 ± 0.01 0.54 ± 0.01 0.54 ± 0.01 0.53 ± 0.01

FRePo 98.5 ± 0.1 0.52 ± 0.00 0.51 ± 0.00 0.53 ± 0.01 0.52 ± 0.01 0.51 ± 0.01
Ours 98.8 ± 0.0 0.52 ± 0.00 0.50 ± 0.01 0.52 ± 0.00 0.53 ± 0.00 0.53 ± 0.00

random sampling (Prabhu et al., 2020), herding (Chen et al., 2012), DSA (Zhao & Bilen, 2021),
DM (Zhao & Bilen, 2023), and FRePo (Zhou et al., 2022).

Figure 4(a) 4(b) shows that our method outperforms all previous methods. The final accuracy of
all classes for our method and the second best method (FRePo) are 44.83% and 41.61% in 5-step
learning while they are 41.10% and 38.09% for 10-step learning. This indicates that a better dataset
distillation method can benefit for improving the application performance in continual learning.

Privacy Preservation: Membership inference attack (MIA) is a kind of privacy-related attack that
involves an attacker attempting to determine whether a specific data record has been used in training
the target model (Hu et al., 2022). It is particularly concerning in situations where sensitive data is
used to train the model, such as in healthcare or financial applications. Therefore, we hope a model
is trained to learn from the training data instead of memorizing them to preserve the privacy of the
training data. However, previous studies have shown that deep neural networks are vulnerable to
membership inference attacks and may leak the privacy of their training set (Shokri et al., 2017).
Given that dataset distillation is designed to compress the dataset while retaining model performance,
the generated synthetic images can be highly-condensed and may help to preserve the privacy.
Therefore, in this section, we will explore whether the model trained on the distilled dataset will
help to preserve the privacy from leaking. We repeat the experimental procedure of FRePo, distill
10000 images of MNIST to 500 images and conduct five popular "black box" membership inference
attacks provided by Tensorflow Privacy (tf) to the model trained on these 500 distilled images. The
attack methods include a threshold attack and four model-based attacks using logistic regression (LR),
multi-layer perceptron (MLP), random forest (RF) and K-nearest neighbor (KNN). These attacks
take the ground-truth labels, model prediction and losses as inputs and output whether the given
data has been used for training. Apart from the test accuracy during training, we also adopt the
commonly used metric AUC (the area under the ROC curve) of the attack classifier as the evaluation
metrics to measure the privacy vulnerability of the trained model. Higher test accuracy, lower AUC
indicate better performance. Following prior work (Zhao & Bilen, 2023; 2021), we keep a balanced
set of training examples (member) and test examples (non-member) with 10K each to maximize the
uncertainty of MIA. Thus, the random guessing strategy results in a 50% MIA accuracy.

As shown in Figure 4(c) 4(d) and Table 5, while models trained on the distilled data can hold a
comparable test accuracy with real data trained ones, their attack AUCs are close to random guessing.
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In contrast, model trained on real data are easy to be attacked. These indicate that dataset distillation
can help to preserve the privacy of training data. We observe that among all the competitors, our
approach can improve both the test accuracy and privacy-preserving performances. An interesting
phenomenon is that while most competitors can get a test accuracy boost from the early stage, the
models trained on real data and our distilled data seem to grow slowly and require more training steps
to reach the best performance. We hypothesize that this is caused by the information contained in
training data are really rich, thus requiring more steps for training.

4 RELATED WORK

Coresets and Dataset distillation. Coresets (Pooladzandi et al., 2022; Yang et al., 2023) are
weighted subsets of the training data such that training on them results in the similar performance
to training on the full dataset. In contrast, instead of selecting subsets of the training data, dataset
distillation generates synthetic samples. It can be grouped into data matching framework (Zhao &
Bilen, 2023; Cazenavette et al., 2022; Shin et al., 2023; Wang et al., 2022; Kim et al., 2022) and meta-
learning framework based on the objectives applied to mimic target data. For example, distribution
matching (DM) (Zhao & Bilen, 2023) is one of the representative of the former one, which optimizes
the distilled data by aligning the distribution of synthetic data with that of target data. Zhao etc. (Zhao
& Bilen, 2022) further improves the DM by changing the optimization from the input space to latent
space with a well-trained generative adversarial network (GAN) to produce the synthetic examples.
In contrast, the recently developed meta-learning based approaches treat the dataset distillation as a
bi-level optimization problem with an inner objective to update model parameters on the synthetic set
and an outer (meta) objective to refine the distilled sets via meta-gradient updates. Representative
works include KIP (Nguyen et al., 2021), RFAD (Loo et al., 2022), FRePo (Zhou et al., 2022), etc..
The main difference between these bi-level methods mainly lies in the optimization methods used in
the inner loop. In this paper, we focus on the outer loop where we study what kind of target data is
more crucial for dataset distillation to boost the performance of dataset distillation.

Data Extension. There have been various methods for data extension during training, such as
CutOut (DeVries & Taylor, 2017), CutMix (Yun et al., 2019), etc.. Among them, MixUp (Zhang
et al., 2017) can be one of the representative. By generating new training examples via linearly
combining pairs of existing examples in the input space and their corresponding labels, MixUp has
demonstrated its efficacy in enhancing the generalization ability of deep learning models. Although
being effective in most tasks such as image classification, object detection, input mixup images are
overlays and tend to be unnatural, limiting its performance in dataset distillation tasks (Loo et al.,
2023; Zhou et al., 2022). Recently, Bengio et al. (Verma et al., 2019) show that traversing along
the manifold of representations obtained from feature layers can result in finding realistic examples.
However, same with the vallina MixUp, it only considers one virtual sample for each forward pass,
making it less effective. In contrast, we put forward an infinite semantic augmentation method that
can take all the virtual samples between the two real samples with only one forward pass, requiring
no extra computational costs while being effective.

5 DISCUSSIONS, LIMITATIONS, AND CONCLUSION

In this paper, we propose to investigate what kind of data are crucial for dataset distillation and
experimental results show that it is the hard sample that matters more. Based on this observation,
we further propose an infinite semantic augmentation method to create more virtual crucial samples
for better performance, which augments an infinite number of samples in the semantic space by
continuously interpolating between two target feature vectors. The joint contribution to the training
loss of all interpolated feature points is formed into an analytical closed-form solution of an integral
that can be optimized with almost no extra computational costs. Experimental results show that our
method can not only improve the performances in dataset distillation but can also benefit downstream
applications including continual learning and membership inference defense.

This paper reveals that target data selection matters for the dataset distillation. In the future work, it
will be interesting to investigate some pre-processing methods that can transform the target dataset
into a middle-size one by selecting or creating a few representative prototype examples from the
original training dataset, such as coreset selection, condensing the target dataset gradually, etc..
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ETHICS STATEMENT

In this paper, we propose to investigate what kind of data is crucial for dataset distillation. Based on
our observations, we further introduce an infinite semantic augmentation method to boost performance
of dataset distillation. We hope this work can provide some insights to the community and help to
reduce the cost on storage in today’s era of big data. We did not use crowdsourcing and did not
conduct research with human subjects in our experiments. We cited the creators when using existing
assets (e.g., code, data, models).

REPRODUCIBILITY STATEMENT

Our proposed module is an appealingly simple method, which is easy to be adopted in publicly
available codes. We specify the settings of hyper-parameters and how they were chosen in our paper.
The source code for our method can be found in our supplementary materials.
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A APPENDIX

B DATASET DISTILLATION WITH CRUCIAL SAMPLES

In this section, we add more experiments showing the influence of discarding easy or hard examples on
other datasets. The results are shown in Figure 5. There is a performance boost when easier samples
are discarded at a small rate (red) while dropping the hardest ones can hurt the performances (green).
Recall that the goal for dataset distillation is to condense the large dataset into a smaller one such that
a model trained on it can achieve a comparable test performance as one trained on original dataset.
Namely, we need to depict a good decision boundary for classification based on the distilled data.
However, relying on easy samples solely may result in short-cut learning Geirhos et al. (2020). In
contrast, hard samples are hard-to-be-distinguished samples that usually exist along the decision
boundary thus can help to support a more explicit decision boundary. We think that’s why hard
samples can help to improve the dataset distillation performances.
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Figure 5: Accuracy performances on training networks under different situations. “Ori” indicates
the original results. We first discard the 10%, 20%, 30% samples with the largest MSE loss in each
batch to drop the hardest samples (green). The performance gets dropped compared to the original
ones (blue). In contrast, when the easiest samples are discarded (red), the performances get a boost.

To investigate this phenomenon deeper, we also explore it from the perspective of data manifold and
information.

Data Manifold: We show the distributions of synthetic images learned by the original baseline and
baseline with discarding easy samples in Figure 1 (Middle) in the main text. Here we show all the
distributions of baseline method, baseline with discarding hard samples, baseline with discarding
easy samples, and baseline with the proposed ISA method in Figure 6. When the hard samples are
discarded, it could be observed that the orange stars clusters together and the overlap with original
dataset decreases. In contrast, the overlap grows when drop some easy samples, thereby depicting a
better representation of the manifold. We also observe that compared to other cases, the application
of ISA can help to make the stars more evenly distributed. This may explain why the generalization
ability can be improved by ISA.

Information: To find out whether the harder samples have contained information in easier samples,
we divide the target data into two splits: 80% samples that hold greater MSE loss in Eq. 4 and the left
20% easier ones. By treating the former as XS and the latter as XT , we use the harder ones to make
predictions for easier ones with Eq. 4. The MSE loss is 0.0661, as shown in Figure 1(Right). This
loss indicates that the information in harder samples is enough for making precise predictions for
easier samples. In contrast, when we use the 80% samples with smallest MSE loss to predict the left
20% hard ones, the loss is 0.1430. Therefore, harder samples cannot be replaced by simple samples.

Diversity: We also step further to compare the diversity of synthetic images with the recall value,
which measures the expected likelihood of real samples against the synthetic manifold and is a
commonly used metric in generative tasks for evaluating the diversity of generative model (Sajjadi
et al., 2018). To be specific, in the generative model field, recall measures how much of a reference
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Baseline Discarding hard ones Discarding easy ones Discarding easy ones+ISA

Figure 6: Distributions of synthetic images learned by different methods. The orange, blue, green
points are the real images of three classes while the stars are the corresponding learned synthetic
images. The orange stars clusters together and the overlap with original dataset decreases after
discarding hard samples. In contrast, the overlap grows after discarding some easy samples, thereby
depicting a better representation of the manifold. We also observe that compared to other cases, the
application of ISA can help to make the stars more evenly distributed.

distribution can be generated by a part of a new distribution. Formally,

recall :=
1

N

N∑
i=1

1Ri∈manifold(F1,...,FM ), (8)

where N and M are the number of real and fake samples. 1(·) is the indicator function. Fi is the i-th
fake sample while Ri is the i-th real sample. Manifolds are usually defined as:

manifold(R1, ..., RN ) := ∪Ni=1B(Ri,NNDk(Ri)), (9)

where B(x, r) is the sphere in RD around x with radius r. NNDk(Ri) denotes the distance from Ri

to the k-th nearest neighbour among {Ri} excluding itself.

To this end, the recall counts how many real samples occurs in the k-nearest neighbors of fake
samples. We set k = 5. By treating the synthetic samples and original samples as fake and real
samples respectively, we can calculate how many original samples can be recalled by generated
images. A greater diversity in synthetic samples should recall more original samples. In other words,
higher recall indicates greater diversity. With Eq. 8, we find that after incorporating the process of
discarding easier samples in the outer loop, the recall value notably grows from 0.84 to 0.89. This
improvement suggests an enhanced diversity in the synthetic samples with discarding easy samples.

C ALGORITHM ILLUSTRATION.

This paper introduces a dataset distillation algorithm based on crucial samples, which aims to distill a
given labeled dataset into a smaller one so that a model trained on the small synthetic dataset can
have a similar performance to the one trained on the original dataset, as shown in the right part of
Figure 7. To achieve this goal, we first show that reducing redundancy in easy samples that are easy
to be represented by the generated samples and taking more crucial samples into consideration can be
beneficial for improving the diversity of synthetic samples and better depicting the data manifold
in the dataset distillation tasks. Based on this observation, we further develop an infinite semantic
augmentation-based dataset distillation algorithm, which takes an infinite number of virtual crucial
samples into consideration in the semantic space. Through detailed mathematical analysis, the joint
contribution to training loss of all interpolated feature points is formed into an analytical closed-form
solution of an integral that can be optimized with almost no extra computational cost. As shown in
Figure 7, given two input samples (x1,y1) and (x2,y2), we first extract their features z1, z2 and
then adopt the loss in this figure to take all the interpolated points between them into consideration.
δz = z1 − z2, δy = y1 − y2.

The whole algorithm can also be found in Algorithm 1. It is established based on a state-of-the-art
pipeline FRePo (Zhou et al., 2022), which implements the dataset distillation by: sampling a model
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Figure 7: Dataset distillation with the assistance of crucial samples.

uniformly from a model poolM (Line 3) and a target batch (XT , YT ) uniformly from the labeled
dataset T (Line 4), then computing the meta-training loss L (Line 5) to update the distilled data
S (Line 8) (outer loop) and training the model θi on S (Line 9) (inner loop). To conduct the crucial
samples based dataset distillation, we add the crucial sample exploring procedure by finding the top
p ∗ 100% percent images with the greatest meta-training loss (Line 6). Based on these samples, we
further take more virtual samples into consideration via the new meta-learning loss (Line 7,8).

D INFINITE SEMANTIC AUGMENTATION
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Figure 8: Validation accuracy during
each training steps. It can be observed
that adopting ISA will not require more
training time for convergence.

As the proposed Infinite Semantic Augmentation (ISA)
takes an infinite number of virtual samples into consid-
eration, one may be curious about whether the ISA will
require more training steps for convergence. Figure 8 gives
the answer. It suggests that there exists no big difference
between the number of training steps for convergence of
the baseline with that of method with ISA. Besides, the
proposed method can achieve a better performance at the
very early stages of training, indicating that the proposed
method requires less time for a comparable performance.
As for the training time cost, it is 2.5 hours (500,000 steps
in total) under CIFAR10, IPC=10 setting while it is 2.4
hours for our baseline, indicating that the proposed module
introduces negligible extra computational and time costs.

The “single-step semantic augmentation” in Figure 3(c)
indicates conducting a single-step mixup in feature space.
As our method enables the augmentation of an infinite
number of virtual samples in the semantic space by con-
tinuously interpolating between two target feature vectors,
one may be curious about whether it is necessary to take infinite number of virtual samples into
consideration. Therefore, in Figure 3(c), we conduct the single-step augmentation to take only one
virtual samples between two samples into consideration during each step ( mixup in feature-space).
It can be found that our ISA can hold a better performance against vanilla MixUp and single-step
semantic augmentation, indicating the superiority of the proposed ISA. We will update our paper to
improve the readability.
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E IMPLEMENTATION DETAILS

All of our experiments are performed on a single NVIDIA A100 GPU with 80GB of GPU memory.
We implement our method in JAX and reproduce previous methods using their officially released
code. All the hyper-parameters are set following the released instructions. The training time for
experiments on ImageNet including ImageNet-64, ImageNette, ImageWoof is around a week on
a single A100, the same with the original ones. Other experiments only require several hours for
training.

We also report the KRR predictors test accuracy using the feature extractor trained on the distilled data
following FRePo (Zhou et al., 2022), which means obtaining the prediction with Kθ

XT XS
(Kθ

XSXS
+

λI)−1YS in Eq. 4. With the KRR, we can achieve a higher test performance as shown in Table 67.
The “ori” indicates training the neural networks with the distilled data and making predictions with
the trained network, which is the default setting. However, we find the KRR predictor may fail to
improve the performance when the distillation task is tough. For example, the test performance drops
from 8.0% to 6.7% on the ImageNet dataset, as shown in Table 7.

Table 6: Distillation performance in term of KRR predicted test accuracy (%).

Method CIFAR10 CIFAR100 TinyImageNet
1 10 50 1 10 50 1 10

FRePo ori 46.8±0.7 65.5±0.4 71.7±0.2 28.7±0.1 42.5±0.2 44.3±0.2 15.4±0.3 25.4±0.2
KRR 47.9±0.6 68.0±0.2 74.4±0.1 32.3±0.1 44.9±0.2 43.0±0.3 19.1±0.3 26.5±0.1

Ours ori 48.4±0.4 67.2±0.4 73.8±0.0 31.2±0.2 46.4±0.5 49.4±0.3 19.8±0.1 27.0±0.3
KRR 50.5±0.7 69.0±0.4 75.6±0.1 38.0±0.1 48.4±0.4 48.0±0.2 23.4±0.4 28.1±0.2

Table 7: Distillation performance in term of KRR predicted test accuracy (%) on ImageNet subsets.

Method ImageNette (128x128) ImageWoof (128x128) ImageNet (64x64)
1 10 1 10 1 2

FRePo ori 48.1±0.7 66.5±0.8 26.7±0.6 42.2±0.9 7.5±0.3 9.7±0.2
KRR 50.6±0.6 67.1±0.7 31.3±0.9 43.5±0.8 7.2±0.2 9.5±0.2

Ours ori 49.6±0.6 67.8±0.3 30.8±0.5 43.8±0.6 8.0±0.2 10.7±0.1
KRR 48.5±0.6 69.2±0.4 33.6±0.5 46.3±0.4 6.7±0.2 7.6±1.0

F EXPERIMENTS ON MATCHING-BASED METHODS

This paper mainly focuses on exploring what kind of target data is crucial for dataset distillation in
the outer loop of the meta-learning-based methods based on the analysis of both the matching-based
and meta-learning-based methods in the secondary paragraph in Introduction. With the exploration in
Section 2.2, we introduce a selection+augmentation method that can be adopted during the outer-
loop of meta-learning-based methods. Therefore, apart from FRePo (Zhou et al., 2022), we also
combined the proposed modules with various state-of-the-art meta-learning-based methods including
RFAD (Loo et al., 2022), FRePo (Zhou et al., 2022), RCIG (Loo et al., 2023) in our ablation studies.
The results in Table 4 validate the effectiveness of the proposed method. To further explore whether
the proposed module can benefit for matching-based methods, we conduct experiments on classical
DM (Zhao & Bilen, 2023) and MTT (Cazenavette et al., 2022) methods in Table 8. The performances
are improved in most cases, indicating the effectiveness of the proposed approach.

Table 8: Test accuracies of applying our module to matching-based methods. * indicates the results
are reproduced with the officially released codes.

Methods CIFAR10 Methods CIFAR10
1 10 50 1 10 50

DM* 25.9±0.8 48.9±0.6 62.7±0.5 MTT* 46.3±0.8 65.2±0.5 71.6±0.2
+Ours 26.5±0.6 48.5±0.4 62.9±0.2 +Ours 57.9±0.6 65.4±0.6 72.9±0.2
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G MORE COMPARISONS WITH OTHER METHODS

Comparison with dataset selection method.

Table 9: Test accuracy (%) comparison with dataset
selection method.

Method CIFAR10
1 10 50

Prune the distill 44.7±1.5 63.1±0.7 69.7±0.4
MTT+Ours 57.9±0.6 65.4±0.6 72.9±0.2
DREAM 51.1±0.3 69.4±0.4 74.8±0.1
IDC+Ours 58.6±0.9* 71.1±0.1* 73.8±0.0

In this paper, we propose to focus more on cru-
cial samples during training for a better dataset
distillation performance. However, one can
also select crucial samples beforehand and then
conduct dataset distillation. To investigate the
comparison of our online method with the of-
fline dataset selection, we compare our method
with a newly released study “Prune then dis-
till”, which proposes to prune the dataset first
to select the most important samples and then
conduct dataset distillation. We also compare
our method with a novel method DREAM (Liu
et al., 2023), who proposes to do clustering to fetch representative samples first and then conduct
dataset distillation every certain iterations. As shown in Table 9, our method still shows superiority to
data selection methods. Note that since the “prune then distill” and DREAM adopt the distillation
method MTT (Cazenavette et al., 2022) and IDC Kim et al. (2022) as their base methods, here we also
provide MTT+Ours and IDC+Ours* for a fair comparison. We think we hold two advantages. Firstly,
compared to the vallina dataset distillation methods, the offline pruning from “prune then distill”
will introduce extra time costs. In contrast, our method is an online one which just needs to rank
the losses and average the top-k losses, introducing almost no time costs as described in Section D.
Secondly, the offline pruning from “prune then distill” may result in information loss by dropping
samples before dataset distillation. Our online method ranks losses within batches during dataset
distillation, it is after the samples can be represented by the learned samples that these samples will
be discarded. In this way, the information in easy samples can be maintained.

We have also provide an example to compare our sampling strategy with DREAM. As shown in
Figure 9, when IPC=1, DREAM will get the distilled data (yellow circle) in the center of the each
class. This can lead to some unsuitable decision boundary (yellow line) learned by the distilled
data. In contrast, our method will push the distilled data to more hard-to-be-distinguished samples
that usually exist along the best decision boundary. In this way, the decision boundary (green lines)
learned by our distilled data (green circle) can be more precise. Besides, we have also showed an
example of the distilled data under multi-class classification tasks in Figure 10. Though it is hard to
draw a certain decision boundary, it can be observed that the distilled data made by focusing more on
hard samples can reach closer to the best decision boundary.

Table 10: Comparison with IDC.

Method CIFAR10
1 10 50

IDC 36.7 58.3 69.5
Ours 48.4 67.2 73.8

Comparison to other state-of-the-art method. Due to the
space limit, we only provide comparisons to a few state-of-
the-art methods in the main text. Here we also make more
comparisons in Table 11 and 12 with other recently released
methods including CAFE (Wang et al., 2022), FTD (Du et al.,
2023) and TESLA (Cui et al., 2023). Different from both
matching-based or meta-learning-based methods, IDC (Kim
et al., 2022) proposes a novel condensation framework that
generates multiple synthetic data with a limited storage budget
via efficient parameterization considering data regularity. It analyzes the shortcomings of the existing
gradient matching-based condensation methods and develop an effective optimization technique for
improving the condensation of training data information. The comparsions are listed in Table 10.
Besides, it also proposes to divide images into several parts to make full use of storing budget,
making it a new state-of-the-art. We also include this strategy to make comparisons with IDC.
Our performances boost from 48.4%, 67.2% to 58.6%, 71.1% on CIFAR10, IPC=1, 10 while the
performances of IDC boost from 36.7%, 58.3% to 50.6%, 67.5%.
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Figure 9: Method comparison with DREAM (Liu et al., 2023).

Distilled data by DREAM

Distilled data by ours

Figure 10: Method comparison with DREAM (Liu et al., 2023) (multi-class).

Table 11: Test accuracy (%) comparisons.

Method CIFAR10 CIFAR-100 T-ImageNet
1 10 50 1 10 50 1 10

CAFE 31.6±0.8 50.9±0.5 62.3±0.4 14.0±0.3 31.5±0.2 42.9±0.2 - -
FTD 46.8±0.3 66.6±0.3 73.8±0.2 25.2±0.2 43.4±0.3 50.7±0.3 10.4±0.3 24.5±0.2
TESLA 48.5±0.8 66.4±0.8 72.6±0.7 24.8±0.4 41.7±0.3 47.9±0.3 - -
Ours 48.4±0.4 67.2±0.4 73.8±0.0 31.2±0.2 46.4±0.5 49.4±0.3 19.8±0.1 27.0±0.3

Table 12: Test accuracy (%) comparisons.

Method ImageNette(128x128) ImageWoof(128x128) ImageNet(64x64)
1 10 1 10 1 2

FTD (Du et al., 2023) 52.2±1.0 67.7±0.7 30.1±1.0 38.8±1.4 - -
TESLA (Cui et al., 2023) - - - - 7.7±0.2 10.5±0.3
Ours 49.6±0.6 67.8±0.3 30.8±0.5 43.8±0.6 8.0±0.2 10.7±0.1
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H VISUALIZATION OF DISTILLED SAMPLES

In this section, we show our distilled samples of various datasets under different IPCs.

(a) MNIST, IPC=1 (b) Fashion-MNIST, IPC=1

(c) MNIST, IPC=10 (d) Fashion-MNIST, IPC=10

(e) CIFAR10, IPC=10 (f) CIFAR10, IPC=50
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(g) CIFAR100, IPC=1 (h) CIFAR100, IPC=10

(i) TinyImageNet, IPC=1 (j) TinyImageNet, IPC=10

(k) ImageNette, IPC=1 (l) ImageWoof, IPC=1
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(m) ImageNette, IPC=10 (n) ImageWoof, IPC=10

(o) ImageNet (64x64), IPC=1 (p) ImageNet (64x64), IPC=2
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