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Abstract

Aligning human preference and value is important
for contemporary foundation models. State-of-
the-art techniques such as Reinforcement Learn-
ing from Human Feedback (RLHF) consist of two
stages: 1) supervised fine-tuning (SFT), where the
model is fine-tuned to imitate human demonstra-
tion data; 2) Preference learning, where prefer-
ence data is used to learn a reward model, which
is then used by a reinforcement learning (RL)
step to fine-tune the model. In this work, we ar-
gue that the SFT stage benefits from learning a
reward model as well. Instead of using the hu-
man demonstration data directly via supervised
learning, we propose to leverage an Inverse RL
(IRL) technique to build an reward model, while
learning the policy model. This approach leads to
new SFT algorithms that are not only efficient to
implement, but also promote the ability to distin-
guish between preferred and non-preferred contin-
uations. Our results indicate that it is beneficial to
explicitly or implicitly leverage reward learning
throughout the entire alignment process.

1. Introduction
Large Language Models (LLMs) have become the corner-
stone of modern artificial intelligence applications. They
are believed to lead the way towards artificial general intel-
ligence (Bubeck et al., 2023), also have shown great capa-
bilities towards specialized domains such as math problem
solving (Cobbe et al., 2021; Trinh et al., 2024; Wei et al.,
2022; Lewkowycz et al., 2022), code generation (Chen et al.,
2021; Austin et al., 2021; Li et al., 2022), text generation
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(Anil et al., 2023; Touvron et al., 2023; Thoppilan et al.,
2022), etc. Usually, one needs to align pre-trained LLMs
with human-labeled data to achieve desired performance
over certain tasks, a process known as alignment or fine-
tuning. The alignment datasets can be categorized into two
classes: (i) demonstration data with input prompt and hu-
man response; (ii) preference data with input prompt and
two responses, where human labeler will pick a chosen one
and a rejected one. With the alignment datasets, one could
employ methods like supervised fine-tune (SFT, (Ouyang
et al., 2022; Tunstall et al., 2023; Chung et al., 2024)) for
demonstration datasets, and reinforcement learning from hu-
man feedback (RLHF, (Christiano et al., 2017; Ouyang et al.,
2022)) and direct preference optimization (DPO, (Rafailov
et al., 2024)) for preference datasets. Specifically, RLHF
explicitly trains a reward model and uses RL (policy opti-
mization) to obtain a fine-tuned LLM; on the other hand,
DPO and its extensions simplifies the RLHF by training the
LLM policy model directly, while implicitly learns the re-
ward model via the log likelihood ratio between the learned
and reference models. Both methods exhibit better perfor-
mance over SFT on demonstration datasets and are adopted
by state-of-the-art LLMs, for example ChatGPT by RLHF
(Ouyang et al., 2022), zephyr by DPO (Tunstall et al., 2023).

When dealing with preference data, state-of-the-art meth-
ods usually build an (explicit or implicit) reward model to
evaluate the quality of responses for a given prompt. On
the contrary, reward modeling is not done for demonstration
datasets. However, as human preferences are also implicit
in the demonstration data, one can argue that training a re-
ward model that encodes human value distilled from these
datasets may help boost the alignment capability of the LLM.
In RL literature, for a Markov decision process (MDP), it
is likely that supervised learning methods which naively fit
the demonstration data will suffer from distribution shift
– the fine-tuned policy from supervised learning produce
unsatisfactory generations in certain states unseen in the
training dataset (Ross et al., 2011). Through formulating the
learning from demonstration problem, inverse RL methods
(Ziebart et al., 2008; Ross et al., 2011; Zeng et al., 2022b)
can alleviate such distribution shift issues. Witnessing the
success in ChatGPT, one would expect the LLM alignment
with demonstration datasets can be improved through in-
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verse RL. In this work, we pose the following question:

Does building a reward model using the demonstration
data benefit the alignment process?

By developing an IRL framework, we give a positive answer
to above question. In particular our main contributions are:

• We develop a new reward-based SFT approach, which
takes the form of a bilevel optimization, where in the
lower-level, LLM policy is learned via policy optimization
for a given reward, while in the upper-level, the reward
model is optimized so to maximize the likelihood for
observing the demonstration data.

• We propose two alignment algorithms, one learns the
reward model explicitly, and the other implicitly. For the
first algorithm, we show that the reward learned from only
demonstration data already possesses strong capabilities
in distinguishing between chosen and rejected responses;
see Figure 1 and our experiment for details. For the second
algorithm, we observe that implicitly learning a reward
is equivalent to improving the model by comparing the
demonstration data with synthetic data generated by past
models. The resulting algorithm covers SPIN (Chen et al.,
2024) as a special case, where the latter algorithm has
been recently proposed from a different viewpoint.

• We prove that both proposed algorithms converge to a
stationary point of our proposed formulation. We show
that the proposed algorithms outperform vanilla SFT in
almost all cases we have tested, for example the model
performance on HuggingFace Open LLM Leaderboard
increases from 59.47% to 61.03%.

Notations. π(y|x) denotes the LLM output probability, and
we refer to π as the policy; we use π(y|x;θ) if π is directly
parameterized by θ. When π is indirectly determined by θ,
we use πθ(y|x). D = {(x, y)} denotes the demonstration
dataset and P = {(x, yw, yl)} for the preference dataset,
where yw is preferred over yl. We also denote (x, y) ∼
D as x ∼ ρ, y ∼ πE(·|x), where ρ is the input prompts
distribution. We similarly denote x ∼ ρ, (yl ≺ yw) ∼
πP (·|x) for the preference dataset.

2. Preliminaries
Consider a Large Language Model (LLM) π(y|x;θ) where
x = [x1, ..., xn] is the sequence of input prompts and y =
[y1, ..., ym] is the sequence of continuation. We review two
procedures for fine-tuning θ: (1) SFT over demonstration
dataset, (2) RLHF over preference dataset.

SFT. Given a demonstration dataset D := {(x, y)}, the
SFT optimizes the following problem:

maxθ ℓSFT(θ) := E(x,y)∼D [log π (y|x;θ)] . (1)

It is easy to see that the above problem shares the same op-
timal solutions as minθ Ex∼ρ[DKL(π

E (·|x) ∥π (·|x;θ))],

which shows that SFT imitates the demonstration dataset
via minimizing the KL divergence.

RLHF. Suppose that we have a reward model r(x, y;ϕ)
(parameterized by ϕ) for any given input and output pair
(x, y), the LLM can be fine tuned by the RL problem:

max
θ

ℓRL(θ) := Ex∼ρ,y∼π(·|x;θ) [r(x, y;ϕ)]

− Ex∼ρ[DKL(π (·|x;θ) ∥πref (·|x))],
(2)

where πref is a fixed reference model, usually the pre-trained
model or the model after SFT. (2) is usually solved by stan-
dard policy optimization techniques such as REINFORCE
(Ahmadian et al., 2024) or PPO (Schulman et al., 2017).

To find an appropriate reward model r(x, y;ϕ), RLHF (see
e.g., (Christiano et al., 2017)) leverages a preference dataset
P := {(x, yw, yl)}, where each data contains a pair of
output yw, yl, and yw is preferred over yl by human labeler
(denoted as yw ≻ yl). The Bradley-Terry model (Bradley
and Terry, 1952) assumes that the probability of choosing
yw over yl is (where σ(·) is the sigmoid function):

P (yw ≻ yl | x;ϕ) = σ (r(yw;x;ϕ)− r (yl;x;ϕ)) .

The following problem finds the reward model:

max
ϕ

ℓRM(ϕ) := Ex∼ρ,(yl≺yw)∼πP (·|x)

[
log

(
P (yw ≻ yl | x;ϕ)

)]
(3)

It is observed that models trained via learning the policy
(2) and then learning the reward (3) outperforms those that
are only trained using SFT (Ouyang et al., 2022). The
reward model allows a better generalization ability via the
consistent input of the preference data from human labeler.

3. Reward Learning and Policy Fine Tuning
from Demonstration Data

In this section, we argue that reward learning from the
demonstration dataset can benefit the LLM alignment by a
joint reward learning and policy fine tuning formulation.

3.1. Joint Reward-learning and Policy Fine-tuning
We consider the joint reward and policy learning problem
via maximum likelihood inverse RL (ML-IRL) (Ziebart
et al., 2008; 2013; Zeng et al., 2022b;a):

max
θ

ℓ(θ) :=Ex∼ρ,y∼πE(·|x) [log πθ (y | x)]

s.t. πθ := argmax
π

Ex∼ρ,y∼π(·|x)[r (x, y;θ)

− βDKL

(
π(·|x)∥πref(·|x)

)
].

(4)

The above problem has a bilevel structure. The upper level
is similar to (1), but is evaluated on the policy πθ induced
by the reward model r (x, y;θ); meanwhile, this policy πθ

is found in the lower level using the RL objective (2).
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Figure 1. Left: Difference between SFT and the proposed methods: RFT (Algorithm 1) and IRFT (Algorithm 2); Right: Log prob-
ability gap between the chosen/preferred continuation and the rejected/non-preferred continuations. All methods only consume the
chosen/preferred data, but RFT and IRFT can distinguish between chosen and rejected continuations; see Example A.2.

Several advantages of (4) over (1): First, formulating SFT
as a RL / IRL problem can alleviate distribution shift and
improve the generalization power (Ross et al., 2011). In fact,
we observe that (4) tends to give a less extreme policy even
when the demonstration dataset is. The latter is observed in
the stylized example A.1 in the appendix. Second, since the
lower level problem in (4) encapsulates a generation process,
we anticipate the proposed method to better distinguish
between the preferred and non-preferred data than SFT,
even if it is only trained on the demonstration dataset. The
numerical example in Fig. 1, Example A.2 highlights this
point. Below we show that (4) can be simplified (proof in
Appendix A.4):

Lemma 3.1. Problem (4) is equivalent to the minimax opti-
mization problem:

max
θ

min
π

Ex∼ρ,y∼πE(·|x),ỹ∼π(·|x)

[r(x, y;θ)− r(x, ỹ;θ)

β

+DKL

(
π(·|x)∥πref(·|x)

)]
. (5)

The reward optimization problem takes a similar form as in
RLHF (3), where two reward functions are contrasted. The
key difference is that here one reward is on the continuation
y in D, the other is on ỹ generated from the current policy
π(·|x). We believe that such contrast is the key reason that
enables the IRL formulation to distinguish the preferred
continuations over the non-preferred ones.

We can develop a gradient-descent-ascent type method for
minimax problem (5) — an algorithm that we call Reward-
learning Fine-tune (RFT) in Algorithm 1 of the appendix.

3.2. Implicit Reward-learning Fine-tuning
We show that (4) can be simplified into a supervised learning
problem. Observe (see Appendix A.4 for proof):

Lemma 3.2. For the loss function ℓ in (4), we have:

∇θℓ(θ) =
1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ(·|x)[

∇θ log
πθ(y|x)
πref(y|x)

−∇θ log
πθ(ỹ|x)
πref(ỹ|x)

]
.

(6)

Lemma 3.2 leads to a simple scheme for implicit reward-
based supervised fine-tune (IRFT) – for each training batch,
it samples the response from current model, and construct
the gradient estimator (6) to update θ. This results in Algo-
rithm 2 in the appendix.

3.3. Convergence Theory
We conclude the section by theoretically inspecting the pro-
posed algorithms. We observe:

Theorem 3.3. Under Assumption A.1, for Algorithm 1 and
2 with ηt = Θ(1/

√
TK) we have

min
t=1,...,T, k=1,...,K

E[∥∇ℓ(θt,k)∥2] ≤ O
(
1/
√
TK + 1/T

)
.

Assume that the total number of data samples is N (which is
a large number) and we perform generation for each sample
once (i.e., epoch = 1), then we have N = T ×K. In this
case, as long as K ≤

√
N , then the convergence rate is

always O(1/
√
N). If K is larger than

√
N , then the bias in

the estimator of the gradient will degrade the performance.

4. Numerical experiments
In this section we study the proposed Algorithm 1 and 2 nu-
merically. Details of the experiments are in Appendix A.5.

4.1. Results of RFT (Algorithm 1)
We first fine-tuned pythia-1.4b using supervised fine-
tune over Anthropic-HH dataset. We use only pre-
ferred/chosen data for 10 epochs and pick up the best check-
point as our base model. Next, we fine-tune the base model
using SFT and Algorithm 1. Figure 2 shows the experi-
ment results on averaged reward and win rate, where we
record the average score of the continuation generated for
test datasets, also the win rate of the proposed Algorithm 1
over the full SFT base model and the top 10k SFT model.
The figures show that the proposed algorithm improves over
SFT in terms of the helpfulness and harmlessness of model
continuation. See Section A.5 for implementation details.
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Table 1. Test performance of SPIN (Chen et al., 2024) and IRFT (Algorithm 2) based on pythia-1.4b across HuggingFace Open
LLM Leaderboard datasets. We keep training for 2 epochs after each generation process and K are calculated after this rule.

Tasks T K AI2 Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU Average
Metrics acc norm acc acc exact match acc norm acc

pythia-1.4b 0 0 54.54 31.00 57.46 1.44 53.55 25.63 37.27
SFT 0 # samples

batchsize ∗ 2 54.74 30.93 57.30 2.05 52.98 25.62 37.27
IRFT (SPIN iter 0) 1 # samples

batchsize ∗ 2 54.00 31.73 57.70 1.36 53.76 25.54 37.35
IRFT (SPIN iter 1) 2 # samples

batchsize ∗ 2 52.85 32.04 57.38 1.74 53.57 25.49 37.18
IRFT 5 # samples

batchsize ∗ 2
5 53.75 31.67 56.91 1.74 54.79 25.32 37.36

IRFT 10 # samples
batchsize ∗ 2

5 53.75 31.92 57.85 2.43 54.77 25.44 37.69
IRFT 8 # samples

batchsize ∗ 2
8 53.75 31.40 56.91 2.35 54.62 25.52 37.43

IRFT 16 # samples
batchsize ∗ 2

8 56.34 31.54 58.41 1.59 54.54 25.69 37.57

Table 2. Test performance of SPIN (Chen et al., 2024) and IRFT (Algorithm 2) based on zephyr-7b-sft-full across HuggingFace
Open LLM Leaderboard datasets.

Tasks T K AI2 Arc TruthfulQA Winogrande GSM8k HellaSwag MMLU Average
Metrics acc norm acc acc exact match acc norm acc

zephyr-7b-sft-full 0 0 74.83 34.07 76.09 31.92 81.09 58.86 59.48
IRFT (SPIN iter 0) 1 # samples

batchsize ∗ 2 75.08 36.57 76.01 33.59 82.81 57.83 60.32
IRFT (SPIN iter 1) 2 # samples

batchsize ∗ 2 76.13 36.56 76.64 35.56 83.39 57.82 61.02
IRFT 5 # samples

batchsize ∗ 2
5 75.82 39.99 77.19 31.24 82.07 57.93 60.71

IRFT 10 # samples
batchsize ∗ 2

5 76.78 36.84 77.43 34.34 83.05 57.72 61.03
IRFT 8 # samples

batchsize ∗ 2
8 75.23 36.67 75.85 31.84 80.89 58.60 59.85

IRFT 16 # samples
batchsize ∗ 2

8 75.79 35.55 76.56 32.52 82.3 58.77 60.25
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Figure 2. Fine-tuning result of pythia-1.4b
over Anthropic-HH (with top 10k data picked by
PKU-Alignment/beaver-7b-v3.0-reward) using
Algorithm 1. We record the average score of test dataset on the
left figure and the win rate of Algorithm 1 over the (full SFT) base
model and the SFT model.

4.2. Results of IRFT (Algorithm 2)
Different from the time consuming Algorithm 1, Algorithm
2 is more capable of handling large data and models. We
first present the result for pythia-1.4b models over
Ultrachat200k data. Note that T = 1 in Algorithm 2 is
equivalent to SPIN (Chen et al., 2024)1. We tested on differ-
ent choices of T and identify that T = 5 to 8 gives the best
performance in the Open LLM Leaderboard evaluations.

1IRFT with T = 1 and 2 epochs is equivalent to SPIN iteration
0, and T = 2 with 2 epochs for each T is equivalent to SPIN
iteration 1, etc.

The Open LLM Leaderboard result is presented in Table 1.
We have the following main observations from Table 1:
1. SFT is not efficient in terms of boosting the pre-trained

model performance on downstream tasks comparing to
methods which promote the decreasing of the likelihood
of synthetic data, namely SPIN and IRFT;

2. SPIN and IRFT (Algorithm 2) are both capable of further
improving the performance of pythia model over down-
stream tasks, whereas IRFT shows better results due to
more frequent generation comparing to SPIN. IRFT with
T > 1 outperforms both SFT and SPIN on most of the
tasks as well as the average score;

3. More frequent generation might also result in more vari-
ances, therefore a reasonable T (around 5) results in the
best evaluation performance.

Apparently 1b model is not strong enough to handle
hard tasks, e.g. GSM8k and all model performances
are not desirable. Now we present the result for
zephyr-7b-sft-full. We remind the reader that this
is a fully SFT-ed model and further SFT would only detri-
ment the model performance (see Chen et al. (2024)). The
results are presented in Table 2 where we can see that sim-
ilar to the 1b case, both SPIN and IRFT could effectively
improve the performance of SFT-ed model and the average
performance of IRFT with T = 5 stands out. The success
of IRFT and SPIN suggest that reward learning is beneficial
for aligning with demonstration data.
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A. Appendix
A.1. Related works

Fine-tuning language models is prevailing to improve LLMs performance on various instructional tasks, and has shown
great success in enabling LLMs to generalize to efficiently respond out-of-sample instructions (Chung et al., 2024). Despite
many successful applications of SFT, people soon realized the great potential of reward learning and RL based fine-tuning
over preference datasets for different tasks, including text-summarizing (Liu et al., 2020; Ziegler et al., 2019), story-telling
(Ziegler et al., 2019), instruction-following (Ouyang et al., 2022; Ramamurthy et al., 2022), etc. Equipped with the popular
Bradley-Terry model (Bradley and Terry, 1952), RLHF fine-tune a language model using policy optimization methods, such
as REINFORCE (Williams, 1992), proximal policy optimization (PPO, (Schulman et al., 2017)) and a lot more. On major
obstacle for preference dataset fine-tuning is the costly and time-consuming process of human labeling, and methods such
as self-play fine-tune (SPIN, (Chen et al., 2024)), synthetic data with binary feedback in self-training (Singh et al., 2023),
weak-to-strong generalization (Burns et al., 2023) and self-rewarding fine-tuning (Yuan et al., 2024) seek for improvement
over SFT under weaker data supervisions comparing to preference datasets. In particular, SPIN generates synthetic samples
for input prompts in the demonstration dataset and use them as the rejected data to for a ‘pseudo’ preference data. As we
will see, SPIN actually coincides with our implicit reward learning approach where we motivate the synthetic data in a more
natural way.

In the RL literature, IRL proposes to jointly learn the reward r which best explains an expert policy πE and the policy π
which in turn mimics this expert policy πE from demonstration data. The most popular framework is the maximum entropy
IRL (MaxEnt-IRL) framework (Ziebart et al., 2008; Levine et al., 2011; Ziebart et al., 2013; Bloem and Bambos, 2014; Zeng
et al., 2022b), which seeks for a policy maximizing the entropic-regularized reward that matches the empirical averages in
expert’s demonstrations data. MaxEnt-IRL utilizes only the demonstration dataset for reward learning and already yields
superior performance over the plain behavior cloning (Pomerleau, 1988; Osa et al., 2018) approach on various RL tasks.

A.2. Examples Illustrating the Benefits of Joint Reward and Policy Learning (4)

Example A.1. Suppose we have only one state (input prompt) x and three actions (continuations) y1, y2, y3. Let the
reference model πref be a uniform distribution over all continuations, and the demonstration dataset is D = {y3}. One
could easily compute the optimal solution for (1) and (4) by first-order optimality conditions. From Table 3 we can see
that SFT (imitation learning) pushes all the likelihood toward the demonstration dataset, whereas ML-IRL (4) maintains
non-zero weights for unseen data in the demonstration datasets. This is particular useful when we want to fine-tune from a
pre-trained model, which is presumed to be powerful and have useful information already.

Action y1 y2 y3

πref 0.33 0.33 0.33
D {y3}

πSFT 0.0 0.0 1.0

πIRL
2

2+eR/β
2

2+eR/β
eR/β

2+eR/β

Table 3. A state-less counter-example with three actions where IRL-based fine-tune (4) shows regularization effect over SFT (1) to
maintain weights over unseen data in the demonstration dataset D. Here we assume r ∈ [0, R].

Example A.2. We compare the solution of SFT (1) and IRL (4) numerically, where the latter is solved using two algorithms
RFT and IRFT (to be introduced shortly). We choose the preference based dataset Anthropic-HH and only keep the preferred
continuation to form a demonstration dataset D̃ = {(x, yw)} to implement SFT and IRL. We then compute the log probability
gap log(π(yw|x))− log(π(yl|x)) between the preferred yw and non-preferred yl on the test dataset; see Figure 1 right side.
We observe that although all three methods are not exposed to the non-preferred data yl during the training process, the
IRL-based methods effectively distinguish the preferred continuation over the non-preferred one, while SFT assigns larger
probability to the non-preferred continuation (see Section 4 for the details).
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Algorithm 1 Reward-learning Fine-Tune (RFT)
Input: Initialize reward parameter θ0(θ−1,K = θ0) and policy model π0, the stepsize of reward update ηt, and T , K the
outer and inner iterations.
for t = 0, 1, . . . , T − 1 do

Take θt,0 = θt := θt−1,K

Data Sample: Sample state xt,k ∼ ρ, an expert response yt,k ∼ πE(·|xt,k) and agent response ỹt,k ∼ πt(·|xt,k), for
k = 0, 1, ...,K − 1
for k = 0, 1, ...,K − 1 do

Estimate Gradient: Calculate the stochastic gradient gt,k w.r.t. θ via gt,k = 1
β∇θr(xt,k, yt,k;θt,k) −

1
β∇θr(xt,k, ỹt,k;θt,k)
Reward Alignment: θt,k+1 := θt,k + ηtgt,k

end for
Policy Alignment: Update the optimal πt(y|x) ∝ exp(r(x, y;θt,K)) according to (8)

end for

Algorithm 2 Implicit Reward-learning Fine-Tune (IRFT)
1: Input: Initialize model parameter θ0(θ−1,K = θ0), the stepsize of reward update ηt, and T , K the outer and inner

iterations.
2: Output: θ̂
3: for t = 0, 1, ..., T − 1 do
4: Take θt,0 = θt := θt−1,K

5: Data Sample: Sample state xt,k ∼ ρ, an expert response yt,k ∼ πE(·|xt,k) and agent response ỹt,k ∼ πθt,0
(·|xt,k),

for k = 0, 1, ...,K − 1
6: for k = 0, 1, ...,K − 1 do
7: Estimate Gradient: Calculate the stochastic estimator ∇̂ℓ(θt,k) via (6)
8: Implicit Reward Alignment: Update θt,k+1 = θt,k + ηt∇̂ℓ(θt,k)
9: end for

10: end for

A.3. Discussions & Implementation Details

Implementation details of RFT. As mentioned, training a reward model and a policy at the same time is costly. In our
experiments, we discovered that the reward alignment step can be completely separated from the policy alignment step. In
particular, we take T = 1 and K = data size

batch size ∗ epoch so that we train the reward over the entire dataset and then switch to the
policy alignment. In our experiments, we indeed observe that only one round of above procedure can readily show superior
performance over SFT and implicit reward-learning methods for pythia-1.4b model.

Implementation details of IRFT. It is worth noticing that in (6), the policy π is not parameterized by θ directly. In our
numerical experiment, we directly parameterize the LLM π by θ, making (6) the gradient of an supervised optimization
problem itself. Meanwhile, it is not straightforward to calculate the self-generation gradient (6) directly, thus we need to
design a loss function for back-propagation in main-stream packages such as PyTorch and TensorFlow. In practice, at each
training iteration we first sample ỹ ∼ π(·|x;θ) and pass the following loss function

σ

(
log

π(y|x;θ)
πref(y|x)

− log
π(ỹ|x;θ)
πref(ỹ|x)

)
(7)

into the standard optimizers (such as SGD or Adam) for back-propagation. Here σ is a non-increasing nonlinear function.
We take the same logistic loss function σ(t) := log(1 + exp(−t)) as (Chen et al., 2024) for its non-negativity, smoothness
and exponentially decaying tail to avoid excessive growth in the absolute value of the log-likelihood.

Comparison to SPIN. We discuss here the connection between our proposed algorithms with the self-play fine-tune
algorithm (SPIN in (Chen et al., 2024)), which also maximizes the gap between two rewards. First, SPIN is motivated by
certain two-player games, while in our case, we show that the difference of two rewards in (5) naturally comes from a single,
reward learning agent; see (4).
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Second, IRFT covers SPIN as a special case. In particular, if we take T = 1 and K as the total number of training iterations,
then the IRFT algorithm is equivalent to SPIN. In practice, we tested on different choices of T and show that a reasonable
generation frequency can results in a strong model performance.

Finally, since SPIN does not involve explicit reward learning, it is not directly related to RFT. It is worth noting that the
relation between the proposed Algorithm 1 and Algorithm 2 is similar to that of RLHF to DPO. There has been intensive
discussions regarding whether reward-based or reward-free algorithm gives better model performances, but this topic is
beyond the scope of the current paper. We refer to (Xu et al., 2024) for a comprehensive study.

Our convergence result in Theorem 3.3 also indicates that SPIN does not converge, because T = 1 implies that there is
always an error of O(1). Therefore, one typically needs to run the algorithm for multiple outer iterations (i.e., generate
for the entire dataset multiple times) to claim convergence to the inverse RL problem (4). Numerically, it has indeed been
observed that running multiple rounds of SPIN is beneficial; see in Section 4.

A.4. Proofs for Section 3

We first present the proof of Lemma 3.1.

Proof of Lemma 3.1. It is straightforward to see that the lower-level problem in (4) enjoys a closed-form solution:

πθ(y|x) =
πref(y|x) exp

(
1
β r(x, y;θ)

)
∑

ỹ∈A πref(ỹ|x) exp
(

1
β r(x, ỹ;θ)

) (8)

where A is the set of all possible responses. Plugging (8) into (4), we obtain:

max
θ

Ex∼ρ,y∼πE(·|x)

[
log

(
πref(y|x) exp

(
1

β
r(x, y;θ)

))
− log

∑
ỹ∈A

πref(ỹ|x) exp
(
1

β
r(x, ỹ;θ)

) (9)

Plugging (8) into the lower level problem of (4), we observe the following equivalence on the objective value:

log

∑
ỹ∈A

πref(ỹ|x) exp
(
1

β
r(x, ỹ;θ)

) = max
π

Eỹ∼π(·|x)[
1

β
r(x, ỹ;θ)]−DKL

(
π(·|x)∥πref(·|x)

)

we obtain the following max-min problem (omitting some constant terms):

max
θ

min
π

Ex∼ρ,y∼πE(·|x),ỹ∼π(·|x)

[
r(x, y;θ)− r(x, ỹ;θ)

β
+DKL

(
π(·|x)∥πref(·|x)

)]
(10)

The proof is completed.

We then present the proof of Lemma 3.2

Proof of Lemma 3.2. Omitting the constant terms not related to θ in (9), we have

max
θ

ℓ(θ) = Ex∼ρ,y∼πE(·|x)

 1

β
r(x, y;θ)− log

∑
ỹ∈A

πref(ỹ|x) exp
(
1

β
r(x, ỹ;θ)

) (11)

10
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Calculating the derivative we get

∇θℓ(θ) =
1

β
Ex∼ρ,y∼πE(·|s)[∇θr(x, y;θ)]− Ex∼ρ

∇θ log

∑
ỹ∈A

πref(ỹ|x) exp
(
1

β
r(x, ỹ;θ)

)
=
1

β
Ex∼ρ,y∼πE(·|x)[∇θr(x, y;θ)]−

1

β
Ex∼ρ

∑
y∈A

πref(y|x) exp
(

1
β r(x, y;θ)

)
∑

ỹ∈A πref(ỹ|x) exp
(

1
β r(x, ỹ;θ)

)∇θr(x, y;θ)


=
1

β
Ex∼ρ,y∼πE(·|x)[∇θr(x, y;θ)]−

1

β
Ex∼ρ,y∼πθ(·|s)[∇θr(x, y;θ)]

=
1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ(·|x)[∇θr(x, y;θ)−∇θr(x, ỹ;θ)]

which implies that to minimize ℓ(θ), one should always generate samples based on the current estimation of the policy
ỹ ∼ πθ(·|x) and then update.

Now from (8) we get:

r(x, y;θ) = β log
πθ(y|x)
πref(y|x)

+ β logZθ(x) (12)

where Zθ(x) is the denominator of (8). In the view of (12), we can actually directly estimate:

∇θℓ(θ) =
1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ(·|x)

[
∇θ log

πθ(y|x)
πref(y|x)

−∇θ log
πθ(ỹ|x)
πref(ỹ|x)

]
(13)

The proof is completed.

Now we move to the proof for Section 3.3. We state the assumption needed for proving the final result:

Assumption A.1. For Algorithm 1 and 2, we assume that

1. The policy distribution πθ is uniformly lower and upper bounded, i.e.

πmin ≤ ∥πθ(·|x)∥∞ ≤ πmax

where 0 < πmin < πmax, for all x;

2. ∇πθ is bounded, i.e. ∥∇πθ(·|x)∥ ≤ L0 for all x;

3. ∇πθ is Lipschitz, i.e. ∥∇πθ1
(y|x)−∇πθ2

(y|x)∥ ≤ L1∥θ1 − θ2∥, for all x and y;

where πθ is as defined in (8).

The above assumption can readily establish the assumption below, which is needed for our final convergence result.

Assumption A.2. For Algorithm 2, we assume that

1. ℓ is L-Lipschitz smooth w.r.t. θ, i.e.

∥∇ℓ(θ1)−∇ℓ(θ2)∥ ≤ L∥θ1 − θ2∥.

2. The stochastic estimator ∇̂ℓ is bounded, i.e.
∥∇̂ℓ(θ)∥ ≤ G.

These are all standard assumptions in nonconvex smooth stochastic optimization. We have the following lemma:

Lemma A.3. If Assumption A.1 holds, Assumption A.2 also holds with the following parameters:

L =
L0(3L0 + L1)

π2
min

, G =
2L0

πmin

11
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Proof. We just show the value for L since G can be similarly computed. Since

∇ℓ(θ) =
1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ(·|x)

[
∇θ log

πθ(y|x)
πref(y|x)

−∇θ log
πθ(ỹ|x)
πref(ỹ|x)

]
we have

∥∇ℓ(θ1)−∇ℓ(θ2)∥

=
1

β

∥∥∥∥Ex∼ρ,y∼πE(·|x),ỹ∼πθ1
(·|x)

[
∇θ log

πθ1
(y|x)

πref(y|x)
−∇θ log

πθ1
(ỹ|x)

πref(ỹ|x)

]
− Ex∼ρ,y∼πE(·|x),ỹ∼πθ2

(·|x)

[
∇θ log

πθ2(y|x)
πref(y|x)

−∇θ log
πθ2(ỹ|x)
πref(ỹ|x)

]∥∥∥∥
≤ 1

β

∥∥∥∥Ex∼ρ,y∼πE(·|x),ỹ∼πθ1
(·|x)

[
∇θ log

πθ1
(y|x)

πref(y|x)
−∇θ log

πθ1
(ỹ|x)

πref(ỹ|x)

]
− Ex∼ρ,y∼πE(·|x),ỹ∼πθ1

(·|x)

[
∇θ log

πθ2
(y|x)

πref(y|x)
−∇θ log

πθ2
(ỹ|x)

πref(ỹ|x)

]∥∥∥∥
+

1

β

∥∥∥∥Ex∼ρ,y∼πE(·|x),ỹ∼πθ1
(·|x)

[
∇θ log

πθ2(y|x)
πref(y|x)

−∇θ log
πθ2(ỹ|x)
πref(ỹ|x)

]
− Ex∼ρ,y∼πE(·|x),ỹ∼πθ2

(·|x)

[
∇θ log

πθ2
(y|x)

πref(y|x)
−∇θ log

πθ2
(ỹ|x)

πref(ỹ|x)

]∥∥∥∥ .

(14)

For the first part, since

∇ log πθ(y|x) =
∇πθ(y|x)
πθ(y|x)

we have

1

β

∥∥∥∥Ex∼ρ,y∼πE(·|x),ỹ∼πθ1
(·|x)

[
∇θ log

πθ1
(y|x)

πref(y|x)
−∇θ log

πθ1
(ỹ|x)

πref(ỹ|x)
−∇θ log

πθ2
(y|x)

πref(y|x)
+∇θ log

πθ2
(ỹ|x)

πref(ỹ|x)

]∥∥∥∥
≤ 1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ1

(·|x)

∥∥∥∥∇πθ1
(y|x)

πθ1(y|x)
− ∇πθ2

(y|x)
πθ2(y|x)

− ∇πθ1
(ỹ|x)

πθ1(ỹ|x)
+

∇πθ2
(ỹ|x)

πθ2(ỹ|x)

∥∥∥∥
≤ 1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ1

(·|x)

∥∥∥∥∇πθ1
(y|x)

πθ1
(y|x)

− ∇πθ2
(y|x)

πθ2
(y|x)

∥∥∥∥+ 1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ1

(·|x)

∥∥∥∥∇πθ1
(ỹ|x)

πθ1
(ỹ|x)

− ∇πθ2
(ỹ|x)

πθ2
(ỹ|x)

∥∥∥∥
≤ 1

β
Ex∼ρ,y∼πE(·|x),ỹ∼πθ1

(·|x)
∥πθ2

(y|x)∇πθ1
(y|x)− πθ1

(y|x)∇πθ2
(y|x)∥

πθ1(y|x)πθ2(y|x)
+ (same term for ỹ)

≤ 2

β

πmaxL1 + L2
0

π2
min

∥θ1 − θ2∥.

For the second term in the last line of (14), we have

1

β

∥∥∥∥Ex∼ρ,y∼πE(·|x),ỹ∼πθ1
(·|x)

[
∇θ log

πθ2
(y|x)

πref(y|x)
−∇θ log

πθ2
(ỹ|x)

πref(ỹ|x)

]
− Ex∼ρ,y∼πE(·|x),ỹ∼πθ2

(·|x)

[
∇θ log

πθ2
(y|x)

πref(y|x)
−∇θ log

πθ2(ỹ|x)
πref(ỹ|x)

]∥∥∥∥
≤ 1

β
Ex∼ρ,y∼πE(·|x)

∥∥∥∥∥∥
∑
ỹ∈A

[
∇θ log

πθ2
(y|x)

πref(y|x)
−∇θ log

πθ2
(ỹ|x)

πref(ỹ|x)

]
(πθ1

(ỹ|x)− πθ2
(ỹ|x))

∥∥∥∥∥∥
≤ 1

β

2L0

πmin
Ex∼ρ,y∼πE(·|x)

∥∥∥∥∥∥
∑
ỹ∈A

(πθ1(ỹ|x)− πθ2(ỹ|x))

∥∥∥∥∥∥
=
1

β

2L0

πmin
Ex∼ρ,y∼πE(·|x)

∥∥∥∥∥∥
∑
ỹ∈A

πθ1(ỹ|x)
πθ1

(ỹ|x)− πθ2
(ỹ|x)

πθ1(ỹ|x)

∥∥∥∥∥∥ ≤ 1

β

2L2
0

π2
min

∥θ1 − θ2∥.
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Plugging these back to (14) we get

∥∇ℓ(θ1)−∇ℓ(θ2)∥ ≤ 2

β

(
πmaxL1 + 2L2

0

π2
min

)
∥θ1 − θ2∥.

Now since we generate at the beginning of the inner loop, the estimator ∇̂ℓ(θt,k) is not an unbiased estimator of ∇ℓ(θt,k)
for any k > 0, i.e.

∇ℓ(θt,k) =
1

β
E(xt,k,yt,k)∼D,ỹt,k∼πθt,k

(·|xt,k)

[
∇θ log

πθt,k
(yt,k|xt,k)

πref(yt,k|xt,k)
−∇θ log

πθt,k
(ỹt,k|xt,k)

πref(ỹt,k|xt,k)

]
(15)

̸=E∇̂ℓ(θt,k) =
1

β
E(xt,k,yt,k)∼D,ỹt,k∼πθt,0

(·|xt,k)

[
∇θ log

πθt,k
(yt,k|xt,k)

πref(yt,k|xt,k)
−∇θ log

πθt,k
(ỹt,k|xt,k)

πref(ỹt,k|xt,k)

]
(16)

We thus need to carefully analyze this biasedness so that the convergence can be boosted by a large K, since a large K will
result in a very large bias.

Now we are ready to re-state and prove Theorem 3.3:

Theorem A.4. Suppose Assumption A.1 holds, then for Algorithm 1 and 2 with ηt = Θ(1/
√
TK) we have

min
t=1,...,T, k=1,...,K

E[∥∇ℓ(θt,k)∥2] ≤ O

(
∆0 + LG2

√
TK

+
L̃2G2

T

)

where ∆0 = ℓ∗ − ℓ(θ0) and we omit constant factors in Õ.

Proof. We prove directly for Algorithm 2 since the gradient estimator (6) and the estimator gt,k Algorithm 1 (we do solve
the π subproblem to its optimum) are both for the original bilevel problem (4).

From the Lipschitz gradient of ℓ we have

ℓ(θt,k+1) ≥ ℓ(θt,k) + ηt⟨∇̂ℓ(θt,k),∇ℓ(θt,k)⟩ −
η2tL

2
∥∇̂ℓ(θt,k)∥2

i.e.

ηt∥∇ℓ(θt,k)∥2 ≤ (ℓ(θt,k+1)− ℓ(θt,k)) + ηt⟨∇ℓ(θt,k)− ∇̂ℓ(θt,k),∇ℓ(θt,k)⟩+
η2tL

2
∥∇̂ℓ(θt,k)∥2

Taking expectation to θt,k and by Assumption A.2, we have

ηtE∥∇ℓ(θt,k)∥2 ≤ (Eℓ(θt,k+1)− ℓ(θt,k)) + ηt⟨∇ℓ(θt,k)− E∇̂ℓ(θt,k),∇ℓ(θt,k)⟩+
η2tLG

2

2

where the expectation is taken w.r.t. the sample ỹt,k to generate the estimator of current iteration.

Sum up from k = 0 to k = K we get

K−1∑
k=0

ηtE∥∇ℓ(θt,k)∥2 ≤ (Eℓ(θt,K−1)− ℓ(θt,0)) + ηt

K−1∑
k=0

⟨∇ℓ(θt,k)− E∇̂ℓ(θt,k),∇ℓ(θt,k)⟩+
η2tLG

2K

2
(17)

Since the expectation is taken only on the random sample at current iteration, and we know that the true gradient and the

13
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approximated gradient are (15) and (16), we have the following estimate:

∥∇ℓ(θt,k)− E∇̂ℓ(θt,k)∥

=
1

β

∥∥∥∥Ext,k∼ρ,yt,k∼πE(·|xt,k),ỹt,k∼πθt,k
(·|xt,k)

[
∇θ log

πθt,k
(yt,k|xt,k)

πref(yt,k|xt,k)
−∇θ log

πθt,k
(ỹt,k|xt,k)

πref(ỹt,k|xt,k)

]
− Ext,k∼ρ,yt,k∼πE(·|xt,k),ỹt,k∼πθt,k

(·|xt,k)

[
∇θ log

πθt,k
(yt,k|xt,k)

πref(yt,k|xt,k)
−∇θ log

πθt,k
(ỹt,k|xt,k)

πref(ỹt,k|xt,k)

]∥∥∥∥
=
1

β

∥∥∥∥Ext,k,yt,k

∫ [
∇θ log

πθt,k
(yt,k|xt,k)

πref(yt,k|xt,k)
−∇θ log

πθt,k
(ỹ|xt,k)

πref(ỹ|xt,k)

] (
πθt,k

(ỹ|xt,k)− πθt,0
(ỹ|xt,k)

)
dỹ

∥∥∥∥
≤ 1

β

2L2
0

πmin
∥θt,k − θt,0∥

Denote L̃ = 1
β

2L2
0

πmin
, we thus have:

K−1∑
k=0

⟨∇ℓ(θt,k)− E∇̂ℓ(θt,k),∇ℓ(θt,k)⟩ ≤
K−1∑
k=0

∥∇ℓ(θt,k)− E∇̂ℓ(θt,k)∥∥∇ℓ(θt,k)∥

≤ 1

2

K−1∑
k=0

∥∇ℓ(θt,k)− E∇̂ℓ(θt,k)∥2 +
1

2

K−1∑
k=0

∥∇ℓ(θt,k)∥2

≤ L̃2

2

K−1∑
k=0

∥θt,k − θt,0∥2 +
1

2

K−1∑
k=0

∥∇ℓ(θt,k)∥2 =
η2t L̃

2

2

K−1∑
k=0

∥∥∥∥∥
k−1∑
i=0

∇̂ℓ(θt,i)

∥∥∥∥∥
2

+
1

2

K−1∑
k=0

∥∇ℓ(θt,k)∥2

Therefore
K−1∑
k=0

⟨∇ℓ(θt,k)− E∇̂ℓ(θt,k),∇ℓ(θt,k)⟩ ≤
η2t L̃

2G2

2

K(K − 1)

2
+

1

2

K−1∑
k=0

∥∇ℓ(θt,k)∥2

Substituting back into (17) leads to

1

2

K−1∑
k=0

ηtE∥∇ℓ(θt,k)∥2 ≤ (Eℓ(θt,K−1)− ℓ(θt,0)) + η3t L̃
2G2K(K − 1)

2
+

η2tLG
2K

2

Summing up from t = 0 to T − 1 gives

1

2

T−1∑
t=0

K−1∑
k=0

ηtE∥∇ℓ(θt,k)∥2 ≤ Eℓ(θT−1,K−1)− ℓ(θ−1,0) +

T−1∑
t=0

η3t L̃
2G2K(K − 1)

2
+

T−1∑
t=0

η2tLG
2K

2

With a constant step size ηt = η > 0, we have

1

2TK

T−1∑
t=0

K−1∑
k=0

E∥∇ℓ(θt,k)∥2 ≤ Eℓ(θT−1,K−1)− ℓ(θ−1,0)

ηTK
+ η2L̃2G2K − 1

2
+ η

LG2

2

Taking η = Θ(1/
√
TK), we get

1

TK

T−1∑
t=0

K−1∑
k=0

E∥∇ℓ(θt,k)∥2 = O

(
Eℓ(θT−1,K−1)− ℓ(θ−1,0) + LG2

√
TK

+
L̃2G2

T

)

Hence as T → ∞, the rate is O(1/
√
TK).
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A.5. Details of the Numerical Experiments

Model and Datasets. Since reward-based methods can be costly by training two models at the same time, we mainly
test Algorithm 1 on pythia-1b reward model and pythia-1.4b policy model (Biderman et al., 2023). We tested
pythia on Anthropic-HH dataset (Bai et al., 2022). Anthropic-HH is a preference dataset that provide two continuations
based on helpfulness and harmlessness, and we only pick 10k chosen/preferred continuation data to form the demonstra-
tion dataset, which enable us to check the log likelihood of the non-preferred continuation without feeding the model
with such data. At each iteration, we train our model for 2 epochs (seeing each data for two times). We then use
PKU-Alignment/beaver-7b-v3.0-reward model as our ground truth reward model. We use this model to pick
10k data from Anthropic-HH dataset with the highest reward scores. The win rate is calculated as the ratio of samples where
the reward of our model’s generation is higher than the model compared.

Algorithm 2 is tested on two models: pythia-1.4b and zephyr-7b-sft-full (Tunstall et al., 2023). We tested on
Ultrachat200k dataset by HuggingFace, which is a subset of the high quality demonstration UltraChat dataset(Ding et al.,
2023) for text generation and dialogue. For Ultrachat200k, we adopt the same strategy as (Chen et al., 2024) to pick up 50k
data for training. At each iteration, we again train our model for 2 epochs.

Evaluation. For the Anthropic-HH dataset, we use PKU-Alignment/beaver-7b-v3.0-reward (Dai et al., 2024;
Ji et al., 2023) model as an evaluator; it is a popular 7b model fine-tuned from meta-llama/Llama-2-7b tailored for
evaluating human preferences regarding helpfulness and harmlessness. We also record win rate of the two proposed methods
over base model and SFT model. For the Ultrachat200k dataset, we follow the widely used HuggingFace Open LLM
Leaderboard (Beeching et al., 2023). This evaluation package assess an LLM based on six tasks: LLMs on commonsense
reasoning (Arc (Clark et al., 2018), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021)), multi-task
language understanding (MMLU (Hendrycks et al., 2020)), human falsehood mimic (TruthfulQA (Lin et al., 2021)) and
math problem solving (GSM8K, (Cobbe et al., 2021)). See the appendix for implementation details.

We follow the code as in SPIN (Chen et al., 2024), where we utilize DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) and
FlashAttention-2 (Dao, 2023) to reduce the memory cost. We use RMSProp (Hinton et al., 2012) optimizer with no weight
decay. For 1b models, we use two NVIDIA A100-40G to do the training with per device batch size of 4 for Algorithm 1
and per device batch size of 8 for Algorithm 2. For 7b models we use eight NVIDIA A100-40G to do the training with per
device batch size of 2. We train all models with bfloat16 precision. We set the peak learning rate to be 5e-7 for first two
epochs and 1e-7 for the next two epochs. We fix β = 0.1 and consider the max sequence length to be 1024 for 1b models
and 2048 for 7b models. We use the same prompt template “### Instruction: prompt\n\n### Response: ” as in (Chen
et al., 2024). For the policy optimization step in Algorithm 1, we use the PPO trainer in the TRL package (von Werra et al.,
2020). For the HuggingFace Open LLM Leaderboard evaluation, we use the Language Model Evaluation Harness library
(v0.4.2) (Gao et al., 2023), and we also use the same number of few-shots as in (Chen et al., 2024).

Finally, in Table 4, we further provide the generation examples of our fine-tuned model in Table 2.

A.6. Conclusions and Limitations
In this paper we proposed reward-learning approaches for aligning LLMs with demonstration datasets. We show both
theoretically and numerically the great potential of reward-learning for alignment even without preference dataset. Our
theory only indicate the convergence of the proposed algorithm to stationary point, and it is not clear what the policy
converges to. The additional computation resources required for tuning two models or generate synthetic data in our
algorithms are not negligible. Future works include exploring reward-learning for larger models and more complicated
demonstration tasks, boosting the algorithm efficiency, and understanding how synthetic negative sample helps the LLMs to
distinguish the preference dataset, etc.
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Table 4. Generation example of fine-tuned models in Table 2.

Prompt Craft an intriguing opening paragraph for a fictional short story. The story should involve
a character who wakes up one morning to find that they can time travel.

zephyr-7b-sft-full It was just another ordinary morning for Emily, until she opened her eyes and found herself
in a different time and place. She was lying on her bed, surrounded by strange decor and
people dressed in clothes from a bygone era. Emily rubbed her eyes, thinking she must be
dreaming. But as she got up, she realized that she could feel the weight of the day ahead
of her, much like she always did. It was only then that she realized that she had the power
to time travel.

IRFT T = 1 (SPIN iter 0) As soon as her eyes fluttered open, something was different. The room looked the same,
the sun streaming in through the same window, but something felt off. It wasn’t until she
tried to sit up that she realized what it was - her body felt lighter, as if she were floating on
air. Confused, she looked around, searching for an explanation, and that’s when she saw it
- the clock on her bedside table was ticking backwards. Panic set in as she tried to sit up,
but her body refused to obey her commands. And just like that, she was hurled through
time, landing with a thud in a completely different era.

IRFT T = 1 (SPIN iter 1) As soon as the alarm clock shrilled, something felt different to James, but he brushed it
aside and reached out to turn it off, just like any other morning. Yet, as soon as he sat up,
he felt a strange pull as if he was being dragged backwards, and his room began to spin
in a dizzying whirlwind of colors. In the blink of an eye, he found himself standing in a
different place altogether, and he knew that he had just woken up in a different time.

IRFT T = 5 (2 epochs) I opened my eyes groggily, ready to start another mundane day. But as I rubbed my eyes
and stretched my arms, something strange happened. I felt a sudden jolt of energy course
through my veins, and before I knew it, the world around me had transformed. The room
that I was in was no longer my own, and I was standing in the middle of a bustling medieval
town square. I blinked in disbelief, trying to make sense of what had just happened. Had I
gone mad, or was I dreaming? But as I looked around me, I realized with awe that I had
somehow managed to time travel.

IRFT T = 5 (4 epochs) It was just another regular morning for Emily, until as soon as she opened her eyes the
room started to blur and spin. Panicking, she tried to stand up and grab the nightstand but
her hand went right through it. Confused and terrified, she tried to scream, but as soon as
the sound started to come out of her throat, she was engulfed by a bright light that covered
her body. When Emily opened her eyes again, she realized that she had traveled back in
time, to a moment when she was 9 years old and standing at the foot of her parents’ bed,
ready to tell them the good news about acing her history test.
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