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Abstract

Non-autoregressive text-to-speech (NAR-TTS) models such as FastSpeech 2 [24]
and Glow-TTS [8] can synthesize high-quality speech from the given text in parallel.
After analyzing two kinds of generative NAR-TTS models (VAE and normalizing
flow), we find that: VAE is good at capturing the long-range semantics features (e.g.,
prosody) even with small model size but suffers from blurry and unnatural results;
and normalizing flow is good at reconstructing the frequency bin-wise details but
performs poorly when the number of model parameters is limited. Inspired by these
observations, to generate diverse speech with natural details and rich prosody using
a lightweight architecture, we propose PortaSpeech, a portable and high-quality
generative text-to-speech model. Specifically, 1) to model both the prosody and
mel-spectrogram details accurately, we adopt a lightweight VAE with an enhanced
prior followed by a flow-based post-net with strong conditional inputs as the main
architecture. 2) To further compress the model size and memory footprint, we
introduce the grouped parameter sharing mechanism to the affine coupling layers
in the post-net. 3) To improve the expressiveness of synthesized speech and reduce
the dependency on accurate fine-grained alignment between text and speech, we
propose a linguistic encoder with mixture alignment combining hard word-level
alignment and soft phoneme-level alignment, which explicitly extracts word-level
semantic information. Experimental results show that PortaSpeech outperforms
other TTS models in both voice quality and prosody modeling in terms of subjective
and objective evaluation metrics, and shows only a slight performance degradation
when reducing the model parameters to 6.7M (about 4x model size and 3x runtime
memory compression ratio compared with FastSpeech 2). Our extensive ablation
studies demonstrate that each design in PortaSpeech is effective3.

1 Introduction

Recently, deep learning-based text-to-speech (TTS) has attracted a lot of attention in speech commu-
nity [2, 15, 20, 22, 24, 25, 29, 35]. Among neural network-based TTS systems, some of them generate
mel-spectrograms autoregressively from text [15, 22, 29, 35] and suffer from slow inference speed
and robustness (word skipping and repeating) problems [25], while others [8, 12, 16, 19, 24, 25]
generate mel-spectrograms in parallel with comparable quality using non-autoregressive architecture,
called NAR-TTS, which enjoys fast inference and avoids robustness issues in the meanwhile. In
general, modern TTS models aim to achieve the following goals:

• Fast: to reduce the cost of computational resources and apply the model to real-time applications,
the inference speed of TTS model should be fast.
∗Equal contribution.
†Corresponding author
3Audio samples are available at https://portaspeech.github.io/.
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• Lightweight: to deploy the model to mobile or edge devices, the model size should be small and
the runtime memory footprint should be low.

• High-quality: to improve the naturalness of synthesized speech, the model should capture the
details (frequency bins between two adjacent harmonics, unvoiced frames and high-frequency
parts) in natural speech.

• Expressive: to generate expressive and dynamic speech, the model should use powerful prosody
modeling methods to accurately model the fundamental frequency and duration of speech.

• Diverse: to prevent the synthesized speech from being too dull and tedious when generating long
speech, the model should be able to generate diverse speech samples with different intonations
given one text input sequence.

To achieve the above goals, in this work, we propose PortaSpeech, a portable and high-quality gener-
ative text-to-speech model, which generates mel-spectrograms with natural details and expressive
prosody using a lightweight architecture. Specifically,

• Through some preliminary experiments (see Section 4.2), we find that VAE is good at capturing
the long-range semantics features (e.g., prosody), while normalizing flow is good at reconstructing
the frequency bin-wise details. Based on these observations, we adopt VAE with an enhanced prior
followed by a flow-based post-net as the main model architecture of PortaSpeech, which helps
PortaSpeech generate high-quality and expressive results. In addition, PortaSpeech can generate
diverse speech by sampling latent variables from the prior of VAE and post-net.

• Through the experiments, we also find that even when the model is very small, VAE is still good
at capturing the prosody, making it possible for PortaSpeech to reduce its model size using a
lightweight VAE. Besides, we introduce the grouped parameter sharing mechanism to the post-net
to compress its model size. By doing these, PortaSpeech can be very lightweight and fast at a small
performance cost.

• To model the prosody better and generate more expressive speech, we introduce a linguistic
encoder with mixture alignment, which combines hard word-level alignment and soft phoneme-
level alignment. Our proposed linguistic encoder also reduces the dependence on fine-grained
(phoneme-level) alignment and alleviates the burden of the speech-to-text aligner.

Experiments on the LJSpeech [7] dataset show that PortaSpeech outperforms other state-of-the-art
TTS models with comparable model parameters in voice quality and prosody in terms of both
subjective and objective evaluation metrics. When compressing the model size, our PortaSpeech
shows only a slight performance degradation but enjoys the benefits of a much smaller number of
model parameters (about 4x model size reduction) and lower memory footprints (about 3x memory
reduction) compared with FastSpeech 2. The main contributions of this work are summarized as
follows:

• We analyze the characteristics of VAE and normalizing flow when applied to TTS and combines
the advantages of VAE and normalizing flow to generate mel-spectrograms with rich details and
expressive prosody.

• We propose mixture alignment in the linguistic encoder, which improves the prosody and reduces
the dependence on fine-grained (phoneme-level) hard alignment.

• Using lightweight VAE and introducing the grouped parameter sharing mechanism to the post-net,
PortaSpeech can generate high-quality speech with a small number of model parameters and small
runtime memory footprints.

2 Background

In this section, we describe the background of TTS and the basic knowledge of VAE and normalizing
flow. We also review the existing applications of VAE and normalizing flow in non-autoregressive
TTS and analyze their advantages and disadvantages.

Text-to-Speech Text-to-speech (TTS) models convert input text or phoneme sequence into mel-
spectrogram (e.g., Tacotron [35], FastSpeech [25]), which is then transformed to waveform using
vocoder (e.g., WaveNet [33]), or directly generate waveform from text (e.g., FastSpeech 2s [24]

2



and EATS [5]). End-to-end text-to-speech models have gradually developed from autoregressive to
non-autoregressive architecture: early autoregressive text-to-speech models [29, 35] generate each
mel-spectrogram frame conditioned on previous ones, resulting in high inference latency and low
robustness. Recently, several non-autoregressive TTS works have been proposed, which generate mel-
spectrogram frames in parallel. FastSpeech [25] and ParaNet [21] are the first non-autoregressive TTS
models, which use pre-trained autoregressive TTS teacher models to extract text-to-spectrogram align-
ments from the training data to bridge the length gap between text and speech for non-autoregressive
student model. FastSpeech 2 [24] introduces more variation information of speech, including pitch
and energy, to alleviate the one-to-many mapping problem in TTS. While these methods need external
text-to-spectrogram alignment models or tools, Glow-TTS [8] directly searches for the most probable
monotonic alignment between text and the latent representation of speech using normalizing flows and
dynamic programming. In addition to improving the performance of non-autoregressive models, some
works focus on lightweight and portable model designs: SpeedySpeech [32] replaces the self-attention
layers with fully convolutional blocks to reduce the computational complexity. LightSpeech [17]
leverages neural architecture search (NAS) to automatically design more lightweight models, while
the training of NAS consumes huge resources. In this work, we save the model parameters by taking
advantage of the characteristics of VAE and normalizing flow and introducing the grouped parameter
sharing mechanism.

VAE The VAE is a generative model in the form of pθ(x, z) = p(z)pθ(x|z), where p(z) is a prior
distribution over latent variables z and pθ(x|z) is the likelihood function that generates data x given
latent variables z which can be considered as a decoder. It is parameterized by a neural network θ.
Since the true posterior pθ(x, z) over the latent variables of a VAE is usually analytically intractable,
we approximate it with a variational distribution qφ(z|x), which can be viewed as an encoder. The
parameters θ and φ can be optimized by maximizing the evidence lower bound (ELBO):

log pθ(x) ≥Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
= Ez∼qφ(z|x)

[
log pθ(x|z)− log

qφ(z|x)

pθ(z)

]
=Ez∼qφ(z|x) [log pθ(x|z)]−KL (qφ(z|x)‖pθ(z)) ≡ L(θ, φ).

Recently, some works successfully apply VAE to TTS. One of them is BVAE-TTS [14], which
adopts a bidirectional-inference variational autoencoder that learns hierarchical latent representations
using both bottom-up and top-down paths to increase its expressiveness. Thanks to the hierarchical
structure and latent modeling, BVAE-TTS can capture the dynamism and variability of ground-truth
prosody. However, its generated mel-spectrograms are very blurry and over-smoothing, resulting
in unnatural sounds, due to the posterior collapse [1, 6] and the reconstruction loss term used in
BVAE-TTS, which has independency assumption of generated frequency bins given latent variables.

Normalizing Flow Normalizing flow is a kind of generative models [3, 4] which has several
advantages including exact log-likelihood evaluation and fully-parallel sampling. In generation,
normalizing flows [3, 4] transform the latent variable z into a datapoint x through a composition of
invertible functions f = f1 ◦ f2 ◦ · · · ◦ fK and we assume a tractable prior pθ(z) over latent variable
z sampled from a simple distribution (e.g., a Gaussian distribution). In training, the log-likelihood of
a datapoint x can be computed exactly using the change of variables rule:

log pθ(x) = log pθ(z) +

K∑
i=1

log |det(dhi/dhi−1)|, (1)

where h0 = x, hi = fi(hi−1), hK = z and |det(dhi/dhi−1)| is the Jacobian determinant. We learn
the parameters of f1 . . . fK by maximizing Equation (1) over the training data. Given g = f−1, we
can now generate a sample x̂ by sampling z ∼ pθ(z) and computing x̂ = g(z).

There are several normalizing flow-based non-autoregressive TTS methods: Flow-TTS [19] is an
early flow-based TTS method, which replaces the decoder in FastSpeech with Glow [9] and jointly
learns the alignment and mel-spectrogram generation through a single network. Then Glow-TTS [8]
is proposed, which combines the normalizing flow and dynamic programming-based monotonic
alignment to enable fast, diverse and controllable speech synthesis. These methods handle the blurry
mel-spectrogram problems well due to the nature of the normalizing flow. However, according to our
experiments (see Section 4.2), flow-based NAR-TTS model usually requires a huge model capacity
to achieve good performance, and the performance can drop notably when reducing the number of
model parameters.
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(d) Flow-based Post-Net

Figure 1: The overall architecture for PortaSpeech. In subfigure (b), "WP" denotes the word-level
pooling operation, "LR" denotes the length regulator proposed in FastSpeech and "sinusoidal-like
symbol" denotes the positional encoding. In subfigure (c), "VP-Flow" denotes the volume-preserving
normalizing flow. In subfigure (c) and (d), the operations denoted with dotted lines are only used in
the training procedure.

3 PortaSpeech

Considering the characteristics of VAE and normalizing flow mentioned in Section 2, to build a TTS
system that can meet the goals described in Section 1, we propose PortaSpeech, which combines the
advantages of VAE and normalizing flows and overcomes their deficiencies. As shown in Figure 1a,
PortaSpeech is composed of a linguistic encoder with mixture alignment, a variational generator with
enhanced prior and a flow-based post-net with the grouped parameter sharing mechanism. First, the
text sequence with word-level boundary is fed into the linguistic encoder to extract the linguistic
features in both phoneme and word level. Secondly, to model the expressiveness and variability of
speech with lightweight architecture, we train the VAE-based variational generator to maximize the
ELBO over the ground-truth mel-spectrograms conditioned on the linguistic features, whose prior
distribution is modeled by a small volume-preserving normalizing flow. Finally, to refine and enhance
the natural speech details in the generated mel-spectrograms, we train the post-net by maximizing
the likelihood of ground-truth mel-spectrograms conditioned on both the linguistic features and the
outputs of the variational generator. During inference, the text is transformed to mel-spectrograms by
successively passing through the linguistic encoder, the decoder of the variational generator and the
reversed flow-based post-net. We describe these designs and the training and inference procedures in
detail in the following subsections. We put more details in Appendix A.

3.1 Linguistic Encoder with Mixture Alignment

To expand the lengths of linguistic features (outputs of the linguistic encoder), previous non-
autoregressive TTS models introduce a duration predictor to predict the number of frames of each
phoneme (phoneme duration) and the ground-truth phoneme duration (hard alignment) is obtained by
external models/tools (e.g., FastSpeech [25] and FastSpeech 2 [24]) or jointly monotonic alignment
training (e.g., Glow-TTS [8] and BVAE-TTS [14]). However, phoneme-level hard alignment has
several issues: since some of the boundaries between two phonemes are naturally uncertain4, it
is challenging for the alignment model to obtain very accurate phoneme-level boundaries, which
inevitably introduces errors and noises. Further, these alignment errors and noises can affect the
training of duration predictor, which hurts the prosody of the generated speech in inference. To tackle

4It could be difficult to determine the exact boundary between two phonemes in millisecond level even for
manually labeling.
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these problems, we introduce mixture alignment to the linguistic encoder, which uses soft alignment
in phoneme level and keeps hard alignment in word level.

As shown in Figure 1b, our linguistic encoder consists of a phoneme encoder, a word encoder,
a duration predictor and a word-to-phoneme attention module and detailed architecture of these
modules are put in Appendix A.1. Suppose we have an input phoneme sequence together with the
word boundary (for example, "HH AE1 Z | N EH1 V ER0", where "|" denotes the word boundary
in phoneme sequence). First, we encode the phoneme sequence into phoneme hidden states Hp.
Then we apply word-level pooling on Hp to obtain the input representation of the word encoder,
which averages the phoneme hidden states inside each word according to the word boundary. The
word encoder then encodes the word-level hidden states into word-level hidden states and expanded
them to match the length of the target mel-spectrogram (denoted as Hw) using length regulator
with the word-level duration. Finally, to add fine-grained linguistic information, we introduce a
word-to-phoneme attention module, which takesHw as the query andHp as the key and the value.
In addition, due to the monotonic nature of text-to-spectrogram alignment, to encourage the attention
to be close to the diagonal, we add a word-level relative positional encoding embedding to bothHp
andHw before they are fed into the attention module. To predict the word-level duration, we use the
duration predictor which takesHp as input and then sums the predicted duration of the phonemes in
each word as the word-level duration5. Our mixture alignment mechanism avoids the uncertain and
noisy phoneme-level alignment extraction and duration prediction while keeping fine-grained, soft
and close-to-diagonal text-to-spectrogram alignment.

3.2 Variational Generator with Enhanced Prior

To achieve expressive and diverse speech generation with lightweight architecture, we introduce
VAE as the mel-spectrogram generator, called variational generator. However, traditional VAE uses
simple distribution (e.g., Gaussian distribution) as the prior, which results in strong constraints on the
posterior: optimizing with Gaussian prior pushes the posterior distribution towards the mean, limiting
diversity and hurting the generative power [18, 31]. To enhance the prior distribution, inspired
by [10, 18, 26, 27], we introduce a small volume-preserving normalizing flow6, which transforms
simple distributions (e.g., Gaussian distribution) to complex distributions through a series of K
invertible mappings (a stack of WaveNet residual blocks with dilation 1). Then we take the complex
distributions as the prior of the VAE. When introducing normalizing flow-based enhanced prior, the
optimization objective of the mel-spectrogram generator becomes:

log p(x|c) ≥ Eqφ(z|x,c)[log pθ(x|z, c)]−KL(qφ(z|x, c)|pθ̄(z|c)) ≡ L(φ, θ, θ̄), (2)

where φ, θ and θ̄ denote the model parameters of VAE encoder, VAE decoder and the normalizing
flow-based enhanced prior, respectively; c denotes the outputs of linguistic encoder. Due to the
introduction of normalizing flows, the KL term in Equation (2) no longer offers a simple closed-form
solution. So we estimate the expectation w.r.t. qφ(z|x, c) via Monte-Carlo method by modifying the
KL term:

KL(qφ(z|x, c)|pθ̄(z|c)) = Eqφ(z|x,c)[log qφ(z|x, c)− log pθ̄(z|c)]. (3)

As shown in Figure 1c, in training, the posterior distribution N(µq, σq) is encoded by the encoder of
the variational generator. Then zq is sampled from the posterior distribution using reparameterization
and is passed to the decoder of the variational generator (the right dotted line). In the meanwhile,
the posterior distribution is fed into the VP-Flow to convert it to a standard normal distribution (the
middle dotted line). In inference, VP-Flow converts a sample in the standard normal distribution into
a sample zp in the prior distribution of the variational generator and we pass the zp to the decoder of
the variational generator.

3.3 Flow-based Post-Net

To generate high-quality mel-spectrograms, normalizing flows [8, 19] have been widely proved to be
effective. Unlike simple loss-based (L1 or MSE-based) or VAE-based methods that often generate

5In training, the ground-truth word-level duration can be obtained by external forced alignment tools or
autoregressive TTS models.

6For simplicity and convenience, we use volume-preserving flow (VP-Flow), which does not need to consider
the Jacobian term when calculating the data log-likelihood. We find that volume-preserving is powerful enough
for modeling the prior.
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blurry outputs, flow-based models can overcome the over-smoothing problem and generate more
realistic outputs. To model rich details in ground-truth mel-spectrograms, we introduce a flow-based
post-net with strong condition inputs to refine the outputs of the variational generator. As shown
in Figure 1d, the architecture of the post-net adopts Glow [9] and is conditioned on the outputs of
the variational generator and the linguistic encoder. In training, the post-net transforms the mel-
spectrogram samples into latent prior distribution (isotropic multivariate Gaussian) and calculates
the exact log-likelihood of the data using the change of variables. In inference, we sample the latent
variables from the latent prior distribution and pass them into the post-net reversely to generate the
high-quality mel-spectrogram.

Projection

NN

𝑥 → [𝑥! , 𝑥"]

𝜇, 𝜎

[𝜇 + 𝜎 ∗ 𝑥! , 𝑥" ]

Conditional
Projection

shared
unshared

𝑥"

Figure 2: Affine coupling
layer with grouped param-
eter sharing. Green block
means sharing the model pa-
rameters of this block among
flow layers in a group.

However, flow-based models suffer from large model footprints. Since
the conditional inputs contain the text and prosody information, our
post-net only focuses on modeling the details in mel-spectrograms,
greatly reducing requirements for model capacity. To further reduce
the model size and keep the modeling power, we introduce the grouped
parameter sharing mechanism to the affine coupling layer, which
shares some model parameters among different flow steps (fi, fi+1, ...,
fj). As shown in Figure 2, we divide all flow steps (f1, f2, ..., fK ) into
several groups and share the model parameters of NN (WaveNet-like
network, see Appendix A.3) in the coupling layers among flow steps
in a group. Our grouped parameter sharing mechanism is similar
to the shared neural density estimator proposed in [13] with some
differences that: 1) we simplify the model by removing the flow
indication embedding since the unshared conditional projection layer
in different flow steps can help the model to indicate the position of
the step; 2) instead of sharing the parameters among all flow steps, we
generalize the sharing mechanism by sharing the parameters among
flow steps in a group, making it easier to adjust the number of trainable
model parameters without changing the model architecture.

3.4 Training and Inference

In training, the final loss of PortaSpeech consists of the following loss terms: 1) duration prediction
loss Ldur: MSE between the predicted and the ground-truth word-level duration in log scale; 2)
reconstruction loss of variational generator LV G: MAE between the ground-truth mel-spectogram
and that generated by the variational generator; 3) the KL-divergence of variational generator LKL =
log qφ(z|x, c) − log pθ̄(z|c), where z ∼ qφ(z|x, c), according to Equation (3); and 4) the negative
log-likelihood of the post-net LPN . In inference, the linguistic encoder first encodes the text sequence,
predicts the word-level duration and expand the hidden states via mixture alignment to obtain the
linguistic hidden statesHL. Secondly, we sample z from the enhanced prior, and then the decoder
of the variational generator generates the coarse-grained mel-spectrograms M̄c (the output mel-
spectrograms before post-net) conditioned on the linguistic hidden statesHL. Thirdly, the post-net
converts randomly sampled latent into fine-grained mel-spectrograms M̄f conditioned onHL and M̄c.
Finally, M̄f is transformed to waveform using a pre-trained vocoder. Since we use hard word-level
alignment in PortaSpeech, absolute durations for individual words can also be specified at inference
time like FastSpeech [25]. As for silences, we add a word boundary symbol as an extra special word
such as "SIL" between two words in training. In this way, we can adjust the duration of silences via
modifying the duration of the special word "SIL".

4 Experiments

4.1 Experimental Setup

Datasets We evaluate PortaSpeech on LJSpeech dataset [7], which contains 13100 English audio
clips and corresponding text transcripts. Following FastSpeech 2 [24], we split LJSpeech dataset into
three subsets: 12229 samples for training, 348 samples (with document title LJ003) for validation and
523 samples (with document title LJ001 and LJ002) for testing. We randomly choose 50 samples in
the test set for subjective evaluation and use all testing samples for objective evaluation. We convert
the text sequence to the phoneme sequence [2, 25, 29, 30, 35] with an open-source grapheme-to-
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phoneme tool7. We transform the raw waveform with the sampling rate 22050 into mel-spectrograms
following [25, 29] with the frame size 1024 and the hop size 256.

Model Configuration Our PortaSpeech consists of an encoder, a variational generator and a post-
net. The encoder consists of multiple feed-forward Transformer blocks [25] with relative position
encoding [28] following Glow-TTS [8]. The encoder and decoder in variational generator are 2D-
convolution networks. The post-net adopts the architecture of Glow [9]. We conduct experiments
on two settings with different model sizes: PortaSpeech (normal) and PortaSpeech (small). We add
more detailed model configurations of these two settings in Appendix B.

Training and Evaluation We train the PortaSpeech on 1 NVIDIA 2080Ti GPU, with batch size of
64 sentences on each GPU. We use the Adam optimizer with β1 = 0.9, β2 = 0.98, ε = 10−9 and
follow the same learning rate schedule in [34]. It takes 320k steps for training until convergence. The
output mel-spectrograms of our model are transformed into audio samples using HiFi-GAN [11]8

trained in advance. We conduct the MOS (mean opinion score) and CMOS (comparative mean
opinion score) evaluation on the test set to measure the audio quality via Amazon Mechanical Turk.
We keep the text content consistent among different models to exclude other interference factors,
only examining the audio quality or prosody. Each audio is listened by at least 20 testers. We analyze
the MOS and CMOS in two aspects: prosody (naturalness of pitch, energy and duration) and audio
quality (clarity, high-frequency and original timbre reconstruction), and score MOS-P/CMOS-P and
MOS-Q/CMOS-Q corresponding to the MOS/CMOS of prosody and audio quality. We tell the tester
to focus on one aspect and ignore the other aspect when scoring MOS/CMOS of this aspect. We put
more information about the subjective evaluation in Appendix B.2.

4.2 Preliminary Analyses on VAE and Flow

In image generation tasks, VAE is good at capturing the overall image structure information (low-
frequency parts) while discarding small sharp textures/details (high-frequency parts). Similarly, in
mel-spectrograms, low-frequency parts correspond to the shape of harmonics, which determines the
pitch and prosody of speech. Thus we can intuitively infer that VAE is good at modeling the prosody
while not good at modeling the details in speech. While flow-based models can generate high-quality
images at the cost of very large model size and huge computation complexity and we may infer that
flow-based models can model the details in speech well with large model size.

Table 1: The audio performance comparisons among different NAR-TTS models with different
numbers of model parameters (#Params.). GT (voc.) denotes the waveform reconstructed from
ground-truth mel-spectrograms using HiFi-GAN [11].

Methods Configs MOS-P MOS-Q #Params

GT (voc.) / 4.49 ± 0.07 4.16 ± 0.06 /

Flow-based
big 3.71 ± 0.06 3.96 ± 0.07 41.2M

middle 3.52 ± 0.07 3.54 ± 0.12 10.2M
small 3.21 ± 0.12 3.42 ± 0.14 4.5M

VAE-based
big 3.81 ± 0.07 3.75 ± 0.08 43.2M

middle 3.79 ± 0.08 3.69 ± 0.09 9.3M
small 3.72 ± 0.08 3.51 ± 0.11 4.4M

To verify our hypothesis and explore the characteristic of VAE and flow-based models in TTS,
we conduct audio quality (MOS-Q) and prosody (MOS-P) comparisons among several VAE and
flow-based NAR-TTS models with different model sizes: 1) big: more than 40M model parameters;
2) middle: about 10M model parameters; and 3) small: about 5M model parameters. We keep
the architecture of the encoders in three models consistent. The detailed model architecture and
configurations are put in Appendix A.4. The results are shown in Table 1. From the table, we can
see that 1) when reducing the model capacities, the prosody quality of flow-based models drops
significantly. In contrast, that of VAE-based model only drops slightly, according to MOS-P. This

7https://github.com/Kyubyong/g2p
8https://github.com/jik876/hifi-gan
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(a) GT (b) TransformerTTS (c) FastSpeech (d) FastSpeech 2

(e) Glow-TTS (f) BVAE-TTS (g) PortaSpeech (normal) (h) PortaSpeech (small)

Figure 3: Visualizations of the ground-truth and generated mel-spectrograms by different TTS models.
The corresponding text is "In being comparatively modern".

phenomenon inspires us to apply VAE-based mel-spectrogram decoder (variational generator) to our
lightweight TTS model. 2) Compared with flow-based models, VAE-based model has poorer audio
quality upper bound according to MOS-Q, which motivates us to make up for shortcomings of VAE
by introducing a flow-based post-net to refine the mel-spectrograms generated by VAE.

4.3 Performance

Table 2: The audio performance (MOS-Q and MOS-P), inference latency, peak memory (Peak Mem.)
and number of model parameters (#Params.) comparisons. The evaluation is conducted on a server
with 1 NVIDIA 2080Ti GPU and batch size 1. The mel-spectrograms are converted to waveforms
using Hifi-GAN (V1) [11]. RTF denotes the real-time factor, that the seconds required for the system
(together with Hifi-GAN vocoder) to synthesize one-second audio.

Method MOS-P MOS-Q RTF Peak Mem. #Params.

GT 4.52 ± 0.07 4.41 ± 0.06 / / /
GT (voc.) 4.48 ± 0.08 4.15 ± 0.07 / / /

Tacotron 2 [29] 3.85 ± 0.07 3.80 ± 0.08 0.115 61.78MB 28.2M
TransformerTTS [15] 3.87 ± 0.06 3.82 ± 0.07 0.955 118.66MB 24.2M

FastSpeech [25] 3.63 ± 0.08 3.72 ± 0.08 0.0198 115.2MB 23.5M
FastSpeech 2 [24] 3.72 ± 0.07 3.83 ± 0.06 0.0200 124.8MB 27.0M
Glow-TTS [8] 3.61 ± 0.07 3.88 ± 0.08 0.0196 116.4MB 28.6M
BVAE-TTS [14] 3.80 ± 0.06 3.72 ± 0.06 0.0169 90.1MB 12.0M

PortaSpeech (normal) 3.89 ± 0.06 3.92 ± 0.06 0.0216 83.6MB 21.8M
PortaSpeech (small) 3.82 ± 0.06 3.86 ± 0.06 0.0208 39.3MB 6.7M

We compare the quality of generated audio samples, inference latency, model size9 and memory
footprint10 of our PortaSpeech (normal and small model size) with other systems, including 1) GT,
the ground truth audio; 2) GT (Mel + HiFi-GAN), where we first convert the ground truth audio into
mel-spectrograms, and then convert the mel-spectrograms back to audio using HiFi-GAN; 3) Tacotron
2 [29]; 4) Transformer TTS [15]; 5) FastSpeech [25]; 6) FastSpeech 2 [24]; 7) Glow-TTS [8] and 8)
BVAE-TTS [14]11. The results are shown in Table 2. We have the following observations:

9The model parameters do not include the encoder of VAE in BVAE-TTS and PortaSpeech.
10We profile the peak GPU memory using MemReporter in pytorch_memlab (https://github.com/

Stonesjtu/pytorch_memlab) and find the maximum "active_bytes" as the peak memory during inference.
11We fail in reproducing the performance of BVAE-TTS reported in the original paper, so we use hard

text-to-speech alignment in their model and obtain reasonable results.
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• For audio quality, PortaSpeech (normal) outperforms previous TTS models in both audio
quality (MOS-Q) and prosody (MOS-P), and only has slight performance degradation when
reducing the model size, which shows the superiority of our proposed method.

• For model size and memory footprint, PortaSpeech (small) has the smallest model size and
memory footprint. Compared with FastSpeech 2, PortaSpeech (small) achieves 4x model
size and 3x memory footprint compression ratios.

• For inference speed, PortaSpeech (small) speeds up the end-to-end speech generation by
5.5x and 45.9x compared with Tacotron 2 and TransformerTTS and achieves similar RTF
with other NAR-TTS models.

Besides, we conduct some experiments on the multi-speaker dataset and draw similar conclusions
(see Appendix C). We also conduct robustness evaluation on both single-speaker and multi-speaker
dataset in Appendix D and find that PortaSpeech achieves comparable robustness performance with
state-of-the-art NAR-TTS models.

4.4 Visualizations

We then visualize the mel-spectrograms generated by the above systems in Figure 3. We can see that
PortaSpeech can generate mel-spectrograms with rich details in frequency bins between two adjacent
harmonics, unvoiced frames and high-frequency parts, which results in natural sounds. Besides, we
visualize the diverse mel-spectrograms generated by PortaSpeech in Appendix F. In conclusion, our
experiments demonstrate that PortaSpeech achieves the goals described in Section 1 (fast, lightweight,
high-quality, expressive and diverse).

4.5 Ablation Studies

We conduct ablation studies to demonstrate the effectiveness of designs in PortaSpeech, including
the enhanced prior, our post-net and the mixture alignment. We put more analyses on the grouped
parameter sharing mechanism in Appendix G. We conduct CMOS evaluation for these ablation
studies. The results are shown in Table 3.

Table 3: Audio prosody and quality comparisons for ablation
study. MA denotes mixture alignment in the linguistic encoder;
PN denotes the flow-based post-net; EP denotes the enhanced
prior in the variational generator; Conv denotes the convolutional
post-net used in Tacotron 2 [29].

Setting normal small

CMOS-P CMOS-Q CMOS-P CMOS-Q

PortaSpeech 0.000 0.000 0.000 0.000

- EP -0.194 -0.014 -0.212 -0.098
- PN -0.012 -0.458 -0.007 -0.162
- PN + Conv -0.010 -0.441 -0.005 -0.148
- MA -0.241 -0.127 -0.312 -0.157

Enhanced Prior To demon-
strate the effectiveness of en-
hanced normalizing flow-based
prior, we compare our models
with those with simple Gaussian
prior as the original VAE. The re-
sults are shown in row 2 in Ta-
ble 3. We can see that CMOS-
P drops when removing the en-
hanced prior, indicating that the
enhanced prior can improve the
prosody. Since the prosody is
mainly modeled by VAE, com-
pared with simple Gaussian prior,
the enhanced prior has weaker as-
sumptions and restrictions on the
shape of the VAE prior distribution.

Table 4: Average absolute duration error
comparisons in word and sentence level
on test set for PortaSpeech (small).

Settings Word (ms) Sentences (s)

w/ MA 96.3 1.40
w/o MA 136.7 1.84

Post-Net To demonstrate the effectiveness and necessity
of flow-based post-net, we compare PortaSpeech with that
without the post-net and that with convolutional post-net,
which is widely used in previous TTS models, such as
Tacotron 2 [29]. The results are shown in row 3 and row 4
in Table 3. From row 3, it can be seen that CMOS-Q drops
significantly when removing our post-net, demonstrating
that our post-net can improve the audio quality of the gen-
erated mel-spectrograms. From row 4, we can see that our
flow-based post-net outperforms the commonly used convolutional post-net.
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Mixture Alignment To demonstrate the effectiveness of mixture alignment, we replace the mix-
ture alignment in the linguistic encoder with the phoneme-level hard alignment proposed in Fast-
Speech [25]. The results are shown in row 5 in Table 3. We can see that PortaSpeech with mixture
alignment outperforms that with phoneme-level hard alignment in terms of both CMOS-P and CMOS-
Q. These results demonstrate that 1) mixture alignment can improve the prosody, which may benefit
from more accurate duration extraction and prediction; 2) mixture alignment can also improve the
generated voice quality since the soft alignment helps the end-to-end model optimization. Then we
calculate the average absolute duration error in word and sentence level on the test set for PortaSpeech
(small) with and without mixture alignment. The results are shown in Table 4. It can be seen that
the linguistic encoder with mixture alignment predicts more accurate duration, also demonstrating
the effectiveness of the mixture alignment. We visualize the attention alignments generated by our
linguistic encoder in Appendix A.1, showing that PortaSpeech can create reasonable alignments
which is close to the diagonal.

5 Conclusion

In this paper, we proposed PortaSpeech, a portable and high-quality generative text-to-speech model.
PortaSpeech uses a variational generator with an enhanced prior followed by a flow-based post-net
with grouped parameter sharing mechanism as the main model architecture. We also proposed a new
linguistic encoder with mixture alignment to improve the prosody and reduce the dependence on the
hard fine-grained alignment, which combines the hard word-level and soft phoneme-level alignments.
Our experimental results show that PortaSpeech outperforms other TTS models in voice quality and
prosody and shows only a slight performance degradation when reducing the model size. We also
conduct comprehensive ablation studies to verify the effectiveness of each component in PortaSpeech.
However, to take advantage of the merits of VAE and normalizing flow, we sacrifice at the cost of
more complicated model designs than previous NAR-TTS models: the overall architecture, which
cascades linguistic encoder, VAE and post-net, is somewhat complicated. In the future, we will verify
the effectiveness of PortaSpeech on multi-speaker and multilingual scenarios. We will also try to tap
its potential on other tasks, such as voice conversion and end-to-end text-to-waveform generation.
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[12] Adrian Łańcucki. Fastpitch: Parallel text-to-speech with pitch prediction. arXiv preprint
arXiv:2006.06873, 2020.

[13] Sang-gil Lee, Sungwon Kim, and Sungroh Yoon. Nanoflow: Scalable normalizing flows with
sublinear parameter complexity. arXiv preprint arXiv:2006.06280, 2020.

[14] Yoonhyung Lee, Joongbo Shin, and Kyomin Jung. Bidirectional variational inference for
non-autoregressive text-to-speech. In International Conference on Learning Representations,
2020.

[15] Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and Ming Liu. Neural speech synthesis
with transformer network. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6706–6713, 2019.

[16] Dan Lim, Won Jang, Hyeyeong Park, Bongwan Kim, Jesam Yoon, et al. Jdi-t: Jointly trained
duration informed transformer for text-to-speech without explicit alignment. arXiv preprint
arXiv:2005.07799, 2020.

[17] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Jinzhu Li, Sheng Zhao, Enhong Chen, and Tie-Yan
Liu. Lightspeech: Lightweight and fast text to speech with neural architecture search. arXiv
preprint arXiv:2102.04040, 2021.

[18] Shweta Mahajan, Iryna Gurevych, and Stefan Roth. Latent normalizing flows for many-to-many
cross-domain mappings. arXiv preprint arXiv:2002.06661, 2020.

[19] Chenfeng Miao, Shuang Liang, Minchuan Chen, Jun Ma, Shaojun Wang, and Jing Xiao. Flow-
tts: A non-autoregressive network for text to speech based on flow. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
7209–7213. IEEE, 2020.

[20] Huaiping Ming, Dongyan Huang, Lei Xie, Jie Wu, Minghui Dong, and Haizhou Li. Deep
bidirectional lstm modeling of timbre and prosody for emotional voice conversion. 2016.

[21] Kainan Peng, Wei Ping, Zhao Song, and Kexin Zhao. Non-autoregressive neural text-to-speech.
ICML, 2020.

[22] Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O. Arik, Ajay Kannan, Sharan Narang,
Jonathan Raiman, and John Miller. Deep voice 3: 2000-speaker neural text-to-speech. In
International Conference on Learning Representations, 2018.

[23] Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative network
for speech synthesis. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3617–3621. IEEE, 2019.

[24] Yi Ren, Chenxu Hu, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech 2: Fast
and high-quality end-to-end text-to-speech. arXiv preprint arXiv:2006.04558, 2020.

11

https://keithito.com/LJ-Speech-Dataset/


[25] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. Fastspeech:
Fast, robust and controllable text to speech. In Advances in Neural Information Processing
Systems, pages 3165–3174, 2019.

[26] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
arXiv preprint arXiv:1505.05770, 2015.

[27] Hendra Setiawan, Matthias Sperber, Udhay Nallasamy, and Matthias Paulik. Variational neural
machine translation with normalizing flows. arXiv preprint arXiv:2005.13978, 2020.

[28] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position repre-
sentations. arXiv preprint arXiv:1803.02155, 2018.

[29] Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang,
Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al. Natural tts synthesis by
conditioning wavenet on mel spectrogram predictions. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4779–4783. IEEE, 2018.

[30] Hao Sun, Xu Tan, Jun-Wei Gan, Hongzhi Liu, Sheng Zhao, Tao Qin, and Tie-Yan Liu. Token-
level ensemble distillation for grapheme-to-phoneme conversion. In INTERSPEECH, 2019.

[31] Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on
Artificial Intelligence and Statistics, pages 1214–1223. PMLR, 2018.
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