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Abstract

Long-context modelling for large language001
models (LLMs) has been a key area of recent002
research because many real world use cases re-003
quire reasoning over longer inputs such as doc-004
uments. The focus of research into modelling005
long context has been on how to model position006
and there has been little investigation into other007
important aspects of language modelling such008
as instruction tuning. Long context training ex-009
amples are challenging and expensive to create010
and use. In this paper, we investigate how to de-011
sign instruction data for the post-training phase012
of a long context pre-trained model: how much013
and what type of context is needed for optimal014
and efficient post-training. Our controlled study015
reveals that models instruction-tuned on short016
contexts can effectively generalize to longer017
ones, while also identifying other critical fac-018
tors such as instruction difficulty and context019
composition. Based on these findings, we pro-020
pose context synthesis, a novel data synthesis021
framework that leverages off-the-shelf LLMs022
to generate extended background contexts for023
high-quality instruction-answer pairs. Experi-024
ment results on the document-level benchmark025
(LONGBENCH) demonstrate that our proposed026
approach outperforms previous instruction syn-027
thesis approaches and comes close to the per-028
formance of human-annotated long-context in-029
struction data.030

1 Introduction031

Recent advances in large language models (LLMs)032

have significantly extended the length of the con-033

text that they are able to ingest by addressing the034

problems of efficient attention and encoding of po-035

sitions (Su et al., 2024; Peng et al., 2024; Fu et al.,036

2024; Dubey et al., 2024). However, for better per-037

formance in downstream long-context tasks such038

as document-level question answering and summa-039

rization (Shaham et al., 2023; Bai et al., 2024b;040

Karpinska et al., 2024), these models still require041

context synthesis
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instruction
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Figure 1: Illustration of two long-context instruction
data synthesis frameworks: instruction synthesis and
context synthesis (ours). The light-colored blocks indi-
cate potentially lower-quality components in the synthe-
sized data samples.

instruction-tuning. Although previous work has 042

looked at synthetic instructions, we still do not un- 043

derstand how to best leverage existing instructions 044

for optimal use with a long-context model. This is 045

a critical challenge, as it is difficult to create high 046

quality synthetic long-context instructions. 047

Initial work on long-context instructions lever- 048

ages off-the-shelf LLMs to generate instruction- 049

answer pairs from existing long text passages (Bai 050

et al., 2024a; Dubey et al., 2024). While this 051

method prioritizes context length but overlooks 052

other critical aspects of the synthetic data such as 053

quality, difficulty and diversity. These aspects are 054

inherently constrained by an underlying paradox: 055

the synthesized data quality relies on an LLM that 056

can understand the lengthy input text—which is the 057

problem it is tackling in the first place. 058

This paper first presents a pilot study on artificial 059

needle-in-a-haystack tests (Kamradt, 2023; Hsieh 060

et al., 2024) which allows for rigorous control of 061

different aspects of the instruction data. This study 062

yields three key findings: (1) instruction quality 063

plays a crucial role in model performance; (2) mod- 064

els instruction-tuned on short contexts can general- 065

ize to much longer ones; (3) training with evidence 066

embedded in distracting content helps models de- 067

velop robust information extraction abilities. 068

We leverage these findings to design a novel in- 069
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struction data synthesis approach called “context070

synthesis” (Figure 1) and test it on naturally occur-071

ring tasks. Specifically, we prompt off-the-shelf072

LLMs to generate background context from exist-073

ing instruction-answer pairs. This approach offers074

three advantages: (1) in contrast to previous work075

which synthesizes instructions and target outputs,076

our synthetic data only forms part of the input to077

the model rather like back-translation for machine078

translation (Sennrich et al., 2016), preserving the079

quality of instructions and outputs. (2) by gen-080

erating background contexts, we can seamlessly081

integrate both supporting evidence and distracting082

information into a coherent narrative. (3) our ap-083

proach enables control over context through expan-084

sion and concatenation to harness the benefits of085

training on longer sequences.086

We conduct experiments on real-world tasks087

from LONGBENCH (Bai et al., 2024b) with two088

base models LLaMA2-7B-64K (Bai et al., 2024a)089

and LLaMA3.1-8B-128K (Dubey et al., 2024). Ex-090

perimental results demonstrate that our context syn-091

thesis approach significantly outperforms the in-092

struction synthesis methods and comes close to093

the performance of fine-tuning with oracle human-094

annotated long-context instruction data. Further095

analysis comparing instruction tuning with and096

without context reveals that the performance gains097

from previous instruction synthesis methods de-098

pend minimally on the paired long context, in-099

dicating their limitations in ensuring instruction-100

context alignment. In contrast, training instruc-101

tions with our synthesized input context enables102

LLMs to learn effective patterns for context uti-103

lization. Furthermore, our instruction-tuned mod-104

els demonstrate robust generalization to unseen105

tasks from other document-level benchmarks in-106

cluding RULER (Hsieh et al., 2024) and ZERO-107

SCROLLS (Shaham et al., 2023). To summarize,108

our contributions are as follows:109

• We identify key factors in data synthesis for110

long-context instruction tuning through a con-111

trolled study, including instruction quality,112

context composition, and context length.113

• We propose a novel data synthesis method,114

context synthesis, that addresses the key fac-115

tors by generating tailored background con-116

text for high-quality instructions.117

• Experimental results demonstrate that our ap-118

proach outperforms the previous instruction119

synthesis approach and achieves performance120

close to using human-annotated data.121

• We devise an analytical tool which reveals the 122

limitations of existing synthesis approaches in 123

data quality. 124

2 Related Work 125

Towards Long-context LLMs To enable LLMs 126

to support longer context, most previous research 127

focuses on the pre-training stage by modifying ro- 128

tary position embeddings (RoPE) (Su et al., 2024; 129

Peng et al., 2024) along with continued pre-training 130

on longer sequences (Chen et al., 2023; Rozière 131

et al., 2024; Chen et al., 2024a; Peng et al., 2024; 132

Xiong et al., 2024; Fu et al., 2024). However, 133

while previous studies observe that current LLMs 134

often struggle with long-context instruction follow- 135

ing (Shaham et al., 2023), few studies systemat- 136

ically investigate the instruction-tuning stage for 137

long-context tasks. In this paper, we aim to un- 138

derstand critical factors in data synthesis for long- 139

context instruction tuning. 140

Long-context Instruction Data Synthesis A key 141

challenge for long-context tasks is the scarcity of 142

long-context instruction data. Initially, Chen et al. 143

(2024a) released LongAlpaca, a publicly available 144

long-context instruction dataset, though its anno- 145

tation process is unclear. Recent works propose 146

“instruction synthesis” to prompt LLMs to generate 147

instruction-answer pairs from long documents (Bai 148

et al., 2024a; Xiong et al., 2024; Dubey et al., 149

2024), exemplified by the open-source dataset Lon- 150

gAlign. However, this approach raises concerns 151

about instruction quality, task complexity (Chen 152

et al., 2024b) and task diversity (Quan et al., 2024), 153

as current LLMs themselves still struggle with un- 154

derstanding long-context messages. Subsequently, 155

Chen et al. (2024b) developed a multi-agent work- 156

flow to improve synthesis quality for multi-hop 157

reasoning instruction data (LongMIT). Meanwhile, 158

a contrasting perspective from Gao et al. (2024) 159

suggests that synthetic long-context data offers min- 160

imal benefits, arguing that using standard-length 161

general instruction data, e.g., ShareGPT (Chiang 162

et al., 2023a) suffices. Our work, however, re- 163

veals limitations in existing instruction synthesis 164

approaches and confirms the importance of long- 165

context instruction data through a novel and effec- 166

tive synthesis framework. 167

Long-context Tasks Evaluation Early research 168

focuses on measuring perplexity on long-context 169

data (Chen et al., 2023; Peng et al., 2024) and evalu- 170
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Figure 2: Impact of varying instruction tuning configurations on long-context performance. The detailed differences
between these configurations is presented in Table 1. Test length “∼0k” means test contexts containing only the
relevant information (needle) without any additional content.

ating passkey retrieval (Fu et al., 2024). Recent de-171

velopments introduce real-world benchmarks such172

as ZEROSCROLLS, LONGBENCH, which assess173

practical capabilities through document-level tasks.174

In this work, we establish our hypotheses via a con-175

trollable passkey retrieval task and then evaluate176

our data synthesis approach on real-world bench-177

marks to demonstrate practical effectiveness.178

3 Pilot Study179

3.1 Concept Definitions180

We first introduce essential concepts used through-181

out the discussion. An instruction data instance182

consists of two components: a prompt and an an-183

swer. For general-purpose instruction data, the184

prompt contains only an instruction that requires185

the LLM to generate an answer based on its para-186

metric knowledge. For context-aware instruction187

data, the prompt contains both a context passage188

and an instruction. Typically, the instruction re-189

quests a part of the context (i.e., the relevant or190

evidence context), while the remaining irrelevant191

context may distract the model from generating an192

accurate response. In the following analysis, we193

systematically control the instruction data to under-194

stand the key factors that influence the effectiveness195

of instruction-tuned LLMs on long-context tasks.196

3.2 Experiment Design197

Testing Scenario We adopt the needle-in-a-198

haystack1 (NIAH) test (Kamradt, 2023) for our199

analysis, which challenges LLMs to locate evi-200

dence buried within long contexts. We also incor-201

porate its extended variants proposed in RULER202

benchmark (Hsieh et al., 2024): multi-key, multi-203

query and multi-value NIAH tests, which requires204

1The target “needles” embedded in the context are ran-
domly generated words and UUIDs (Universally Unique Iden-
tifiers).

Model General
Instruction Data

Context-aware
Instruction Data

Context Composition
rel. (needle) irr. (haystack)

Base - - - -
SFT1 ✓ - - -
SFT2 ✓ ✓ uuid sent -
SFT3 ✓ ✓ uuid sent 1k essay
SFT4 ✓ ✓ uuid sent 64k essay

Table 1: Overview of instruction-tuning configurations
for experiments in Figure 2. The context in context-
aware instruction data consists of two parts: relevant
context (a sentence containing the target UUID, usu-
ally called "needle") and irrelevant context (an es-
say serving as distractive information, usually called
"haystack"). We present the data format for these tasks
in Appendix A.

LLMs to identify multiple pieces of information 205

amid distracting contexts. We pick these tasks 206

for our pilot study due to their controllable con- 207

text composition and length. We conduct exper- 208

iments using LLaMA2-7B-64k2 as the base model 209

for instruction-tuning. 210

Instruction Data Control Table 1 summarizes 211

our experimental configurations for instruction- 212

tuning. For SFT1, we only use general instruc- 213

tion data from ShareGPT (Chiang et al., 2023b). 214

The remaining SFT models incorporate specialized 215

context-aware instruction data with varying data 216

composition and length. We evaluate three train- 217

ing conditions: without distracting context (SFT2), 218

with short distracting context (SFT3), and with long 219

distracting context (SFT4). To create the context- 220

aware instruction data, we construct 200 NIAH- 221

test-style training samples3 for each of the four 222

subtasks, resulting in a total of 800 samples. 223

2LLaMA2-7B-64k is an extended version of LLaMA2 (Tou-
vron et al., 2023), continued pre-trained by Bai et al. to support
longer contexts with a context window extended to 64k tokens.

3In these training samples, we use the Paul Graham Es-
says (Kamradt, 2023) as the haystack, consistent with the
testing scenario, but incorporating newly generated contents
as needles.
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3.3 Empirical Results and Insights224

The Need for Context-aware Instruction Data225

In Figure 2, we compare the base model with226

the model trained with only general instruction227

data (SFT1) and with additional specialized context-228

aware instruction data (SFT2, SFT3, SFT4). Results229

show that as the test length increases, SFT1 exhibit230

significant performance divergence and even under-231

performs the Base Model on single, multi-key and232

multi-query NIAH tasks. In contrast, incorporat-233

ing a pinch of targeted context-aware instruction234

data (SFT2, SFT3, SFT4) leads to substantial per-235

formance improvements. This observation leads to236

our first insight: unlocking pre-trained long-context237

LLMs’ potential requires specialized instruction238

data beyond general instruction data.239

Short-Context Training Generalizes to Long240

Contexts Next, we compare models trained with241

context-aware instruction data of varying context242

compositions and data lengths (SFT2, SFT3, SFT4).243

As shown in Figure 2, training with distracting244

context (SFT3, SFT4) significantly improves the245

model’s performance with longer contexts. In con-246

trast, models trained solely with relevant context247

(SFT2) may develop shortcuts, leading to perfor-248

mance degradation when exposed to distracting249

information. Notably, SFT3 maintains performance250

above 90% across all NIAH tasks, even when test251

lengths reach 32k - far beyond its instruction-tuning252

context length, suggesting a potentially more effi-253

cient and cost-effective training approach. This254

observation leads to our second insight: training255

with both evidence and distracting contexts, even256

short ones, is crucial for developing robust gener-257

alization to longer contexts.258

Training with Long Contexts Remains Opti-259

mal Although SFT3 approaches the performance260

of SFT4 with much shorter contexts, SFT4 demon-261

strate almost perfect performance across all evalu-262

ated tasks. The performance gap between the two263

models is particularly pronounced at the maximum264

test length in the most challenging task (Multi-265

value NIAH). This highlights the important role266

of context length in instruction data for achieving267

optimal performance. This observation leads to our268

third insight: training with long-context instruction269

data achieves optimal performance, especially for270

more challenging long-context tasks.271

4 Applying Insights to Real-World Tasks 272

In real-world scenarios, manually annotating long- 273

context instruction data is both complex and labor- 274

intensive, making the synthesis of context-aware 275

instruction data a critical research challenge. Based 276

on insights from our pilot study, we propose a novel 277

method called context synthesis (§4.2) and discuss 278

the limitations of existing instruction synthesis ap- 279

proach (§4.1). Additionally, we propose an analytic 280

tool for measuring the quality of synthesized data, 281

particularly the coherence between contexts and 282

instructions (§4.3). 283

4.1 Previous Approach: Instruction Synthesis 284

The existing approach to data synthesis, known 285

as “instruction synthesis” (Figure 1), starts with 286

long text passages and uses off-the-shelf LLMs 287

to generate instruction-answer pairs based on the 288

given text (Bai et al., 2024a). This method focuses 289

primarily on context length when constructing in- 290

struction data for long-context tasks, while over- 291

looking other critical factors such as instruction 292

quality. The automatically generated instructions 293

often lack quality guarantees, and the off-the-shelf 294

LLMs may not have sufficient capacity to effec- 295

tively process long contexts, compromising the 296

coherence between contexts and synthetic instruc- 297

tions. Furthermore, the source passages may lack 298

complex or contradictory information that could 299

serve as distractors, limiting the model’s robustness 300

in handling noisy real-world scenarios. 301

4.2 Proposed Approach: Context Synthesis 302

Unlike the previous approach, our method starts 303

from existing instruction-answer pairs and synthe- 304

sizes the corresponding context. This approach 305

makes the synthetic content merely part of the in- 306

put to the model, thus prioritizing the quality of 307

the instruction-answer pairs because they are natu- 308

rally occurring. Additionally, this design enables 309

control over the context: we can deliberately in- 310

corporate complex distractors while maintaining 311

tight coupling between instructions and contexts. 312

Furthermore, by generating manageable moderate- 313

length contexts, our synthesis process avoids the 314

paradox of relying on a strong long-context LLM 315

for instruction data synthesis. 316

Instruction Collection At first, we collect 317

instruction-answer pairs for context synthesis. In 318

this paper, our collection considers two key re- 319

quirements. The instructions should require in- 320
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System prompt:
Please infer the missing context. Always
start with “Context:” and do not provide any
explanation.

User content:
Context: [MISSING]
Question: <instruction>
Answer: <answer>

The above is a question-answer pair based
on a context which is missing. Write
the missing context to provide relevant
background information that leads to both the
question and the answer, ensuring that any
necessary numerical or factual details are
included. The context also should include
relevant details about the character, their
environment, aspirations, challenges, and
relationships. It should be sufficiently
detailed to reach approximately 2,000 words.

Figure 3: Our prompt template for synthesizing context
from instruction-answer pairs. The template takes an
instruction-answer pair as input, where <instruction>
and <answer> are replaced with the actual instruction
and answer text. The system prompt ensures the out-
put follows a consistent format, while the user content
guides the LLM to generate context that supports the
given instruction-answer pair.

context knowledge to answer, preventing models321

from relying solely on their parametric knowledge4.322

Additionally, we aim to employ a setup that al-323

lows for controlled comparison between synthetic324

and human-annotated data. To meet these require-325

ments, we source our instruction-answer pairs from326

human-annotated context-aware datasets while syn-327

thesizing new contexts rather than using the origi-328

nal paired ones.329

Synthesizing Evidence Context Starting with a330

collection of instruction-answer pairs, we prompt331

off-the-shelf LLMs to synthesize background con-332

text for them. The prompt template we designed333

is shown in Figure 3. Our prompt guides the LLM334

engine to generate context that supports the instruc-335

tion and ensures the answer can be derived from336

the context. From our observations5, the synthe-337

sized context maintains a strong and coherent rela-338

tionship with the given instruction while naturally339

including detailed and distracting information.340

Extending Synthesized Context While training341

on shorter-context data generalize to longer ones,342

4We initially experiment with instruction-answer pairs
from Alpaca (Wang et al., 2023), but find them ineffective
as those instructions primarily test parametric knowledge.

5We present some example cases in Appendix C.

our pilot study still indicates that training on longer 343

contexts yields better performance. To extend con- 344

text length, we investigate two approaches, depend- 345

ing on whether the extended portion remains coher- 346

ent with the evidence context. One approach is in- 347

creasing the word count requirements in the prompt. 348

We set the target context length to 2,000 words, as 349

recent studies have shown that current LLMs strug- 350

gle to generate content beyond this length (Bai 351

et al., 2024c; Pham et al., 2024; Quan et al., 2024). 352

The second approach is incorporating incoher- 353

ent text into the context, similar to the method 354

described in Dubey et al. (2024). Specifically, 355

we take contexts synthesized for other instruction- 356

answer pairs and integrate them into the current one. 357

Our experiments demonstrate that both approaches 358

are effective, with their combination yielding the 359

best results. 360

4.3 Quality Measurement for Synthetic Data 361

Beyond proposing a framework for data synthe- 362

sis, we also introduce an analytical tool to ver- 363

ify the quality of synthesized data, especially the 364

coherence between instruction and context. For 365

ideal context-aware instruction data, there should 366

be strong interdependence between the context and 367

instruction. Based on this principle, we propose us- 368

ing the performance gap between context-free and 369

context-included tuning as a quality indicator. If 370

context-free tuning yields results similar to context- 371

included tuning, it indicates potential quality issues 372

in the synthesized data. We apply this analytical 373

tool to reveal limitations in existing instruction syn- 374

thesis approaches in our experiments (Section 6). 375

5 Experiments 376

5.1 Experimental Setting 377

Evaluation Benchmark We conduct evalua- 378

tions on LONGBENCH6, focusing on three rep- 379

resentative long-context tasks: single-document 380

question-answering, multiple-documents question- 381

answering and summarization7 (Table 2). With the 382

open-sourced codebase (Bai et al., 2024b), we con- 383

duct zero-shot evaluations using greedy decoding 384

with the provided templates and metrics. 385

6https://github.com/THUDM/LongBench
7Despite being widely used in long-context evaluation, it

has been argued that summarization tasks may suffer from
position bias, as models can utilize the few leading sentences
to achieve decent performance (Nallapati et al., 2017; Li et al.,
2024).

5
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Type Dataset Size Metric
Artificial Tasks

Passkey Retrieval

Single NIAH 500 EM
Multi-key NIAH 500 EM
Multi-query NIAH 500 EM
Multi-value NIAH 500 EM
Real-world Tasks

Single-doc QA
NarrativeQA 200 F1
Qasper 200 F1

Multi-doc QA
HotpotQA 200 F1
2WikiMultihopQA 200 F1
Musique 200 F1

Summarization
GovReport 200 Rouge-L
QMSum 200 Rouge-L
MultiNews 200 Rouge-L

Table 2: Long-context evaluation benchmark used in our
experiments. In the pilot study (Section 3), we use tasks
from RULER. In main experiments (Section 5), we use
real-world tasks from LONGBENCH. The context length
distribution of these tasks is shown in Figure 5.

Base Models We use LLaMA2-7B-64k8386

and LLaMA3.1-8B-128k9 as base models for387

instruction-tuning. Both models are pre-trained to388

support extended context windows (64k and 128k389

tokens respectively).390

Instruction Data For specialized context-aware391

instruction data, we randomly sample 200 instruc-392

tions from each subtask’s training set (totalling 1.6k393

instructions) for context synthesis10. To ensure a394

fair comparison, we use the corresponding contexts395

from these selected samples for instruction synthe-396

sis (identical sample size and domain). We employ397

GPT4o-mini11 (OpenAI, 2024) as the data synthe-398

sis engine12. We also compare our approach with399

open-source long-context instruction data as strong400

baselines, including LongAlpaca, LongAlign and401

LongMIT. For general-purpose instruction data, we402

employ ShareGPT for LLaMA2 and UltraChat for403

LLaMA3.113.404

8https://huggingface.co/THUDM/
LongAlign-7B-64k-base

9https://huggingface.co/meta-llama/Llama-3.
1-8B

10We set the number of concatenated contexts to ten and
report performance with context concatenation unless other-
wise stated. Performance with different concatenation sizes is
reported in Appendix F.

11GPT4o-mini refers to gpt-4o-mini-2024-07-18, used
with default temperature and top-p settings.

12In the analysis section, we report perform of using other
models as the synthesis engine, such as LongWriter-8B (Bai
et al., 2024c) and Qwen2.5-72B-Instruct (Qwen Team,
2025).

13The results of using ShareGPT with LLaMA3.1 are re-
ported in Appendix E.

Instruction-tuning Configuration We adopt 405

LongAlign14 as the codebase for instruction-tuning. 406

Training is performed on a single node with 407

8×H800 GPUs. Detailed training configuration 408

is reported in Appendix D. 409

5.2 Main Results 410

Context Synthesis Approach Significantly Im- 411

proves Long-context Performance In Table 3, 412

we first demonstrate the benefits of using long- 413

context instruction data over using general-purpose 414

instruction data alone. We then compare our con- 415

text synthesis approach against the instruction syn- 416

thesis approach, while also reporting performance 417

using open-source long-context instruction data for 418

reference, though their construction processes are 419

either transparent or do not allow for a fair com- 420

parison. Results show that incorporating our syn- 421

thesized instruction data significantly improves the 422

model’s long-context performance, achieving the 423

highest scores across all tasks. 424

Context Synthesis Outperforms Instruction Syn- 425

thesis on All Evaluated Tasks While instruc- 426

tion synthesis, which prioritizes long text lengths, 427

shows improvement over using general instruc- 428

tion data alone in most cases, it yields subopti- 429

mal performance compared to the context synthe- 430

sis approach (Table 3). Our experiments with 431

LongAlpaca and LongAlign on the cutting-edge 432

LLM (LLaMA3.1) show almost no performance im- 433

provement, which aligns with findings in Gao et al. 434

(2024). We attribute this performance gap to the 435

instruction quality, rather than suggesting context- 436

aware instruction data is unnecessary, which will 437

be quantitatively analyzed later (Section 6). 438

Context Synthesis Is Closing the Gap with 439

Human-annotated Data The primary objective 440

for synthesizing long-context instruction data is to 441

achieve the effectiveness of human-annotated data 442

with minimal cost. Our experiments also enable 443

a controlled comparison between data synthesis 444

strategies and human-annotated long-context in- 445

struction data (Figure 4). Results show that the 446

instruction synthesis approach significantly under- 447

performs human-annotated data. In contrast, our 448

context synthesis approach achieves comparable or 449

superior performance to human-annotated training 450

data on single-document question-answering and 451

summarization tasks. Nevertheless, a performance 452

14https://github.com/THUDM/LongAlign
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Instruction Data #Size NarrativeQA Qasper HotpotQA 2WikiQA MuSiQue GovReport QMSum MultiNews Avg.
LLaMA2-7B

ShareGPT (Chiang et al., 2023b) 89.3k 15.88 23.18 22.15 19.34 9.90 29.57 24.19 26.44 21.33
open-source long-context data
+ LongAlpaca (Chen et al., 2024a) 12.0k 18.00 26.82 24.37 20.05 11.00 30.00 25.75 26.85 22.86
+ LongAlign (Bai et al., 2024a) 9.9k 17.90 33.21 30.63 23.91 11.70 29.81 22.77 26.61 24.57
+ LongMIT (Chen et al., 2024b) 64.4k 19.74 34.10 41.27 26.03 21.90 28.12 23.94 26.26 27.67
controlled comparison
+ Instruction Synthesis (Bai et al., 2024a) 1.6k 19.33 31.74 28.26 24.27 14.74 29.05 23.85 26.02 24.66
+ Context Synthesis (ours) 1.6k 27.10 40.55 47.92 32.69 29.09 32.03 27.17 30.81 33.42

LLaMA3.1-8B

UltraChat (Ding et al., 2023) 515.3k 22.45 28.12 24.00 19.38 9.08 30.24 26.18 27.36 23.35
open-source long-context data
+ LongAlpaca (Chen et al., 2024a) 12.0k 22.80 28.88 22.94 22.33 10.57 30.64 26.18 27.55 23.99
+ LongAlign (Bai et al., 2024a) 9.9k 17.02 25.70 11.54 12.22 7.82 29.65 25.65 27.23 19.60
+ LongMIT (Chen et al., 2024b) 64.4k 25.08 37.71 34.35 29.68 18.78 29.83 25.47 27.42 28.54
controlled comparison
+ Instruction Synthesis (Bai et al., 2024a) 1.6k 24.39 29.32 30.26 21.68 14.99 29.85 25.60 27.02 25.39
+ Context Synthesis (ours) 1.6k 32.74 45.30 59.73 44.28 32.20 35.82 27.79 30.70 38.57

Table 3: This table illustrates model performance between using general instruction data alone and using additional
long-context instruction data (rows with ‘+’), and compares our context synthesis approach against the previous
instruction synthesis approach in a controlled setting. We also report performance using other open-source long-
context instruction data for reference. Bold text denotes the highest score among instruction-tuned models.
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Figure 4: In this figure we compare model performance after instruction-tuning contrasting instruction synthesis
with our approach of context synthesis. In both cases, we compare tuning without context (diagonal lines) with
tuning with context (solid bars). We also illustrate the gap between synthesized data and oracle human-annotated
data (red dotted line). Experiments are conducted with LLaMA3.1-8B.

gap persists in multi-document question-answering453

tasks, suggesting the need for further research in454

this direction.455

6 Analysis456

Revealing Limitations of Instruction Synthesis457

with Our Analytical Tool As introduced in Sec-458

tion 4.3, we employ context-free tuning as an an-459

alytical tool to assess the quality of synthesized460

instruction data (Figure 4). Notably, augmenting461

synthesized instructions with long text messages462

yields no additional improvements, suggesting that463

additional context information, although long, fails464

to provide meaningful learning signals. In contrast,465

pairing instructions with our synthesized context 466

leads to performance gains across different tasks, 467

highlighting the compatibility between instructions 468

and corresponding synthesized contexts. 469

Analysis of Length Generalization During In- 470

struction Tuning Figure 5 presents a compara- 471

tive analysis of downstream task performance and 472

context length distribution. Even without con- 473

text concatenation, our model trained on shorter 474

contexts generalizes effectively to long-context 475

tasks. These findings validate our observations 476

on length generalization. This also reveals an effi- 477

cient instruction-tuning recipe that achieves strong 478

performance with reduced data length. 479
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Figure 5: In the left panel, we present a task-wise performance comparison of different synthesis strategies. In
the right panel, we display the context length distribution of different synthesis strategies against test sets across
different tasks.

Synthesis Engine Single-Doc QA Multi-Doc QA Summ.

LongWriter-8B 38.85 44.68 30.79
Qwen2.5-72B 38.30 44.90 31.53
GPT4o-mini 39.02 45.40 31.44

Table 4: Average performance of using different LLMs
as context synthesis engines across three groups of
downstream tasks. All experiments are conducted with
LLaMA3.1-8B.

Comparative Analysis of Different LLMs as480

Data Engines We evaluate various LLMs as481

data engines for context synthesis, including482

both proprietary models like GPT4o-mini and483

open-source models such as LongWriter-8B and484

Qwen2.5-72B-instruct. Experimental results485

in Table 4 demonstrate comparable performance486

across different engines, validating the robustness487

of our context synthesis approach.488

Evaluating Generalization Capability on Un-489

seen Tasks Moreover, we check the generaliza-490

tion capability of our data synthesis approach. We491

evaluate our instruction-tuned model on tasks that492

were not seen during training, including the most493

challenging variant of NIAH task (multi-value494

NIAH), and ZEROSCROLLS15. As shown in Ta-495

ble 5, our data synthesis approach demonstrates496

strong generalization to these unseen tasks, con-497

sistently outperforming the baseline that uses only498

15For ZEROSCROLLS, we follow Dubey et al. (2024) and
report numbers on the validation set. For QuALITY we report
exact match, for SQuALITY we report ROUGE-L.

Instruction Data
NIAH ZeroSCROLLS

Multi-Value QuALITY SQuALITY

UltraChat 91.57 71.43 23.02
+ our synthesis data 96.54 (+4.97) 76.19 (+4.76) 23.65 (+0.63)

Table 5: Results on unseen tasks from RULER and ZE-
ROSCROLLS. NIAH results show the average across
different tested lengths. Numbers in parentheses indi-
cate performance improvements. All experiments are
conducted with LLaMA3.1-8B.

general instruction data. 499

7 Conclusion 500

This work investigates effective data synthesis for 501

long-context instruction-tuning. Through a pilot 502

study on controllable needle-in-a-haystack tasks, 503

we identify that instruction difficulty, context com- 504

position, and context length all play crucial roles. 505

Based on these insights, we propose a novel syn- 506

thesis approach called “context synthesis”. Experi- 507

ment results on document-level question-answering 508

and document-level summarization tasks demon- 509

strate that our method not only outperforms the 510

previous instruction synthesis approach but also 511

achieves comparable performance to oracle human- 512

annotated data. Furthermore, our approach shows 513

robust generalization to unseen tasks not covered 514

during data synthesis. Additionally, we quanti- 515

tatively assess instruction-context coherence, re- 516

vealing new insights for designing effective long- 517

context instruction data. 518
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Limitations519

Our work has certain limitations. While we eval-520

uate on document-level question-answering and521

summarization tasks, these may not fully cover522

all real-world scenarios. We plan to extend our523

scope as more practical long-context benchmarks524

emerge. Additionally, as our context synthesis ap-525

proaches require context-aware instructions as a526

starting point, an automated verification framework527

would be beneficial to filter such instructions from528

large instruction pools - a direction we leave for529

future work. Moreover, while experiments in this530

study focuses on LLMs with quadratic attention531

mechanisms, we notice the recent trend of devel-532

oping large language models with linear attention533

mechanisms. This shift may raise new research534

questions about long-context modeling, which we535

plan to explore in future work.536
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A Data format for NIAH Test Variants683

In Table 6, we present the data format for NIAH684

tasks. For more details, please refer to the original685

paper (Hsieh et al., 2024).686

B Template for Instruction Synthesis687

For instruction synthesis, we adopt the template688

shown in Figure 6, which prompts the model to689

generate instruction-answer pairs from given con-690

text. While this template does not constrain the691

instruction type, we also experiment with a task-692

specific template (Figure 7) that explicitly speci-693

fies the instruction type - generating summariza-694

tion instructions for summarization tasks (GovRe-695

port, MultiNews, QMSum), generating multi-hop696

questions for multi-document QA tasks (2Wiki-697

MultihopQA, HotpotQA, Musique) and generating698

single-hop questions for single-document QA tasks699

(NarrativeQA, Qasper). As shown in Table 9, the700

template (Figure 6) we apply in our main experi-701

ments produce higher performance.702

System prompt:
Please create a question and its answer based on
the background text given to you. Always begin
the question with “Question:” and then begin
the answer with “Answer:”. Do not provide any
explanation.

User content:
Context:
<context>

The above is a piece of text providing
some background information. Write a question
based on this context and then provide the
corresponding answer. One must be able to infer
the answer from the context information.

Figure 6: The prompt template for synthesizing an
instruction-answer pair from a given context. The tem-
plate takes a context passage as input, where <context>
is are replaced with the actual context text. The sys-
tem prompt ensures the output follows a consistent for-
mat, while the user content guides the LLM to generate
instruction-answer pair based on the given context.

C Examples of Synthesized Context703

We present examples of our synthesized context704

from question-answering tasks (Table 7) and sum-705

marization tasks (Table 8) to help readers better706

understand the benefit of our approach. Taking the707

first example in Table 7, the evidence in the syn-708

thesized context is distributed across different parts709

of the text, while detailed background information710

System prompt:
Please create a question and its answer based on
the background text given to you. Always begin
the question with “Question:” and then begin
the answer with “Answer:”. Do not provide any
explanation.

User content (GovReport, MultiNews, QMSum):

Context:
<context>

The above is a piece of text providing
some background information. Write a question
seeking a summary across the entire context and
then provide the corresponding answer. One must
be able to infer the answer from the context
information.

User content (2WikiMultihopQA, HotpotQA, Musique):

Context:
<context>

The above is a piece of text providing
some background information. Write a question
requiring multi-hop reasoning across the entire
context and then provide the corresponding
answer. One must be able to infer the answer
from the context information.

User content (NarrativeQA, Qasper)

Context:
<context>

The above is a piece of text providing
some background information. Write a question
seeking information from the context and then
provide the corresponding answer. One must
be able to infer the answer from the context
information.

Figure 7: The task-constrained prompt template for
synthesizing an instruction-answer pair from a given
context.

serve as challenging distractors. We suggest that 711

this context composition helps the model learn ro- 712

bust patterns for context utilization. 713

D Instruction-tuning Details 714

We use AdamW optimizer with β1=0.9, β2=0.95 715

for instruction-tuning. The learning rate is set to 2e- 716

5 with a cosine decay schedule and 3% warm-up 717

ratio. The models are fine-tuned for 2 epochs. For 718

training efficiency, we employ DeepSpeed ZeRO- 719

3 (Rasley et al., 2020) alongside a packing strat- 720

egy with loss weighting (Bai et al., 2024a). Spe- 721

cially, we adopt a packing strategy where train- 722

ing samples are packed together, with loss com- 723

puted only on the output tokens. Following the 724

default settings in LongAlign codebase, we set 725

the maximum sequence length per batched sam- 726

11



Single NIAH

Context:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will quiz you about the
numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {uuid}. ......
What is the special magic number for {word} mentioned in the provided text?

Answer Prefix:
The special magic number for {word} mentioned in the provided text is

Multi-key NIAH

Context:
Some special magic uuids are hidden within the following text. Make sure to memorize it. I will quiz you about the uuids
afterwards.
Paul Graham Essays.
One of the special magic uuids for {word-1} is: {uuid-1}.
One of the special magic uuids for {word-2} is: {uuid-2}.
...... One of the special magic uuids for {word-x} is: {uuid-x}. ......
One of the special magic uuids for {word-n-1} is: {uuid-n-1}.
One of the special magic uuids for {word-n} is: {uuid-n}.
What is the special magic number for {uuid-x} mentioned in the provided text?

Answer Prefix:
The special magic number for {uuid-x} mentioned in the provided text is

Multi-query NIAH

Context:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will quiz you about the
numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word-1} is: {uuid-1}. ......
...... One of the special magic numbers for {word-2} is: {uuid-2}. ......
...... One of the special magic numbers for {word-3} is: {uuid-3}. ......
...... One of the special magic numbers for {word-4} is: {uuid-4}. ......
What are all the special magic numbers for {word-1}, {word-2}, {word-3}, and {word-4} mentioned in the provided text?

Answer Prefix:
The special magic numbers for {word-1}, {word-2}, {word-3}, and {word-4} mentioned in the provided text are

Multi-value NIAH

Context:
Some special magic numbers are hidden within the following text. Make sure to memorize it. I will quiz you about the
numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {uuid-1}. ......
...... One of the special magic numbers for {word} is: {uuid-2}. ......
...... One of the special magic numbers for {word} is: {uuid-3}. ......
...... One of the special magic numbers for {word} is: {uuid-4}. ......
What are all the special magic numbers for {word} mentioned in the provided text?

Answer Prefix:
The special magic numbers for {word} mentioned in the provided text are

Table 6: Data formats for different NIAH tasks: Single NIAH, Multi-key NIAH, Multi-query NIAH and Multi-value
NIAH.
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<Synthesized Context>
Harry Kane, born on July 28, 1993, in Walthamstow, London, is a prominent English footballer known for his impressive goal-scoring ability and leadership
on the pitch. From a young age, Kane displayed a passion for football and began his journey in the sport through local youth teams. He joined the Tottenham
Hotspur academy at the age of 11, where he developed his skills and nurtured his ambition to become a professional footballer.
Kane’s rise through the ranks was not without challenges. He faced setbacks including being loaned out to various lower-league clubs like Leyton Orient,
Millwall, Norwich City, and Leicester City, where he honed his skills but struggled to secure a permanent spot. Despite these difficulties, Kane’s determination
and work ethic paid off when he finally broke into the Tottenham first team during the 2014-2015 season.
As a forward, Kane quickly established himself as a key player for Tottenham, displaying a remarkable ability to score goals from various positions on the
pitch. His playing style is characterized by a combination of technical skill, tactical intelligence, and physicality. Additionally, he is known for his versatility,
being able to play both as a striker and as a deeper-lying forward, contributing assists to his teammates.
Kane’s accomplishments at club level have earned him numerous accolades, including multiple Premier League Golden Boot awards, recognizing him as the
league’s top scorer. His remarkable performances have significantly contributed to Tottenham’s competitiveness in both the Premier League and European
competitions.
In parallel with his club success, Kane has also made significant contributions to the England national team. He made his senior debut in 2015 and quickly
became an integral part of the national squad. His leadership qualities shone through when he was appointed the captain of the national team, leading them
through pivotal matches, including the FIFA World Cup 2018, where he finished as the tournament’s top scorer.
Throughout his career, Kane has been associated with Nike, opting to wear the Nike Hypervenom football boot, which is designed for agility and precision -
a perfect match for his style of play. His affinity for these boots is a testament to his competitive edge and dedication to performing at his best.
As Kane progresses in his career, he continually strives to achieve greater heights, including aspirations for club trophies and international honors. The
expectations placed on him by fans, media, and himself create an environment filled with pressure, yet he remains focused on his ambitions. Balancing his
professional responsibilities with personal life, Kane shares experiences with his family, which provides him with support and motivation.
With a strong relationship with his coach and teammates, Kane fosters an atmosphere of camaraderie within the squad, encouraging younger players and
leading by example. His professionalism and commitment to the sport have made him a role model for aspiring footballers across the globe.
Through his journey, Kane embodies the spirit of perseverance, determination, and excellence, showcasing what it means to be a professional athlete in
today’s competitive sports landscape.
<Instruction>
English footballer, Harry Kane, wears the Nike Hypervenom football boot, and also plays as a forward for what teams?
<Answer>
Premier League club Tottenham Hotspur and the England national team

<Synthesized Context>
In a recent study on the efficacy of automated question-answering systems, researchers were tasked with assessing the accuracy of a dataset compiled from
various sources. The dataset consisted of 1,000 question-answer pairs related to multiple subjects, including science, history, technology, and culture. Initially,
the dataset was created using a mix of crowd-sourced responses and automatically generated answers. To ensure the quality and reliability of the information,
the research team set out to evaluate the correctness of each pair.
To do this, they employed a team of six annotators - graduate students from several disciplines, including computer science, linguistics, and education. The
annotators were trained to review the question-answer pairs based on a detailed rubric developed by the researchers. This rubric included criteria such as
factual accuracy, relevance to the question, clarity of the answer, and overall coherence.
The annotators were tasked with individually assessing each question-answer pair and providing feedback. After the individual evaluations, the team
convened to discuss their findings and reach a consensus on the correctness of each pair. A crucial part of this process was the inter-annotator agreement,
which measured the level of agreement among the annotators regarding the correctness of the pairs.
Upon reviewing the pairs, it was found that the inter-annotator agreement was high, with an average agreement score of 85%. This indicated a strong level of
consistency among annotators. To further ensure quality, it was stipulated that the correctness of all the question-answer pairs had to be verified by at least
two annotators before they could be deemed reliable. This measure was put in place to eliminate any potential biases and discrepancies that may arise from
individual assessments.
The study aimed to explore not only the reliability of the datasets used in existing automated systems but also the quality of answers provided by such systems.
The goal was to contribute meaningful insights into the development of more effective AI tools that could provide accurate and relevant information to users.
The researchers recognized the challenges posed by the rapidly changing nature of knowledge and how that impacts the creation of question-answer pairs.
Ultimately, the reliability of the dataset was crucial, as it would be employed in further testing of the automated systems, aiming to improve their accuracy
and user satisfaction. The research team hoped to publish their findings in a peer-reviewed journal, contributing to the field of artificial intelligence and
educational technology by highlighting the importance of quality control in data used for training machine learning models.
<Instruction>
What was the inter-annotator agreement?
<Answer>
Correctness of all the question answer pairs are verified by at least two annotator.

Table 7: Examples of the synthesized background context for instruction-answer pairs generated by GPT4o-mini
in the question-answering task. For the sake of space, we only show the relevant background context. In practice,
additional unrelevant context is concatenated to reach longer length.
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<Synthesized Context>
In the early 2010s, the American public was becoming increasingly aware of the growing obesity epidemic and its links to unhealthy eating habits. First Lady
Michelle Obama, concerned about the health of children and families in the United States, initiated the L̈et’s Move!c̈ampaign in 2010 aimed at reducing
childhood obesity and promoting healthy eating and physical activity. The focus was on increasing access to healthy foods, particularly in low-income
communities, where access to fresh produce was often limited due to food deserts.
During this period, Wal-Mart, the largest retailer in the United States, was facing criticism for contributing to unhealthy eating habits through the low-cost,
processed foods it sold. Recognizing its potential to influence consumer choices and health outcomes significantly, Wal-Mart sought to improve its image and
address these health concerns. The company realized that by modifying its product offerings and focusing on healthier options, it could not only contribute to
the public health initiative but also capture a growing market of health-conscious consumers. Wal-Mart’s CEO and management team held strategic meetings
to explore how to implement healthier food options across their stores. They acknowledged that despite Wal-Mart’s low prices being praised by many, the
foods that gained the most sales - often high in sodium, trans fats, and sugars - had detrimental health effects, particularly for families with limited budgets.
They recognized their unique position to make a difference due to their extensive reach. Meanwhile, Michelle Obama was seeking partnerships with major
corporations to extend the reach of her campaign. She viewed initiatives with retailers like Wal-Mart as instrumental in changing the food landscape in
America. After several negotiations and discussions, it was announced that Wal-Mart would reformulate their private label, Great Value, to reduce unhealthy
ingredients and increase the availability of fruits, vegetables, and whole grains at lower prices. This partnership was publicized at a high-profile press
conference attended by media outlets, health food advocates, and community leaders, including Michelle Obama. During her speech, Obama emphasized the
importance of better nutrition for children and applauded Wal-Mart’s commitment to making healthier options more accessible. Her statement, “It’s a victory
for parents. It’s a victory for families, but most of all, it’s a victory for our children,” encapsulated the larger narrative that this initiative was more than just
a business decision; it was a movement towards a healthier future. Reports from industry analysts indicated that Wal-Mart’s decision could significantly
shape the market, particularly among low-income consumers who relied on Wal-Mart for affordable groceries. With the announcement, there was hope that
similar efforts would follow suit from other retailers, leading to widespread changes in food production and sales practices. In terms of relationships, this
initiative marked a pivotal point in the collaboration between corporate America and government health initiatives, showcasing how partnerships could be
leveraged for public good. The dialogue surrounding the announcement also highlighted the shift in tone from the Obama administration towards businesses,
encouraging them to participate in efforts that align with public health goals. Overall, this movement was positioned as a crucial step in addressing the
health crisis affecting a significant portion of the American population, particularly children, and it sparked broader discussions about food justice, corporate
responsibility, and the role of major retailers in public health initiatives.
<Instruction>
What is a summary of the news article?
<Answer>
Wal-Mart is embarking on a plan that could have a big impact on American nutrition: It will modify its house brand to make the food healthier, and lower
costs for items such as fruits and veggies, and products made with whole grain. The initiative is the result of collaboration with Michelle Obama, reports
the New York Times. Ït’s a victory for parents. It’s a victory for families, but most of all, it’s a victory for our children,s̈he said at today’s announcement,
notes ABC News. Industry analysts say that because of its reach, Wal-Mart has almost as much power as federal regulators to shape the market. Crucially,
Wal-Mart, and specifically its house brand Great Value, are popular with low-income shoppers - the demographic that eats the most foods high in sodium,
trans fats, and refined sugars. Related stories: Washngton Post: The move is a sign of the Obama administration’s new tone toward corporate America in
general and Wal-Mart in particular. Huffington Post: This could genuinely save lives, writes Dr. Michael F. Jacobson.

Table 8: An example of the synthesized background context for instruction-answer pairs generated by GPT4o-mini
in the summarization task. For the sake of space, we only show the relevant background context. In practice,
additional unrelevant context is concatenated to reach longer length.

Instruction Data NarrativeQA Qasper HotpotQA 2WikiQA MuSiQue GovReport QMSum MultiNews Avg.
LLaMA3.1-8B

UltraChat (Ding et al., 2023) 22.45 28.12 24.00 19.38 9.08 30.24 26.18 27.36 23.35
+ Instruction Synthesis (template ①) 24.39 29.32 30.26 21.68 14.99 29.85 25.60 27.02 25.39
+ Instruction Synthesis (template ②) 21.47 28.11 23.80 17.37 12.49 29.79 24.45 27.44 23.12
+ Context Synthesis (ours) 32.74 45.30 59.73 44.28 32.20 35.82 27.79 30.70 38.57

Table 9: This table compares model performance using different templates for instruction synthesis. Template ①

refers to the constrain-free template in Figure 6, while Template ② refer to the task-specific template in Figure 7.

ple to 65536 and 32768 for LLaMA2-7B-64k and727

LLaMA3.1-8B-128k respectively. Training is con-728

ducted on 8×H800 GPUs with a per-device batch729

size of 1.730

E Experimental Results with ShareGPT731

Table 10 presents the experimental results with732

ShareGPT on LLaMA3.1-8B. The results demon-733

strates similar findings to those observed in Table 3.734

F Impact of Context Concatenation Size735

In this paper, we set the concatenation size to ten,736

consisting of one relevant background context and737

nine irrelevant contexts. Table 11 presents the per-738

formance results across different numbers of con-739

catenated contexts. Our results indicate that larger740

concatenation sizes generally yield better perfor- 741

mance. 742

G Context-Instruction Coherence 743

Analysis 744

With our proposed analytic tool, we measure the 745

context-instruction coherence in synthetic instruc- 746

tion data (LongAlign, LongMIT) by previous in- 747

struction sysnthesis approaches. Experimental re- 748

sults are depicted in Figure 8. For LongAlign, 749

we observe minimal difference between context- 750

included and context-free tuning, suggesting poor 751

context-instruction coherence in their synthetic 752

data. While LongMIT enhances the quality of 753

synthetic data through a carefully designed multi- 754

agent workflow for question-answering tasks, it 755
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Instruction Data NarrativeQA Qasper HotpotQA 2WikiQA MuSiQue GovReport QMSum MultiNews Avg.
LLaMA3.1-8B

ShareGPT (Chiang et al., 2023b) 23.35 23.48 30.98 24.67 10.19 29.89 23.60 28.09 24.28
+ Instruction Synthesis 26.32 32.19 28.80 28.86 14.81 30.78 24.46 27.58 26.73
+ Context Synthesis (ours) 31.16 41.02 54.27 38.92 28.03 35.06 26.99 31.02 35.81

Table 10: This table illustrates model performance between using general instruction data (ShareGPT) alone and
using additional long-context intruction data (rows with ‘+’).

Instruction Data NarrativeQA Qasper HotpotQA 2WikiQA MuSiQue GovReport QMSum MultiNews Avg.
LLaMA3.1-8B

UltraChat (Ding et al., 2023) 22.45 28.12 24.00 19.38 9.08 30.24 26.18 27.36 23.35
+ Context Synthesis (n=1) 32.61 44.46 58.08 38.35 32.91 35.81 27.10 32.03 37.67
+ Context Synthesis (n=5) 32.10 42.08 60.15 45.34 30.15 35.98 26.51 31.04 37.92
+ Context Synthesis (n=10) 32.74 45.30 59.73 44.28 32.20 35.82 27.79 30.70 38.57

Table 11: Performance comparison across different concatenation sizes (n). n represents the number of concatenated
contexts, including one relevant context and n-1 irrelevant contexts. Results show that larger concatenation sizes
generally lead to better overall performance.

LongAlign

15

20

25

30

35

40

Sc
or

e

22.60 21.51

NarrativeQA

LongMIT

15

20

25

30

35

40

23.76
26.92

NarrativeQA

LongAlign

20

30

40

50

24.35 25.31

Qasper

LongMIT

20

30

40

50

34.27
39.42

Qasper

LongAlign
5

10

15

20

25

30

11.04
8.47

MuSiQue

LongMIT
5

10

15

20

25

30

20.88
23.21

MuSiQue

LongAlign

20

30

40

20.55 22.03

2WikiMultihopQA

LongMIT

20

30

40

30.08
32.54

2WikiMultihopQA

LongAlign

20

30

40

50

60

Sc
or

e

24.80
21.20

HotpotQA

LongMIT

20

30

40

50

60

41.72
45.46

HotpotQA

LongAlign

15

20

25

30

35

23.21
25.29

QMSum

LongMIT

15

20

25

30

35

25.19 24.55

QMSum

LongAlign
15

20

25

30

35

40

45

31.27 30.69

GovReport

LongMIT
15

20

25

30

35

40

45

31.13
28.31

GovReport

LongAlign
15

20

25

30

35

40

27.63 27.68

MultiNews

LongMIT
15

20

25

30

35

40

27.74 27.47

MultiNews

tuning w.o. context tuning w. context

Figure 8: In this figure we compare tuning without context (diagonal lines) with tuning with context (solid bars)
and assess context-instruction coherence in synthetic instruction data (LongAlign, LongMIT). Experiments are
conducted with LLaMA3.1-8B.

has limited generalizability across different tasks756

and achieves lower performance compared to our757

approach.758

H Used Scientific Artifacts759

Below lists scientific artifacts that are used in our760

work. For the sake of ethic, our use of these arti-761

facts is consistent with their intended use.762

• LongAlign (Apache-2.0 license), a codebase763

developed for long-context instruction-tuning.764

• RULER (Apache-2.0 license), a repository765

for generating synthetic examples to evalu-766

ate long-context language models with config-767

urable sequence length and task complexity.768

• LongBench (MIT license), a benchmark de-769

signed for assessing the long-context capabili-770

ties of large language models.771

• ZeroScrolls (MIT license), a benchmark for 772

evaluating the long-context capabilities of 773

large language models. 774

• LLaMA2-7B-64K (Apache-2.0 license), a con- 775

tinued pretrained version of LLaMA2-7B with 776

an extended 64k context window. 777

• LLaMA-3.1 (LLaMA3.1 license), a large lan- 778

guage model developed by Meta. 779

• GPT4o-mini (Proprietary license), a large lan- 780

guage model developed by OpenAI. 781

• Qwen-2.5-72B (Qwen license), a large lan- 782

guage model developed by Qwen. 783
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