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Abstract

In reinforcement learning for partially observable environments, many successful
algorithms have been developed within the asymmetric learning paradigm. This
paradigm leverages additional state information available at training time for faster
learning. Although the proposed learning objectives are usually theoretically
sound, these methods still lack a precise theoretical justification for their potential
benefits. We propose such a justification for asymmetric actor-critic algorithms
with linear function approximators by adapting a finite-time convergence analysis
to this setting. The resulting finite-time bound reveals that the asymmetric critic
eliminates error terms arising from aliasing in the agent state.

1 Introduction

Reinforcement learning (RL) is an appealing framework for solving decision making problems,
notably because it makes very few assumptions about the problem at hand. In its purest form, the
promise of an RL algorithm is to learn an optimal behavior from interaction with an environment
whose dynamics are unknown. More formally, an RL algorithm aims to learn a policy — which is
defined as a mapping from observations to actions — from interaction samples, in order to maximize a
reward signal. While RL has obtained empirical successes for a plethora of challenging problems
ranging from games to robotics (Mnih et al., 2015; Schrittwieser et al., 2020; Levine et al., 2015;
Akkaya et al., 2019), most of these achievements have assumed full state observability. A more
realistic assumption is partial state observability, where only a partial observation of the state of the
environment is available for taking actions. In this setting, the optimal action generally depends on
the complete history of past observations and actions. Traditional RL approaches have thus been
adapted by considering history-dependent policies, usually with a recurrent neural network to process
histories (Bakker, 2001; Wierstra et al., 2007; Hausknecht & Stone, 2015; Heess et al., 2015; Zhang
etal., 2016; Zhu et al., 2017). Given the difficulty of learning effective history-dependent policies,
various auxiliary representation learning objectives have been proposed to compress the history into
useful representations (Igl et al., 2018; Buesing et al., 2018; Guo et al., 2018; Gregor et al., 2019;
Han et al., 2019; Guo et al., 2020; Lee et al., 2020; Subramanian et al., 2022; Ni et al., 2024). Such
methods usually seek to learn history representations that encode the belief, defined as the posterior
distributions over the states given the history, which is a sufficient statistic of the history for optimal
control.
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While these methods are theoretically able to learn optimal history-dependent policies, they usually
learn solely from the partial state observations, which can be restrictive. Indeed, assuming the same
partial observability at training time and execution time can be too pessimistic for many environments,
notably for those that are simulated. This motivated the asymmetric learning paradigm, where
additional state information available at training time is leveraged during the process of learning
a history-dependent policy. Although the optimal policies obtained by asymmetric learning are
theoretically equivalent to those learned by symmetric learning, the promise of asymmetric learning
is to improve the convergence speed. Early approaches proposed to imitate a privileged policy
conditioned on the state (Choudhury et al., 2018), or to use an asymmetric critic conditioned on the
state (Pinto et al., 2018). These heuristic methods initially lacked a theoretical framework, and a
recent line of work has focused on proposing theoretically grounded asymmetric learning objectives.
First, imitation learning of a privileged policy was known to be suboptimal, and it was addressed by
constraining the privileged policy so that its imitation results in an optimal policy for the partially
observable environment (Warrington et al., 2021). Similarly, asymmetric actor-critic approaches
were proven to provide biased gradients, and an unbiased actor-critic approach was proposed by
introducing the history-state value function (Baisero & Amato, 2022). In model-based RL, several
works proposed world model objectives that are proved to provide sufficient statistics of the history,
by leveraging the state (Avalos et al., 2024) or arbitrary state information (Lambrechts et al., 2024).
Finally, asymmetric representation learning approaches were proposed to learn sufficient statistics
from state samples (Wang et al., 2023; Sinha & Mahajan, 2023). It is worth noting that many recent
successful applications of RL have greatly benefited from asymmetric learning, usually through an
asymmetric critic (Degrave et al., 2022; Kaufmann et al., 2023; Vasco et al., 2024).

Despite these methods being theoretically grounded, in the sense that policies satisfying these
objectives are optimal policies, they still lack a theoretical justification for their potential benefit. In
particular, there is no theoretical justification for the improved convergence speed of asymmetric
learning. In this work, we propose such a justification for an asymmetric actor-critic algorithm, using
agent-state policies and linear function approximators. Agent-state policies rely on an internal state,
which is updated recurrently based on successive actions and observations, from which the next
action is selected. This agent state can introduce aliasing, a phenomenon in which an agent state
may correspond to two different beliefs. Our argument relies on the comparaison of two analogous
finite-time bounds: one for a symmetric natural actor-critic algorithm (Cayci et al., 2024), and its
adaptation to the asymmetric setting that we derive in this paper. This comparison reveals that
asymmetric learning eliminates error terms arising from aliasing in the agent state in symmetric
learning. These aliasing terms are given by the difference between the true belief (i.e., the posterior
distribution over the states given the history) and the approximate belief (i.e., the posterior distribution
over the states given the agent state). This suggests that asymmetric learning may be particularly
useful when aliasing is high.

A recent related work proposed a model-based asymmetric actor-critic algorithm relying on belief
approximation, and proved its sample efficiency (Cai et al., 2024). It also considered agent-state
policies, and studied the finite-time performance by providing a probably approximately correct
(PAC) bound, instead of an expectation bound as here. While the algorithm was restricted to finite
horizon and discrete spaces, notably for implementing count-based exploration strategies, it tackled
the online exploration setting and its performance bound did not present a concentrability coefficient.
This related analysis thus provides a promising framework for future works in a more challenging
setting. However, it did not study the existing asymmetric actor-critic algorithm, and did not provides
a direct comparison with symmetric learning. In contrast, we focus on providing comparable bounds
for the existing model-free asymmetric actor-critic algorithm and its symmetric counterpart.

In Section 2, we formalize the environments, policies, and Q-functions that are considered. In
Section 3, we introduce the asymmetric and symmetric actor-critic algorithms that are studied. In
Section 4, we provide the finite-time bounds for the asymmetric and symmetric actor-critic algorithms.
Finally, in Section 5, we conclude by summarizing the contributions and providing avenues for future
works.



2 Background

In Subsection 2.1, we introduce the decision processes and agent-state policies that are considered.
Then, we introduce the asymmetric and symmetric Q-function for such policies, in Subsection 2.2
and Subsection 2.3, respectively.

2.1 Partially Observable Markov Decision Process

A partially observable Markov decision process (POMDP) is a tuple P = (S, A,0, P,T, R, O,~),
with discrete state space S, discrete action space A, and discrete observation space O. The initial state
distribution P gives the probability P(sg) of so € S being the initial state of the decision process.
The dynamics are described by the transition distribution T that gives the probability T'(s;+1]s¢, ;)
of s;+1 € S being the state resulting from action a; € A in state s; € S. The reward function
R gives the immediate reward r; = R(st, a¢, S¢41) of the reward r, € [0, 1] resulting from this
transition. The observation distribution O gives the probability O(o;|s;) to get observation o; € O
in state s; € S. Finally, the discount factor v € [0, 1) weights the relative importance of future
rewards. Taking a sequence of ¢ actions in the POMDP conditions its execution and provides the
history h; = (0o, ag, . .., 0:) € H, where H is the set of histories of arbitrary length. In general, the
optimal policy in a POMDP depends on the complete history.

However, in practice it is infeasible to learn a policy conditioned on the full history, since the latter
grows unboundedly with time. We consider an agent-state policy m € II that uses an agent-state
process M = (Z,U), in order to take actions Dong et al. (2022); Sinha & Mahajan (2024). More
formally, we consider a discrete agent state space Z, and an update distribution U that gives the
probability U(z¢11|z¢, as, 0¢41) of z¢41 € Z being the state resulting from action a; € A and
observation o;+1 € O in agent state z; € Z. Note that the update distribution U also describe the
initial agent state distribution with z_; ¢ Z the null agent state and a_; ¢ A the null action. Some
examples of agent states that are often used are a sliding window of past observations, or a belief
filter. Aliasing may occur when the agent state does not summarize all information from the history
about the state of the environment, see Appendix A for an example. Given the agent state z;, the
policy 7 samples actions according to a; ~ w(-|z¢). An agent-state policy 7* € Il is said to
be optimal for an agent-state process M if it maximizes the expected discounted sum of rewards:
7 € argmax, ¢y, J(m) with J(m) = E"[3°.° 7' Ry].

In the following, we denote by S;, O, Z;, A; and R; the random variables induced by the POMDP
‘P. Given a POMDP P and an agent-state process M, the initial environment-agent state distribution
P is given by,

P(s0,20) = P(s0) »_ O(00|s0)U(z0]2-1,a-1,00). (1)
00€QO

Furthermore, given an agent-state policy m € II ¢, we define the discounted visitation distribution as,

d™(s,z) = (1 —7) Z P(s0,20) Z'yk Pr(S; = s, Z; = 2|50 = 80, Zo = 20). 2)

50,20 t=0
Finally, we define the visitation distribution m steps from the discounted visitation distribution as,

dp(s,2) = Z d™(s0,20) Pr(Sm = 8, Zim = 2|So = 80, Zo = 20)- 3

50,20

In the following, we define the various value functions for the policies that we defined. Note that we
use calligraphic letters Q™, V™ and A™ for the asymmetric functions, and regular letters ™, V™ and
AT for the symmetric ones.

2.2 Asymmetric Q-function

Similarly to the asymmetric Q-function of Baisero & Amato (2022), which is conditioned on (s, h, a),
we define an asymmetric Q-function that we condition on (s, z, a), where z is the agent state resulting
from history h. The asymmetric Q-function Q™ of an agent-state policy 7 € Il x4 is defined as the



expected discounted sum of rewards, starting from environment state s, agent state z, and action a,
and using policy 7 afterwards,

Qﬂ-(87 27(1) = Eﬂ— lz ’tht

t=0

SOZS,Z():Z,A():CL‘|. (4)

The asymmetric value function V™ of an agent-state policy m € Il is defined as V7 (s,z) =
Y acam(alz)Q"(s,z,a). We also define the asymmetric advantage function A™(s,z,a) =
Q™ (s,z,a) — V™ (s, 2).

Let us define the m-step asymmetric Bellman operator as,

m—1
é”(s,z,a)=E“[Zvth+vmé”<Sm,Zm7Am> So=s820=2A=a|l. (5

t=0

Since this m-step asymmetric Bellman operator is 7" -contractive, equation (5) has a unique fixed
point Q™. Notice that, when using an agent-state policy, the environment state and agent state (S, Z;)

are Markovian. Therefore, it can be shown that the fixed point @” is the same as the asymmetric
Q-function Q™.

2.3 Symmetric Q-function

The symmetric Q-function Q™ of an agent-state policy m € Il in a POMDP P is defined as the
expected discounted sum of rewards, starting from agent state z and action a, and using policy 7
afterwards,

Q"(z,a) =E" lZVth Zy=z,A0=al. (6)

t=0

The symmetric value function V™ of an agent-state policy 7 € Il is defined as V™ (z) =
Y acam(alz)Q™(z,a). We also define the symmetric advantage function A™(z,a) = Q" (z,a) —
V7™ (2).

Let us define the m-step symmetric Bellman operator as,

m—1

@W(za CL) =FE" [ Z ’Yth + 'Yméﬂ(znu Am)

t=0

ZOZZ,AOZG]. (7)

It can be verified that the m-step symmetric Bellman operator is 7" -contractive. Therefore, equa-
tion (7) has a unique fixed point Q™. However, because the agent state is not necessarily Markovian,

in general Q™ # Q7.

3 Natural Actor-Critic Algorithms

In this section, we present the asymmetric and symmetric natural actor-critic algorithms, which make
use of an actor, or policy, and a critic, or Q-function. The asymmetric variant will use an asymmetric
critic, learned using asymmetric temporal difference learning, while the symmetric variant will use a
symmetric critic, learned using symmetric temporal difference learning. These temporal difference
learning algorithms are presented in in Subsection 3.1 and Subsection 3.2, respectively. Then,
Subsection 3.3 presents the complete natural actor-critic algorithm that uses a temporal difference
learning algorithm as a subroutine.

For any Euclidean space X, let B3(0, B) be the ¢5-ball centered at the origin with radius B > 0,
and let ['c: X — C be a projection operator into the closed and convex set C C X in {3-norm:

Fe(x) € argmin, ¢ [Jc — x||§ CC, Vx € X. Finally, let us define the pi-weighted ¢5-norm, for any
probability measures u € A(X) as,

1flle =, [ D n@) | f ). ®)

zeX



In the algorithms, we implicitly assume to be able to directly sample from the discounted visitation
measure d”. When it is unrealistic, it is still possible to sample from d™ by sampling an initial
timestep to ~ Geom(1 — ) from a geometric distribution with success rate 1 — -y, and then taking
to — 1 actions in the POMDP. The resulting sample (s;,, z¢,) follows the distribution d”.

3.1 Asymmetric Critic

Suppose we are given features ¢: S x Z x A — R% . Without loss of generality, we assume
sup, . o|l¢(s, z,a)||]2 < 1. Given a weight vector 3 € R%, let QF denote the linear approximation
of the asymmetric Q-function Q™ that uses features ¢ with weight 53,

Q5 (s,2,0) = (8,9(s, z,a)). ©)
Given an arbitrary projection radius B > 0, we define the hypothesis space as,
F§ =A{(s,2,0) = (B,8(s, 2,0)) : B € B2(0, B)}. (10)

We denote the optimal parameter of the asymmetric critic approximation by 3 € arg mingeg, (o, 5y

1B, ¢(-)) — Q7(-)|l;> and denote the corresponding approximation by Or(-) = (B™,(-)). The
corresponding error is,

Eapp = ININ — QT
o fery f

(1)

e

d?
with d(s, z,a) = d™ (s, z)7(a|z) the sampling distribution.

In Algorithm 1, we present the m-step temporal difference learning algorithm for approximating
the asymmetric Q-function Q™ of an arbitrary agent-state policy m € IIx4. At each step k, the
algorithm obtains one sample (s 0, zk,0) ~ d™ from the discounted visitation distribution. Then, m
actions are selected according to policy 7 to provide samples (am, Tty Sk,t+1s Ok t+1, 2z t+1) for
0 <t < m. Next, the temporal difference J;, and semi-gradient g;, are computed, based on a last
action ax m ~ T(-|Zk,m),

m—1

O = Z ’Yirk,i +9™ ng (8k,ms 2k,m» Qk,m) — ng ($k,05 25,0, @k,0); (12)
=0

gr = 0k VQp, (5k.0, 2k,0, Ak,0)- (13

Then, the semi-gradient update is performed with 3," | = B + agx and the parameters are projected
onto the ball of radius B: Si1 = I's,(0,8)(8),1) At the end, the algorithm computes the average
parameter 3 = % kK:_Ol By, and returns the average approximation Q™ = @’ﬁf

3.2 Symmetric Critic

Similarly, we suppose that we are given features y: Z x A — R%. Without loss of generality,
we assume sup, ,|[[x(z,a)[lz < 1. Given a weight vector 5 € R, let QF denote the linear

approximation of the symmetric Q-function Q™ that uses features x with weight 3,

Q75 (z,a) = (B,x(2,a)). (14)

The corresponding hypothesis space for an arbitrary projection radius B > 0 is denoted with
F7. The optimal parameter is also denoted by 57 € argmingeg, o, p) [[(8, x(-)) — Q™ (-)| 4, the

corresponding optimal approximation is @Q = (BT, x(-)), and the corresponding error is,

f-or| =|er-er

€app = min (15)

feFE d
with d(z,a) = Y d™(s, z)7(a|z) the sampling distribution.

sES
Algorithm 1 also presents the m-step temporal difference learning algorithm for approximating the
symmetric Q-function. The latter is identical to that of the asymmetric Q-function except that states
are not exploited, such that the temporal difference J;, and semi-gradient g, are given by,



Algorithm 1 m-step temporal difference learning algorithm

input: policy m € I 4, bootstrap timestep m, step size o, number of updates K, projection radius

fork=0...K —1do
Initialize (si 0, 2k,0) ~ d™.
fori=0...,m—1do
Select action ay, ; ~ m(+|2k,q ).
Get environment state s i+1 ~ T'(-|Sk,i; ak,i)-
Get reward Tk = .R(Sk’i7 ki, Sk,i+1)-
Get observation o ;41 ~ O(-|Ski+1).
Update agent state zj ;+1 ~ U(+|2k,i, ki, Ok i+1)-
end for
Sample last action a, ., ~ 7(+|2k,m)-
Compute semi-gradient gj, according to equation (13) or equation (17).
Update fr41 = I'g,(0,8)(Br + agr).
end for - R B B R _
return: average estimate Q" (1) = QZ%(:) = (B,¢(-)) or Q"(-) = Q%() = (B, x(-)) with

A_ 1 K-1,
‘d - K k=0 dk

m—1

0k = Z Ve + 7" QB (2kms akm) — QF, (26,05 ko), (16)
=0

gk = 0KV Q5 (2k,0, ak.0)- a17)

At the end, the algorithm returns the average symmetric approximation Q™ = @g Note that this

symmetric critic approximation and temporal difference learning algorithm corresponds to the one
proposed by Cayci et al. (2024).

3.3 Natural Actor-Critic Algorithms

For both the asymmetric and symmetric actor-critic algorithms, we consider a log-linear agent-
state policy mp € IInq. More precisely, the policy uses features ¢: Z x A — R, with
sup, .|| (2, a)ll2 < 1 without loss of generality, and a softmax readout,

7T0((lt|2t) = exp(<0’w(zt’a‘t)>) )
> aca exp((0,¥(zt,a)))

In this work, we consider natural policy gradients, which are less sensitive to policy parametrization
(Kakade, 2001). Instead of computing the policy gradient in the original metric space, the idea is
to compute the policy gradient on a statistical manifold, defined by the expected Fisher information
metric. The natural policy gradient is thus given by the standard policy gradient multiplied by a
preconditioner Fisher information matrix. Natural policy gradients are at the core of many effective
modern policy-gradient methods (Schulman et al., 2015).

(13)

The natural policy gradient of policy my € II 4 is defined as follows (Kakade, 2001),
wl’ = (1 —7)F} VoJ(me), (19)

where Ff , 18 the pseudoinverse of the Fisher information matrix, which is defined as the outer product
of the score of the policy,

Fry =B [Vylogm(A|Z) ® Vg logmo(A| Z)). (20)

As shown in Theorem 1, the natural policy gradient w[® is the minimizer of the asymmetric objective
(22).
Theorem 1 (Asymmetric natural policy gradient). For any POMDP P and any agent-state policy
g € I1pq, we have,

wi® = (1-— 'y)FLVQJ(m;) € argmin £(w), 21

we]RdiP



with,
L(w) =E""|((Vologme(A|Z),w) — A™ (S, Z, A))?]. (22)

The proof is given in Appendix B. In practice, since the asymmetric advantage function is unknown,
the algorithm estimates the natural policy gradient by stochastic gradient descent of £(w) using the

approximation A™ (S, Z, A) = Q™ (S, Z, A) = V™ (S, Z) with V™ =" _  m(al2)Q(S, Z, a).

Our natural actor-critic algorithm generalizes the one of Cayci et al. (2024) to the asymmetric setting
and is detailed in Algorithm 2. For each policy gradient step 0 < ¢ < T, the natural policy gradient
wit is first estimated using IV steps of stochastic gradient descent. At each natural policy gradient
estimation step 0 < n < N, the algorithm samples an initial state (s¢ p,2:,) ~ d™ from the
discounted distribution d™ and an action a; ,, ~ m¢(|2,,) according to the policy m; = my,. Then,
the gradient v, ,, of the natural policy gradient estimate w,_,, is computed with,
- 2

Vt,n = vw (<v0 log 7"-O(GJt,nlzt,n)a wt,n> — A"e (St,n; Zt,ns at,n)) ) (23)

The gradient step is performed with w; ,, ,y = wy n — Cvt,,, and the parameters are projected onto the

ball of radius B: wy n+1 = I'p,(0,B) (wt_ 1nt1)- Finally, the algorithm computes the average parameter

Wy = % ny;ol wy,, and performs the policy gradient step: 6;41 = 6, + nw,. After all policy

gradient steps, the final policy is returned.

Algorithm 2 Natural actor-critic algorithm

input: number of updates 7', number of steps N, step sizes (, n, projection radius B.
Initialize 6y = 0.
fort=0...T—1do
Obtain Q™ or Q™ using Algorithm 1.
Initialize wy o = 0.
forn=0...N—1do
Initialize (¢, 2¢,n) ~ d™.
Sample a; ,, ~ o, (|2,n)-
Compute the gradient v, ,, of the policy gradient using equation (23) or equation (26).
Update Wy i1 = Wi — (V.

Project wyny1 = I',(0,B) (w;nﬂ).

end for N1
Update 9t+1 = Qt + ’I]% Zn:O Wt,n-
end for

return: final policy mp = 7.

As shown in Theorem 2, the natural policy gradient w[® is also the minimizer of the symmetric
objective (25).

Theorem 2 (Symmetric natural policy gradient). For any POMDP P and any agent-state policy
g € I1xq, we have,

wl® = (1 —)F} VoJ(m) € argmin L(w), (24)
wGRd"/’
with,
L(w) =B | (Vo log me(A|Z), w) — A™ (Z, A))?|. (25)

The proof is given in Appendix B. As in the asymmetric case, the symmetric advantage function
is unknown, and the algorithm estimates the natural gradient by stochastic gradient descent of
equation (25) using the approximation A™(Z, A) = Q™ (Z,A) — V7™ (Z) with V™ = %" _,
m9(alZ)Q™ (Z, a).

Algorithm 2 also presents the symmetric natural actor-critic algorithm, initially proposed by Cayci

et al. (2024). The latter is similar to the asymmetric algorithm except that it uses the symmetric
advantage function, such that the gradient of the policy gradient is given by,

Vt,n = Vu (<V«9 log Uy (at,n|zt,n)7 wt,n> —A™ (Zt,rm at,n)) . (26)



While Theorem 1 and Theorem 2 show that w[¢ is the minimizer of both the asymmetric and the
symmetric objectives, the next section establishes the benefit of using the asymmetric loss. More
precisely, asymmetric learning is shown to improve the estimation of the critic and thus the advantage
function, which in turn results in a better estimation of the natural policy gradient.

4 Finite-Time Analysis

In this section, we give the finite-time bounds of the previous algorithms in both the asymmetric
and symmetric cases. The bounds of the asymmetric and symmetric temporal difference learning
algorithms are presented in Subsection 4.1 and Subsection 4.2, respectively. In Subsection 4.3, the
bounds of the asymmetric and symmetric natural actor-critic algorithms are given.

We use || — v||1y to denote the total variation between two probability measures i, v € A(X) over
a discrete space X,

1
I —vipy = 2&% ln(A) —v(A)] 3 x; lp(z) — v(z)]. (27)

4.1 Finite-Time Bound for the Asymmetric Critic

Our main result is to establish the following finite-time bound for the Q-function approximation
resulting from the asymmetric temporal difference learning algorithm detailed in Algorithm 1.
Theorem 3 (Finite-time bound for asymmetric m-step temporal difference learning). For any agent-
state policy = € I, and any m € N, we have for Algorithm 1 with o = \/% and arbitrary
B >0,

\/E {HQ‘” - QFHﬂ <éut Eapp T Eshift; (28)

where the temporal difference learning, function approximation, and distribution shift terms are given
by,

AB? + (ﬁ + 2B)2

€d = 29

wd 2R — ) (29)
T+~ . -

Eapp = 1 m frélj% 1f=Q 4 (30)

1 2ym
Eshift = (B + 1_ ’Y) \/1 _V/ym \/ Hdm - d”TV? (31)

with d(s, z,a) = d" (s, z)mw(a|z) the sampling distribution, and d,, (s, z,a) = dF, (s, z)m(a|z) the
bootstrapping distribution.

The proof is given in Appendix C, and adapts the proof of Cayci et al. (2024) to the asymmetric
setting. The first term e is the usual temporal difference error term, decreasing in K ~'/%. The
second term &,p, results from the use of linear function approximators. The third term &g, arises
from the distribution shift between the sampling distribution d™ ® 7 (i.e., the discounted visitation
measure) and the bootstrapping distribution d, ® 7 (i.e., the distribution m steps from the discounted
visitation measure). It is a consequence of not assuming the existence of a stationary distribution nor
assuming to sample from the stationary distribution.

4.2 Finite-Time Bound for the Symmetric Critic

Given a history hy = (09, ag, - . ., 0 ), the belief is defined as,

bt(St ht) = PI‘(St = St|Ht = ht) (32)
Given an agent state z;, the approximate belief is defined as,

ZA)t(St|Zt) = PI'(St = 5t|Zt = Zt)' (33)



We obtain the following finite-time bound for the Q-function approximation resulting from the
symmetric temporal difference learning algorithm detailed in Algorithm 1.

Theorem 4 (Finite-time bound for symmetric m-step temporal difference learning (Cayci et al.,
2024)). For any agent-state policy 7 € Il 4, and any m € N, we have for Algorithm 1 with o = %,

K
and arbitrary B > 0,

\/E {HQ” - QNHZ] <é&w+ Eapp + Eshift + Ealiass (34)

where the temporal difference learning, function approximation, distribution shift, and aliasing terms
are given by,

2
1B2 + (1 +2B)
£ = (35)
2VE(1—4™)
1++Am

Eapp = 7 5 flglf% If— Q"4 (36)

1 29™m
Eshift = (B + 1— ,y> \/1 jfym HdWL - dHTV (37)

2 > .
E| 30" |[bem = b

1=y
with d(z,a) = >  .sd"(s,z)n(alz) the sampling distribution, and dn,(z,a) =
> ses dm (s, z)m(a|z) the bootstrapping distribution.

Zo=-

Ealias =

) (38)
d

The first three terms are identical or analogous to the asymmetric case. The fourth term &, results
from the difference between the fixed point Q™ of the symmetric Bellman operator (7) and the true
Q-function Q™. We note some minor differences with respect to the original result of Cayci et al.
(2024) that appear to be typos and minor mistakes in the original proof.” We provide the corrected
proof in Appendix D. The results of Theorem 3 and Theorem 4 can be straightforwardly generalized
to any other sampling distribution. However, obtaining bounds in term of d™ ® = is useful for
bounding the performance of the actor-critic algorithm.

4.3 Finite-Time Bound for the Natural Actor-Critic

Following Cayci et al. (2024), we assume that there exists a concentrability coefficient Coo < 0
such that sup <, .1 E[C}] < C with,

C, = sup d™ (s,2)7*(alz)

. 39
$,2,a dmo (S,Z)Tl'gt(a|2’) <

Roughly speaking, this assumption means that all successive policies should visit every agent states
and actions visited by the optimal policy with nonzero probability. It motivates the log-linear
policy parametrization in equation (18) and the initialization to the maximum entropy policy in
Algorithm 2. We obtain the following finite-time bound for the suboptimality of the policy resulting
from Algorithm 2.

Theorem 5 (Finite-time bound for asymmetric and symmetric natural actor-critic algorithm). For any

agent-state process M = (Z,U), we have for Algorithm 2 with o = \/%, ¢= B\/L;];'Y, n= % and
arbitrary B > 0,

_ i *) < -
(1—7) OgngE[J (") = J ()] < €nac + 2€ins

T-1
— 1 -
+ Coc <5actor + 26grad + 2\/6T Z E‘crtitic) ) (40)

t=0

*The authors notably wrongly bound the distance H@I — Q|| by eupp at one point, which nevertheless
yields a similar result.



where the different terms may differ for asymmetric and symmetric critics,

e = Bzfg"“‘t (1)

Eactor = m 42)

Einfasym = 0 (43)

ntm = E™ Li oo = b HTV] (44)
=0

Egradasym = oz?ET Hgn Li(w) (45)

Egrad,sym = . ;?ET rrgn Li(w), (46)

Tt
and gcritic

is given in Theorem 3 and Theorem 4.

The first term e, is the usual natural actor-critic term decreasing in T-1/2 (Agarwal et al., 2021).
The second term ¢;,¢ is the inference error resulting from use of an agent state in a POMDP (Cayci
et al., 2024). This term is zero for the asymmetric algorithm. The third term e, is the error resulting
from the estimation of the natural policy gradient by stochastic gradient descent. The fourth term

€grad 18 the error resulting from the use of a linear function approximator with features Vg log m;(a|2)

for the natural policy gradient. Finally, the fifth term % 31:_01 €oic 1s the error arising from the

successive critic approximations. Inside of each £}, terms, the aliasing term is thus zero for the
asymmetric algorithm. The proof, generalizing that of Cayci et al. (2024) to the asymmetric setting,
is available in Appendix E.

4.4 Discussion

As can be seen from Theorem 3 and Theorem 4, compared to the symmetric temporal difference
learning algorithm, the asymmetric one eliminates a term arising from aliasing in the agent state,
in the sense of equation (38). In other words, even for an aliased agent-state process, leveraging
the state to learn the asymmetric Q-function instead of the symmetric Q-function does not suffer
from aliasing, while still providing a valid critic for the policy gradient algorithm. That said, these
bounds are given in expectation, and future works may want to study the variance of the error of such
Q-function approximations.

From Theorem 5, we notice that the inference term (44) in the suboptimality bound vanishes in the
asymmetric setting. Moreover, the average error %ZtT:_Ol ent. made in the evaluation of all policies
o, - - -, T¢—1 appears in the finite-time bound that we obtain for the suboptimality of the policy. Thus,
the suboptimality bound for the actor also improves in the asymmetric setting by eliminating the

aliasing terms with respect to the symmetric setting.

By diving into the proof of Theorem 5 at equations (236) and (237), we understand that the Q-function
error impacts the suboptimality bound through the estimation of the natural policy gradient (19).
Indeed, this error term in the suboptimality bound directly results from the error on the advantage
function estimation used in the target of the natural policy gradient estimation loss of equations (23)
and (26). This advantage function estimation is derived from the estimation of the Q-function, such
that the error on the latter directly impacts the error on the former, as detailed in equations (236) and
(237). This improvement in the average critic error unfortunately comes at the expense of a different
residual error €g,g On the natural policy gradient loss. Indeed, as can be seen in equation (46),
we obtain a residual error €gpagasym using the best approximation of the asymmetric advantage
ATt (s, z,a), instead of a residual error €gaq sym Using the best approximation of the symmetric critic
A™(z,a). Since both natural policy gradients are obtained through a linear regression with features
Vo logm(alz), it is clear than the asymmetric residual error may be higher than the symmetric
residual error, even in the tabular case.
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We conclude that the effectiveness of asymmetric actor-critic algorithms notably results from a better
approximation of the Q-function by eliminating the aliasing bias, which in turn provides a better
estimate of the policy gradient.

5 Conclusion

In this work, we extended the unbiased asymmetric actor-critic algorithm to agent-state policies.
Then, we adapted a finite-time analysis for natural actor-critic to the asymmetric setting. This analysis
highlighted that on the contrary to symmetric learning, asymmetric learning is less sensitive to aliasing
in the agent state. While this analysis assumed a fixed agent-state process, we argue that it is useful
to interpret the causes of effectiveness of asymmetric learning with learnable agent-state processes.
Indeed, aliasing can be present in the agent-state process throughout learning, and in particular at
initialization. Moreover, it should be noted that this analysis can be straightforwardly generalized
to learnable agent-state processes by extending the action space to select future agent states. More
formally, we would extend the action space to AT = A x A(Z) with af = (ay, a}), the agent state
space to Z+ = Z x O with z;" = (2, 27), and the agent-state process to U (2,1, 1|2/, as, 041)
exp(a;"*")dz0, o, This alternative to backpropagation through time would nevertheless still not
reflect the common setting of recurrent actor-critic algorithms. We consider this as a future work that
could build on recent advances in finite-time bound for recurrent actor-critic algorithms (Cayci &
Eryilmaz, 2024a,b). Alternatively, generalizing this analysis to nonlinear approximators may include
recurrent neural networks, which can be seen as nonlinear approximators with a sliding window as
agent state. Our analysis also motivates future work studying other asymmetric learning approaches
that consider representation losses to reduce the aliasing bias (Sinha & Mahajan, 2023; Lambrechts
et al., 2022, 2024).
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A Agent State Aliasing

In this sectipn, we provide an exqmple 'of 'alias§d agent Swap/Enter Swap/Enter
state, and discuss the corresponding aliasing bias. For (+1) (+0)

this purpose, we introduce a slightly modified version of
the Tiger POMDP (Kaelbling et al., 1998), see Figure 1.
In this POMDP, there are two doors: one opening on a
room with a treasure on the left, and another opening on
aroom with a tiger on the right. There are four states for
this POMDP: being in the treasure room (Treasure), being
in the tiger room (Tiger), being in front of the treasure
door (Left) or being in front of the tiger door (Right). The
rooms are labeled outside (Left or Right), but inside it is
completely dark (Dark), such that we do not observe in
which room we are. When outside of the rooms, the agent
can switch to the other door (Swap) or it can open the door
and enter the room (Enter). Once in a room (Treasure or Figure 1: Aliased Tiger POMDP.
Tiger), the agent stays locked forever, and gets a positive

reward (+1) if it is in the treasure room (Treasure) whatever the action taken (Swap or Enter). We
consider the agent state to be simply the last observation (Left, Right, or Dark). Notice that the
optimal agent-state policy conditioned on this agent state is also an optimal history-dependent policy.
In other words, the current observation is a sufficient statistic for optimal control in this POMDP. We
consider a uniform initial distributions over the four states.

Treasure
(Dark)

Enter Enter
+0) +0)

Swap
(+0)

For a given agent state (Dark), there exist two different underlying states (Treasure or Tiger). We
call this phenomenon aliasing. Now, let us consider a simple policy 7 that always takes the same
action (Enter). It is clear that the symmetric value function defined according to equation (6) is
givenby V7™ (z = Dark) 7) V7 (z = Left) = —, and V™ (2 = Right) = 0. However, when
considering the unique ﬁxe pomt of the aliased Bellman operator of equation (7) with m = 1,
we have instead V7 (z = Dark) = 2(1 oA V7 (z = Left) = PIe==] ’v) and V™ (z = Right) = 2(1_,”.
We refer to the distance between V™ and V™, or similarly Q™ and Q as the aliasing bias. In the
analysis of this paper, this distance appears as the weighted /5-norm HQ" — Q™||g where d(s, z,a) =
d™ (s, z)m(alz). In the analysis, we also define the aliasing term &,;,5 as an upper bound on this
aliasing bias, see Lemma D.1 for a detailed definition.

B Proof of the Natural Policy Gradients

In this section, we prove that the natural policy gradient is the minimizer of analogous asymmetric
and symmetric losses.

B.1 Proof of the Asymmetric Natural Policy Gradient

In this section, we prove that the natural policy gradient is the minimizer of an asymmetric loss.

Theorem 1 (Asymmetric natural policy gradient). For any POMDP P and any agent-state policy
g € Il ¢, we have,

wl® = (1 —7)F} VoJ(mg) € argmin L(w), 1)
weRW
with,
L(w) =E""|((Vologme(A|Z),w) — A™ (S, Z, A))?]. (22)
Proof. Let us note that,
VuL(w) = 2B [Vglogmo(A|Z) (Vo log me(A|Z), w) — A™ (S, Z, A))]. (47

Therefore, for any w7¢ € R% minimizing £(w), we have V., £(w) = 0, such that,

EY Vo log mo(A|Z)A™ (S, Z, A)] = B [V log me(A| Z) (Vg log me(A| Z), w™)] (48)
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=E""[(Vologm(A|Z) ® Vglogme(A|Z))wT?]  (49)
=E [Vylogme(A|Z) ® Vologme(A|Z)|wr (50
= Frywi®. (51)

which follows from the definition of the Fisher information matrix F7;, in equation (20). Now, let us
define the policy m, (A|S, Z) = my(A|Z), which ignores the state S. From there, we have,

Frw™ = Ed”" [Vologmo(A|Z)A(S, Z, A)] (52)
=E¥ [ve log ) (A[S, 2)A(S, Z, A)] (53)
Ed" [Vologm} (AlS, Z) (A(S, Z, A) + V(S, Z) — V(S, Z))] (54)
at
=E* [vg log 7 (AlS, 2)Q(S, Z, A)] —E*° [Vglogmy (AlS, 2)V(S,2)] (55
_
=E"" [Vologm, (AlS,2)Q(S, Z, A)]
_E V(S.2) Y wf(alS. Z)Vglogmy (al$, Z) (56)
a€A
Edwg— + are +
= [Vologmy (AlS, 2)Q(S, Z, A)) —E*" |V(S,2) Y Verj(alS, 2)| (57)
acA
wf nf
=E"" [Vologny (AlS,2)Q(S.2,A)] —E** |V(S.2)Vs > _ 7/ (alS, 2)| (58)
acA
e _
=K’ [Vglogn) (A]S,2)0(S, Z,A)] —E*" (S, Z)Vel] (59)
at
=E"" [Vologmy (AlS,2)Q(S, Z, A)]. (60)
Using the policy gradient theorem (Sutton et al., 1999) and equation (60),
Fr,w?® = (1—7)VoJ (), (61)
From there, we obtain using the definition of w;,
Fryw(® = (1=9)VeJ(my) (62)
= (1 =7)VgJ(me). (63)
This concludes the proof. O

B.2 Proof of the Symmetric Natural Policy Gradient

In this section, we prove that the natural policy gradient is the minimizer of an asymmetric loss.

Theorem 2 (Symmetric natural policy gradient). For any POMDP P and any agent-state policy
g € I1pq, we have,

wl® = (1 —7)F} VgJ(mg) € argmin L(w), (24)
wGJRdW
with,
L(w) =B |((Vglogme(A|Z), w) — A™(Z, A))?]. (25)

Proof. Similarly to the asymmetric setting, for any w7 minimizing L(w), we have V,,L(w) = 0,
such that,

E" [Vglogme(A12)A(Z, A)] = B [V log mg(A|Z) (Vo log mo (A Z)ul®)]  (64)
=E""[(Vylogmg(A|Z) ® Vo logmo(A|Z))wI?]  (65)
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=E" [Vylogms(A|Z) ® Vglogme(A|Z)] w™  (66)
- Fﬂ'g w:—ea (67)

which follows from the definition of the Fisher information matrix F;, in equation (20). From there,
we have,

Fryu™ = B [Vylog mo(A|2) A(Z, A)] (68)
Fryult = E [Vologmo(AIZ)E" [A(S. 2, 4)|Z, A (©)
Fruze = BT (B [V log my (A 2) A(S. 2, 4) 2. 4] (70
Fryw™ =B [Vy log m(A|2) A(S, Z, A)], (71)

which follows from the law of total probability. From there, by following the same steps as in the
asymmetric case (see Subsection B.1), we obtain,

Frowi® = (1 —v)VeJ(mg). (72)
This concludes the proof. O

C Proof of the Finite-Time Bound for the Asymmetric Critic

In this section, we prove Theorem 3, that is recalled below.

Theorem 3 (Finite-time bound for asymmetric m-step temporal difference learning). For any agent-
state policy m € IIx, and any m € N, we have for Algorithm 1 with o = \/% and arbitrary
B >0,

\/IE 1o = QII}] < e+ eup + it (28)

where the temporal difference learning, function approximation, and distribution shift terms are given
by,

2
1B2 + ({1 +2B)

€d = 29)
2VE (1 —™)
1 _|_/77T -
Sap = T [ lf% 1f=Q (30)

2y
cain = (B 1)y Tl — G

with d(s, z,a) = d" (s, z)mw(a|z) the sampling distribution, and d,, (s, z,a) = dF, (s, z)m(a|z) the
bootstrapping distribution.

Proof To simplify notation, we drop the dependence on 7 and 3 and use Q as a shorthand for O™,
Q* as a shorthand for Q O as a shorthand for Q™ and Qk as a shorthand for Q’T where the
subscripts and superscripts remain implicit but are assumed clear from context. When evaluating
the Q-functions, we go one step further by using Qy, ; to denote Q(Sk i, Zk i, Ak.i)s @Zl to denote
@*(Z;m,Ak,i) or @;“ to denote @k(SkJ-, Ziiy Ag,i), and ¢y ; to denote ¢(Sk i, Zi, Ari). In
addition, we define d as a shorthand for d™ ® =, such that d(s, z,a) = d" (s, z)w(a|z), and d,,, as a
shorthand for d7, ® 7, such that d,,, (s, z,a) = dF, (s, z)7(alz).

First, let us define Ay, as,

o= E[Je- o] = E [1o0) - uoeni] 73
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Using the linearity of Q in /31, ...

and Jensen’s inequality, we have,

, B —1, the triangle inequality, the subadditivity of the square root,

— i | K1 2
Elle-gli] = |E||e0) - (% X Aeo0) (74)
L k=0 d
[ | K= 2]
= B ll7 22 (Q0) = (Br,0()) (75)
L k=0 d
S 1 =
= |E 7 (Q0) = (Bry 6())) (76)
L k=0 d
[K-1
<AE|DS 72 1190) = <ﬂk,¢(')>3] (7
L k=0
| K1
=\ 7= 2 E[120) = (B, 6] (78)
k=0
||
=% AR (79)
k=0
| K1
D BRVLY: (80)
k=0
| K-l
== A (81)
| K1
== (A =0 +1 (82)
K=
= 2
< (K (A —l)) +1 (83)
k=0
| K1 ,
<\l 7= (A =1~ +1, (84)
L
where [ is arbitrary.
Now, we consider the Lyapounov function £(8) = |5, — ||§ in order to find a bound on

+ Zf;ol (A —1)%. Since 8, € Ba(0, B), with By(0, B) a convex subset of R%, and the pro-
jection I'¢ is non-expansive for closed and convex C, we have for all £ > 0,

L(Brs1) = 1B« — 5k+1||§

< |8, = Bl
= 1182 — (Br + ag)|I2
= [|(Bs — Br) — agr 3

= ((B« — Br) — agr, (B« — Br) — agr)

= (B — Brs B — Br) — 20(Bs — Br, gk) + &> (g, gk

= L(Bk) — 2a(Bx — Br, gr) + ||9k||§
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= L(Br) + 2a(Br — Ba, gi) + ||gk||§ . 92)

Let us consider the Lyapounov drift E [£(5k+1) — £(Bk)], and exploit the fact that environments
samples used to compute gj, are independent and identically distributed. Formally, we define
st = U(Si,j7 ZihjaAi,jﬁZ- < k’,j < m) and Sk = U(Sho, Z;C70,Ak70), where O'(Xi 11 E I) denotes
the o-algebra generated by a collection {X;: ¢ € Z} of random variables. We can write, using to the
law of total expectation,

E[L(Br+1) = LBr)] = E [E [L(Brr1) — L(Br)|G1-1]] 93)
< 2aE [E[(8k — Bs, i) |Br-1]] + ’E {E {H%H%‘@k—l}} %94)

Let us focus on the first term of equation (94) with E [(gx, Bk — Bx)|®k—1]. First, since V3 @k,o =
o0, the semi-gradient gy, is given by (see equation (13)),

m—1
gk = (Z Y Rit + 7" Qkm — Qk,0> ?k,0- 95)
t=0
By conditioning on the sigma-fields &;_; and §j, we have,
E [(Bk — Bs, 9) k> Bro—1] (96)
m—1
= (E [Z Y Rit + "™ Qb |k, Br1 | — Qk,o) (Br — Bsy Pr0) 7
t=0
m—1 N N N N
- (E [Z Y Biot + 7" Q| S G | — Qk,o) (Qo—Qio). 8
t=0
Note that according to the Bellman operator (5) we have,
m—1
E [Z Y Rt |k, Or—1| = Qo — V" E[Qpm [Tk, Br_1]. 99)
t=0

By substituting equation (99) in equation (98), we obtain,
E [(Bx — By 91)|Sks Br—1]

m—1
= (E lz W’tRlc,t

t=0

Sk, Br—1| +7"E [@kﬁm‘%'ky st—l} - @k,o) (@1@0 - @Z,0> (100)

= (Quo = V" E Qs 8-1] + 7" E [ Qtn Sk, 811 | = Oro) (Qno = i) (10D

= ((Qk,o - @k,o) —y"E {Qk,m - @k,m‘gka ®k71}) ((ék,o — Qk0) + (Qro — @Zo)>
(102)

= —(Qko— @k,0)2 + (Qk,0 — @k,o)(Qk,o - @Z,o)
+~"E [Q\km — Qk,m)&m ﬁk—l} (@k,o — Qko)
+9"E [Qkm — Qem|8rs 81-1] (Qro — Qpo): (103)

Let us now take the expectation of (103) over §x given &y_1, for each term separately,
¢ For the first term, we have,
E [—(Qk,o - @k,o)Q‘ﬁkq} =- HQ - @kHz (104)
* For the second term, we have, using the Cauchy-Schwarz inequality,
E [(Qk,o - @k,o)(Qk,o - /Q\Z70)’®k—1:| = H(Q —Qn)(Q- 9
Jo-a oo

(105)
d

(106)

J .
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Before proceeding to the third and fourth terms, let us notice that,

E [@k,m — Qk,m‘®k—1:|

= Z dm (s, 2,a) (ék(s,z,a) — Q(s,z,a)) (107)
= Z $,2,a) + dm(s,z,a) — d(s, z,a)) (@k(s,z,a) - Q(s,z,a)) . (108)
Remembering that supy , , Ou(s,z,a) < Band sup, , , Q(s,2,a) < f,y we have,
~ 2
E [(Qk,m — Qk,m> ®k—1}
= Z (d(s,z,a) + dm(s, z,a) — d(s, z,a)) (Qk(s, z,a) — 9Q(s, z,a))2 (109)
~ _ >
o JRyo) + > (duls,2,0) = dls,2,)) (Quls,2.0) = Qs,2.0)) (110)
- , $,z,a - ,
<|Qr—< s [dn — dl|y sup (Qk(S,Z,a) - Q(s,z,a)) (111)
N 2 1 \?
<|Qk—< d+||dm*d||Tv (B+1_,y>7 (112)

where (B + ﬁ) is an upper bound on sup, , ,

Ou(s, z,a) — O(s, z,a)’. Now, using Jensen’s
inequality and the subadditivity of the square root, we have,

E {@km — Qk;m‘@k—l] <E [ (@km — Qkom)?

< \/]E [(@km — Qk,m>2

<||ex- 9|, + <B 4 1_17) ld — gy (115)

®k—1] (113)

%-1] (114)

With this, we proceed to the third and fourth terms (without the multiplier v"*) and show the following.
« For the third term, we have by upper bounding | Oy.o — Qk.o| by B + =
E {(@km - Qk,m)(@k,o - Qk,o)’ﬁk—1]

~ 2 1 2
<@ -gf,+ (B+M> dm — dl|py- (116)

* For the fourth term, we have by upper bounding |Q 0 — @Z,0| by ﬁ + B,
E [(@k,m — Qkm ) (Qr,0 — @Z,o)‘ﬁk—l]

<fan- 9 Jo- 2, + (B+ 117)2 ldm —dly.  (117)

By taking expectation over &y _; of the four terms and using the previous upper bounds, we obtain,

E (B — Bs, gk)]
=E [E[(8x — B+ gk) |G 1—1]] (118)
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< E“Qk—QH] +a+yME[|a -9 J]|jor -,
+29™ (B + 1 ! 7) ldm — dl|1y (119
—(1=y™AL + (1 +9™)A H@ - QHd

+ 2’7 (B + 1_7> \/ ” m d”TV (120)

Let us now focus on the second term of equation (94) with E [||gk||§‘6k,1] Since

Supg ., [10(s,2,a)|ly, < 1and ||Bx]l, < Bforall k > 0, and r;; < 1 for all k¥ > 0 and for
all © < m — 1, the norm of the gradient (95) is bounded as follows,

_/ym
v

1
1 ™B < —— 4+ 2B. 121
B+ (121)

1
sup [|gk|l, <
k>0

We obtain, for the second term of equation (94),
E [lgul3] = E [E [lgnl3|®x1]] (122)
1 2
< < +2B>. (123)
-y
By substituting equations (120) and (123) into the Lyapounov drift of equation (94), we obtain,

2
E[£(Brr1) — L(Br)] < —2a(1 —y™)AZ + 2a(1 + ™) Ay H@* — QHd +o? <1i,y + 2B>

1 2
+dany™ (B + M) ldm — dll7y- (124)
By setting | = 2(17% min e 5 | f — Qll;» we can write,
1 2
EL(Br41) = L(BR)] < —20(1 = ™) (AF - 21A¢) + o (M + 2B>
1 2
+ day™ (B + 1—7) ldm — d|lpy (125)
1 2
= —20(1 —7™) (A2 — AN, + 12) + 2a(1 — ™) + o <1 + 2B>
-
1 2
+ 4dany™ (B + 1_7> ||dm — dHTV (126)
2
m 2 my 72 2 1
= —20(1 —y") (Ac ~ )* + 20(1 ") + o (1+23)

1 2

By summing all Lyapounov drifts ZkK;(,l E[L(Br+1) — L(Br)], we get,

K-1 2
E[£(3) ~ £(0)] < ~2(1=7") Y (& = + 20K (1 ="} + oK (2 + 28
k=0 1 ,
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By rearranging and dividing by 2K (1 — 4™), we obtain after neglecting L(8x) > 0,

1= E[£(fo) — L(Bx)] a 1 ?
Ekzzo = 2aK(1—~™) e 2(1 —~™) <17+23>
(B ) [don — dlry (129)
Hﬂo —/D’*H a 1 ?
< 2aK<1w31> STy <1v HB)

2ym 1\’
B 5T m 1
S ( +—1_7) \ldm = dll7y- (130)

The bound obtained through this Lyapounov drift summation can be used to further develop equation
(84), using the subadditivity of the square root,

K—
E[lo- 2]} < Z @i -1y a3

S—”BD_B*HQ 2+ < (1 —|—2B>
20K (1 —~™) 21 =9ym) \1=~

1 27771
B = 132
e N w2

||50 B ||2 + 7’ym min ||f_ QHd"'_ — < — —|-QB)
20K (1 —~m) 1—9™ jerp 2(L=9m) \1—~

1 2y
B A — d|| 7y - 133
(o) Y il — ey (13)

By setting o = # and upper bounding ||y — B«|| by 2B, we get,
2 1—1-7 1 1
VE[le-2l}] < min |1 - Q| + (1_ +QB>
/9 — ™ fe €F, I /K(l _ ,Ym) Y
2ym
B dm —d 134
+< +1_7>¢1_¢mﬂ v (134)

2
2 1
1B+ (f +2B) g om

= + min - Q
SR T -2l
1 2y
B A, — ||y 135
(o) Y 2l — ey (135)
This concludes the proof. O

D Proof of the Finite-Time Bound for the Symmetric Critic

Let us first find an upper bound on the distance HQ” — Q” between the Q-function Q™ and the
fixed point Q"
Lemma D.1 (Upper bound on the aliasing bias (Cayci et al., 2024)). For any agent-state policy

7w € 1o, and any m € N, we have,

HQW—QﬂdS Zy ="

1—Hm
L=y

- bkm”
TV

E" [Z ol
k=0

H (136)
d
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Proof. The proof is similar to the one of Cayci et al. (2024). Let us first define the expected m-step
return,

m—1

’F’m(sazva) = Eﬂ— [Z ’YkRk

k=0

S() =S, ZO = S,AO = Cl‘|. (137)

Using the expected m-step return and the definition of the belief b in equation (32) and approximate
belief b in equation (33), it can be noted that,

Qﬂ(za a) = ]Eﬂ [Z ’Ykm Z bkm(s|Hkm)77m(s> kaa Akm)

k=0 seS

Q(z,a) = [Z VN bk (5 Zkn ) P (5, Zierns Ak )

k=0 seS

ZO = Z,AO = (L]. (139)

Indeed, bootstrapping at timestep m based on the agent state only is equivalent to considering the
distribution of future states to be b,, (| Z,,) instead of b, (-|H,,). As a consequence, we have,

@"(z0) = Q" (2. a)|

= Z’}/km Z (bkm(s‘Hkm) - Bk’m(s‘zkm)> Fm(57 Zkms Akm) Zy = z, AO = a]
L k=0 seS
(140)
S Eﬂ- ZVWL sup bkm(S‘Hkm) - Bkm(S‘ka) sup lfm(&ka;Akm” ZO = Z,A() =a
| k=0 seS SES
(141)
™ - m 7 1—om
<E™ S35 sup b (5| Hiom) —bkm(s\ka)’ — |z =2 A=a (142)
k=0 seS -
1—~m [& .
= BT |35 sup [ (51 Hiom) = b (51 Z1em) || Z0 = 2 A0 = @ (143)
1 -7 L k=0 seS
1— ,ym [ o ~
< E" ’”"Hbm~Hm—bm-ZmH To = 2, Ay = 144
ST, ;7 ko ([ Hiem) = b (1 Zkm) || | Z0 = 2, Ao = a (144)
<L iy’“’””bkm—ékmu Zo =2 Ao —a (145)
- 1-x — TV ’ ’

where we use by, and by, to denote the random variables bk (| Hgm ) and Bkm(- | Ziem ), Tespectively.
It illustrates that the aliasing bias can be bounded proportionally to the distance between the true
belief and the approximate belief at the bootstrapping timesteps. Then, we obtain,

B |3 e e
k=0

This concludes the proof. O

1—~m

P
d 1—7v

o

Zo =1l (146)

d

Using Lemma D.1, we can prove Theorem 4, that is recalled below. Note that some notations used in
Appendix C will be reused with another meaning.

Theorem 4 (Finite-time bound for symmetric m-step temporal difference learning (Cayci et al.,
2024)). For any agent-state policy m € I, and any m € N, we have for Algorithm 1 with o = %,

K
and arbitrary B > 0,

\/E {HQW - Qﬂui] < €d + Eapp + Eshift 1 Ealias) (34)
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where the temporal difference learning, function approximation, distribution shift, and aliasing terms
are given by,

4B2 + (1L + 2B)
fu= | — \F e (35)
1+
Eapp = n||f—Q", (36)

1—Am fefB

2q™
ot = ( 7) Vel =y @7

™ km ||7

caas = 7 | E" | S0 b = b |20 = (38)

with d(z,a) = > csd"(s,z)m(alz) the sampling distribution, and d,,(2,a) =
> scs dn (s, z)m(a|z) the bootstrapping distribution.

Proof. To ease notation as for the proof of Theorem 3 in Appendix C, we use @ as a shorthand for @7,
@* as a shorthand for @jf, @ as a shorthand for é”, Q@ as a shorthand for Q™ and @ & as a shorthand
for @gk, where the subscripts and superscripts remain implicit but are assumed clear from context.
When evaluating the Q-functions, we go one step further by using Qy, ; to denote Q(Zy ;, Ak.;),
@Z ; to denote @*(Zk iy Ak i)s @;“ to denote @(Zkﬂ-,Akyi) and @;m- to denote @k(Zkﬂ-,Akﬂ-),
and xy,; to denote x(Z ;, Ak,;). In addition, we define d as a shorthand for d™ ® 7, such that

d(z,a) = d™(z)m(a|z), and d,, as a shorthand for d7, ® 7, such that d,,(z,a) = dF,(z)7(a|z2).
Using the triangle inequality and the subadditivity of the square root, we have,

VElle-ali] < & [Jo-aff] +E[Ja-a]] a4
< \Elle-af]Eflo-al]  as
<Jo-al, + /& [lo-al]]

We can bound the second term in equation (149) using similar steps as in the proof for the asymmetric
finite-time bound (see Appendix C). We obtain,

K-1

E U(@—QHZ] <\ X @-nte, (150)

k=0

where [ is arbitrary, and Ay is defined as,

5= B [Ja- @] = & [Ja0 - oo

2
} (151)

a

Similarly to the asymmetric case (see Appendix C), we consider the Lyapounov function £(8 ) =
18« — ﬁ||§ in order to find a bound on + ZkK;()l (A —1)°. We define &, = 0(Zij,Aij,i
k,j <m)and §y = 0(Zk,0, Ar,0). As in the asymmetric case (see Appendix C), we obtain, usmg

to the law of total expectation,

E[£(Brs1) = L8] < 20E [E (B - B, ) 611]) + °E [E [lgn | ©01]] 152
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Let us focus on the first term of equation (152) with E [(8x — B, gk)|®%—1]- By conditioning on the
sigma-fields &;_; and §, we have,

m—1
E[(Bk = Bes g1) |8k, Ok 1] = (E lz V' Rt + 7" Qreym Sy 1| — Qk,o) (Qk,o - QZ,O)
t=0
(153)
Note that, according to the Bellman operator (7), we have,
m—1
E [Z Y Rtk Br1 | = Qo = 7" E [ Qi S, 811 . (154)
t=0

It differs from the asymmetric case (see Appendix C) in that we do not necessarily have Q@ = @ here.
By substituting equation (154) in equation (153), we obtain,

E Bk — B, 96) |k, Br—1]

(i

Sk, Gr_1

+4"E [@k,m‘%k, (’51@—1} - @k,()) (@k,o - @270) (155)

Qro =" E[ka

( Sk, Gr— 1} +"E {Qk m’gkyﬁk 1] - @k,o) (@k,o - @Z,o)
(156)
(Qk, -y [Qk m — Qk m‘gka G 1} - @k o) (@k,o - @k,o + ék,o - @Z,o) (157)
( (Qro — Qo) —7"E [Qk m— Q m‘Sk, G 1D ((@k,o — Qo) + (Qro — @Z,o))
(158)

~(@ro — Qr.0)? + (Qro — Qr0)(Qro — ko)
+"E [@k,m — @k,m’{?m 6k—1} (@k,o - @k,o)
+7"E [@km - ék,m‘glw 051971} (Qro — Q0)- (159)

We now follow the same technique as in the asymmetric case (see Appendix C) for each of the four
terms. By taking the expectation over §x, we get the following.

¢ For the first term, we have,
~ ~ 2
E [~(Qro — Qro)?|®r1] = —[|@ - Q. (160)
¢ For the second term, we have,

E {(@k,o - @k,o)(@k,o - @270)‘616—1} < H@ - @k”d ‘ 0 — (161)

¢ For the third term, we have,

E [(@k,m - @k,m)(@k,o - @k,O)’ﬁk—l}

< H@k—@"z+ (B“‘llv)g\/ ldm = dl|7y- (162)

¢ For the fourth term, we have,

E [(@rm — Qrn) @ro — Qi o) ®1-1

<[le-al,

1 2
+ (B + 17) ldm — dl|py- (163)

24



By taking expectation over &_; of the four terms and using the previous upper bounds, we obtain,

E (B — B g0)] < —(1 =7™)AF + (1 +9™)A¢ Q" - Q|

2
1
4 oym (B + 1—7) [ = (164)

The second term in equation (152) is treated similarly to the asymmetric case (see Appendix C),
which yields,

2
1
E {||gk||§} < (1 +2B> . (165)
-
By substituting equations (164) and (165) into the Lyapounov drift of equation (152), we obtain,

E[£(Bie1) — £(30)] < ~20(1—77)A7 +2a(1 +7™)4 [0~ G + 02 (1+2B)

1 \2

+day™ (B 4 1—7) dm — dllpy- (166)
We can upper bound H@* — Qde as follows,

& -al, <@ -], +]e-a, as7)

By setting | = 2(1%% (H@* — QHd + HQ - @Hd), we can write, following a similar strategy as
in the asymmetric case (see Appendix C),

2
+ 2B>

2
1
+ day™ (B + 1—7) [ — d]|gy- (168)

E [£(fhn) ~ £(80)] < ~2a(1 = 7") (A = 1)+ 2a(1 = ") + ? (1

By summing all drifts, rearranging, and dividing by 2aK (1 — ™), we obtain after neglecting
L(Br) >0,

K-1 2 2
1 ||50_5*|| « 1
- Ap—1)?< 2222 g2 2B
Kk:O( k=) S 2ak(i—ym o=y \i=y T
2
2ym 1
B4+ —— Aoy — ]|y 16
s (B ) e dlny (169)

The bound obtained through this Lyapounov drift summation can be used to further develop equation
(150), using the subadditivity of the square root,

K-1

E D]@—QHj <\ @ (170)

k=0

§ 1
< 150 — BH? +2l+ a ( +2B)
V2aK (1 —~ 2(1 =~m) \1 -«

2y
+ (5 1_7) Vo =y a7

_ B =Bully +l+ a (1 +23>
C 2aK (1 =47 (1—=9m) \1—v

2y
+ <B+ 17> \/1,7m ldm — dl|py- (172)
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Plugging equation (172) into equation (149), and substituting back [, we finally have,

Blle-al] < Al (6o, + o-q])

« 1
+ +23)
2(1 —~m) (1 -

+(B+11 )\/ %Wmm,/|\dm—d\|Tv+HQ—éHd (173)
i'ff}}f*'“ =+ 1o 0 - el o (75 +2)

+< >\/27 \/7d\|w — mHQ QH (174)

Using Lemma D.1, we finally obtain,

E[le-ali] < e 12000 - af,+ [ (725 +25)

1 2y
B dp — d
w (o 1) Yl — ey
2 1— = -
(25) T B [ e -
1 —am — P TV
180 — Bello L4ym™ o (1 )
+ min -9l + +2B
20K (1 — ™) l—vmfeffo la 21 =9m) \1—v

1 29™
+ (B+ 1 _7> \/1 — ym Hdm _d“TV
_Z_E kaém—bmH Z

: H (175)
d

=. H (176)
d

By setting o = \/% and upper bounding |8y — B«|| by 2B, we get,

1821 (& +28) 4w

E ~0l*] < + min - Q
lle-al] < R T Ty I - el
1 2rym /
o0
5 [ S -l |
[Zv [ I (177)
k=0 d
This concludes the proof. O

E Proof of the Finite-Time Bound for the Natural Actor-Critic

Let us first give the performance difference lemma for POMDP proved by Cayci et al. (2024). Note
that this proof is completely agnostic about the critic used to compute 71,72 € Il and is thus
applicable both to the asymmetric setting and the symmetric setting.

Lemma E.1 (Performance difference (Cayci et al., 2024)). For any two agent-state polices 71, me €
1IGVE

1 ™o 2
Ve (Zo) - VM (Zo) S mEd [Aﬂ-l (Z7 A)|ZO = Zo] + j?nf(ZO) (178)

1
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where,

ehi(0) =E™ [Zv [

Zy = Zo]

(179)

Proof. The proof is similar to the one of Cayci et al. (2024). First, let us decompose the performance

difference in the following terms,

V7™ (z9) — V™ (29) = E™ -i V' Ri|Zo = 20| — V™ (20)
Lt=0
—E™ i’yt (Re — V™(Z) + V™ (Z))| Zo = 2
t*O
=E™ Z*y —V™(Z) + V™ (Z411))| Zo = 20
=E™ i Y (Rt + V™ (Str1, Zer) = VTH(Zh)) | Zo = Zo]
Lt=0
+E™ [i v V™ (Zeg1) = WV (St Ze4r))
t=0
=E™ [i V(R + V™ (Se41, Ze1) — V™ (Z0)) | Zo = Zo]
t=0
+E™ [i Y (V™ (Zig1) = V™ (Ser15 Zeta))
t=0

Let us focus on bounding the first term in equation (184). We have, for any 7' > 0,

T
2
Z’Yt (R + V™ (St41, Zig1) = V™ (Zh))| < 5 < 00.
pord (I—=7)
By Lebesgue’s dominated convergence, we have,
2 lz V(R + W™ (Sp41, Ziwr) = VTHZL)) | Zo = ZO]
t=0

YE™ [Re + YV (St41, Zes1) — V7 (Ze)| Zo = 20).

NE

t=

o

Then, by the law of total expectation, we have at any timestep ¢ > 0,

E™ [Ri + YV (St41, Zig1) — VT (Ze)| Zo = 20)

= E [Eﬂ’z [Rt + ")/le (St+1, Zt+1)|Hta Zt] —ym (Zt)|ZO = Zo] .

And, we have,
E™ [Ry + YV™ (Stt1, Zes1) | He = hey Zp = 24
- Z be(st|he)ma(ae]ze) Q™ (8¢, 2t, at)

St,at

= Zﬂ'z aplz)Q™ (2¢, a¢) + Z be(s¢|he)ma(ae|ze) Q™ (s¢, 2¢, ar)

St,at

—Zﬂz at\Zt Ztaat)
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— ‘/vﬂ—1 (Z())

ZO = Zo‘|

ZQ = ZO‘| .

(180)

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)



= 2772 (a¢]2e) Q™ (2¢,a¢) + Z be(se|he)ma(ae|ze) Q™ (s¢, 2¢, ar)

St,at
— Z be(se|ze)ma(ar|ze) Q™ (s¢, e, ar) (190)
= Zﬂz at|2’t Zhat + Z (bt St\ht) - bt(8t|2’t)) 7T2(at\zt) (St,ZnGt) (191)

By noting that sup, . [3=, m2(a|2)Q™ (s, 2,a)| < sup, . ,|Q™ (s,2,a)| < 115, we obtain,

E™ [Ry + W™ (Stt1, Zi+1)|Hy = ht7 Zy = 2]

< sz atl2) Q™ (2, ar) + 1— by (-|he) — by (- 20) W (192)
Finally, the expectation at time ¢ > 0 can be written as,
E™ [Ry + V™ (Sts1, Zig1) — V™ (Ze)| Zo = 2
=E [E™ [Ry + YV (Sts1, Zeg1)|He, Ze) — V™ (Z4)| Zo = 0] (193)
<E™ Q72+ 1 i) - bz - Ve @|zi=x]  as
=E™ |:A7T1(Zt7At) B be(-| Hy) = bi (1 Z4) w|%o= ZO] (195)

Now, by using Lebesgue’s dominated theorem in the reverse direction, we have,

Zy = 29

2 [Z V(R + WV (Se41, Ziwr) — V™ (Z))
t=0

<E™ Z“Y AT (Zy, Av)|Zo = 20| + TEM [Z’Y Hbt - th Zo = 2’01 (196)
=0

=" [Z ,YtA7H (Zt,At) Zy=zp| + ﬁ&‘mf(z’o) (197)
=0

Now, let us focus on bounding the second term in equation (184). We have, for any 7' > 0,

<

T
> ATV Ziga) = V7 (Sk1s Zeg)) < o0. (198)

— (I—=9)?

Zy = Zo]

VHIE™ [V (Zigr) = V™ (St Ziwn)| Zo = 2] - (199)

Using Lebesgue dominated convergence theorem, we can write,

lz VT (Zesr) = V™ (Seat, Zera))
0

By the law of total expectation, we have at any timestep ¢ > 0,
E™ [V (Zig1) = V™ (Sts15 Ze11)| Zo = 20]
=E [V (Zy1) = E™ V™ (Sts1, Zigr) | Hig1, Zesa)| Zo = 20). (200)
And, we have,
E™ V™ (Sei1, 204 1) [ Hewr = g1y Zepr = 2641,
= Z b1 (Set1lhia1) V™ (S141, 2141) (201)

St41
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=V (zt41) + Z b1 (Seq1lhes1) V™ (Se41, 2e41) — V7 (2041) (202)

St41
= V™ (2¢11) + Z bet1(Seq1 1)V (St41, 2e41)
St4+1
- Z 8t+1(5t+1|zt+1)vﬂl (St+1, Zt+1) (203)
St41
=V (241) + Z (bt+1(5t+1|ht+1) - Bt+1(8t+1\zt+1)) VT (8441, Zt41)- (204)
St+1

From there, by noting that sup, , [V™ (s, 2)| < we obtain,

1—~?°
E™ V™ (Seq1, ze01) [ Hew1 = hey1, Zigr = 2zeg1, ]

1 .
>V (a11) = g b Clhes) - bt+1(~|zt+1)HTv. (205)

Finally, the expectation at time ¢ > 0 can be written as,

E™ (V™ (Zi41) = V™ (Sts1, Ze+1)| Zo = 20)]

=E [V™(Zis1) = E™ V™ (Si41, Zes1) | Hivr, Zesa]| Zo = 20) (206)
1 .
<E {Vﬂl(ZtH) — V™ (Zi1) + T Hbt+1('|Ht+1) - bt+1('|Zt+1)HTv Zo = Zo]
(207)
1 .
<E L bt (1Hen) = b (1 Zes) || %0 —ZO]. (208)
— v
Now, by using Lebesgue’s dominated theorem in the reverse direction, we have,
B [Z YTV (Zesr) = V™ (Se41, Zir)) | Zo = ZO]
=0
1 [ .
< T B |0 e ) - beoa(1Ze0)| |20 = 20 209)
S A [boC1Ho) = bo(:120)||_ |20 = 20| (210)
T 2 eC1He) = 0 (1Z0)|| = ||bo(1Ho) = bo(t[Z0)||_ |Z0 = 20
1o [ )
= 71 — ,YE 2 ;’y bt('|Ht) — bt('|Zt) v ZO = ZO‘|
— 2 . — b . —
E H bo(+[Ho) — bo( |ZO)HTV‘Z0 Zo] (21D
1 ; )
= o chi(0) ~ E7 [[eoC1E0) = bo(-120)||_ | Zo0 = =0] (212)
1 s
S ﬁgin?(zo). (2]3)

Finally, by substituting the upper bound (197) on the first term and the upper bound (213) on the
second term into equation (184), we obtain,

+ Le”(zo) (214)

0
V™ (z0) — V™ (z) <E™ LZ; VAT Zy, Ay | Zo = 20 T
= LR (A (2, 4)1 20 = 0]+ ——eT2 (). 215)
I—x 1—~
This concludes the proof. O
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Using Lemma E.1, we can prove Theorem 5, that is recalled below. The proof from Cayci et al.
(2024) is generalized to the asymmetric setting.
Theorem 5 (Finite-time bound for asymmetric and symmetric natural actor-critic algorithm). For any

agent-state process M = (Z,U), we have for Algorithm 2 with a = \/%, =2 FV;;Y, n= % and
arbitrary B > 0,

(1 —7) min E[J(7*) — J(7¢)] < €nac + 26inf + Coo <Eamr + 2€grad + 2\f Z Ecmc>

0<t<T
(40)
where the different terms may differ for asymmetric and symmetric critics,
B? + 21
e = B +2loglA] 4
2VT
(2-7)B
Cactor = || ———————— 42)
actor (1 _ ’y)\/]v (
Einfasym = 0 (43)
N o0
Eintsym = B lz 7" ku a kaTV] “9)
k=0
Egradasym — SUpP min L; (U}) (45)
0<t<T
€gradsym = SUp min Lt(w), (46)
0<t<T

and €7t is given in Theorem 3 and Theorem 4.

CI‘IUC
Proof. The proof is based on a Lyapounov drift result using the following Lyapounov function,

(m) =Y d" (2)KL(7"(2) | w(]z)). (216)

z€EZ
The Lyapounov drift is given by,
m(alz
A(meq1) — Z a- ( Z 7*(a)z) log t(()) (217)
z2€Z acA Te+1\a]2
— Zd” (2,0) _mlalz) 218)

* T(ale)

Since sup, , [|¥(z,a)l|, < 1, we have that log ms(alz) is 1-smooth (Agarwal et al., 2021), which
implies,

1
log mg, (a]z) < logmy, (a|z) + (Vg logme, (a]z),02 — 01) + 3 |62 — 01||§ . (219)

By selecting 62 = 6, and 6; = 6,1 and noting that 6; 1 — 6; = nw, = n% Zﬁ;_ol Wy, We obtain,

mi(alz)

log ————
gmﬂ(a\z) - 2

Ithllz (Ve logmi(alz), wr). (220)

Now, we separately bound the Lyapounov drift for the asymmetric and symmetric settings. In the
following, some notations are overloaded across both setting when their meaning is clear from context.
For the asymmetric setting, we have,

A(mis1) — Z 4" (z,a) _mlals) 221)

7rt+1(a|z)
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2
< T3 =0y d™ (2, a)(Volog mi(al2), i) (222)

2
o n 2 ¥ Tt
=3 B°—n E d™ (s,z,a)A™ (s, z,a)

-7 Z d™ (s,z,a) ((Vglogm(alz), ) — A™ (s, 2, a)) (223)
n? 7r m
§? ng:ad (s,2z,a)A™ (s, z,a)

+n Z dr (s, 2, a)\/(<V9 log m:(alz), we) — A™t (s, 2, a))Q. (224)
For the symmetric setting, we observe instead,

A(ogr) — Zd“ 2, a) WZEC(LZ)) (225)

77 2 " Tt
S?B 777261 (Zva)A (Z7a)

0 d (500 (Vologmalz), @) — Am(z,0))%.  (226)

Now, let $; denote the sigma field of all samples used in the computation of m; (which exclﬂdes the
samples used for computing w;), along with all the samples used in the computation of Q™. We
define the ideal and approximate loss functions, both in the asymmetric and the symmetric setting,

£i(w) = B [((Vologm(4|Z), w) — A™ (S, Z, )| (227)
Liw) = B [((Vologm(A12), w) — A™(S, 2, 4))°|,] (228)
Ly(w) = E [((Volog m(4]2),w) — A™(Z, A))*|5.] (229)
Lu(w) = E [((Volog mi(4]2),w) — A7 (2, 4))° | (230)

Because E |||V V™| || < E[[|Q™ - @™ |[},,
advantage A and its approximation 4 is upper bounded by,

ﬁt}, the error between the asymmetric

\/IE [(Zm(s, Z,A) — Am(S, 2, A))°

— VB[ - an

= JE[lg - v - om v,

)

ﬁt} (231)

5’34 (232)

= [E[1Z - 0m s vme -9,

o 233)

< Bl —onli + o -5 o] -
< \/E :Hgm _ Qm”im ﬁt} + \/E [HVﬂ't _ V‘n’tHZﬂ ﬁt} (235)
< 26(T;‘titic,asym7 (236)
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where f:-crmc asym gtd ,asym + Eapp asym

Similarly, the error between the symmetric advantage A and its approximation A is upper bounded
by,

+ Eifasym 1S given by the upper bound (28) in Theorem 3.

\/JE |(A7(2,4) - a7 (2, A))Q‘m} < 2T s (237)

where 7 +eitn sym —i—sahas sym is given by the upper bound (34) in Theorem 4.

crmc sym ld ,sym + Eapp sym
By using the inequality (z + y)? < 222 + 232,

_ — 2
Liw)=E [(<v9 log m(A|Z), w) — A™(S, Z, A)) M (238)
=K {(<V@ log i (A|Z),w) — A™(S, Z, A) + A™ (S, Z, A) — A™ (S, Z, A))2 ,ﬁt}
(239)
< 2 (Vg log mi(Al2), w) — A™(S, Z, 4))°|]
+9F [(Am (S, 2, A) — A™(8, Z, A))* ‘m} (240)
< 21:75( ) + 2(2 crmc dsym)z' (241)
Similarly, we obtain in the symmetric case,
Et(w) < 2Lt( ) + 2(2 crmc sym)z' (242)
Starting from the ideal objective and following a similar technique, we also obtain,
‘Ct(w) S 2£’t( ) + 2(25(7;;1(: ewym)2 (243)
Ly (w) < 2Lt( ) + 2(2621‘1;[10 sym)2' (244)
By using Theorem 14.8 in (Shalev-Shwartz & Ben-David, 2014) with step size ( = B\/%V, we
obtain for the average iterate w; under the asymmetric loss and symmetric loss, respectively,
‘Ct (wt) actor + I HHHH ‘Ct( ) (245)
Li(w L 24
t<wt) = actor + HufﬁlzlgB t( ) (246)
_ (2-y)B . . . Lo .
where 2, = VR On expectation, for the ideal asymmetric objective L, we obtain,
E [‘Ct (’wt)] < 2E [Zt (’wt)} + 2(2 crmc asym)2 (247)
< 2€dct0r +2 HUH\12H§13 ’Ct( ) + 2(252;1[10 asym)2 (248)
< 2E'fctor +2 (2 erﬂlng ’C’t( ) + 2(252—&10 asym) ) + 2(2 crmc asym)2 (249)
= 2€act0r + 4 min Et( ) + 6( Cl’lth dsym)2 (250)
llwll2<B
= 2gactor +4 ( grdd dsym) + 6( crmc dsym)2’ (251)
where we define the actor gradient function approximation error as,
2
(Egrtad,asym) = ||wr\(|1;23 Ly (U)) (252)
Similarly, we obtain on expectation for the ideal symmetric objective L,
E [Lt (wt)] < 25:act0r +4 ( grdd sym) + 6( crmc sym)27 (253)
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where we define the actor gradient function approximation error as,

(s’" )2: min Ly (w). (254)

rad,sym
gracsy lwl2<B

Now, let us go back to the asymmetric and symmetric Lyapounov drift functions of equation (224)
and (226). First, we assume that there exists C's, < 0o such that sup, - E[C}] < C with,

d™ (s, 2)7*(a|2)

a7 (s, 2)mp, (al2) | (259

C; = sup

5,2,a

Second, we leverage the performance difference lemma to bound the advantage. For the asymmetric
setting, the performance difference lemma for MDP (Kakade & Langford, 2002) holds because of the
Markovianity of (S, Z;),

(1—7) (v”*(so, 20) — V™ (s0, zo)) — B A (S, Z, A)[So = 50, Zo = 20]. (256)

We note that E [V™ (Sy, Zo) — V™ (So, Zo)| = E[J(7*) — J(m)], such that,
—ET A8, Z, A)] = —(1 —5) (J(x*) — I (m). (257)
= _(1 - ’7) (J(ﬂ—*) - J(ﬂ—t)) + Einfasym, (258)

where €inf asym = 0. For the symmetric setting, using Lemma E.1 with mp = 7* and m; = 7, we note
that,

(=) (V7" (20) = V™ (20)) S BT [A™(Z, 4)|Z0 = 20) + 250 (20),  (259)
which implies,
CEY (A (2, A) Zo = 0] < —(1 — ) (V”* (20) = V™ (zo)> Y27 (%), (260)

We note that E [V™ (Zy) — V™ (Zy)] = E[J(n*) — J(m;)] and we denote E [e77 (Zo)] with Eint.eym.
so that,

Entom = E [IE”* S o = o | %0 = 20 261)
P v
e[S fnl,]

[Zv b — bi|| (262)

k=0

By rearranging, we have,

~E¥ [A™(Z,A)] < —(1 =) E[J(7*) = J(7)] + 2€intsym- (263)
Note that 3 ., d™ (s, z,a)f(s, 2, a) = Yeia %d’”(s7 z,a)f(s,z,a) <

Ctd g ad™(s,2,a)f(s,2,a) for positive f. Taking expectation over the asymmetric Lya-
pounov drift of equation (224), we obtain using equation (255),

2
E [A(mi1) = A(m)] < B2 =0 d™ (2,0)A™ (2,0)

+n Z d™ (s, z, a)\/(<Vg log mi(alz), @) — A™ (s, z,a))>  (264)
2
< LB =1 = DE[J(x*) = J(m1)] + 2eintasym

~ 2
+ ncoo \/Qggcmr +4 (Egrtad»asym) + 6(25:‘:rrfitic,asym)2 (265)
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2
< %Bz — (1 = NE[J(7) = T(7)] + 2ningasym

+1Cx (\f Eactor + 26 g asym + 2V 600 abym) . (266)

Similarly, taking expectation over the symmetric drift of equation (226), we obtain a similar expres-
sion,

2
E [A(mi1) = A(m)] < B2 =0 d™ (2,0)A™ (2,0)

z,a

+n Z d™ (z,a) \/((V@ log m(alz), @) — A™ (2, a))? (267)

]

< =B —n(1 = nE[J(x*) — J(m)] + 20ing.sym

0o |3

+1C (\f Eactor T QEgmd sym T 2\/ésfr§[ic’sym) . (268)

Given the similarity of equation (266) and equation (268), in the following we denote the denote the

upper bounds using €iyf, € grad and e}, , irrespectively of the setting (i.e., asymmetric or symmetric).

By summing all Laypounov drifts, we obtain,

9 T-1
E [A(rr) = Almo)] < T75-B? (1 =) Y E[T(x*) = J(m)] + 20T eus
t=0
T-1
+1Y Co (V2eeor + 2650 + 2V6e Tl ) (269)
t=0
9 T-1
< T%BQ — (1 =) STE[J(x*) = J(m)] + 20Teim
t=0

+ 77600 <\/>T€actor +2 Z Egrad + 2\/> Z ECFIUC) . (270)

t=0

Since 7y is initialized at the uniform policy with 6y := 0, we have,

=) d" (2)KL(r"(-|2) || mo(-]2)) (271)
z€EZ

= Z d™ (z) (Z 7 (a|z) logm*(alz) — Z 7 (a|z) log wo(a|z)> (272)
z2€EZ acA acA

=>"d" (2) (Z m*(alz)logm*(alz) — > 7*(al2)log |A|> (273)
zEZ acA acA

=Y d"(2) (Z 7*(a|2)log 7*(a|z) + log |A|> (274)
z2€EZ acA

=Y d™ () (log|A| — H(m*(-]2))) (275)
z€EZ

<) d7 (2)log | Al (276)
z2€EZ

< log | Al (277)

where H denotes the Shannon entropy. Rearranging and dividing by 17", we obtain after neglecting
L(mr) >0,
T—1

E[ ™)) <

t=0

log |[A] 71 5
B 2inf
T + 5 + 2€int

'ﬂ\'—‘
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T-1
— 1
.o (x/i+2TZ L+ 2vEL Z)

(278)
It can also be noted that ming<;<r[z:] < % Z]‘TZO ¢, which implies that,
(1 =) i, E[J(x*) = J(m)] < biTA' + 2B 1 2y
(\f Eactor T 2 Z Egrad + 2\[ Z scrmc>
(279)
Let us define the worse actor gradient function approximation error,
Egrad = . iltlpT Egrad (280)
= 0 i L) @D
and let us note that,
1
T > emta < Epraa (282)
t=0
By setting n = ﬁ, we obtain,
(1) min () — ()] < 1"3';" o
(\f Eactor + 2= Z Eqmd + 2\[ Z 5crmc>
(283)

B? 4 2log | A - = .
2 T 2O8A L oRT v H
2\/T + ZV k k v

(284)

This concludes the proof. O
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