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ABSTRACT

Masked autoencoders have become popular training paradigms for self-supervised
visual representation learning. These models randomly mask a portion of the in-
put and reconstruct the masked portion according to assigned target representa-
tions. In this paper, we show that a careful choice of the target representation is
unnecessary for learning good visual representation. Driven by this observation,
we propose a multi-stage masked distillation pipeline and use a randomly ini-
tialized model as the teacher, enabling us to effectively train high-capacity mod-
els without any effort to carefully design the target representation. On various
downstream tasks of classification, transfer learning, object detection, and seman-
tic segmentation, the proposed method to perform masked knowledge distillation
with bootstrapped teachers (dBOT) outperforms previous self-supervised meth-
ods by nontrivial margins. We hope our findings, as well as the proposed method,
could motivate people to rethink the roles of target representations in pre-training
masked autoencoders. The code and pre-trained models are publicly available at
https://github.com/liuxingbin/dbot.

1 INTRODUCTION

Masked Image Modeling (MIM) (He et al., 2022; Wei et al., 2022a; Baevski et al., 2022; Zhou et al.,
2021) has recently become an active research topic in the field of visual representation learning
and establishes strong performance for vision recognition tasks, e.g., image classification, object
detection, and semantic segmentation, which also surpasses traditional supervised learning (Touvron
et al., 2021) mechanism. To be specific, MIM randomly masks a portion of the input and then
reconstructs the masked portion according to the transformed target, formulated as

min
θ

E
x∼D

M(T (x⊙ (1−M)), fθ(x⊙M)), (1)

where “⊙” means element-wise product; M is the patch mask; “x ⊙ M” represents “unmasked
patches” and vice versa; fθ(·) is the learnable network to be pre-trained; T is the transformation
function generating the reconstructed target. T can either be a parameterized network or a traditional
image feature transformation method; M(·, ·) is the similarity measurement, e.g., l2-distance (He
et al., 2022). A masked image passed through the network fθ(x ⊙ M) to reconstruct the visual
representation of the intact image with transformation T (x⊙ (1−M)).

A crucial problem of MIM is how to choose the reconstructed target, i.e., T (·) in Eq. (1). Previous
methods use disparate teacher networks to generate the reconstruction target. BEiT (Bao et al., 2022)
employs a pre-trained DALL-E (Ramesh et al., 2021) as the teacher network. In MaskFeat (Wei
et al., 2022a), authors use HOG (Dalal & Triggs, 2005), MoCo (He et al., 2020) and DINO (Caron
et al., 2021) features to perform MIM; MVP (Wei et al., 2022b) employs a multi-modality model,
CLIP (Radford et al., 2021), which is pre-trained by rich image-text pairs. MAE (He et al., 2022)
uses image pixels as the target, which functions likewise to a randomly initialized teacher network,
as demonstrated in Appendix B.1. iBOT (Zhou et al., 2021) and data2vec (Baevski et al., 2022) use
the exponential moving average (EMA) strategy to update teacher’s parameters ϕ. Though different
methods differ in their architectural designs and optimization, the choice of the teacher network lies
crucial for each method and calls for a systematic study. In this work, we paraphrase a term Masked
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Knowledge Distillation (MKD) to focus our discussion on a special case of MIM where the target
is generated by a parameterized network (teacher network), i.e., T (·) = hϕ(·). In this setting, T is
the teacher network, and f is the student network.

The purpose of our work is to investigate whether a careful design of the teacher network for MKD
matters. Such exploration is nontrivial given that different teacher networks contain different knowl-
edge we endued into the teacher network, which may induce diverse behaviors for the student net-
works. And the painstaking selection of the target representations in the field of MIM. To this
end, we compare student networks distilled by four teacher networks with different computation
pipelines, i.e., DINO (Caron et al., 2021) for contrastive learning, MAE (He et al., 2022) for masked
autoencoding, DeiT (Touvron et al., 2021) for supervised learning, and DALL-E (Ramesh et al.,
2021) for autoregressive generation. Four teachers are all pre-trained on ImageNet-1K for a fair
comparison. To our surprise, although the behaviors of the teacher networks are very different, the
distilled student networks share similar characters after several stages of MKD: (i) the performance
variance between student networks distilled from different teachers rapidly decreases. (ii) the model
weights and output features across layers within the networks share similar properties.

Such observations indicate that the design of target representation is not essential when pre-trained
with multi-stage, i.e., teacher networks do not matter with multi-stage masked knowledge distilla-
tion. Exceptionally, we use a randomly initialized model as teacher to perform multi-stage masked
knowledge distillation, and find that it performs as well as those initialized by pre-trained models
with the exact same settings! Using a random model as teachers not only avoids an extra pre-training
stage, but also alleviates the painstaking selection of the target representations.

Based on the above studies and observations, we naturally propose to perform masked knowledge
distillation with bootstrapped teachers, short as dBOT . Specifically, masked knowledge distil-
lation is performed repeatedly in multiple stages. At the end of each stage, we assign the student’s
weight to the teacher and re-initialize the student’s weight to continue masked knowledge distil-
lation. With simple yet effective design that enables pre-training starting from randomly initial-
ized teachers, dBOT achieves 84.5%, 86.6%, and 88.0% top-1 fine-tuning accuracy on ImageNet-
1K (Deng et al., 2009) with ViT-B/16, ViT-L/16, and ViT-H/14, respectively, significantly surpassing
previous states of the art, MAE. Beyond that, dBOT achieves 52.7 and 56.0 APbox for object de-
tection on COCO (Lin et al., 2014), as well as 49.5 and 54.5 mIoU for semantic segmentation on
ADE20K (Zhou et al., 2017), with ViT-B/16 and ViT-L/16 respectively. We also explore MKD with
teachers of larger sizes, further boosting model performances on various visual tasks.

2 RELATED WORK

2.1 SELF-SUPERVISED VISUAL LEARNING

Self-supervised learning is an active research topic recently. Early practices revolve around con-
trastive learning (He et al., 2020; Chen et al., 2020; Grill et al., 2020; Caron et al., 2020; 2021) where
the model output features of images transformed by different data augmentations are pulled together.
With the development of Masked Language Modeling (MLM) in language pre-training (Devlin
et al., 2019), researchers also introduce the training strategy of masked reconstruction to visual pre-
training. BEiT (Bao et al., 2022) uses the DALL-E (Ramesh et al., 2021) to encode an image patch
as the target for model reconstruction. iBOT (Zhou et al., 2021) uses an online teacher shifting the
target from offline to online to make the target semantic meaningful. In addition to using the token
obtained from offline or online model as reconstruct target, MAE (He et al., 2022), SimMIM (Xie
et al., 2022), and MaskFeat (Wei et al., 2022a) achieve good performance in masked-image recon-
struction using low-level pixels or HOG (Dalal & Triggs, 2005) features. Among them, MAE uses an
asymmetric encoder-decoder structure greatly increasing the training efficiency. data2vec (Baevski
et al., 2022) demonstrates good generalizations on three modalities (vision, speech, and language)
by reconstructing multiple neural network layer representations.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation (KD) is widely employed in model knowledge compression (Hinton et al.,
2015), which improves the performance of the smaller student model by distilling the knowledge
learned from a well-trained large teacher network. Further study on e.g.relational KD (Park et al.,
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computation
pipeline

initialized
teacher

classification object detetion semantic segmentation
0th 1st 2nd 3rd 0th 1st 2nd 3rd 4th 0th 1st 2nd 3rd 4th

Supervised DeiT 81.8 83.6 84.3 84.3 49.1 50.5 52.5 52.4 - 46.4 49.2 50.4 49.9 -
Contrastive DINO 83.2 84.2 84.5 84.4 50.1 52.5 52.9 52.7 - 46.8 49.7 50.4 49.4 -
Autoregressive DALL-E 81.1 83.5 84.4 84.3 31.9 51.0 52.7 52.5 - 31.9 47.4 49.6 49.3 -
Autoencoding MAE 83.6 84.3 84.4 84.3 50.6 52.9 52.7 52.5 - 48.1 49.6 50.4 49.8 -
- random 77.3 83.4 84.5 84.3 29.2 49.6 52.4 52.7 52.4 25.7 47.0 49.1 49.5 49.5
performance variance 2.24 0.37 0.07 0.04 9.54 1.23 0.17 0.12 - 9.19 1.15 0.54 0.23 -

Table 1: The top-1 classification accuracy on ImageNet-1K, object detection AP-box on COCO
with Cascade Mask R-CNN, and semantic segmentation mIoU on ADE20K with UperNet of dBOT
using different models as the initialized teacher network. Note that all models are pre-trained on
ImageNet-1K, including DALL-E, for a fair comparison. We perform distillation in each stage for
800 epochs. In the 1st stage, we distill from initialized teacher to obtain a student. In the subsequent
(i.e., 2nd, 3rd, etc.) stages, the obtained students are leveraged as bootstrapped teacher to distill a
new student.

2019), contrastive KD (Tian et al., 2019), and latent feature KD (Romero et al., 2015) is conducted to
improve the performance of vanilla KD. Beyond its prominence in the field of supervised learning,
KD recently cuts a figure in self-supervised learning. Concurrent work manages to adopt conven-
tional feature distillation (Wei et al., 2022c) to match contrastive models with MIM-trained ones.
Nevertheless, it shows negligible gains on MIM-trained models such as MAE. BEiT (Bao et al.,
2022), MaskFeat (Wei et al., 2022a) and MVP (Wei et al., 2022b) could be seen as distilling knowl-
edge from dVAE (Ramesh et al., 2021), HOG features (Dalal & Triggs, 2005) and language-induced
model CLIP (Radford et al., 2021) within the discourse of MKD, respectively. Until now, there
exists no work conferring a system-level study on the importance of how to choose adequate target
representation or teacher networks to guide the learning of MKD.

3 DOES hϕ(·) MATTER IN MKD?

Given the general form of masked knowledge distillation as shown in Eq. (1), in this section, we
aim to investigate whether the careful design of the target, i.e., teacher network hϕ(·), matters.
Specifically, we want to answer three questions as follows:

• Whether models distilled from different hϕ(·) differ in terms of their transfer perfor-
mances?

• Whether distilled models differ in terms of their weights and outputs?
• If hϕ(·) does not matter, what matters more to close the gap between students distilled from

different hϕ(·)?

To answer these questions, we employ the standard masked autoencoder framework (He et al., 2022)
to give a system-level study, introduced next.

Common setup. The architectural settings strictly follow (He et al., 2022). For the teacher net-
work, we use the vanilla ViT (Dosovitskiy et al., 2021) with intact input. For the student network
with masked input, we use the asymmetric encoder-decoder structure. The student’s output is fur-
ther projected to a dimension the same as that of teacher’s embedding. During pre-training, we
use Smooth L1 loss (Girshick, 2015) for the optimization of the student network, and the teacher
network is kept fixed. Detailed settings are delayed to Appendix A.1. We pre-train models on
ImageNet-1K (Deng et al., 2009) and conduct evaluation under classification on ImageNet, object
detection on COCO (Lin et al., 2014), and semantic segmentation on ADE20K (Zhou et al., 2017).

3.1 PRELIMINARY STUDY

We first investigate the effect of using networks initialized differently as teachers for masked knowl-
edge distillation. Four canonical methods as pre-trained teachers are substantiated, each from a
category distinguished based on their computation pipelines, i.e., DeiT (Touvron et al., 2021) for
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supervised learning, DINO (Caron et al., 2021) for contrastive learning, DALL-E (Ramesh et al.,
2021) for autoregressive generation, and MAE (He et al., 2022) for autoencoding. The results of
initialized teacher at the 0th stage and of its distilled student at the 1st stage are shown in Table 1.

Different hϕ(·) lead to similarly performed students. After the first stage of masked knowledge
distillation, the student consistently outperforms teacher as shown in Table 1, yielding 1.8%, 1.0%,
2.4%, and 0.7% performance gains for four different hϕ(·) respectively, demonstrating the effective-
ness of masked knowledge distillation for visual representation learning. Although the performance
order of different hϕ(·) is reserved after the first stage of distillation, the students distilled from dif-
ferent hϕ(·) have closer downstream performances compared to the original hϕ(·). The performance
variance drops from 2.24 to 0.37 after the first stage of distillation. The conclusion holds true for
experiments on object detection and semantic segmentation.

3.2 DISTILLATION WITH MULTIPLE STAGES

Given the observations that better teacher generally induces better outperforming student, we are
motivated to use the trained student as teacher to train new student repeatedly and study whether
similar trend endures. If so, we would like to seek at what stage the performances saturate for differ-
ent downstream tasks, as well as the discrepancy among the results incurred by different initialized
teachers.

hϕ(·) does not matter with multi-stage distillation. The performance gain is valid but decreases
with multi-stage and eventually vanishes. Take MAE being the initialized teacher as an example,
students outperform teachers by +0.7%, +0.1%, -0.1% for classification, +2.3, -0.2, -0.2 points for
object detection, and +1.5, +0.8, -0.6 points, for semantic segmentation, from the 0th to the 3rd

stage. Other teachers and downstream tasks share the same conclusion. Moreover, the performance
gaps of students learned from different teachers decrease, especially after multi-stage, as shown by
the performance variance at different stages in the last row of Table 1. Take classification tasks
for instance, the variance decreases along with the training stage, i.e., 2.24, 0.37, 0.07, 0.04, which
reveals that the choice of hϕ(·) exerts little influence on the downstream performance. See Table 1
for results of more downstream tasks. To demonstrate models’ differences in terms of weights and
outputs, we conduct a property analysis in Sec. 6. Similar properties are found, which verify our
conclusion.

A random hϕ(·) works surprisingly well. Since the choice of hϕ(·) does not matter, an intuitive
experiment is to see what will happen when we employ a random teacher, in which the parameters
are randomly initialized at the 0th stage. To our surprise, using a random teacher achieves per-
formances comparably with other pre-trained teachers. Compared to a randomly initialized model,
distilled students with multiple stages achieve 6.1%, 20.4, and 21.3 performance gain on classifi-
cation, object detection and semantic segmentation respectively. Empirically, object detection and
semantic segmentation require one more stage to saturate compared to classification. The saturated
results are on par with those induced by pre-trained teachers, which enables us to train a state-of-the-
art model more efficiently, without the need of an extra pre-training stage for the initialized teacher
(e.g., contrastive learning as DINO).

4 MKD WITH BOOTSTRAPPED TEACHERS

The study in Sec. 3 motivates us to propose a multi-stage distillation pipeline for pre-training. The
entire pre-training undergoes multiple stages split by breakpoints. For each stage, we fix teacher
network to obtain a stable visual representation, guiding the learning of student network. The pre-
trained student model is then used as a stronger teacher and distills its knowledge to a new subse-
quent student, providing richer visual representations. We re-initialize the student network at each
breakpoint. The above process repeats itself - the teachers keep bootstrapped from the students, until
a performance saturation on downstream tasks is observed. Hence, our strategy is to perform distilla-
tion with bootstrapped teachers. We illustrate our framework in Fig. 1c and the conceptual relations
with the other two paradigms in Fig. 1. By noting m as the momentum which indicates how fast the
teacher’s parameters θt is updated from student’s parameters θs, i.e., θt = m · θt + (1 −m) · θs,
we present the following discussions.
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Figure 1: Conceptual comparison of three masked image modeling paradigms. The difference
between the three paradigms is how the parameters of the teacher network are updated. (a): The
parameters of the teacher network are frozen during the whole training process, constructing an
offline teacher. (b): Exponential moving average is applied to correlate the parameters of the student
and teacher networks, constructing an online teacher. (c): dBOT uses a multi-stage distillation
pipeline, i.e., the parameters of the teacher network are frozen except at breakpoints, where we
assign student parameters to the teacher and re-initialize the student network.

Relations with previous methods. One group of works leverages pre-trained teacher as in
Fig. 1a, i.e., BEiT (Bao et al., 2022). The teacher requires an extra stage of pre-training and is
kept fixed with m = 1. Ideally, pre-trained teachers bear additional knowledge which is prone to
be more semantic meaningful, prompting student’s learning. Nonetheless, the pre-training of these
teachers entails a completely different computation pipeline (Wei et al., 2022a) and often addi-
tional data (Wei et al., 2022b), complicating its practical use. Another group as in Fig. 1b works
with random teacher in dispense with pre-trained ones. Starting from randomness, the teachers in
iBOT (Zhou et al., 2021) and data2vec (Baevski et al., 2022), however, are bootstrapped from the
student typically with m ∈ (0, 1), e.g., 0.9998 as in (Baevski et al., 2022). Although bootstrap in-
duces improving quality of the teacher’s representation, the pipeline is plagued by its optimization
instability and sensitivity towards hyper-parameters. We note that MAE uses identity mapping of
pixels as the target, which is observed to function similarly as a fixed random teacher with m = 1,
as shown in Appendix B.1. Despite its simplicity, such practice eludes synergy between the teacher
and the student. Comparatively, dBOT is with m = 0 for every breakpoint and m = 1 otherwise.

5 EXPERIMENTS

5.1 PRE-TRAINING

Architecture. We use different capacity Vision Transformers (Dosovitskiy et al., 2021), i.e., ViT-
B/16, ViT-L/16, and ViT-H/14 for dBOT. The input image of size 224×224 is first divided by a
linear projection head into non-overlapping patch tokens total of 196 for ViT-B and ViT-L, and
256 for ViT-H. We exactly follow the common setup demonstrated in Sec. 3, e.g., a student with
asymmetric encoder-decoder architecture, a teacher with intact input, etc.

Optimization. The learning rate is first linearly increased to the initial learning rate for the first
40 epochs and then cosine annealed to 0. The initial learning rate is set as 1.5e-4 × batch size
/ 256, with batch size being 4096 for all models. We use the AdamW optimizer (Loshchilov &
Hutter, 2019) and Smooth L1 loss (Girshick, 2015) to optimize the parameters of student network.
Stochastic drop rate are applied, 0.2 for ViT-B, 0.2 for ViT-L, and 0.3 for ViT-H. We use only
center-crop and flipping for data augmentation. As shown in Table 1, the performance of different
downstream tasks saturates at different stages. By default, we pre-train all models for classification
with 2 stages, for object detection and semantic segmentation with 3 stages.

5.2 IMAGENET RESULTS

We primarily focus on the end-to-end fine-tuning performance and report the top-1 validation accu-
racy on ImageNet-1K (Deng et al., 2009) dataset.
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Table 2: Comparison fine-tuning result of the previous methods
on ImageNet-1K. We evaluate by the end-to-end fine-tuning protocol.
All results are based on an image size of 224, except for ViT-H with
an extra result with 448 image size. We perform distillation in each
stage for 800 epochs and with 2 stages (our default) in total.

method ViT-B ViT-L ViT-H ViT-H448

supervised 82.3 82.6 83.1 -
MoCo v3 83.2 84.1 - -
DINO 83.6 - - -
methods based on masked image modeling:
BEiT 83.2 85.2 - -
iBOT 84.0 85.2 - -
MAE 83.6 85.9 86.9 87.8
data2vec 84.2 86.2 - -
dBOT 84.5 86.6 87.4 88.0

Table 3: Semi-supervised
learning on ImageNet-
1K with different self-
supervised models. 1%
and 10% represent the
label fraction. ViT-B is
selected as the arch. All
results are based on our
implementation with the
official pre-trained model.

method 1% 10%
supervised - 68.9
data2vec 48.7 71.2
MAE 53.1 73.1
dBOT 54.8 74.5

Table 4: Object detection and instance segmentation on COCO and Semantic segmentation
on ADE20K. All results are based on our implementation with the official pre-trained model. We
perform distillation in each stage for 800 epochs and with 3 stages (default).

method APbox APmask

ViT-B ViT-L ViT-B ViT-L
supervised 49.8 51.2 43.2 44.5
DINO 50.1 - 43.4 -
MAE 50.6 54.0 43.9 46.2
iBOT 51.3 - 44.3 -
dBOT 52.7 56.0 45.7 48.2

method mIoU mAcc
ViT-B ViT-L ViT-B ViT-L

supervised 47.4 49.9 - -
iBOT 48.4 52.3 59.3 63.3
data2vec 48.2 - 59.5 -
MAE 48.1 53.6 58.9 65.5
dBOT 49.5 54.5 60.7 66.0

Evaluation setup. We sweep the base learning rate within a range with a batch size being 1024.
We warm up the learning rate during the first 5 epochs to the initial learning rate and use a cosine
schedule for the rest of the epochs. We average all the patch tokens output from the last transformer
block and pass them into a linear projection head for classification. We fine-tune ViT-B for 100
epochs and ViT-L and ViT-H for 50 epochs in total.

Comparison with previous results. We report the fine-tuning results on ImageNet-1K, mainly
focusing on the comparison of the self-supervised and supervised methods. Supervised denotes the
results reported in the MAE. As shown in Table 2, dBOT achieves remarkable results with different
model capacities, demonstrating its scalability. We achieved top-1 evaluation accuracy of 84.5%,
86.6%, and 87.4% with ViT-B, ViT-L, and ViT-H, yielding gains of 0.9%, 0.7%, and 0.5% compared
to MAE. When fine-tuned with an image size of 448, dBOT further achieves an accuracy of 88.0%,
surpassing the results obtained by MAE.

Semi-supervised learning. To investigate the label efficiency of dBOT, we also show the semi-
supervised results on ImageNet-1K under different labeled data availability in Table 3. We focus
on the comparison with self-supervised learning methods. The label-fraction sampling strategy
follows (Chen et al., 2020). dBOT outperforms MAE by 1.7 and 1.4 points using 1% and 10% of
the labels, respectively, showing a higher label efficiency.

5.3 DOWNSTREAM TASKS

To further demonstrate the effectiveness, we consider dense prediction tasks: object detection, se-
mantic segmentation, and instance segmentation.

Objection detection and instance segmentation. We consider Cascade Mask R-CNN (Cai &
Vasconcelos, 2019) as the task head for object detection and instance segmentation with ViT-B
and ViT-L on COCO (Lin et al., 2014). We report APbox and APmask for object detection and
instance segmentation respectively. The results are demonstrated in Table 4. dBOT outperforms the
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Table 5: Ablation study with ViT-B/16 on ImageNet-1K validation set. We report with the end-to-
end fine-tuning top-1 accuracy (%). Ablation study is conducted with randomly initialized teachers.
We note that models distilled from the pre-trained teachers generally share similar trends. Default
settings are marked in gray . vanilla denotes m being 0 at the breakpoint and 1 otherwise. co-
sine(a,b) denotes m is cosine annealed from value a to b.

(a) Stage split number. 2-stage
distillation works the best.

pre-training epochs acc
1600 83.6
800-800 84.5
533-533-533 84.4

(b) Epoch for each stage. 2-
stage distillation with 800 epochs
for each stage works the best.

pre-training epochs acc
400-800 84.3
800-400 84.3
800-800 84.5
800-1200 84.3

(c) Momentum update. The
vanilla strategy explicitly splitting
stages works the best.

momentum acc
vanilla 84.5
0.9998 83.6
0.9999 83.9
cosine(0.996,1) 82.1

(d) Target normalization. Using
patch representations w/o [LN] as
targets works best.

target norm acc
w/ [LN] 84.3
w/o [LN] 84.5

(e) Student initialization. Re-
initializing the student’s weight at
breakpoints works best.

student init acc
w/o re-initialize 84.2
w/ re-initialize 84.5

(f) Mask ratio. A mask ratio of
75% works best.

mask ratio acc
0.7 84.3
0.75 84.5
0.8 84.2

previous self-supervised and supervised methods by a large margin, setting a new state-of-the-art
result with both ViT-B and ViT-L. With ViT-B, dBOT achieves a APbox of 52.7 and a APmask of
45.7, outperforming the supervised baseline pre-training by 2.9 and 2.5 points, respectively. With
ViT-L, such improvement is more prominent with 4.8 and 3.6 points respectively, showing the high
scalability of dBOT for model capacity in downstream dense prediction tasks.

Semantic segmentation. We adapt UperNet (Xiao et al., 2018) as the task head for semantic
segmentation with ViT-B and ViT-L on ADE20K (Zhou et al., 2017). We report the mIoU and
mAcc for semantic segmentation, and the results are demonstrated in Table 4. We achieve the
best performances on semantic segmentation compared to previous self-supervised methods by a
nontrivial margin. dBOT improves mIoU from 47.4 to 49.5 with ViT-B, and 49.9 to 54.5 with
ViT-L, yielding gains of 2.1 and 4.6 points respectively, compared to the supervised baseline. The
improvement in semantic segmentation is as significant as in object detection.

5.4 ABLATION STUDY

Stage split number. We study the influence of stage number by splitting total training epochs of
1600 into varying distillation stages, from 0 to 2. Results are shown in Table 5a. 2-stage distillation
works the best (for classification task), achieving 84.5% accuracy. Splitting epochs to 3-stage brings
0.1% performance drop, while all splitting strategies obtain a top-1 accuracy higher than 83.6%,
indicating its generalizability.

Epoch for each stage. Table 5b studies proper epochs needed for each stage in a 2-stage distilla-
tion pipeline. With the 2nd stage distilling for 800 epochs, longer epochs for the 1st stage induces
0.2% improvement (84.3% vs. 84.5%). With the 1st stage distilling for 800 epochs, 800 epochs are
enough for the 2nd stage since 1200 epochs incur no gain. Evenly splitting the epochs in 2-stage
masked knowledge distillation achieves the best performance.

Momentum update. We use in dBOT a multi-stage distillation pipeline, which is to distill from
a momentum encoder with m being 0 for every breakpoint and 1 otherwise. We further investigate
other momentum update strategies commonly used in self-supervised learning. Results are shown
in Table 5c. The vanilla strategy works the best.

Target normalization. We study whether patch tokens obtained by the self-attention blocks to be
used as target representation should be passed through the Layer Normalization (Ba et al., 2016)
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Figure 2: Average attention distance of different heads w.r.t layer number of ViT-B with different
teachers and their corresponding student distilled for 2 stages. The first row showcases the teachers
while the second showcases the 2th stage distilled student. Models using different teachers achieve
the same result. The distilled students obtain more local attention compared to the teachers.
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Figure 3: Singular value decomposition of different layers of ViT-B with different teachers and their
corresponding student distilled for 2 stages. The first row showcases the teachers while the second
showcases the 2th stage distilled student. Models using different teachers achieve the same result.

layer [LN]. The accuracy of models after 2-stage distillation is shown in Table 5d. Without passing
through [LN], the patch tokens directly obtained from the transformer block make them less suitable
as target representations to guide students’ learning.

Student initialization. We study whether student’s weight should remain when entering the next
stage of distillation. Specifically, we either keep the student’s weight unchanged or re-initialize the
student at each breakpoint. As shown in Table 5e, re-initializing the student’s weight works the best.

Mask ratio. Table 5f shows the influence of the mask ratio on end-to-end fine-tuning. The optimal
mask ratio for dBOT is 75%, the same as that in MAE.

6 PROPERTY ANALYSIS

We investigate the properties of models distilled from different teachers under certain criteria, ana-
lyzing models’ weights and outputs. Further, training efficiency is briefly discussed with previous
methods.

Averaged attention distance. We compute averaged attention distance (Dosovitskiy et al., 2021),
averaged over ImageNet-1K val set, for each attention head of different blocks to understand how
local and global information flows into Transformers. Average attention distance for dBOT using
DeiT, DINO, MAE, DALL-E, and random as teachers are illustrated in Fig. 2. The higher the
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Table 6: Training time (s) per epoch
for different methods with ViT-B/16,
ViT-L/16, and ViT-H/14. asym. de-
notes whether to use an asymmetric
encoder-decoder structure. All entries
are tested on the same setting, i.e., with
32 NVIDIA A100-80G GPUs.

method data2vec BEiT MAE dBOT
asym. ✗ ✗ ✓ ✓
ViT-B 169 166 79 109
ViT-L 431 356 125 200
ViT-H 960 751 240 416

Table 7: Results of classification (cls.) on IN1K, ob-
ject detection (det.) on COCO, and semantic segmen-
tation (seg.) on ADE20K. For same-size teachers (col-
ored gray), students are pre-trained with default settings.
For bigger teachers, students are pre-trained for 1-stage
from 2-stage distilled teachers.

teacher student cls. det. seg.
ViT-B

ViT-B
84.5 52.7 49.5

ViT-L 84.6 (+0.1) 53.1 (+0.4) 50.1 (+0.6)
ViT-H 84.6 (+0.1) 53.5 (+0.8) 50.8 (+1.3)
ViT-L ViT-L 86.6 56.0 54.5
ViT-H 86.8 (+0.2) 56.1 (+0.1) 55.2 (+0.7)

attention distance, models’ attention over an image is more global. Although the average attention
distance of disparate initialized teachers varies greatly, their distilled students after multi-stage distil-
lation exhibit similar behaviors, e.g., models’ attention toward local or global contents. Additionally,
dBOT achieves more local attention than previous works.

Singular value decomposition. We computed the percentage of top-k singular values (Wall et al.,
2003) of the embedding w.r.t each layer. The results are averaged over the ImageNet-1K val set.
We showcase the results with k varying from 1 to 5. Singular value decomposition for dBOT using
DeiT, DINO, MAE, DALL-E, and random as teachers are shown in Fig. 3. The higher the percent-
age, the models’ output over an image is less correlated, indicating larger redundancy of its spatial
representations thus less suitability for compression. Intuitively, random models at the 0th stage has
the largest percentage given that pixel are merely randomly projected. The student networks distilled
from different initialized teachers exhibit similar behaviors.

Training efficiency. We compute the training time per epoch for different methods in Table 6.
With an asymmetric encoder-decoder architecture (asym.) as the default setup, dBOT performs
slower than MAE, but much faster than data2vec and BEiT. Such advantage turns more significant
with models of larger size.

7 DISTILL FROM BIGGER TEACHERS

Inspired by canonical practices in knowledge distillation (Hinton et al., 2015), we use larger teachers
to distill smaller students, showcasing the potential of MKD in general. Specifically, we attempt to
use ViT-L/H as teacher networks to distill ViT-B, and ViT-H as the teacher network to distill ViT-
L. All larger teachers are first distilled for 2 stages with the default setup. We resize the image to
196×196 for ViT-H/14 to keep the length of its output the same as that of ViT-B/L. While we do not
find substantial gains on classification results, the results by distilling from ViT-H are significantly
better for dense prediction tasks compared to the default setup, i.e., +0.8 points of APbox and +1.3
points of mIoU with ViT-B as the student. The performance gain in distilling ViT-L from ViT-H is
diminished but still valid, i.e., +0.1 APbox and +0.7 mIoU. We also consider MKD with data-richer
teachers, e.g.CLIP, as exploratory experiments and set new state-of-the-art results for self-supervised
learning. Refer to Appendix C for details.

8 CONCLUSION

As a special case of MIM, we formulate MKD upon which an empirical investigation is conducted
about the influence of different target representations on self-supervised masked autoencoders. The
study concludes that it is not necessary to carefully choose the target representation to learn good
visual representations if distillation is performed in multiple stages (i.e., with bootstrapped teach-
ers). Instead of initializing teachers with pre-trained models, we resort to random ones for simple
practice. Without an extra stage of pre-training, dBOT achieves favorable performance on image
classification, object detection, and semantic segmentation. We hope our study and method will
provide timely insights for self-supervised learning.
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Table A1: Pre-training setup. recipe⚗ is the pre-training recipe for dBOT⚗ . cos. denotes cosine
distance. c., d., and s. denotes downstream tasks of classification, object detection, and semantic
segmentation respectively. drop path is for the students.

config default recipe⚗
optimizer AdamW

optim. momentum β1 0.9
optim. momentum β2 0.95 0.98

loss Smooth L1 negative cos.
peak learning rate 2.4e-3 3e-3

learning rate schedule cosine decay
batch size 4096

weight decay 0.05
stages 2 (c.), 3 (d./s.) 1

epochs per stage 800 1600
warmup epochs 40 10
augmentation RandomResizedCrop

aug. input scale (0.2, 1) (0.4, 1)
asym. enc-dec ✓ ✗

drop path 0.2 (B/L), 0.3 (H) 0.1 (B/L/H)
target w/ [LN] ✗ ✓

mask ratio 0.75 0.4

Table A2: End-to-end fine-tuning setup. recipe⚗ is the pre-training recipe for dBOT⚗ .

config default recipe⚗
optimizer AdamW

peak learning rate {0.8,1.2,1.6,2}e-3 {1,2,3,4}e-4
weight decay 0.05

optim. momentum β1, β2 = 0.9, 0.999
layer-wise decay 0.75

batch size 1024
learning schedule cosine decay
warmup epochs 5

epochs 100 (B), 50 (L/H)
augmentation RandAug (9, 0.5)

label smoothing 0.1
mixup 0.8
cutmix 1.0

drop path 0.2 (B/L), 0.3 (H) 0.1 (B), 0.2 (L), 0.3 (H)

A IMPLEMENTATION DETAILS

A.1 PRE-TRAINING

Default setup. We show our default pre-training setup in the second colum of Table A1. We use
Xavier Uniform (Glorot & Bengio, 2010) to initialize the Vision Transformer (Dosovitskiy et al.,
2021). Note that we use asymmetry stochastic drop path rate for students and teachers.

Setup for distillation from bigger teachers. We follow the default setup, except that we use a
different setup for stages. We first train larger-size teachers for 2 stages (in all downstream tasks)
and use those to distill new students for 1 stage (in all downstream tasks).
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Table A3: Object detection setup.

config value
optimizer AdamW

optim. momentum β1, β2 = 0.9, 0.999
peak learning rate 1e-4

batch size 16
layer-wise decay 0.75

weight decay 0.05
learning schedule step

epochs 12
step epochs 8, 11
drop path 0.2

Table A4: Semantic segmentation setup.

config value
optimizer AdamW

optim. momentum β1, β2 = 0.9, 0.999
peak learning rate {0.3,0.5,0.8,1,3}e-4

batch size 16
layer-wise decay {0.65,0.75,0.85.0.95}

weight decay 0.05
learning schedule cosine

steps 16000
warmup steps 1500

drop path 0.1(B), 0.2(L)

A.2 CLASSIFICATION

The default end-to-end fine-tuning recipe is shown in the second column of Table A2, following the
common recipes (He et al., 2022; Bao et al., 2022) of ViT tuning for self-supervised models. The
same recipe is applied when distilling from bigger teachers.

A.3 OBJECT DETECTION AND INSTANCE SEGMENTATION

We adopt the vanilla ViT with Cascade Mask R-CNN (Cai & Vasconcelos, 2019) as the task head
on COCO (Lin et al., 2014) dataset for object detection and instance segmentation, following the
common setup (Zhou et al., 2021). The default recipe is shown in Table A3. To cope with versatile
image sizes, we add relative position embedding instead of interpolating the absolute position em-
bedding obtained during pre-training. For a fair comparison, we applied the same setup and sweep
the learning rate and stochastic drop path rate for different methods.

A.4 SEMANTIC SEGMENTATION

We use vanilla ViT and UperNet (Xiao et al., 2018) as the task head on ADE20K (Zhou et al., 2017)
dataset for semantic segmentation, following the common setup (Bao et al., 2022). The default
recipe is shown in Table A4. To cope with versatile image sizes, we add relative position embedding
instead of interpolating the absolute position embedding obtained during pre-training. For a fair
comparison, we applied the same setup and sweep the learning rate and layer-wise decay for different
methods.

B ADDITIONAL EXPERIMENTS

B.1 PIXELS vs. RANDOM MAPPING OF PIXELS

MAE performs masked image modeling using the image pixel as the reconstruction target. We
directly alter the target to patch tokens obtained from the image fed into a randomly initialized
network. We select two patch tokens as the reconstruction target, one is the token obtained using
the last transformer block, and the other is the token obtained using linear projection, i.e., without
any transformer block. After 400 epoch pre-training of ViT-B, the top-1 accuracy of the model on
ImageNet-1K obtained by the three different targets is shown below.

epoch pixel 0th block 12th block
400 83.3 83.2 83.2
1600 83.6 83.6 83.6

It can be derived that using the patch token obtained by a randomly initialized network as the target
can achieve comparable results with a pixel as a target. A similar result proves that patch tokens
obtained by a randomly initialized can also serve as a good reconstruction target.
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B.2 LINEAR PROBING

We evaluate the linear probing performance of dBOT and MAE using ViT-B following the same
setup as MAE, the results of which is shown below.

MAE dBOT
67.8% 67.9%

dBOT achieves comparable linear probing performances with MAE.

C DISTILL FROM DATA-RICHER TEACHERS

We explore to use models pre-trained with richer data (i.e., CLIP (Radford et al., 2021) with 400M
Image-Text pairs) as the initialized teacher to seek a potential upper-bound of MKD.

C.1 PRE-TRAINING

Compared to the default setup, there exist two major disparities of the pre-training recipes for models
distilled from data-richer teachers, discussed next. The following practice is summarized as recipe⚗
detailed in Table A1.

Vanilla Architecture. We find that not using the asymmetric encoder-decoder architecture (He
et al., 2022) is optimal, as shown in Table C5. While an asymmetric architecture generates momen-
tum for bootstrapping models similar to (Grill et al., 2020), which lies crucial for distillation with
random teachers, it hurts the performance when distilling with stronger pre-trained teachers.

Hypothetically, the significance of the decoder in asymmetrical encoder-decoder architecture lies in
the need for separate layers to decode low-level details when the targets contain little semantics (e.g.,
pixels and random mappings of pixels). Such a need is eased when the target contains high-level
semantics (e.g., DINO and CLIP). The existence of the decoder, in this case, may even restrain the
encoder to grasp full knowledge from the teacher, inducing degraded performances.

1-Stage MKD. We use different models as teachers to distill students for one stage with longer
epochs, i.e., 1600. Results are shown in Table C6. Empirically, the performance gains for multi-
stage MKD over 1-stage MKD decrease as teachers’ fine-tuning performance increases. Stronger
teachers, such as DINO and MAE, induce similarly performed students with 1-stage MKD (1×1600)
compared to 2-stage MKD (2×800).

Specifically, when using CLIP as the pre-trained teacher, the performance for 2-stage MKD is, to
our surprise, 0.9% lower than that of 1-stage MKD. Understandably, although the fine-tuning result
of the student after 1-stage distillation is better than that of CLIP, the student is essentially trained on
IN1K and may not contain faithfully data information stored in the CLIP model. Therefore, strong
teachers work well with 1-stage MKD, especially for models pre-trained on extra richer data.

C.2 DOWNSTREAM TASKS

Implementation Details. For fine-tuning, we also use a slightly different recipe from default one
with smaller learning rates and drop path, dubbed as recipe⚗ detailed in Table A2. For object

Table C5: Image classification on IN1K with DINO and CLIP as initialized teachers, as well as
random ones. Students with DINO and CLIP as teachers are distilled for 1 stage.

initialized teacher pre-training data asym. enc-dec acc
random IN1K ✓ 84.5
random IN1K ✗ 83.8
DINO IN1K ✓ 84.4
DINO IN1K ✗ 84.8
CLIP IN1K + 400M ITp. ✓ 84.9
CLIP IN1K + 400M ITp. ✗ 85.7
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Table C6: ImageNet-1K classification results of 1 stage masked knowledge distillation with dif-
ferent teachers. Total epochs are shown in the format of (stages×epochs per stage). △ denotes
performance gaps between entries of 2×800 and 1×1600.

pretraining epochs random DALL-E DeiT DINO MAE CLIP
0 77.3 81.1 81.8 83.2 83.6 84.8
1×1600 83.6 83.6 83.6 84.4 84.4 84.9
2×800 84.5 84.4 84.3 84.5 84.4 84.0
△ +0.9 +0.8 +0.7 +0.1 +0.0 -0.9

Table C7: Results of classification (cls.) on IN1K, object detection (det.) on COCO, and semantic
segmentation (seg.) on ADE20K with CLIP (Radford et al., 2021) as the teacher. Students are
distilled for 1 stage. The det. results with CLIP as teachers are with absolute positional embedding.

initialized teacher student cls. det. seg.
random ViT-B 84.5 52.7 49.5
CLIP-B 85.7 (+1.2) 53.6 (+0.9) 52.9 (+3.4)
random ViT-L 86.6 56.0 54.5
CLIP-L 87.8 (+1.2) 56.8 (+0.8) 56.2 (+1.7)
random ViT-H 87.4 - -
CLIP-L 88.5 (+1.1) - -

detection, instance segmentation, and semantic segmentation, we follow the default setup detailed
in Appendices A.3 and A.4.

Results. Results for downstream tasks are shown in Table C7. ViT-B distilled from CLIP-B achieves
an 85.7% top-1 accuracy and a 52.9 mIoU, surpassing all previous arts. With CLIP-L as the teacher,
ViT-H with image resolution 448 achieves an 89.1% top-1 accuracy, setting a new state-of-the-art
image recognition result.

C.3 CONFLICT WITH MAIN CONCLUSION

It can be observed that MKD with CLIP (Radford et al., 2021) as the teacher performs much better
than that with the random teacher and multi-stage distillation, which seems contradictory to our
main conclusion that teacher networks do not matter with multi-stage masked knowledge distillation.
Notably, CLIP is trained with 400M image text pairs (300× larger than ImageNet-1K), which is a
drastically different setup from multi-stage distillation on ImageNet-1K only. Exploring CLIP as a
target representation gains popularity (Wei et al., 2022b) recently but is beyond the main scope of
this paper. We present these results to corroborate the validity and to explore the upper bound of
MKD in general. We note that the exact solution to resolve the conflict is to perform multi-stage
distillation using the CLIP’s in-house 400M data to which we have no access. It is hypothesized that
two results should be matched in light of experiments on ImageNet-1K, which is left to future work.
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