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ABSTRACT

The past few years have seen an intense research interest in the practical needs
of the “right to be forgotten”, which enables machine learning models to unlearn
a fraction of training data and its lineage. As a result of this growing interest,
numerous machine unlearning methods have been proposed and developed to ad-
dress this important aspect of data privacy. While existing machine unlearning
methods prioritize the protection of individuals’ private and sensitive data, they
overlook investigating the unlearned models’ susceptibility to adversarial attacks
and security breaches. In this work, we uncover a novel security vulnerability of
machine unlearning based on the insight that the adversarial vulnerabilities can be
bolstered especially for adversarial robust models. To exploit this observed vulner-
ability, we propose a novel attack called Adversarial Unlearning Attack (AdvUA),
which aims to generate a small fraction of malicious unlearning requests during
the unlearning process. AdvUA causes a significant reduction of adversarial ro-
bustness in the unlearned model compared to the original model, providing an
entirely new capability for adversaries that is infeasible in conventional machine
learning pipelines. Notably, we also show that AdvUA can effectively enhance
model stealing attacks by extracting additional decision boundary information,
further emphasizing the breadth and significance of our research. Extensive nu-
merical studies are conducted to demonstrate the effectiveness of the proposed
attack. Our code is available in the supplementary material.

1 INTRODUCTION

In recent years, many countries have raised concerns about protecting personal privacy. In practice,
users may choose to have their data completely removed from a system, especially sensitive systems
such as those do with finance or healthcare (Nguyen et al., 2022). Recent regulations (e.g., the well-
known European Union’s GDPR (Voigt & Von dem Bussche, 2017)) now compel organizations to
give users “the right to be forgotten”, i.e., the right to have all or part of their data deleted from a
system on request (Zhang et al., 2022b; Graves et al., 2021; Chen et al., 2021). The most straightfor-
ward approach is to retrain the model on all data except the portion that has been removed, but this
approach is in general impractical since the computational resources consumed are usually costly.
Thus, aiming to efficiently remove data as well as their contribution to the model, a new machine
learning privacy protection research direction has emerged, called machine unlearning.

Numerous research efforts have been dedicated to addressing the challenge of data removal in ineffi-
cient retraining. Two prominent research fields that have emerged in this context are exact unlearn-
ing (Yan et al., 2022; Yu et al., 2022; Bourtoule et al., 2021b) and approximate unlearning (Chen
et al., 2022; Gupta et al., 2021; Neel et al., 2021; Sekhari et al., 2021). Exact unlearning aims to
completely reverse the effects of the previously learned data points. Instead of aiming for a perfect
reversal of the learned data, approximate unlearning seeks to achieve a reasonably close approxima-
tion. This can be beneficial in situations where complete unlearning is computationally expensive
or impractical, providing a compromise between removal efficiency and performance retention.

However, current machine unlearning methods exhibit an important limitation as they primarily con-
centrate on efficiently removing the effects of specific data instances from a trained machine learning
model. Consequently, it remains uncertain whether these existing techniques might unexpectedly in-
fluence the adversarial robustness of the associated machine learning models. Note that adversarial
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Figure 1: Robustness degradation of defended robust models against FGSM, PGD, and CW attacks
after randomly removing different percentages of training samples on SVHN and CIFAR-10.

robustness, in the context of machine learning, refers to the ability of a trained model to maintain
its accuracy and performance even when it is exposed to deliberately perturbed input data known as
adversarial examples (Li et al., 2019; Goodfellow et al., 2014; Szegedy et al., 2013). Despite the
great importance of studying adversarial robustness from the selective forgetting perspective, there
is no existing work exploring the adversarial robustness properties of the unlearned models in the
context of the right to be forgotten. Therefore, it is natural to ask

Q1: Does unlearning amplify the vulnerability of unlearned models to adversarial attacks?

To answer this question, we first conducted initial experiments to investigate adversarial robustness
degradation of the defended and undefended models1 by randomly deleting some training samples in
the context of machine unlearning. In the experiments, the defended robust models are constructed
using adversarial training (Madry et al., 2018; Goodfellow et al., 2014), which proves to be the most
effective method against adversarial attacks (Bai et al., 2021; Pang et al., 2020; Maini et al., 2020).
The experimental results are presented in Fig. 1, with additional details available in Appendix E.
Notably, these experimental results show that the random removal strategy substantially amplifies
the adversarial vulnerabilities of defended robust models. Additionally, in our experiments, we
also found that compared with naturally undefended models, adversarially robust models are indeed
more susceptible to malicious unlearning samples. The reason is that existing robust training meth-
ods heavily rely on the training data to enhance the model’s robustness against adversarial attacks.
Motivated by this, it is important to further investigate that

Q2: Are there specific requested unlearning samples that play a pivotal role in generating these new
successful adversarial examples, which were unattainable before unlearning?

This work aims to provide answers to the above questions and highlight a potential adversarial
attack vulnerability in the unlearning process - an adversary can make use of the unlearning pipeline
to craft malicious unlearning requests to achieve his desired adversarial attack goals. Note that like
traditional data poisoning attacks, the recent works (Hu et al., 2023; Qian et al., 2023; Di et al.,
2022) still focus on how to poison the training data, and fail to study the impact of unlearning on
the models’ vulnerabilities to adversarial attacks. Therefore, in this paper, we aim to conduct an
investigation into the adversarial risks associated with exercising the “right to be forgotten” from
machine learning models, without altering the training data.

Our Contributions. To develop an understanding of adversarial risks associated with the process of
unlearning, we in this paper present a novel attack named Adversarial Unlearning Attack (AdvUA),
which exploits the unlearning pipeline to increase adversarial vulnerabilities. The key idea behind
AdvUA is to select unlearning samples that are not only in close proximity to the target victim
samples but also align with the adversarial attack directions. Specifically, in our proposed method,
we first design a distance evaluation metric to estimate the space-filling capability of the region
surrounding the target victim samples in the representation space. Then, based on the insight that not
all nearest neighbor samples are equally critical for performing adversarial unlearning attacks, we
propose a direction alignment loss to closely match the adversarial attack with the unlearning attack.
Our method is orthogonal to existing approaches on adversarial attacks and can be easily integrated
with them to create advanced adversarial attack strategies. Furthermore, it is worth highlighting
that AdvUA can also bolster the effectiveness of model stealing attacks by extracting more decision
boundary information, underlining the extensive scope and importance of our research.

1Throughout the paper, we use “undefended (natural) model” and “defended (robust) model” to denote the
machine learning model with natural training algorithm and robust training algorithm, respectively.
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We also empirically illustrate that AdvUA achieves a high attack success rate on various bench-
marks, including CIFAR-10 (Krizhevsky & Hinton, 2010) and ImageNet (Deng et al., 2009), against
various robust learning methods in Section 4. Our evaluation also indicates that AdvUA performs
well across different model architectures and machine unlearning methods. Overall, by conducting
this study, we aim to shed light on the potential consequences of applying machine unlearning tech-
niques to adversarially robust models and to gain insights into the interplay between data removal
and model robustness against adversarial attacks. Ultimately, our findings will contribute to a more
comprehensive understanding of the implications of machine unlearning in the context of adversarial
machine learning and its implications for real-world applications.

2 BACKGROUND AND RELATED WORK
Notations and Machine Unlearning. Let S = {(xi, yi)}ni=1 denote the dataset, where xi ∈ X
⊂ Rd is a d-dimensional feature and yi ∈ Y = {1, · · · , C}. Let us suppose that a C-label classifier
F (W ) : Rd → RC labels a sample x as argmaxc∈Y F (x;W )[c], where W ∈ W represents the
parameters of F . For F , we denote H as the representation learning function and G as the final
prediction head, i.e., F (W ) = G ◦H . Given the learning algorithm L and S, the model owner can
train a model F (W ∗) such that F (W ∗) achieves a low empirical loss. In machine unlearning, users
can submit data removal requests Su ⊂ S to eliminate the influence of Su from W ∗, leading to the
creation of the unlearned model Wu ∈ W . Note that machine unlearning can be divided into: exact
and approximate. Below, we outline the definitions of existing approximate and exact unlearning
techniques (Warnecke et al., 2023; Gupta et al., 2021; Neel et al., 2021; Guo et al., 2019).
Definition 1. Consider a learning algorithm L and its unlearning function UL : (S,L(S), Su) →
Wu, where Wu is the unlearned model. Note that the original model W ∗ is derived from S and L,
and the goal of UL is to modify this original model to unlearn the requested forget set Su. The pair
(L,UL) achieves exact unlearning if ∀S and Su ⊂ S,Pr(L(Sr)) = Pr(UL(S,L(S), Su)), where
Sr = S \ Su. This implies that it becomes indistinguishable whether the model was trained after
unlearning Su from L(S) or if it was trained exclusively on Sr. The pair (L,UL) satisfies (γ, ζ)-
unlearning if ∀S, Su ⊂ S, and ∀Z ⊆ W , Pr(UL(S,L(S), Su) ∈ Z) ≤ eγPr(L(Sr) ∈ Z) + ζ and
Pr(L(Sr) ∈ Z) ≤ eγPr(UL(S,L(S), Su) ∈ Z) + ζ.

Related Work. Since the discovery of adversarial examples (Goodfellow et al., 2014), constructing
adversarially robust models has become one of the most studied research topics (Mao et al., 2023;
Ilyas et al., 2019; Schmidt et al., 2018). Among various existing defense strategies, adversarial
training has been found to be the most effective approach against adversarial attacks (Mao et al.,
2023; Wang & Wang, 2022; Qin et al., 2019; Goodfellow et al., 2014). Additionally, there is another
prominent category of defense methodologies known as certified defense. These methods usually
provide theoretically guaranteed bounds on the model’s adversarial robustness (Zhang et al., 2022a;
2021; Jia et al., 2019; Gowal et al., 2018; Yoshida & Miyato, 2017). For example, Gowal et al.
(2018) employs the interval bound propagation to achieve fast and stable verified robust training. On
the other hand, despite the great importance of studying adversarial robustness from the unlearning
perspective, there is no existing work exploring the adversarial robustness properties of the unlearned
models in the context of the right to be forgotten. Although Hu et al. (2023); Qian et al. (2023); Di
et al. (2022) study potential pitfalls during unlearning, their emphasis is merely on crafting malicious
perturbations to perform data poisoning attacks. To the best of our knowledge, no prior research has
examined the adversarial risks associated with the standard unlearning process from the perspective
of adversarial attacks.

3 ADVERSARIAL UNLEARNING ATTACK

3.1 BUILDING MOTIVATION

From Definition 1, we know that machine unlearning provides a solution to mitigate these privacy
risks, and involves the design of sophisticated unlearning techniques to remove private information
from a trained machine learning model. Despite the focus on safeguarding individuals’ private
and sensitive data, existing unlearning methods neglect to assess the vulnerability of the unlearned
models to adversarial attacks and security breaches. This oversight raises concerns regarding the
adversarial robustness and overall security of the unlearning process. As no previous literature has
studied the adversarial vulnerabilities of the unlearning system, for the threat model, we start by
discussing the adversary’s objectives, capabilities, and knowledge for our attack. The objective of
the adversary is to make malicious unlearning requests to deliberately undermine the adversarial
robustness of the unlearned model. The adversary can generate the unlearning requests during the
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unlearning process. Since the AdvUA does not make any perturbations on the training data, in our
main evaluation, we do not require a constraint for a malicious unlearning request as long as it is
a training sample. We first consider a white-box setting where the AdvUA adversary knows the
original model W ∗, and subsequently, we delve into the black-box setting.

In the context of the right to be forgotten, adversarial unlearning robustness describes the property
of an unlearned model to consistently predict the target class label for all perturbed inputs x′ in
an lp-norm ball Bϵpp (x) = {x′ ∈ X : ||x − x′||p ≤ ϵp} of radius ϵp, after deleting the requested
unlearning samples. To formalize this concept, we provide the following definition of adversarial
robustness within the context of the right to be forgotten.
Definition 2 (Aϵp

Su
(x)-Adversarial Unlearning Robustness). Consider a sample x ∈ X , a scalar ϵp,

and a distance metric D(x, x′) = ||x − x′||p. We use F (x;Wu) to denote the unlearned model,
which is derived by removing the requested unlearning samples Su from the original model W ∗.
The unlearned model F (x;Wu) is robust to adversarial perturbations of magnitude ϵp at input x if
and only if ∀(x + δ) ∈ Bϵp

p (x), argmaxc∈Y F (x;Wu)[c] = argmaxc∈Y F (x + δ;Wu)[c], where
Wu = UL(S,L(S), Su), and δ ∈ Rd is the adversarial perturbation for x.

Our goal in this paper is to investigate whether the process of unlearning hinders an unlearned
model’s ability to withstand adversarial perturbations. Specifically, in this paper, we motivate our
study with the previously raised scientific questions (i.e., Q1 and Q2 in Section 1). In Definition 2,
we allow a bounded worst-case perturbation before passing the perturbed sample to the unlearned
model Wu in the context of the right to be forgotten. In particular, based on the above definition,
we can obtain that when ϵp = 0 and argmaxc∈Y F (x;Wu)[c] ̸= argmaxc∈Y F (x+ δ;Wu)[c], the
attacker misleads the unlearned model Wu to directly misclassify the target victim samples without
any further perturbations. Without loss of generality, we set p = ∞ in this paper and omit this
subscript for simplicity of notations. Additionally, using Definition 2, we can easily estimate the
adversarial unlearning robustness of the unlearned model Wu across a population of data samples.

3.2 FORMULATION OF ADVUA
As previously discussed (see Fig. 1), we have observed that the adversarial robustness of unlearned
models can be substantially compromised even with random data removal. To gain a deeper under-
standing, we now delve into examining how unlearning samples affect both successful and unsuc-
cessful adversarial examples. Then we present two visual examples that demonstrate the successful
adversarial example in Fig. 2a and the unsuccessful adversarial example in Fig. 2b after unlearn-
ing. Note that the two target test examples in Fig. 2 cannot be adversarially attacked with the
same perturbation sets before unlearning. Here we utilize the last representation layer and apply
UMAP (McInnes et al., 2018) to project the adversarial examples, along with their 50 nearest neigh-
bors. From this figure, we can observe that the target victim example shown in Fig. 2a has now
transitioned to a low-density region, and can easily fool the unlearned model. In contrast, the target
victim example depicted in Fig. 2b remains situated within a high-density region, making it difficult
to generate a successful adversarial example for this particular target example.

Low-density Regions Generation. Drawing on the aforementioned observations, we make the
following key contribution to exacerbating adversarial vulnerability in the unlearned models: em-
ploying unlearning techniques to strategically position target victim samples within low-density
regions. As a result, the unlearned models may not have learned robust decision boundaries or
patterns for these regions, making it more susceptible to adversarial attacks and misclassifications.
Let V = {(xv, yv)}Vv=1 represent the victim samples that adversaries intend to attack. We use
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NKv (xv) to denote the top-Kv nearest neighbors for the target sample xv . Let xmax
v ∈ NKv (xv)

denote the sample that has the largest distance from the target victim sample xv . To estimate the
space-filling capability of the region surrounding sample xv , we compute the relative distance in-
formation of its neighbors, with respect to xmax

v , utilizing classical expansion models (Karger &
Ruhl, 2002; Houle et al., 2012; Houle, 2017; Ma et al., 2018). Specifically, for xv , the rela-
tive distance of xi ∈ NKv

(xv) with respect to xmax
v in the representation space is calculated as

log(||H(xi;W
u) − H(xv;W

u)||2/||H(xmax
v ;Wu) − H(xv;W

u)||2). However, if we directly
calculate this distance value, we may encounter the case where ∀xi∈ NKv

(xv), ||H(xi;W
u) −

H(xv;W
u)||2 = ||H(xmax

v ;Wu) − H(xv;W
u)||2. On the other hand, relying solely on relative

distances can be challenging, as they do not provide insights into the absolute values of data points.
As illustrated in Fig. 3, even though x1 and x2 have the same relative distance values, x2 is more
likely to be vulnerable to adversarial attacks. Therefore, in addition to the relative distances, we
should also take absolute distance information into account. For xv and its neighbors NKv (xv),
we can calculate the Euclidean distance between this sample and its neighbor xi ∈ NKv (xv) as
D(H(xi;W

u), H(xv;W
u)) = ||H(xi;W

u)−H(xv;W
u)||22, where H(xi;W

u) is the representa-
tion of xi. By combining the above, we formulate the following measure

ℓwd(xv,NKv
(xv);W

u) = −λ1(
1

Kv

∑
xi∈NKv (xv)

log
||H(xi;W

u)−H(xv;W
u)||2

||H(xmax
v ;Wu)−H(xv;Wu)||2 + β

)−1

+
(1− λ1)

Kv

∑
xi∈NKv (xv)

D(H(xi;W
u), H(xv;W

u)), (1)

where λ1 ∈ [0, 1] and Kv = |NKv (xv)|. In the above, β is a pre-defined value to avoid cases where
the fraction has a zero denominator. The first term in ℓwd is used to quantify the local density around
xi measured in the space subsequent to unlearning Su (Houle, 2017; Ma et al., 2018; Zhang et al.,
2019). The second one ensures a comprehensive characterization of the local behavior around xv .

To assess the impact of unlearning on density as expressed in Eqn. (1), we focus on hard samples that
are attacked successfully (yielding incorrect predictions) in standard training but failed (resulting in
correct predictions) in adversarial training. In Fig. 4, we compare the average density of success
cases (attack success after unlearning) and failure cases (attack fail after unlearning) within different
local density scales (nearest neighbors). More details can be found in Appendix E. Fig. 4 shows
that success cases typically have higher ℓwd compared to failure cases after unlearning, which sug-
gests that success cases locate in relatively low-density regions and are thus susceptible to attacks
(consistent with observations in Fig. 2).

Attack Direction Alignment. From the above, we know that for a target sample xv located in a low-
density region, it tends to experience successful attacks during inference since it is less likely to be
covered by the distribution of the training samples. The next question we want to explore is whether
all of the nearest samples are equally critical for performing adversarial unlearning attacks to assign
a wrong label to xv . However, in this work, we find an intriguing phenomenon: not all of the nearest
samples are equally important for adversarial unlearning attacks. This phenomenon reveals that for
xv , the efficient unlearning directions towards the low-density regions should align well with its
adversarial attack direction, which is determined by ∇xv

L(xv, yv;W ), where yv is the label of xv .
To help understanding, we give an illustration example for the attack direction alignment in Fig. 5,
where the grey area represents the high-density region for the target test example and red zones
highlight directions that are positively aligned with the red arrow. From this figure, the samples
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that fall within the intersection of the grey and red areas are the ones we should focus on. Given
sample xv and its neighbor sample xi ∈ NKv

(xv), we propose the following measure to estimate
the alignment between the unlearning attack and the adversarial attack

ℓdirc(xi, xv;W
u) =

(H(xi;W
u)−H(xv;W

u)) · (∇xv
L(xv, yv;W

u))

||H(xi;Wu)−H(xv;Wu)||2 ∗ ||∇xvL(xv, yv;Wu)||2
, (2)

where H(xi;W
u) − H(xv;W

u) is the unlearning direction when we unlearn a sample xi ∈
NKv

(xv). In the above, we use the normalized adversarial attack to remove the influence of the
scaling factor when comparing different models. Based on the equation, for the effective unlearning
samples, they should closely match the adversarial attack with the unlearning direction.

Overall Loss. Based on the above observations, to understand the worst-case attack performance,
we design a novel adversarial unlearning attack framework to increase the inherent adversarial vul-
nerability of the unlearned models. Let Se = {xt}Tt=1 represent a subset of S that is accessible to
the adversary. For each xt ∈ Se, we define a discrete indication parameter ξt ∈ {0, 1} to indicate
whether the sample xt should be completely deleted (ξt = 1) or not (ξt = 0). The forget set Su to
be unlearned is denoted as Su = Se ◦ Φ = {xt|xt ∈ Se and ξt = 1}, where Φ = {ξt}Tt=1. We use
{(xv, yv)}Vv=1 to denote the hard target samples, which cannot be successfully attacked from the
original model W ∗ using the same perturbation budget ϵ. Based on the above, to effectively attack
these hard target samples (i.e., {(xv, yv)}Vv=1), we formulate the below overall loss

max
{δv∈Bϵ(xv)}V

v=1

V∑
v=1

L(xv + δv, yv;W
u(Φ)) (3)

s.t.Φ← argmax
Φ

V∑
v=1

ℓwd(xv,NKv (xv);W
u(Φ))−

V∑
v=1

λ2

Kv

∑
xi∈NKv (xv)

ℓdirc(xi, xv;W
u(Φ)),

where Kv = |NKv
(xv)| and Wu(Φ) = UL(S,W

∗, Su = Se ◦ Φ). L is the loss function to enforce
the adversarial example xv + δv to be predicted as a different label than yv . Exactly solving Eqn. (3)
would be computationally infeasible (Korte et al., 2011), and we instead refer to an empirical greedy
to solve the above optimization problem (Barron et al., 2008). Algorithm 1 in Appendix A details
the procedure to optimize the above formulated overall loss. Notably, in the above, when δv = 0, the
requested malicious unlearning samples can cause the unlearned model Wu to directly misclassify
sample xv without the need for any further adversarial manipulations.
Theorem 1. Consider a data distribution X characterized by a Gaussian distribution with mean
µ ∈ Rd and variance σ2I , i.e., X ∼ N(µ, σ2I). Let {xi}ni=1 be a set of samples drawn from
N(µ, σ2I). Then the expected local density around point x̃ is lower bounded by

E{xi}n
i=1∼X

[
n∑

i=1

1
{
∥xi − x̃∥22 ≤ q

}]
≥ n×

[
1− σ2d

(q − ∥µ− x̃∥22)
2

]
(4)

where x̃ ∈ Rd and q ∈ R.
Theorem 2. Let gn be any learning algorithm, i.e., a function from n ≥ 0 samples in Rd × {±1}
to a binary classifier fn. Moreover, let W ∈ Rd be the weight of fn and W = 1

n

∑n
i=1 yixi,

and let θ ∈ Rd be drawn from N(0, I), ∥θ∥2 =
√
d. We draw n1, n2 samples from the (θ, σ)-

Gaussian model, which generates (x, y) ∈ Rd×{±1} by first randomly selecting a label y ∈ {±1}
and then sampling x ∈ Rd from N(y · θ⋆, σ2I). Let the expected lϵ∞-robust classification errors
of fn1

, fn2
are R1, R2. Then it can be deduced that R1 ≤ R2 holds with a probability at least

1− 2 exp
(
− d

8(σ2+1)

)
if n1 ≥ c2ϵ

2
√
d and n2 ≤ ϵ2σ2

8 log d , where 0 ≤ σ ≤ c1d
1/4,

√
8 log d
σ2 ≤ ϵ ≤ 1

2 .

In Theorem 1, we estimate the local density at a given point x̃ by counting the number of data
covered within a ball centered as x̃ with radius q. This theorem demonstrates that as the quantity of
training data decreases, the average local density also experiences a proportional decline. Theorem
2 illustrates the relation between the number of training samples and the associated lϵ∞-adversarial
robust error. This theorem shows that when the training set size diminishes from n1 to n2 under the
conditions mentioned in this theorem, there is a high probability that the robust error will increase.
The proofs of Theorem 1 and Theorem 2 are deferred to Appendix B.

Discussions on the Black-box Setting. The black-box attack assumes that the adversary only knows
the output of the target model through predictions. The black-box attack can be executed by con-
structing a surrogate model and transferring adversarial examples, which leverages shared decision
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boundaries among various models. This approach can reduce exposure risk, and hence, many exist-
ing works (Byun et al., 2022; Zhou et al., 2018; Liu et al., 2017) have been focused on adversarial
transferability. In our black-box setting, we can train several surrogate models and transfer both the
selected unlearning samples and generated adversarial examples to attack the target victim model.

Enhanced Model Stealing Attacks. Traditional model stealing attacks (Genç et al., 2023; Yu et al.,
2020; Tramèr et al., 2016) first send a series of queries Q to the target victim model and then use
the collected query-response pairs to train a surrogate model that approximates the behavior of the
victim model. The key to the success of model stealing is to find query samples lying approximately
on the decision boundary of the victim model, which is not easy. To improve the query effectiveness,
our goal here is to make malicious unlearning requests to learn the decision boundary information
of the victim target model W ∗. Instead of starting from scratch, following existing works, we
first construct an initialized primitive substitute model. Here, we consider the scenarios where the
attacker has a set of query samples Q for querying the victim target model. In the context of machine
unlearning, we also assume the attacker has available unlearning samples, denoted as Se. Based on
AdvUA (in Eqn. (3)), we can select a set of malicious unlearning samples to increase its query
effectiveness by revealing the important decision boundary information of the victim model.
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Figure 6: Attack performance of AdvUA on adversarially trained models against various attacks.

4 EXPERIMENTAL RESULTS
In this section, we conduct experiments to validate the performance of AdvUA. All experiments are
performed for 10 independent trials, and we report the mean and standard errors in the following
analyses. For more experimental details (e.g., experimental setup and parameter settings) and ex-
perimental results (e.g., more unlearning methods and ablation studies), please refer to Appendix E.

4.1 EXPERIMENTAL SETUP

Datasets and Models. In experiments, we adopt the following datasets: ImageNet (Deng et al.,
2009), CIFAR-10 (Krizhevsky & Hinton, 2010), SVHN (Netzer et al., 2011), and IRIS (Fisher,
1988). We consider various deep learning models, including ResNet-50, ResNet-18 (He et al., 2016),
DenseNet-121 (Huang et al., 2017), VGG-19 (Simonyan & Zisserman, 2015), a 5-layer ConvNet
with max-pooling and dropout, and a multilayer perceptron (MLP).
Baselines. We compare the performance of AdvUA with the following baselines: random deletion
and k-nearest neighbors (kNN) deletion. The random deletion method randomly removes some
training samples from the training set, regardless of the target sample. The kNN deletion method
removes the k closest training samples to a target sample in the input space.
Implementation Details. We conduct comprehensive experiments to evaluate the attack perfor-
mance of AdvUA on both undefended and defended models. The undefended models are con-
structed using natural training algorithms, and the defended models are constructed using adver-
sarial training and certified defense methods. The adversarial training involves training the model
against a PGD adversary with l∞ project gradient descent of ϵ = 8/255 (Madry et al., 2018).
The certified defense methods utilize techniques including spectral norm regularization (Yoshida &
Miyato, 2017) and interval bound propagation (Gowal et al., 2018) to provide provably robustness
bounds. We evaluate the robustness of undefended and defended models against FGSM (Goodfel-
low et al., 2015), PGD (Madry et al., 2018), and CW (Carlini & Wagner, 2017) adversarial attacks.
Specifically, we use a perturbation budget of ϵ = 8/255 to generate adversarial examples for each
attack, and we set steps to 7 for the PGD attack and steps to 30 for the CW attack. Regarding the
unlearning methods for removing the training samples, we select the first-order based unlearning
method (Warnecke et al., 2023) and SISA (Bourtoule et al., 2021a).

4.2 ATTACK PERFORMANCE AGAINST ROBUST TRAINING

Attack Performance against Adversarial Training. We first investigate the attack performance of
AdvUA on the defended models against FGSM, PGD, and CW attacks. The defended models are
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Figure 7: Attack performance of AdvUA on certified defended models against various attacks.

adversarially trained with ResNet-18 on CIFAR-10 and ConvNet on SVHN. The results are shown in
Figs. 6a and 6b for CIFAR-10, and Fig. 6c for SVHN. Here, we randomly select hard samples that are
correctly classified on the defended model and then remove various quantities of training samples
for each sample using the first-order based unlearning method. As shown in the figures, AdvUA
significantly enhances the attack success rates on the defended models. The increase in vulnerability
can be primarily because, after the unlearning process, test samples shift to low-density regions that
adversarially trained models struggle to cover effectively, especially along the adversarial direction.
As more training samples are removed, these test samples migrate to even sparser regions, resulting
in higher attack success rates. For instance, when unlearning 100 training samples for each hard
sample, AdvUA achieves approximately 88% attack success rates on CIFAR-10 against FGSM and
PGD attacks and 90% on SVHN against the CW attack. In comparison, the attack performance of
the random baseline is notably poor. While the kNN baseline slightly improves, it still significantly
lags behind AdvUA. One reason is that although the kNN might reduce local density to a degree,
it is not as effective as AdvUA. Additionally, AdvUA uniquely aligns the direction of unlearning
with the adversarial direction. Therefore, this experiment illustrates the efficacy and superiority of
AdvUA in selecting crucial unlearning samples to achieve the desired attack goals.

Attack Performance against Certified Defense. Next, we explore the attack performance of Ad-
vUA on the certified defended models using spectral norm regularization and interval bound propa-
gation techniques. In spectral norm regularization, we adopt the VGG model in Yoshida & Miyato
(2017) and choose ϵ = 2/255. In interval bound propagation, we adopt the small CIFAR-10 model
in Gowal et al. (2018) and choose ϵ = 8/255. Fig. 7 shows the experimental results of AdvUA on
the certified defended models against FGSM, PGD, and CW attacks on CIFAR-10. As we can ob-
serve, AdvUA performs reasonably well against these certified methods. Notably, achieving a high
attack success rate necessitates unlearning more training samples than needed in adversarial train-
ing. One reason could be that certified defense methods are generally less sensitive to the specific
training samples used, in contrast to the more data-sensitive nature of adversarial training.

4.3 ATTACK TRANSFERABILITY AND MODEL STEALING ATTACKS

Table 1: Attack transferability of FGSM with AdvUA.

Method # of unlearning
samples VGG-19 DenseNet-121

Baseline None 63.0%± 4.7% 61.0%± 6.9%

AdvUA
10 88.0%± 2.9% 88.0%± 2.9%
20 88.0%± 2.9% 90.0%± 1.5%
30 92.0%± 2.0% 96.0%± 1.6%

Effectiveness on Attack Trans-
ferability. We consider a black-
box scenario to examine the effec-
tiveness of AdvUA on adversarial
transferability. We use a surrogate
model to unlearn various numbers
of training samples with the first-
order based method and then gener-
ate the adversarial examples. Sub-
sequently, these unlearning samples and adversarial examples are transferred to attack the target
model. Table 1 presents the attack transferability of FGSM on the undefended models on ImageNet,
where we adopt the ResNet-50 as the surrogate model and the VGG-19 and DenseNet-121 as the
target models. For comparison, we also include the attack transferability of the baseline method,
which directly applies generated adversarial samples to attack the target models (without unlearn-
ing). Conversely, AdvUA employs unlearning to create a sparse local density environment around
the test sample prior to the transfer process. The results show that AdvUA outperforms the baseline
by a large margin in both target models. For instance, when transferring ResNet-50 to DenseNet-
121, AdvUA achieves a 96% attack success rate with 30 unlearning samples, while the baseline only
receives a 61% attack success rate. These findings clearly indicate that AdvUA effectively boosts
attack transferability in the realm of adversarial machine learning.
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Table 2: Test accuracy of model stealing attacks.

Query count Query-based attack Query-based attack
+ unlearn (AdvUA)

100 45.24%± 6.17% 85.71%± 4.92% (1.89×)
200 56.19%± 9.85% 88.57%± 2.41% (1.58×)
300 85.56%± 2.81% 90.00%± 2.85% (1.05×)
400 86.11%± 5.74% 92.22%± 1.41% (1.07×)

Effectiveness on Model Steal-
ing Attacks. We also eval-
uate the effectiveness of Ad-
vUA on model stealing attacks.
We initially train a target model
composed of an MLP using the
IRIS dataset and then employ a
synthetic dataset as queries to
steal this model, as outlined in
Tramèr et al. (2016). Table 2 shows the test accuracy of the extracted model obtained with and
without unlearning. The numbers in the parentheses represent the improvement of test accuracy by
integrating AdvUA. The results indicate that our method boosts the performance of model stealing
attacks, especially when queries are limited. For instance, AdvUA enhances the test accuracy of
the extracted model by a factor of 1.89× with 100 queries compared to the original model stealing
attack. By strategically unlearning samples to diminish the local density near the target query, espe-
cially close to the decision boundary, we create a localized region with reduced robustness around
the target query. This adjustment makes the query more effective in training the derived model,
leading to superior accuracy compared to the original query-based attack. In summary, AdvUA
effectively improves the performance of model stealing attacks, providing another perspective to
validate the influence of unlearning on model robustness.

4.4 ABLATION STUDY

In this section, we conduct ablation studies over sampling density, perturbation bound, and unlearn-
ing methods. As depicted in Fig. 8a, when unlearning the same number of training samples, test
samples initially from low-density regions exhibit higher PGD attack success rates than those from
high-density regions. Notably, even when selecting test samples from high-density regions, AdvUA
still achieves remarkable outcomes. We also compare attack success rates with different perturbation
bounds during CW attack on CIFAR-10. As shown in Fig. 8b, despite larger perturbation bounds
benefiting baseline methods, AdvUA consistently outperforms them. In addition, Fig. 8c illustrates
the effectiveness of AdvUA with the SISA unlearning method, to attack the defended model against
FGSM, PGD, and CW attacks on CIFAR-10. For example, AdvUA can achieve around 65% PGD
attack success rates with 50 unlearning samples. In these ablation studies, our experimental results
emphasize the efficacy of AdvUA in increasing the defended model’s vulnerability, irrespective of
variations in sampling density, perturbation bounds, and unlearning techniques.
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Figure 8: Ablation studies over sampling density, perturbation bound, and unlearning method.

5 CONCLUSION AND FUTURE WORK

In this paper, we take a significant step towards developing a comprehensive understanding of the
adversarial risks associated with the process of machine unlearning. We show that the low density
of the target sample in the space, along with the alignment between adversarial attacks and unlearn-
ing directions, are crucial factors for generating successful adversarial examples, which were not
achievable prior to unlearning. Drawing upon our insightful observations, in this paper, we design a
new adversarial unlearning attack (AdvUA), with the ultimate goal of exacerbating the adversarial
vulnerability of the unlearned models. What’s more, AdvUA can also make model stealing attacks
more effective and stealthy (i.e., requiring fewer query samples). Our extensive experimental results
serve as strong empirical evidence of the effectiveness of the proposed methodology, underscor-
ing the importance of considering security implications alongside data privacy concerns within the
domain of machine unlearning.
In the future, we will investigate the detection and defense mechanisms to mitigate and defend
against adversarial unlearning attacks in the context of the right to be forgotten. Besides deep learn-
ing models, we will also investigate the potential threats of adversarial unlearning attacks in other
domains (e.g., federated learning, and graph neural networks) using different unlearning methods.
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APPENDIX

A ALGORITHM

In Algorithm 1, we detail the procedure to find the optimal forget set for the adversarial unlearning
attacks. We formulate the optimization problem in the main manuscript as an empirical search task.
Given a set of available training samples Se, we first split Se into Z subsets, i.e., {Sz

e}z∈Z , where
Z = [Z]. In each iteration, we aim to find a training subset Sz

e , when removed, that contributes most
to reducing the local density and matching the adversarial attack direction of the target samples.
Specifically, in each iteration, we unlearn each training subset Sz

e and compute the loss associated
with the distance evaluation metric and cosine similarity. Then, we add the training samples from
the subset with the maximum loss to the forget set Su, remove the subset from subsets of Se, and
update the well-trained model W ∗ by unlearning these particular training samples. After this, we
can proceed to the next iteration (i.e., find the next effective subset) until we reach the maximum
forget budget.

Algorithm 1 Constructing Adversarial Unlearning Attack Algorithm

Input: Well-trained model F (W ∗), training data S, available training samples Se = {xt}Tt=1,
unlearning algorithm UL, forget set budget B ≤ T , number of subsets Z, hard target samples
{(xv, yv)}Vv=1

Output: Forget set Su

1: Initialize Su ← ∅
2: Split Se into subsets {Sz

e}z∈Z , where Z = {1, · · · , Z}
3: while |Su| ≤ B do
4: for each z ∈ Z do
5: W̃ = W ∗

6: Wu = UL(S, W̃ , Sz
e )

7: Get top-Kv nearest neighbors NKv
(xv)

8: ℓz =
∑V

v=1 ℓwd(xv,NKv (xv);W
u)−

∑V
v=1

λ2

Kv

∑
xi∈NKv (xv)

ℓdirc(xi, xv;W
u)

9: end for
10: z̃ ← argmaxz∈Z ℓz

11: Su ← Su ∪ S z̃
e

12: Z ← Z \ z̃
13: W ∗ ← UL(S,W

∗, Sz̃
e )

14: end while

B PROOFS

B.1 PROOF OF THEOREM 1

Theorem 1. Consider a data distribution X characterized by a Gaussian distribution with mean
µ ∈ Rd and variance σ2I , i.e., X ∼ N(µ, σ2I). Let {xi}ni=1 be a set of samples drawn from
N(µ, σ2I). Then the expected local density around point x̃ is lower bounded by

E{xi}n
i=1∼X

[
n∑

i=1

1
{
∥xi − x̃∥22 ≤ q

}]
≥ n×

[
1− σ2d

(q − ∥µ− x̃∥22)
2

]
(5)

where x̃ ∈ Rd and q ∈ R.
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Proof. To begin with, the expectation E{xi}n
i=1∼X

[∑n
i=1 1

{
∥xi − x̃∥22 ≤ kσ

}]
is expressed as

the expected value of a binomial distribution with N trials. Then we can have

E{xi}n
i=1∼X

[
n∑

i=1

1
{
∥xi − x̃∥22 ≤ kσ

}]

=

n∑
i=1

Exi∼X

[
1
{
∥xi − x̃∥22 ≤ kσ

}]
= n× P

(
∥xi − x̃∥22 ≤ kσ

)
= n× P

(
∥xi − µ+ µ− x̃∥22 ≤ kσ

)
≥ n× P

(
∥xi − µ∥22 + ∥µ− x̃∥22 ≤ kσ

)
= n× P

(
∥xi − µ∥22 ≤ kσ − ∥µ− x̃∥22

)
= n× P

(
∥xi − µ∥22 ≤ σ ·

(
k − 1

σ
∥µ− x̃∥22

))
= n× P

(√
(xi − µ)

⊤
σ−2I (xi − µi) ≤ k − 1

σ
∥µ− x̃∥22

)
.

(6)

Upon applying the Multidimensional Chebyshev’s Inequality (Chen, 2007), we can obtain

E{xi}n
i=1∼X

[
n∑

i=1

1
{
∥xi − x̃∥22 ≤ kσ

}]
≥ n×

[
1− d(

k − 1
σ∥µ− x̃∥22

)2
]
. (7)

Let q = kσ, then we can get

E{xi}n
i=1∼X

[
n∑

i=1

1
{
∥xi − x̃∥22 ≤ q

}]
≥ n×

[
1− σ2d

(q − ∥µ− x̃∥22)
2

]
. (8)

B.2 PROOF OF THEOREM 2

Lemma 1. Let (x1, y1) , . . . , (xn, yn) be drawn i.i.d. from a (θ⋆, σ)-Gaussian model with ∥θ⋆∥2 =√
d and σ ≤ 1

32d
1/4. Let W ∈ Rd be the weighted mean vector W = 1

n

∑n
i=1 yixi. Then with

probability at least 1−2 exp
(
− d

8(σ2+1)

)
, the linear classifier fW has lϵ∞-robust classification error

at most 1
2 (1− 1/d) if

n ≥
{
1 for ϵ ≤ 1

3d
−1/4

16ϵ2
√
d for 1

3d
−1/4 ≤ ϵ ≤ 1

2

. (9)

Proof. We begin by invoking Theorem 21 in Schmidt et al. (2018), which gives a lϵ
′

∞-robust classi-
fication error at most β = 1

2 (1− 1/d) for

ϵ′ =
2
√
n− 1

2
√
n+ 4σ

−
σ
√
2 log 1/β√

d

≥ 2
√
n− 1

2
√
n+ 1

8d
1/4
−

√
2 log 2d

d−1

32d1/4

≥ 2
√
n− 1

2
√
n+ 1

8d
1/4
− 1

16d1/4
.

(10)
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First, we consider the case where ϵ ≤ 1
3d

−1/4. Using n = 1, the resulting robustness is

ϵ′ ≥ 1

2 + 1
8d

1/4
− 1

16d1/4

≥ 1(
2 + 1

8

)
d1/4

− 1

16d1/4

≥ 111

272
d−1/4 ≥ 1

3
d−1/4 ≥ ϵ

(11)

as required. Next, we consider the case 1
3d

−1/4 ≤ ϵ ≤ 1
2 . Substituting n = 16ϵ2

√
d, we get

ϵ′ ≥ 8ϵd1/4 − 1

8ϵd1/4 + 1
8d

1/4
− 1

16d1/4

≥ 5ϵd1/4

4d1/4 + 1
8d

1/4
− 1

16d1/4

≥ 40

33
ϵ− 3

16
ϵ ≥ ϵ.

(12)

Theorem 2. Let gn be any learning algorithm, i.e., a function from n ≥ 0 samples in Rd × {±1}
to a binary classifier fn. Moreover, let W ∈ Rd be the weight of fn and W = 1

n

∑n
i=1 yixi, and

let θ ∈ Rd be drawn from N(0, I), ∥θ∥2 =
√
d. We draw n1, n2 samples from the (θ, σ)-Gaussian

model, which generates (x, y) ∈ Rd × {±1} by first randomly selecting a label y ∈ {±1} and then
sampling x ∈ Rd from N(y·θ⋆, σ2I). Let the expected lϵ∞-robust classification errors of fn1

, fn2
are

R1, R2. Then it can be deduced that R1 ≤ R2 holds with a probability at least 1−2 exp
(
− d

8(σ2+1)

)
if n1 ≥ 16ϵ2

√
d and n2 ≤ ϵ2σ2

8 log d , where 0 ≤ σ ≤ 1
32d

1/4,
√

8 log d
σ2 ≤ ϵ ≤ 1

2 .

Proof. We begin by invoking Corollary 23 in Schmidt et al. (2018), which provides an upper bound
on the error, denoted as R2, as follows:

R2 ≥
1

2
(1− 1/d) if n2 ≤

ϵ2σ2

8 log d
. (13)

Next we invoke Lemma 1 and analyze the case where ϵ ≤ 1
3d

−1/4. We get

n2 ≤
ϵ2σ2

72 log d
≤ σ2

√
d

72 log d
≤ c21

72 log d

≤ 1

73728 log d
< 1

(14)

which is invalid. Therefore, to ensure n2 ≥ 1, we need to consider the case where 1
3d

−1/4 ≤ ϵ ≤ 1
2

instead. We have
ϵ2σ2

8 log d
≥ 1

ϵ ≥
√

8 log d

σ2

(15)

and because 0 ≤ σ ≤ c1d
1/4, we also have√

8 log d

σ2
≥
√

8 log d

c21
√
d

≥ 1024d−
1
4

√
8 log d ≥ 1

3
d−

1
4 .

(16)

Therefore, with probability at least 1 − 2 exp
(
− d

8(σ2+1)

)
, we have R1 ≤ 1

2 (1 − 1/d) if n1 ≥

16ϵ2
√
d for

√
8 log d
σ2 ≥ ϵ ≥ 1

2 . Hence we can obtain the desired bound that ensures R1 ≤ 1
2 (1 −

1/d) ≤ R2 under the mentioned conditions above.
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Theorem 3. Let (x1, y1) , . . . , (xn, yn) ∈ Rd× {±1} be drawn i.i.d. from a (θ⋆, σ)-Gaussian model
with ∥θ⋆∥2 =

√
d. Let W ∈ Rd be the unit vector in the direction of z̄ =

∑n
i=1 aizi,

∑n
i=1 ai = 1,

i.e., W = z̄/∥z̄∥2. Then with probability at least 1 − 2 exp
(
− d

8(σ2+1)

)
, the linear classifier fW

has classification error at most

exp

(
−

(2
√
n−

√∑n
i=1 a

2
i )

2d

2(2
√
n(1 + σ) + 2σ)2σ2

)
. (17)

Proof. Let zi = yi · xi and note that each zi is independent and has distribution N(θ⋆, σ2I). We
can derive a conclusion similar to Lemma 16 in Schmidt et al. (2018) as follows:

⟨ŵ, θ⋆⟩ ≥
2
√
n−

√∑n
i=1 a

2
i

2
√
n(1 + σ) + 2σ

√
d (18)

with probability at least 1− 2 exp
(
− d

8(σ2+1)

)
. Next, unwrapping the definition of fW allows us to

write the classification error of fW as

P [fW (x) ̸= y] = P [⟨W, zi⟩ ≤ 0] . (19)

We can derive a conclusion similar to Lemma 17 in Schmidt et al. (2018) with ρ = 0 then completes
the proof of this theorem.

By invoking Theorem 3, it is established that with a high probability the derivative of the upper
bound of classification error with respect to the quantity of training data remains non-positive.
Hence, we can conclude that the upper bound of classification error increases with significant confi-
dence if the sample size decreases.

C THE ADOPTED ADVERSARIAL ROBUSTNESS TECHNIQUES

Adversarial Training. Adversarial training is recognized as one of the most effective techniques
for training robust models to defend against adversarial examples (Cheng et al., 2020; Gao et al.,
2019; Madry et al., 2018; Goodfellow et al., 2014). Mathematically, adversarial training can be
formulated as a min-max optimization problem, with the goal of finding the optimal solution that
remains effective even under the worst-case scenarios. Given a learning model with parameters W ,
a training dataset S = {(xi, yi)}ni=1, a loss function L, and a perturbation bound ϵ. The optimization
problem for training adversarially robust models can be cast as follows

min
W

n∑
i=1

[
max

||δi||p≤ϵ
L(xi + δi, yi;W )

]
, (20)

where ϵ is pre-defined and || · ||p is the lp norm distance metric. In this formulation, the inner
maximization problem aims to identify the worst-case examples that yield a high loss, while the
objective of the outer minimization problem is to adjust model parameters so that the loss in the
inner attack is minimized. Madry et al. (2018) propose using projected gradient descent (PGD)
to solve the internal maximization problem, the so-called PGD adversarial training, which lever-
ages adversarial samples generated by PGD attacks to train robust models. The PGD attack is a
multi-step variant adversary and entails performing projected gradient descent on the negative loss
function. Specifically, the adversarial example xt+1 at the (t + 1)-th step for input x is computed
as xt+1 = Πx+∆(x

t + α · sgn(∇xL(x, y;W ))), where ∆ = {δ : ||δ||p ≤ ϵ} and Πx+∆ is the
projection onto the lp norm-bounded ball of radius α centered at x. This dynamic process itera-
tively generates adversarial examples that challenge the model during training, ultimately leading to
increased robustness against adversarial attacks.

Interval Bound Propagation. Interval bound propagation is a bounding technique used to train
models with proven robustness against adversarial examples (Mirman et al., 2018; Gowal et al.,
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2018). The purpose of interval bound propagation is to define a loss that minimizes an upper bound
on the maximum difference between any pair of logits when the input can be perturbed within l∞
norm-bounded ball. More precisely, let z(x) denote the output of a hidden network layer for given
an input x. We define z̄(x, ϵ), z(x, ϵ) as interval bounds for z at x with respect to the perturbation
bound ϵ if the following holds for all coordinates i

z(x, ϵ)[i] ≤ min
||δ||∞≤ϵ

z(x+ δ)[i] ≤ max
||δ||∞≤ϵ

z(x+ δ)[i] ≤ z̄(x, ϵ)[i]. (21)

Let K denote the layers in the neural network model, the bounds z̄k and zk for the k-th layer
are obtained inductively using simple interval arithmetic. Subsequently, these interval bounds are
propagated through all layers of the network. To obtain provable robustness in the context of the
classification problem, Gowal et al. (2018) propose the following formulation for the training loss

Loss = λ3L(zK , ytrue) + (1− λ3)L(ẑK(ϵ), ytrue), (22)

where L is the cross-entropy loss and λ3 is a trade-off parameter. To consider the worst-case pre-
diction and ensure that no perturbation changes the correct class label, the logit of the true class is
equal to its lower bound, and the other logits are equal to their upper bound. Therefore, in the above
formulation, ẑK(ϵ)[y] = z̄K(ϵ)[y] if y ̸= ytrue, otherwise ẑK(ϵ)[y] = zK(ϵ)[ytrue].

Spectral Norm Regularization. Spectral norm regularization is a regularization technique for re-
ducing the model’s sensitivity to small perturbations by penalizing the high spectral norm of weight
matrices in neural networks (Cisse et al., 2017; Yoshida & Miyato, 2017; Szegedy et al., 2014). The
spectral norm of a matrix measures the largest singular value, which can be thought of as the scaling
factor by which the matrix can stretch or compress vectors. Yoshida & Miyato (2017) propose to
add the spectral norm regularization term to the loss function of the neural network for training a
robust model. Given a learning model with parameters W , a training dataset S = {(xi, yi)}ni=1, and
a loss function L. The optimization for training a robust model can be formulated as follows

min
W

1

n

n∑
i=1

L(xi, yi;W ) +
λ4

2

K∑
k=1

σ(Mk)2, (23)

where λ4 is a regularization factor, K is the layers in the neural network model, and Mk is the
layer-wise weight matrix for the k-th layer. This formulation aims to decrease the training loss as
well as the spectral norms of the weight matrices. As a result, the training process encourages the
model to learn weight matrices that are more stable and less sensitive to small input perturbations.

D THE ADOPTED MACHINE UNLEARNING METHODS

Machine unlearning aims to remove the requested data and their influence from a trained model
without retraining the remaining data from scratch. In the following, we delve into more details
about the adopted machine unlearning methods.

SISA. SISA (Bourtoule et al., 2021a) is the most representative work among existing exact data
removal methods. In the SISA approach, the original training dataset S is subject to a random
partition into J distinct shards. For each data shard Sj , an associated submodel FSj

(Wj) is trained,
where Wj ∈ W represents the model parameters that parameterize the neural network model FSj

.
Subsequently, the final prediction results are derived by aggregating the outputs of the J submodels
using methods such as averaging or majority voting. Once an unlearning request is made, only the
submodel linked to the data shard containing the requested data needs to be retrained.

First-order Based Unlearning. The first-order based unlearning method (Warnecke et al., 2023)
leverages a first-order Taylor Series to compute the gradient updates on the model for the requested
data. This method aims to find the influence of data points on the learning model by combining
up-weighting and down-weighting instead of explicitly removing them. Given a pre-trained model
W ∗, a set of training data Z = {zp}Pp=1 ⊂ S as well as its corrected version Z̃ = {z̃p}Pp=1, where
z̃p = (xp + δp, yp) and δp is the perturbation for the sample xp. The goal is to derive a closed-form
update ∆(Z, Z̃) of the model parameters where ∆(Z, Z̃) has the same dimensions as the learning
model W ∗ but is sparse and affects only the relevant parameters. Then, the model parameters can
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Figure 9: Attack performance of AdvUA on adversarially trained models against various attacks.

be computed by an optimal first-order update as follows

Wu ←W ∗ − τ(
∑
z̃p∈Z̃

∇WL(z̃p;W ∗)−
∑
zp∈Z

∇WL(zp;W ∗)), (24)

where Wu is the unlearned model, τ is a pre-defined unlearning rate, and L is a loss function (e.g.,
cross-entropy). This formulation moves the pre-trained model W ∗ towards the gradient difference
between Z and Z̃ with a step of unlearning rate τ . Note that if Z̃ = ∅, this method also allows model
updates for removing data points, as outlined in Warnecke et al. (2023).

Second-order Based Unlearning. The second-order based unlearning method (Warnecke et al.,
2023) uses the inverse Hessian matrix of the second-order derivatives to facilitate the unlearning
process. Let W ∗ denote a pre-trained model, Z = {zp}Pp=1 ⊂ S denote a set of training data,
and Z̃ = {z̃p}Pp=1 denote the corresponding corrected version, where z̃p = (xp + δp, yp) and δp is
the perturbation for the sample xp. and δp is the unlearning modification for xp. Then, the model
parameters can be updated through a linear approximation as follows

Wu ←W ∗ −H−1
W∗(

∑
z̃p∈Z̃

∇WL(z̃p;W ∗)−
∑
zp∈Z

∇WL(zp;W ∗)), (25)

where Wu is the unlearned model, H−1
W∗ is the inverse Hessian matrix, and L is a loss function (e.g.,

cross-entropy). This formulation directly updates the pre-trained model W ∗ by applying the inverse
Hessian matrix H−1

W∗ to the gradient difference between Z and Z̃.

Unrolling SGD. Unrolling SGD unlearning method (Thudi et al., 2022) formalizes a singular
gradient-based unlearning approach by expanding a sequence of stochastic gradient descent (SGD)
updates using a Taylor series. In order to reverse the impact of unlearning data during the SGD
training steps and obtain the unlearned model, this method involves adding the gradients of the un-
learning data, computed with respect to the initial model parameters, to the final model parameters.
Here, the initial model parameters can start from a pre-trained model W ∗ and the final model param-
eters can be fine-tuned with t SGD training steps, denoted by W ∗

t . Let Z = {zp}Pp=1 ⊂ S denote a
set of training data. The unlearned model can be obtained as follows

Wu ←W ∗
t +

∑
zp∈Z

ηE

b
∇WL(zp;W ∗), (26)

where η is the learning rate, b is the batch size, E is the number of fine-tuning epochs (which
corresponds to the number of copies of gradients presented in the SGD updates), and L is a loss
function (e.g., cross-entropy). This formulation updates the pre-trained model W ∗ with t steps of
fine-tuning W ∗

t by adding the gradients associated with the unlearning data as represented in the
SGD training process.

E MORE EXPERIMENTAL DETAILS AND RESULTS

E.1 MORE EXPERIMENTAL DETAILS

Experimental Setup for Fig. 1. In Fig. 1 of the main manuscript, we conducted preliminary exper-
iments to investigate the adversarial robustness degradation of the undefended and defended models
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Table 3: Attack transferability of AdvUA on the undefended model.

Adversarial
attack Method # of unlearning

samples VGG-19 DenseNet-121 ResNet-152

FGSM

Baseline None 63.0%± 4.7% 61.0%± 6.9% 54.0%± 4.3%

AdvUA

10 88.0%± 2.9% 88.0%± 2.9% 82.0%± 3.6%

20 88.0%± 2.9% 90.0%± 1.5% 87.0%± 3.7%

30 92.0%± 2.0% 96.0%± 1.6% 94.0%± 2.2%

PGD

Baseline None 45.0%± 5.0% 49.0%± 7.2% 45.0%± 3.4%

AdvUA

10 88.0%± 3.3% 93.0%± 1.5% 94.0%± 2.2%

20 91.0%± 2.8% 95.0%± 2.2% 97.0%± 1.5%

30 93.0%± 2.1% 97.0%± 1.5% 97.0%± 1.5%

CW

Baseline None 48.0%± 4.4% 57.0%± 4.5% 43.0%± 3.3%

AdvUA

10 86.0%± 3.4% 94.0%± 2.2% 95.0%± 1.7%

20 89.0%± 1.0% 96.0%± 1.6% 96.0%± 2.2%

30 93.0%± 2.1% 98.0%± 1.3% 98.0%± 1.3%

by randomly removing some training samples in the context of machine unlearning. In the exper-
iments, we adopt the ResNet-18 (He et al., 2016) model for the CIFAR-10 (Krizhevsky & Hinton,
2010) dataset and the ConvNet model for SVHN (Netzer et al., 2011) dataset. The undefended
models are trained using standard natural algorithms, and the corresponding defended models are
trained using the adversarial training technique (Madry et al., 2018) that against a PGD adversary
with l∞ project gradient descent of ϵ = 8/255. Subsequently, we evaluate the robustness of both un-
defended and defended models against FGSM (Goodfellow et al., 2015), PGD (Madry et al., 2018),
and CW (Carlini & Wagner, 2017) adversarial attacks, all with a perturbation bound of ϵ = 8/255.
In our exploration of the adversarial vulnerability introduced by machine unlearning, it is necessary
to have a comparative measure capturing the difference in adversarial robustness with and without
exploiting unlearning. Therefore, we propose a general notion, referred to as the Robust accuracy
drop ratio (Drratio), to quantify this difference. The metric is defined as follows

Drratio =
Accrobustness without unlearning −Accrobustness with unlearning

Accrobustness without unlearning
, (27)

where Accrobustness without unlearning denotes the robust accuracy against the adversarial attack in the
absence of any unlearning process and Accrobustness with unlearning denotes the robust accuracy against
the same adversarial attack when unlearning mechanisms are involved. Therefore, the above metric
is able to reflect the degree of robustness degradation when applying machine unlearning to the
undefended and defended models.

Experimental Setup for Fig. 4. In Fig. 4 of the main manuscript, we conducted experiments to ver-
ify the impact of unlearning on density. Specifically, we first adopt a defended model with ResNet-
18 on the CIFAR-10 dataset. The defended model is trained using adversarial training against a
PGD adversary with l∞ project gradient descent of ϵ = 8/255. Then, we randomly select 100
hard samples and evaluate their attack success rates on the defended model against the PGD attack
after unlearning. Here, we maintain a small unlearning strength (10 training samples for each hard
sample) and use the first-order based unlearning method. Next, we separate the test samples into
two categories: success cases (attack success after unlearning) and failure cases (attack fail after un-
learning), and study their density changes before and after unlearning. More precisely, we compute
the average density of success cases and failure cases within different local density scales (nearest
neighbors) before and after unlearning. Our observation indicates that success cases typically ex-
hibit higher ℓwd values compared to failure cases after the unlearning process, which implies that
success cases are located in relatively low-density regions and are thus more susceptible to attacks.

Parameter Settings. In our experiments, we evaluate the efficacy of AdvUA on both undefended
and defended models across a variety of datasets and model architectures. We employ a diverse set
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Figure 10: Impact of sampling density for AdvUA attack performance on the defended model.
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Figure 11: Impact of perturbation bound for AdvUA attack performance on the defended model.

of robust training techniques to train the defended model, and we utilize various unlearning methods
to launch adversarial unlearning attacks. Specifically, for adversarial training, we train the model
against a PGD adversary with l∞ project gradient descent of ϵ = 8/255. When applied to the
CIFAR-10 dataset, we train the model for 200 epochs with a batch size of 128. We use the SGD
optimizer with an initial learning rate of 0.1 and decay the learning rate by 10× at epochs 100 and
150. On the SVHN dataset, we train the model for 100 epochs with a batch size of 128. We use the
SGD optimizer with a learning rate of 0.001. For interval bound propagation (Gowal et al., 2018),
we train the model for 1400 epochs with a batch size of 200. The total number of training steps
is 350K. We use the Adam optimizer with an initial learning rate of 0.001 and decay the learning
rate by 10× at steps 200K, 250K, and 300K. We set the trade-off parameter λ3 = 0.5 in Eqn. (22).
For spectral norm regularization (Yoshida & Miyato, 2017), we train the model for 100 epochs with
a batch size of 200. We use the SGD optimizer with an initial learning rate of 0.01. We set the
regularization factor λ4 = 0.09 in Eqn. (23). When utilizing AdvUA to attack the undefended
and defended models, we configure the trade-off parameter λ2 = 10 in Eqn. (3). We measure the
distance evaluation metric for the nearest 100 samples. Regarding the adopted unlearning methods,
we set the unlearning rate to 0.0001 for the first-order based unlearning method (Warnecke et al.,
2023). For the unrolling SGD unlearning method (Thudi et al., 2022), we set the fine-tuning epoch
to 1 and the learning rate to 0.0001. For SISA (Bourtoule et al., 2021a), we partition the training
dataset into 5 disjoint shards and attack all the shards. In the experiments of model stealing attacks,
we first train the target model for 100 epochs with a batch size of 128. We use the SGD optimizer
with a learning rate of 0.01. As part of the model extraction procedure, we opt to incorporate a
subset of training data (10%) as unlearning samples for optimization. In this context, we adopt the
first-order unlearning method with an unlearning rate of 0.01.

Machine Configuration. The experiments are implemented using the PyTorch (pyt, 2019) frame-
work and run on a Linux server. This server is equipped with a GPU machine featuring AMD EPYC
32-core 2.6GHz CPUs and Nvidia A100 GPUs (40GB dedicated memory).

E.2 MORE EXPERIMENTAL RESULTS

E.2.1 ABOUT ATTACK PERFORMANCE AGAINST ROBUST TRAINING

In this section, we provide more experimental results about the attack performance of AdvUA on
the defended models against FGSM, PGD, and CW attacks. The defended models are adversarially
trained with ResNet-18 on CIFAR-10 and ConvNet on SVHN. The results for SVHN are in Fig. 9a
and Fig. 9b while results for CIFAR-10 are in Fig. 9c. Here, we randomly select hard samples
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Figure 12: Attack performance of AdvUA on the defended model with various unlearning methods.
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Figure 13: Correlation of attack success rate with cosine similarity (between the test sample and
remaining data) on the defended model against FGSM, PGD, and CW attacks on CIFAR-10.

that are correctly classified on the defended model and then remove various quantities of training
samples for each hard sample using the first-order based unlearning method. As shown in the figures,
AdvUA significantly enhances the attack success rates on the defended models. For instance, when
unlearning 100 training samples for each hard sample, AdvUA achieves approximately 93% on
SVHN against FGSM and PGD attacks and around 86% attack success rates on CIFAR-10 against
the CW attack. In contrast, the results of the random baseline and kNN baseline are limited.

E.2.2 ABOUT EFFECTIVENESS ON ATTACK TRANSFERABILITY

In this section, more experimental results for the attack transferability with AdvUA are offered. We
also use a surrogate model to unlearn various numbers of training samples and then generate the
adversarial examples. Subsequently, these unlearning samples and adversarial examples are trans-
ferred to attack the target model. Table 3 presents the complete results about attack transferability of
the undefended model on ImageNet, where we adopt the ResNet-50 model as the surrogate model
and the VGG-19, DenseNet-121, and ResNet-152 as the target models. For comparison, we also in-
clude the attack transferability of the baseline method, which directly applies generated adversarial
samples to attack the target models (without unlearning). In all attack scenarios, AdvUA outper-
forms the baseline by a large margin, regardless of the target model. For instance, when transferring
ResNet-50 to ResNet-152 against the PGD attack, AdvUA achieves an attack success rate of 94%
with 10 unlearning samples and an attack success rate of 97% with 30 unlearning samples, while
the baseline only receives an attack success rate of 45%.

E.2.3 ABOUT EXPERIMENTAL RESULTS AND DETAILS ON ABLATION STUDY

Impact of Sampling Density. We compare the attack success rates of hard samples sampled from
low-density and high-density regions based on their ℓwd indicators before unlearning in Fig. 10.
We also remove different numbers of unlearning samples from the defended model against FGSM,
PGD, and CW attacks on CIFAR-10, using the first-order based unlearning method. As depicted
in the figures, when unlearning the same number of training samples, test samples initially from a
low-density region exhibit higher attack success rates than those from a high-density region. Nev-
ertheless, even when we select the hard samples from high-density regions, AdvUA still achieves
remarkable outcomes. For example, AdvUA achieves over 65% attack success rates when unlearn-
ing 50 training samples across various attacks.
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Figure 14: Optimization loss of AdvUA w.r.t number of iterations on CIFAR-10.

Impact of Perturbation Bound. In Fig. 11, we compare attack success rates of different perturba-
tion bounds against FGSM, PGD, and CW attacks on CIFAR-10. We maintain a small unlearning
strength (10 training samples) for each target test sample and utilize the first-order based unlearning
method for removal. As we can see, the attack success rates of AdvUA increase with the increment
in perturbation bound for each attack. For instance, AdvUA achieves approximately 56% attack
success rate with a small perturbation bound of ϵ = 8/255 and about 96% attack success rate with
ϵ = 24/255 against the FGSM attack. Despite larger perturbation bounds benefiting the baseline
methods, AdvUA consistently outperforms them across various attacks.

Attack Performance with Other Unlearning Methods. Besides first-order based unlearning
method and SISA, we also conduct experiments with other machine unlearning methods, namely
second-order based and unrolling SGD, in conjunction with AdvUA. We also remove different num-
bers of training samples using each of the unlearning methods on the defended model against FGSM,
PGD, and CW attacks on CIFAR-10. The experimental results are presented in Fig. 12. Our AdvUA
exploiting these unlearning methods achieves significant attack success rates on the defended model
against various attacks. For example, the second-order unlearning method attains about 80% attack
success rates with 50 unlearning samples. With more unlearning samples, the unlearning mechanism
will remove more impact of the training samples from the defended model and further decrease the
local density of the target hard samples.

E.2.4 EXPERIMENTAL RESULTS ABOUT ADVERSARIAL DIRECTION ALIGNMENT

In the main manuscript, we propose the adversarial direction alignment to match the adversarial
attack with the unlearning direction. Fig. 13 shows the correlation of attack success rate with cosine
similarity on the defended model against FGSM, PGD, and CW attacks on CIFAR-10. We measure
the cosine similarity between the vector of the adversarial direction and the vectors from the nearest
samples to the target sample after unlearning. As shown in the figures, there is a negative correlation
between the attack success rate and cosine similarity. A smaller cosine similarity corresponds to a
higher attack success rate, while a larger cosine similarity corresponds to a lower attack success rate.
Apparently, a small cosine similarity implies a large angle between the two vectors, indicating that
the target sample is in a different direction from the nearest samples after unlearning. As a result, it
tends to exhibit a higher attack success rate.

E.2.5 EXPERIMENTAL RESULTS ABOUT OPTIMIZATION LOSS

Convergence of the Optimization Loss. In the main manuscript, we propose an empirical greedy
approach to solve the optimization problem for the adversarial unlearning attacks, as outlined in Al-
gorithm 1. To verify the effectiveness of our proposed approach, we examine the convergence of the
optimization loss in Fig. 14. In our optimization framework, the objective is to maximize the loss of
density and adversarial alignment direction. Specifically, we compute the loss for each iteration with
a distance evaluation indicator and the cosine similarity between the target sample and the nearest
samples in a local region after unlearning. As depicted in the figure, the loss consistently increases
and eventually converges as the number of iterations increases. These results emphasize that our
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Figure 15: Attack performance of AdvUA, AdvUA with density only, and AdvUA with direction
alignment only on the defended model against FGSM, PGD, and CW attacks on CIFAR-10.
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Figure 16: Attack performance of test samples sampling with low-confidence and high-confidence
on the defended model against FGSM, PGD, and CW attacks on CIFAR-10.

method iteratively finds the unlearning samples that have a maximum impact on the density and
alignment direction with respect to the target sample. Therefore, the experimental results provide
compelling evidence to support the effectiveness of our proposed approach.

Impact of Different Loss Components. The overall loss of AdvUA contains two crucial com-
ponents: the distance evaluation metric for density measurement and the adversarial direction for
alignment assessment. Here, we conduct an ablation study to investigate the performance of these
two components. Fig. 15 presents the attack performance of AdvUA, AdvUA with density only, and
AdvUA with direction alignment only on the defended model against FGSM, PGD, and CW attacks
on CIFAR-10. We can observe that the AdvUA incorporating both components outperforms the
AdvUA that solely takes density into account or solely focuses on direction alignment. In particular,
the density measurement appears to play a more dominant role in guiding the target sample in a
low-density region, and direction alignment assists in pulling the representation of the target sample
towards the low-density region.

E.2.6 EXPERIMENTAL RESULTS ABOUT SAMPLES WITH DIFFERENT CONFIDENCE

In Fig. 16, we illustrate the attack performance of test samples sampling from low-confidence and
high-confidence on the defended model against FGSM, PGD, and CW attacks on CIFAR-10. We ex-
press the confidence of the test sample by the probability value obtained after applying the softmax
function. Specifically, we randomly select hard samples with a probability less than 0.8 as represent-
ing low confidence and those with a probability greater than 0.8 as indicating high confidence. As
shown in the figures, when unlearning the same number of training samples, test samples with low
confidence exhibit higher attack success rates than those with high confidence. For instance, in the
case of the FGSM attack, when we unlearn 50 training samples, test samples with low confidence
achieve an attack success rate of approximately 90%, while those with high confidence achieve an
attack success rate of around 64%. These experimental results align with the observations presented
in Fig. 2. Low-confidence test samples tend to be covered by fewer training samples and are not
well-trained in the model, so they are usually located in low-density regions, while high-confidence
test samples are usually located in high-density regions.
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E.2.7 EXPERIMENTAL RESULTS ABOUT GENERALIZATION IN ATTACKING ROBUST VISION
TRANSFORMERS (VITS)

In this section, we conduct experiments to evaluate the generalization ability of the proposed AdvUA
in attacking robust ViTs (Mo et al., 2022; Peng et al., 2023; Dosovitskiy et al., 2020). Note that
the key idea behind ViTs (Dosovitskiy et al., 2020) is to apply the Transformer architecture to
visual data, and the Transformer architecture relies on self-attention mechanisms, enabling it to
capture relationships and dependencies between different elements (e.g., regions of an image) in a
sequence of data. In the experiments, we adopt the vit base patch16 224 in21k model in (Mo et al.,
2022) and train an adversarial robust model on 20% of the CIFAR-10 dataset using the adversarial
training technique. Notably, to train the adversarial robust model, we follow (Mo et al., 2022; Peng
et al., 2023) to utilize adversarial training to improve the model’s robustness against adversarial
attacks. In the adversarial training process, we train robust ViTs against a PGD adversary with an l∞
perturbation budget of ϵ = 8/255. Then we conduct our AdvUA attack on this adversarially robust
model against PGD attacks, and our experimental results show that AdvUA can effectively attack
robust ViTs. For example, when unlearning 50 unlearning samples, AdvUA can achieve an attack
success rate of 56.0% ± 4.0% while the kNN baseline achieves 30.0% ± 6.8%; when unlearning
100 unlearning samples, AdvUA can achieve an attack success rate of 68.0%±6.1% while the kNN
baseline achieves 42.0%±6.3%. Note that in the experiments, we choose the hard samples to attack,
which led to a zero attack success rate on the original robust model before unlearning. Therefore,
these experiments further underscore the significance of the proposed AdvUA, and help us to well
understand adversarial unlearning attacks in different settings.
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