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Abstract

In this paper we consider the problem of estimating spectral norm of a matrix using only
matrix-vector products. We propose a new Counterbalance estimator, which provides an upper
bounds on the norm, and derive bounds on its underestimation probability. We show that it
allows for constructing tighter upper bounds for the operator norm of the underlying matrix,
compared to baseline methods.

1 Introduction

Estimating the spectral norm (largest singular value) of an implicitly defined matrix using only
matrix-vector products is a fundamental problem in numerical linear algebra and machine learning.
In many applications, one cannot access the entire matrix A ∈ Rm×n explicitly, but one can compute
products Ax and sometimes A⊤x for chosen vectors x. The challenge is to estimate ∥A∥2 (or
related norms) from above with few matrix-vector products (matvecs). This scenario arises, for
example, in sensitivity analysis of matrix functions and condition number estimation [1, 2, 16], and
in regularizing deep neural networks by enforcing Lipschitz continuity (bounding layer Jacobian
norms) [7]. Traditional deterministic approaches like the power method estimate the norm from
below and require multiple sequential iterations until convergence, which may be infeasible if each
matvec is expensive. Randomized algorithms provide attractive alternatives: by probing A with
random test vectors, one can obtain unbiased or statistically reliable estimates of various matrix
norms and traces much faster in practice. The main advantage of randomized methods in this
context is the fact that the required matvecs can be computed in parallel.

Perhaps the simplest approach to estimate ∥A∥2 is to compute matvec AX for a random vector
X and use the norm ∥AX∥2 for an estimator. Specifically, let X be a random vector of appropriate
dimension with ∥X∥2 = 1, and consider the scalar ∥AX∥2. This quantity is always at most ∥A∥2,
and in fact, early work by Dixon [6] established probabilistic guarantees for this estimator: for a
random vector X drawn uniformly from the sphere Sn−1, one has

P(∥A∥2 ≤ θ ∥AX∥2) ≥ 1− 0.8
√
dθ−1/2 , (1)

for any θ > 1, where d = max(m,n). Equivalently, with high probability, ∥AX∥2 underestimates
the true norm ∥A∥2 by at most a factor θ that grows only moderately with the ambient dimension d.
In practice, one can boost the reliability of norm estimates (1) by averaging or taking maxima over
multiple independent statistics, see [6, 8]. If X1, . . . , Xk are k independent random vectors, a
natural improvement of (1) is the maximum observed norm:

T (X1, . . . , Xk) = max
1≤i≤k

∥AXi∥2 . (2)
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This multi-sample approach reduces the risk of a “bad” draw that misses the top singular vector
and can be straighforwadly parallelized.

It is important to note that these basic randomized estimators tend to underestimate the true
norm. Indeed, maxi ∥AXi∥2 ≤ ∥A∥2 for any unit vector X. In some applications, a probabilistic
upper bound on ∥A∥2 is desired. One can obtain an upper bound by scaling the test statistic (1)
or (2) by an appropriate factor. The formula above from Dixon’s result provides one such factor:
e.g., setting θ(δ) = (4/5)2d/δ2 in (1) yields

P(∥A∥2 ≤ θ(δ) ∥AX∥2) ≥ 1− δ .

This bound has unfavorable scaling with d, and can be formally improved if one considers the
statistic Tθ(X) = θ ∥AX∥2, as suggested in [8]. With this estimator, one can prove the following
bound on the underestimation probability of ∥A∥2, see [8, Lemma 4.1]: with X ∼ N (0, In), it holds
that

P(θ ∥AX∥2 ≤ ∥A∥2) ≤
√

2

π

1

θ
. (3)

The bound (3) can not be improved in general, as it is tight when considering matrices A with
rkA = 1. Note that the estimator θ ∥AX∥2 typically behaves much better, compared to the upper
bound (3), since

E[∥AX∥22] = ∥A∥2Fr .

Using the apparatus of concentration of measure inequalities [4, 15], one can study the concen-
tration properties of ∥AX∥2 around its expectation, which can be shown to be close to ∥A∥Fr.
Thus, when we consider the matrix A with ∥A∥Fr ≫ ∥A∥2, one can expect that ∥AX∥2 will sig-
nificantly overestimate ∥A∥2. This property can be formalized using the concept of effective rank
ρ = ∥A∥2Fr/∥A∥22. At the same time, the upper bound of the underestimation probability (3) does
not depend upon ρ. This raises the following dilemma, which can be formulated as follows. Suppose
that we use a statistic Tθ(X) (for example, Tθ(X) = θ ∥AX∥2) to provide an upper bound on ∥A∥2.
Suppose also that we are able to provide an upper bound

P(Tθ(X) ≤ ∥A∥2) ≤ g(θ) (4)

for some function g(θ) that is independent of A. Then tighter expressions for g(θ) requires additional
information about A, such as knowledge about the effective rank ρ. Typically, this information is
not available for a statistician. Hence, a natural question arises:

Can we construct a simple estimator for ∥A∥2, which is agnostic to its structure and allows for
providing tighter upper bound on ∥A∥2, compared to (3)?

It is important to provide a precise quantification of “tighter upper bound” here. Suppose, that for a
fixed computational budget (that is, for a fixed number of matvecs), we construct two (randomized)
estimators T1(X) and T2(X), such that for a fixed δ ∈ (0, 1), it holds that

P(T1(X) ≤ ∥A∥2) ≤ δ , and P(T2(X) ≤ ∥A∥2) ≤ δ . (5)

Then it is natural to say that T1(X) is tighter then T2(X), if at least E[T1(X)] ≤ E[T2(X)]. We
postpone detailed discussion on the subject to Section 3. In our paper, we aim to present an
estimator of ∥A∥2, which is tighter than the one, which is based on (3), but does not require any
prior knowledge on the decay of singular values of A. Our main contributions are as follows:
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• We propose a new Counterbalance (CB for short) estimator T c
θ (X), which provides an upper

bounds on ∥A∥2, and derive bounds on its underestimation probability.

P(T c
θ (X) ≤ ∥A∥2) .

The term “counterbalance” comes from the additional summand, that we add to the classical
estimator of a form (3), which noticeably sharpens our bound for low-rank matrices A. We
also determine the way of selecting the parameter θ for our estimator, which does not depend
upon the structure of singular values of A. We study the concentration properties of the novel
estimator and show that it allows for constructing tighter upper bounds for the operator
norm of the underlying matrix and fixed underestimation probability, compared to baseline
methods.

• We perform a number of numerical simulations, illustrating the benefits of our method
on various matrices with various ranks, effective ranks, and structure of singular values.
We also consider the example of upper bounding the spectral norm of Jacobian of layers
of ResNet neural networks. We show that our estimator allows for constructing tighter
upper bounds for the operator norm of the underlying matrices for fixed underestimation
probability, compared to baseline methods.

Notations. For a matrix A ∈ Rm×n, we write ∥A∥2 for its spectral norm and ∥A∥F for its
Frobenius norm. We denote by ρ its effective rank (also known as stable rank) ρ = ∥A∥2F / ∥A∥22.
Given that A admits a singular value decomposition (SVD) A = UΣV ⋆, Σ = diag(σ1, . . . , σr),
where σ1 ≥ σ2 ≥ . . . ≥ σr > 0 are the corresponding singular values, the effective rank can be
rewritten as ρ = (

∑k
i=1 σ

2
i )/σ

2
1. We also denote by χ2(t) = P

(
ξ2 ≤ t

)
, where ξ ∼ N(0, 1).

2 Literature review

Randomized estimates of type (1) were suggested in [6] with test vectors X following the uni-
form distribution on a unit sphere. Then this estimate was generalized for the setting of normal
and Rademacher vectors in [8]. Special setting of rank-1 test vectors and structured matrices A
(admitting a Kroenecker product structure) has been considered in [5].

Another idea for improving (1) comes for symmetric matrices A from the power method.
Kuczyński and Woźniakowski [12] studied the power method with random start, including probabil-
ity bounds on how quickly the largest eigenvalue of a symmetric A is approximated. In particular,
they showed that the expected error decays with each iteration proportional to the ratio (σ2/σ1)
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and derived distributions for the approximation error after t steps [12]. Their work also compared
power iteration with Lanczos (Krylov subspace) methods initiated by a random vector. Both of
these methods are require sequential matvecs. Building on this idea, Hochstenbach [10] developed
Krylov-based methods for constructing an upper bound on ∥A∥2 with high probability. At the
same time, resulting estimates are relatively complicated, which justifies their utility mostly for
the setting of small underestimation probabilities δ in (5). [9, 8] suggested using a block of mul-
tiple random vectors in parallel, that is, to compute Y = AX for randomly generated X ∼ Rn×k

consisting of k random vectors. Then ∥A∥2 is approximated by ∥Y ∥2. Bujanović and Kressner [5]
considered the problem os estimating ∥A∥2 for structured matrices A based on rank-one random
vectors X. We briefly mention a number of papers, which focus on estimating Frobenius norm or
trace of a matrix A, see Hutchinson’s method [11] and its later developments [3, 14, 13].
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3 Algorithm

We start from the upper bound on ∥A∥2 given by (3), that is, with X ∼ N (0, In), we consider the
statistics θ ∥AX∥2 and use an upper bound from [8]:

P(θ ∥AX∥2 ≤ ∥A∥2) ≤
√

2

π

1

θ
. (6)

This estimator has the main advantage: right-hand side of (6) does not depend on the structure
of the matrix A. At the same time, as already mentioned, for matrices A with large effective rank
ρ, ∥AX∥2 significantly overestimates A. Tighter upper bounds on the underestimation probability
in (6) typically depend on ρ and can not be applied without additional assumptions on A. This
generally yields to too large values of θ and loose upper bound θ ∥AX∥2. As a result, the estimator
∥AX∥ is ineffective for matrices with low effective rank and overly conservative for those with high
stable rank.

Our method. We propose to use the estimator, which is defined, for independent random vectors
X,Y ∼ N (0, In) as

T c
θ (X,Y ) = θ

√(
∥A⊤AY ∥
∥AY ∥

)2

+ ∥AX∥2 . (7)

The first additive term ∥A⊤AY ∥
∥AY ∥ provides a tight (lower) bound on ∥A∥2 if its effective rank ρ is

close to 1. In particular, if rkA = 1, and A is symmetric, ∥A⊤AY ∥
∥AY ∥ = ∥A∥2. At the same time,

∥AX∥2 tends to overestimate ∥A∥2 as ρ increases.
Although T c

θ (X,Y ) is always greater than ∥AX∥, we illustrate the benefits of using this estima-
tor on Figure 1. It is important to notice that (7) requires to compute 3 matrix-vector products.

The pseudocode of the algorithm is summarized in Algorithm 1.

0.5 ||A||2 ||A||2 2 ||A||2 4 ||A||2 8 ||A||2

||Ax||2
||ATAy||2
||Ay||2
||ATAy||22
||Ay||22

+ ||Ax||22

Figure 1: Density functions for T c
θ (X) and its summands in (7). The first term is shifted to the

right from 0.5 ∥A∥2 and has negligible tails. This causes T c
θ (X) to shift right as well, and its left

tail becomes lighter than that of ∥Ax∥2.
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||A||2 2 ||A||2 4 ||A||2 10 ||A||2

maxi||Axi||2, i = 1,2,3
max(||ATAy||2, ||Ax||2)

||ATAy||22
||Ay||22

+ ||Ax||22

Figure 2: Density statistics using 3 matvecs and θ values for p = 0.05. Our method achieves the
smallest |E (Tθ(X))− ∥A∥2| and a left-shifted distribution with a negligible right tail.

Algorithm 1 Operator Norm Estimation via Matvecs

Require: Implicit matrix A ∈ Rn×n; access to matvecs Ax and A⊤x
Require: Confidence level p ∈ (0, 1)
Require: Number of matvecs m; sample matrix X ∈ Rn×m with columns X1, . . . , Xm

1: Generate sample matrix X ∈ Rn×m (e.g., with i.i.d. N (0, 1) entries)
2: Compute the statistic T c

θ (X) based on the samples
3: Determine the multiplier θ such that P(T c

θ (X) ≤ ∥A∥2) ≤ p
4: return T c

θ (X,Y )

4 Theoretical analysis

In this section we provide a theoretical bounds, which allows to set the parameter θ in (7) in order
to have a controllable underestimation probability. In the theorem below we use the notation pζ(t)
for a density of random variable ζ at point t.

Theorem 1. Let X,Y be independent N(0, In) random vectors and ξ1, η ∼ N(0, 1) be independent
random variables, which are independent of X,Y . Then it holds that

P (T c
θ (X,Y ) ≤ ∥A∥2) ≤


∫ θ−2

0
χ2

(
(ρ− 1)t

1− t

)
pξ21+(ρ−1)η2

(
θ−2 − t

)
dt, (ρ− 1) ≥ θ−2,∫ θ−2

0
χ2

(
(ρ− 1)t

1− t

)
pξ21

(
θ−2 − t

ρ

)
dt, (ρ− 1) < θ−2.

It is noticable that the right-hand side of the above inequality at fixed point θ depends only on
the effective rank ρ, so this function is easy to maximize on a finite segment numerically. The table
with the values of theta with respect to probabilities is given in the next section with experiments.
Empirically, we also reduced the variance of the classic estimator expectancy on the matrix space,
which is especially valuable for low-rank matrices. We highlight, that we aim to select θ, which
guarantees that the right-hand side of the bound of Theorem 1 is smaller then a given p ∈ (0, 1),
uniformly in the effective rank ρ.

5 Numerics

We first describe our pipeline for comparing statistics T1(X) and T2(X), depending on their own
set of parameters θ1 and θ2, respectively. We fix the desired underestimation probability p ∈ (0, 1)
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(typically, we use p = 0.05). Namely, we find θ̂1 and θ̂2, that guarantees underestimation probability
p and compare the empirical densities of T1 and T2.

Since we use two sequential matvecs and a single one on independent X,Y , our comparison
involves two baseline algorithms. Vanilla estimator maxi ∥AXi∥2 , i ∈ {1, 2, 3}, with underestima-

tion probability
√
8/π3θ−3. Dixon estimator max

(√
∥A⊤AY ∥2, ∥AX∥2

)
, with underestimation

probability
2

π
θ−3.

We evaluate our method on the following representative matrices:

• Truncated SVD (ρ = 0.05, Olivetti Faces dataset): Matrix with the lowest ρ in our set.
Used to demonstrate the algorithm’s performance under small values of ρ.

• Hilbert matrix (ρ = 0.15): A classical example of a matrix with small approximate rank.

• Dominant matrix 0.1 (ρ = 0.1): Similarly to the Hilbert matrix in terms of ρ, but with
lower variance due to more uniformly distributed singular values.

• Dominant matrix 0.5 (ρ = 2.5): A mid-rank variant of the previous matrix with similarly
low norm variance despite increased ρ.

• Fréchet derivative matrix (ρ = 40): A high-rank matrix common in applications. Its
singular values are uniformly distributed, showing no strong concentration.

• ResNet convolution layer matrix (ρ = 30): Another high-rank matrix, typical in deep
learning. Like the Fréchet matrix, its singular values are spread uniformly on [0, 1].

This selection spans a wide range of ρ values and matrix types, covering diverse application
contexts and spectral characteristics. We demonstrate the consistent advantages of our method
across all the cases.

All figures use log2 scale to show both left and right tails in detail.

0.5 ||A||2 ||A||2 2 ||A||2 4 ||A||2 8 ||A||2

Hilbert matrix

Vanilla
Dixon
CB

Figure 3: Empirical density for a Hilbert matrix of size 100. This matrix has ρ ∼ 1.15, so the first
term approximates ∥A∥2 well, and the second term does not overestimate it. This results in lighter
tails and significantly reduced variance.
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10 ||A||2 12 ||A||2 16 ||A||2 20 ||A||2 24 ||A||2

ResNet convolution layer

Vanilla
Dixon
CB

Figure 4: Density comparison for a convolution layer in ResNet. All algorithms overestimate ∥A∥2,
but our method shows a left shift and lower variance.

6 ||A||2 10 ||A||2 16 ||A||2 20 ||A||2

Frechet derivative

Vanilla
Dixon
CB

Figure 5: Density comparison for the Fréchet derivative matrix. Despite ρ ≫ 1, our method
maintains comparative advantages. Matrices with large stable ranks (e.g., Fréchet, convolution
layers) show similar patterns.

In the third series of plots we show convergence of different algorithms as the number of matvecs
increases. The line plot displays the mean estimate, and confidence bands reflect empirical variance.
Since our method uses 3 matvecs per iteration, the number of total matvecs is a multiple of 3.

3 6 9 12 15 18 21
matvecs

100

2 × 100

3 × 100

4 × 100

m
ea

n

Hilbert matrix

Dixon
CB
Vanilla
||A||2

Figure 6: Convergence for the Hilbert matrix
(ρ = 1.15).

3 6 9 12 15 18 21
matvecs

100

2 × 100

3 × 100

4 × 100

m
ea

n

Dominant matrix 0.1

Dixon
CB
Vanilla
||A||2

Figure 7: Convergence for a matrix with 10
singular values σ2

i /σ
2
1 = 0.1 (ρ = 1.05).
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p θcb θv
0.1 1.28 1.73
0.05 1.46 2.17
0.01 2.46 4.71
0.001 5.10 7.90

Table 1: Values of θ for Counterbalance and Vanilla estimators at different p.

As shown in Figures 6 and 7, all methods stabilize after 9 matvecs, but our method maintains
a higher convergence rate for any number of matvecs. Despite structural differences, both matrices
behave similarly.

3 6 9 12 15 18 21
matvecs

100

101

m
ea

n

ResNet Jacobian

Dixon
CB
Vanilla
||A||2

Figure 8: Convergence for the ResNet Jaco-
bian matrix (ρ = 7).

3 6 9 12 15 18 21
matvecs

100

2 × 100

3 × 100

4 × 100

6 × 100

m
ea

n

Dominant matrix 0.5

Dixon
CB
Vanilla
||A||2

Figure 9: Convergence for matrix with 10
σ2
i /σ

2
1 = 0.5 (ρ = 1.8).

Compared to 6 and 7, all estimators in Figures 8 and 9 show slower convergence on matrices
with larger ρ. However, the comparative advantage of our method remains stable. Notably, for the
ResNet Jacobian (largest ρ), our method achieves minimal variance—attributed to the suppression
of the second term’s tail.

6 Conclusion

We presented the Counterbalance estimator T c
θ (X), a hybrid norm estimator that improves upon

classical randomized methods by reducing underestimation probability across a wide range of ma-
trix types. Our theoretical guarantees and empirical evaluations demonstrate that this approach
achieves lower variance and tighter bounds without requiring structural knowledge of the matrix.

Beyond outperforming baseline estimators on both low- and high-rank matrices, our method
remains computationally efficient, making it suitable for modern applications such as neural network
analysis and large-scale matrix computations.
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