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ABSTRACT

Few-shot learning (FSL) as a data-scarce method, aims to recognize instances of
unseen classes solely based on very few examples. However, the model can easily
become overfitted due to the biased distribution formed with extremely limited
training data. This paper presents a task specific data augmentation approach by
transferring samples from base dataset to the novel tasks in an encoder-decoder
paradigm, which guarantees generating semantically meaningful features. Specif-
ically, the feature transfer process is carried out in semantic space. We further
impose a compactness constraint to the generated features with the prototypes
working as the reference points, which ensures the generated features distribute
around the class centers. Moreover, we incorporate the cluster centers of the query
set with the prototypes of the support set to reduce the bias of the class centers.
With the supervision of the compactness loss, the model is encouraged to generate
discriminative features with high inter-class dispersion and intra-class compactness.
Extensive experiments show that our method outperforms the state-of-the-arts on
four benchmarks, namely MiniImageNet, TieredImageNet, CUB and CIFAR-FS.

1 INTRODUCTION

Deep learning have shown impressive performance in various computer vision tasks based on massive
supervisions. However, it is impractical to obtain large number of well-annotated training data in
some real applications (Vartak et al., 2017; Altae-Tran et al., 2017), which motivates us to explore the
data-scarce technique, called few-shot learning (FSL) to learn new concepts from very few labeled
examples. FSL leverages experiences from similar tasks based on the episodic paradigm, which
equips the artificial intelligence with human-like ability that continuously learns novel concept from
even a single example (He et al., 2015). Data augmentation is a straightforward technique to alleviate

Figure 1: Conceptual description of STDA.

the extremely low-data problem. It is natural that with the growing of labeled samples, the data
distribution can gradually approach the ground truth distribution. However, most methods augment
data on visual feature space with few labeled support samples as supervision, leading to marginal
performance boosting. In (Yang et al., 2020), a DC method is proposed to calibrate the distributions
of the few samples on novel classes by transferring the distribution of training dataset (base set)
with large amounts of samples. The distribution transformation is implemented in the visual feature
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space, and the few shot labeled samples are worked as anchor. The calibrated distribution is still
limited by the few labeled samples. As shown in Figure 1 (a), samples augmented in visual space
distribute around the support samples, and can not cover the ground truth distribution well. The
observation that samples from different classes which are semantically similar usually have similar
visual representations (see Figure 1 (b)) inspires us to borrow samples from base dataset to enlarge the
support set via semantic transformation. Since the semantic representation of each class is unique and
fixed, it won’t be affected by the number of labeled samples. Thus the augmented samples transferred
from base dataset are less biased. The “semantic feature” mentioned across the whole paper denotes
the word embedding of the class label (textual descriptions of categories), which is computed with
GloVe (Pennington et al., 2014) method.

In this work, we present a semantic transformation-based data augmentation approach (STDA) to
generate highly effective samples in an encoder-decoder paradigm (Kodirov et al., 2017). A few
previous works have exploited the idea of applying encoder and decoder to augment samples. DeVries
et.al (DeVries & Taylor, 2017) applies simple transformations such as adding noise, interpolating, or
extrapolating to the features in a latent embedding space, and reconstruct the augmented features to
the original embedding space. Schwartz et.al (Schwartz et al., 2018) propose a Delta-encoder method
that extracts transferable intra-class deltas (i.e. deformations) between same-class pairs of training
examples, and apply the deltas to the few samples of the novel classes. Both (DeVries & Taylor,
2017) and (Schwartz et al., 2018) employ the encoder-decoder paradigm to augment samples. They
project the features to a low dimensional latent embedding space, and apply some perturbation to the
latent features to generate diverse features. However, the feature diversity can be limited since the
"anchor" example is the visual feature of the few novel samples. Our method augment new samples
by converting a large amount of training samples of similar classes to novel classes and transform the
features in semantic space rather than in an arbitrary latent space, which can preserve the diversity of
the training data and generate semantically meaningful features for the novel classes.

To reduce the bias of the anchor, we propose a novel prototype rectification method based on
the shortest path optimization strategy. There have been some works on prototype rectification.
MetaNODE (Zhang et al., 2022) models the prototype rectification as a prototype optimization
problem, that uses ODEs for meta-optimization on the mean prototypes. It involves a complex meta
learning process. Liu et.al (Liu et al., 2020) propose a BD-CSPN method to rectify the prototypes by
incorporating pseudo labeled query samples with the support samples. However, the pseudo labels
are predicted based on the similarity to the basic prototypes. The prediction process is inevitable to
introduce bias caused by the limited support samples, which will produce incorrect pseudo labels
and further impose negative impact on the subsequent prototypes rectification. Different from these
methods, we rectify the prototypes by incorporating the cluster centers of the query samples. The
clustering process relies on the data distribution of the query data, which is agnostic to the support
samples. Thus, the cluster centers won’t introduce the biased information. Then the cluster centers are
assigned labels based on a global optimization strategy, which can reduce the incorrect assignment.

To secure discriminability of the augmented samples, a compactness constraint (Zhu et al., 2019) is
imposed to the generated features to encourage high intra-class compactness of each novel class. The
compactness is defined as the distance between the prototypes and the generated features. With the
prototypes as anchors, the generated features will distribute around to the “center" of their respective
classes. We train the model in an end-to-end fashion and find that these cooperative losses can
efficiently enhance the discriminative power of the generated features. Finally, we feed the base split
samples into the trained networks including encoder, transformation network and decoder in turn, to
generate features for the novel classes.

Our STDA can effectively produce diverse and discriminative features. The main contributions are
summarized as follows: (1) We present a semantic transformation based data augmentation approach
to transfer samples from training dataset to novel tasks in an encoder-decoder paradigm. (2) We
propose a shortest path optimization strategy to rectify the prototypes by incorporating the cluster
centers of the query samples with the basic prototypes computed on the support set, which can
produce more representative prototypes. (3) We impose a compactness constraint to the generated
features with the prototypes working as the anchor on visual space, which maximizes the compatibility
between the generated features and the novel support features of respective classes. (4) The exhaustive
ablation studies and extensive experiments on four benchmarks validate the efficacy of our data
augmentation method and the generalization ability to other few shot learning baselines.
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2 RELATED WORK

Meta learning is an effective few shot learning paradigm that leverages experiences from similar
tasks based on the episodic formulation. Previous researches on few shot learning are made towards
the following aspects. (1) Metric learning methods aim to learn a good metric space, where test
samples can be classified via a simple metric rule. Works include nearest neighbor classifier with
Euclidean (Snell et al., 2017) or cosine distance (Vinyals et al., 2016), learnable relation network-
based method (Sung et al., 2018) and task specific metric-based method for respective task (Oreshkin
et al., 2018). (2) Gradient based methods aim to learn models that can generalize well to unseen
tasks with limited supervisions. Methods, such as MTL (Sun et al., 2019), MAML (Finn et al., 2017)
and LEO (Rusu et al., 2018) fall into this category. (3) Model-based methods rely on the properties
of specific model architectures, such as recurrent and memory-augmented networks (Mishra et al.,
2018; Munkhdalai & Yu, 2017; Santoro et al., 2016).

Data augmentation tries to synthesize data or features by learning a generative model to alleviate
the data insufficiency problem. Previous methods usually apply content preserving transformation
techniques on the input images, which fail to secure the diversity of the generated samples. Recently,
instead of synthesizing new image instances, a number of effective augmentation methods have
been proposed in visual or semantic feature levels. Hallucination based methods (Wang et al., 2018;
2019; Hariharan & Girshick, 2017; Schwartz et al., 2018; Chen et al., 2019; Yang et al., 2020)
augment the training data by hallucinating additional examples for the unseen classes. Hariharan
et al. (Hariharan & Girshick, 2017) present a way of “hallucinating” additional examples for novel
classes by transferring modes of variation from the base classes. In (Schwartz et al., 2018), Schwartz
et al. propose an autoencoder to augment samples by encoding the intra-class deformations. Chen et
al. (Chen et al., 2019) propose to directly synthesize instance features by leveraging semantics using
a novel auto-encoder network. In (Yang et al., 2020), Yang et al. introduce a distribution calibration
strategy to generate features for the novel tasks, which does not need extra learnable parameters.
However, this method requires lots of augmented samples to achieve the improved performance, while
our method does not demand many augmented samples, which greatly reduces the computational
burden and computational time. Our STDA augments features based on the semantic transformation,
which won’t be limited by the few labeled samples. A simple classifier trained with the features
generated by our STDA method along with the support data can achieve considerable performance.

3 METHOD

3.1 FEW SHOT SETTING

In few-shot learning, the standard N -way K-shot episodic training paradigm is adopted to learn the
model. We define the training dataset as Dbase =

{
(xbi , y

b
i )|ybi ∈ Cbase

}
, which contains abundant

labeled samples. Also, we define the test dataset as Dnovel = {(xni , yni )|yni ∈ Cnovel}, which
is used during the test stage. Categories of Dnovel and Dbase are disjoint from each other, i.e.
Cbase ∩ Cnovel = ∅. The model is trained and tested in task-wise manner, where each task consists
a support set S = {(xni , yni )}N×Ki=1 and a query set Q = {(xni )}N×Li=1 . xi ∈ Rd is the feature vector
of an image and yi is the class label of xi. The goal of our method is to augment the support set by
transferring samples from base dataset to the novel tasks. Then a classifier can be trained with the
augmented samples and the support data. Finally, the classification performance is evaluated over
lots of testing tasks.

3.2 FRAMEWORK OVERVIEW

The framework of our STDA approach is illustrated in Figure 2. The key idea is to transfer base
data to novel tasks through semantic space in a task adaptive manner to augment support set. This
process including three steps. Firstly, an encoder projects the visual features of base classes to
semantic space. Then the transformation network transfer semantic features from base classes to
novel classes. Afterwards, a decoder projects the semantic features back to visual space. To preserve
all the information contained in the original visual features and generate semantically meaningful
visual features, we impose a reconstruction constraint, that is modeled as the ridge regression loss
(Kodirov et al., 2017) to the encoder and decoder. The ground truth semantic features of the novel
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classes work as the anchor for the visual to semantic projection. These three modules are trained
in an end-to-end manner. With the trained networks, we feed samples of base classes through the
encoder, transformation network and decoder in turn to generate extra samples for the novel classes.

Figure 2: The framework of our STDA method. xb and sb are the visual and semantic features from
the selected base classes, while xn and sn are the ones from the novel classes. x̂b and s̄b denote the
reconstructed visual feature and the projected semantic feature, while x̄n and ŝn are the projected
visual feature and the reconstructed semantic feature. ¯̄sn is the transformed semantic feature and ¯̄xn

is the generated novel visual feature.

3.2.1 BASE CLASSES SELECTION BASED ON SEMANTIC SIMILARITY

Note that the semantic features in base dataset are denoted as Sb =
{
sbj |j = 1, ..., |Cbase|

}
, and that

in a novel task are denoted as Sn = {sni |j = 1, ..., N}. Semantic feature is the word embedding of
the class label, which is computed with GloVe method. We first measure the cosine similarity between

the base and novel semantic features as p(i, j) =
sni s

b
j

||sni ||·||sbj ||
, where i = 1, ..., N, j = 1, ..., |Cbase|,

sbj is the semantic feature from jth base class. We select base class with the greatest similarity to

the novel class. The selected classes are denoted by I =

{
ki = arg max

j=1,...,|Cbase|
p(i, j)|i = 1, ..., N

}
.

Then, we select K ′ samples per class for the novel task from their similar base classes.

XbS =

⋃
j∈I

(xbk, y
n
k )|xbk ∈ select(Dbase[j],K ′), ynk = index(I, j)

 (1)

where select(·, ·) is a sample selection operator, index(I, j) is an operation to return the order of j in
I , i.e. the corresponding label of the base class j in the novel task. |XbS | = N ×K ′. To encourage
diversity of the generated samples, we select samples in a random way. We denote the semantic
features of the selected base classes as SbN =

{
sbi
∣∣ i ∈ I}.

3.2.2 VISUAL-SEMANTIC ENCODER FORMULATION

We formulate the visual-to-semantic projection function as a regression loss, and denote xbi as the
visual feature of ith sample fromXbS and sbi as the ground truth semantic feature of xbi . To ensure the
encoder project the visual features to their respective corresponding semantic features and preserve
all the information contained in the original visual features, we impose a projection constraint and a
reconstruction constraint to the encoder. The constraints are formulated as Lenc.

min
We

Lenc =

N×K′∑
i=1

||sbi − s̄
b
i ||

2

2
+ ||xbi − x̂

b
i ||

2

2
s.t. s̄bi = Wex

b
i , x̂

b
i = WT

e s̄
b

i (2)
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where s̄bi is the projected semantic feature and x̂b is the reconstructed visual feature, We denotes the
trainable parameter of the encoder and WT

e is the transposed one. By training with weight tying
(Ranzato et al., 2007), the desire is to learn a set of weights where the property WT

e = W †e is true.

3.2.3 SEMANTIC TRANSFORMATION FROM BASE TO NOVEL CLASSES

In this section, we aim to learn a transformation network g(·; [H, z]): sb → sn, which is optimized
by minimizing the Euclidean distance between the novel semantic features sn and the generated
semantic features s̄n. We denote this objective as the transformation loss.

min
H;z
|| sn − s̄n||22 s.t. s̄n = Hsb + z

Ltra = || sn − s̄n||22
(3)

3.2.4 SEMANTIC-VISUAL DECODER FORMULATION

The decoder employs similar optimization process as the encoder. The difference is that the decoder
reverses the projection direction: from semantic space to visual space. Given a support set S =

(xni , y
n
i )
N×K
i=1 and the corresponding semantic feature set Sn = {sni | i = 1, ..., N}, we project the

semantic features to visual space with the support features as the reference points. The decoder is
constrained by minimizing the distance between the projected visual features x̄n and the novel visual
features xn from support set. To ensure the decoder generate semantically meaningful visual features,
we further impose a reconstruction constraint to the decoder by minimizing the distance between the
ground truth semantic features sn of the novel classes and the reconstructed semantic features ŝn.
These constraints are formulated as Ldec.

min
Wd

Ldec =

N×K∑
i=1

||xni − x̄
n
i ||

2

2
+ ||sni − ŝ

n
i ||

2

2
s.t. x̄ni = Wds

n
i , ŝ

n
i = WT

d x̄
n

i (4)

where Wd is the parameter of the decoder and WT
d denotes the transposed one. We consider tied

weights (Kodirov et al., 2017) for the decoder, which has the property of WT
d = W †d .

3.2.5 COMPACTNESS CONSTRAINT TO THE GENERATED FEATURES

Given a novel task T = {S,Q}, where S = (xni , s
n
i , y

n
i )
N×K
i=1 , we select N base classes for the

novel task by the way in section 3.2.1. The selected dataset is denoted as XbS =
{

(x
b
i , y

n
i )
}N×K′

i=1
.

We generate novel visual features ¯̄xni from XbS and augment the support set as follow:

¯̄xni = Wd(HWex
b
i + z) Saug = {(¯̄xni , y

n
i )}N×K

′

i=1 (5)

where K ′ is the number of generated features for each novel class. In order to get discriminative
features, we impose a compactness constraint to the generated features, which is formulated as follow:

Lcpt =
1

|XbS |

N∑
j=1

∑
yi=j

||¯̄xni −mj ||22 (6)

where mj denotes the prototype of class j, which works as the reference point for the generated
features. This constraint encourages the generated features of the same class gathering around the
class centers, which improves the discrimination of the generated features.

3.2.6 PROTOTYPE RECTIFICATION

Our method can be implemented in inductive and transductive settings. For the inductive setting, we
compute the prototypes by averaging the labeled features of each class. For the transductive setting,
we propose a novel prototype rectification method by incorporating the cluster centers of the query
samples with the basic prototypes computed from support set. Firstly, the query samples are clustered
into N clusters with a simple clustering algorithm K−means. Since clustering is an unsupervised
classification method, the clusters themselves cannot tell which category they belong to. To infer
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class label for each cluster, we model the label assignment problem as the path planning problem,
which is formulated as 7.

min

N∑
i=1

N∑
j=1

dijxij s.t.



N∑
i=1

xij = 1, j = 1, ..., N

N∑
j=1

xij = 1, i = 1, ..., N

(7)

where dij = ||mi − cj ||22, i = 1, ..., N, j = 1, ..., N is a distance matrix between the basic prototypes
and the cluster centers. xij is a binary decision variable that decidedes which class the cluster belongs
to. mi denotes the ith basic prototype and cj denotes the jth cluster center. The objective is to
minimize the total distance between the matched prototypes and cluster centers. The constraints
ensure that each class label must be only assigned to one cluster center. This model can produce
global optimal solution for the label assignment, thus avoid the situation that two or more clusters
share a common class label due to the close distribution of samples from different classes. Then we
compute the rectified prototype of kth class as follow:

m̂k =
mk + cI(x[k,:]==1)

2
(8)

where I(·) is a index function to return the position of the nonzero value. This prototype rectification
method can reduce the bias caused by limited labeled samples and further improve the quality of the
generated features.

3.3 TRAIN THE STDA MODEL AND THE CLASSIFIER

Overall, the proposed model is trained in an end-to-end manner with the joint loss as follow:
L = Lcpt + λ1Lenc + λ2Ltra + λ3Ldec (9)

where the balance factors λ1, λ2 and λ3 are consistently set to 1 in all experiments. Now that the
feature generation model has been trained, it is used to generate features to augment the support set,
see Eq. 5. Then we train a task-specific classifier based on the generated features and the original
support set. The training task follows the standard cross-entropy loss optimization:

min
θ

∑
(x,y)∈S∪Saug

−log p(y|x; θ) (10)

where θ is the parameter of the classifier. The trained classifier is then used to predict labels for the
query samples. We summarize the process of our method in Algorithm 1, see Appendix A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset We evaluate our semantic transformation-based data augmentation approach on MiniIm-
ageNet (Ravi & Larochelle, 2016), TieredImageNet (Ren et al., 2018), Caltech-UCSD Birds 200
(Welinder et al., 2010) (CUB) and CIFAR-FS (Chen et al., 2018). More details about these bench-
marks are provided in the supplementary material, see Appendix B.

Network Architecture We use two popular networks: the ResNet12 and WideResNet (WRN-28-10)
(Zagoruyko & Komodakis, 2016) to extract features for all the datasets. We first pretrain the feature
extractor on the base dataset. The trained extractor outputs 640-dimensional visual feature vectors
for the images. The encoder is constructed with a fully connected layer without the bias term, the
transformation network is modeled as a fully connected layer, and the decoder is implemented as a
fully connected layer without the bias term as well.

4.2 RESULTS AND ANALYSIS

4.2.1 COMPARISON TO THE STATE-OF-THE-ART METHODS

To evaluate the performance of our STDA method, we conduct a comparison of our approach to
state-of-the-art methods. Table 1 and Table 2 present the averaged classification accuracies over 600

6



Under review as a conference paper at ICLR 2023

novel tasks on 5-way 1-shot and 5-way 5-shot cases, with each task containing 15 randomly sampled
query samples. We take the logistic regression (LR) and support vector machine (SVM) as the
classifiers to show the generalizability of our STDA to different classifiers. The comparison results
are shown in Figure 7, see Appendix G. From Table 1, Table 2 and Figure 7, we can observe that our
proposed STDA performs better than the state-of-the-art few-shot classification methods, consistently
across all few-shot benchmarks, classifiers, improving over both inductive and transductive settings.
The performance gain is especially considerable in the 1−shot case, which demonstrates that our
data augmentation method is fairly reliable and can handle extremely low-shot classification problem
better.

Table 1: The few-shot classification accuracy results on MiniImageNet and TieredImageNet datasets.
They present the mean accuracy on 600 novel episodes with a 95% confidence interval. In. and Tran.
denote the inductive and transductive settings, respectively. "−" signifies the result is unavailable.
Semantic-based methods are marked with ∗.

MiniImageNet 5-way TieredImageNet 5-wayModel Backbone 1-shot 5-shot 1-shot 5-shot
In.
ProtoNet (Snell et al., 2017) ResNet12 60.37 ± 0.83 78.02 ± 0.57 65.65 ± 0.92 83.40 ± 0.65
Meta Navigator (Zhang et al., 2021b) ResNet12 67.14 ± 0.80 83.82 ± 0.51 74.58 ± 0.88 86.73 ± 0.61
AM3-TADAM∗ (Xing et al., 2019) ResNet12 65.30 ± 0.49 78.10 ± 0.36 69.08 ± 0.47 82.58 ± 0.31
TriNet∗ (Chen et al., 2019) ResNet18 58.12 ± 1.37 76.92 ± 0.69 − −
MultiSem∗ (Schwartz et al., 2022) Dense-121 67.30 82.10 − −
FSLKT∗ (Peng et al., 2019) ConvNet128 64.42 ± 0.72 74.16 ± 0.56 − −
PSST (Chen et al., 2021) WRN-28 64.16 ± 0.44 80.64 ± 0.32 − −
CA (Afrasiyabi et al., 2020) WRN-28 65.92 ± 0.60 82.85 ± 0.55 74.40 ± 0.68 86.61 ± 0.59
MetaQDA (Zhang et al., 2021c) WRN-28 67.83 ± 0.64 84.28 ± 0.69 74.33 ± 0.65 89.56 ± 0.79
DC+LR (Yang et al., 2020) WRN-28 68.57 ± 0.55 82.88 ± 0.42 78.19 ± 0.25 89.90 ± 0.41
STDA+LR∗ WRN-28 76.98 ± 0.72 86.62 ± 0.51 77.80 ± 0.82 89.58 ± 0.56
STDA+SVM∗ WRN-28 76.18 ± 0.71 86.48 ± 0.47 77.38 ± 0.84 89.05 ± 0.57
Tran.
ICI (Wang et al., 2020) ResNet12 72.39 ± 0.62 83.27 ± 0.33 77.48 ± 0.62 86.84 ± 0.36
POODLE (Le et al., 2021) ResNet12 77.56 85.81 79.67 86.96
ProtoComNet∗ (Zhang et al., 2021a) ResNet12 73.13 ± 0.85 82.06 ± 0.54 81.04 ± 0.89 87.42 ± 0.57
SSR (Shen et al., 2021) WRN-28 72.40 ± 0.60 80.20 ± 0.40 79.50 ± 0.60 84.80 ± 0.40
AIM (Lee et al., 2021) WRN-28 71.22 ± 0.57 82.25 ± 0.34 − −
LaplacianShot (Ziko et al., 2020) WRN-28 74.86 ± 0.19 84.13 ± 0.14 80.18 ± 0.21 87.56 ± 0.15
TIM (Boudiaf et al., 2020) WRN-28 77.80 87.40 82.10 89.80
BD-CSPN (Liu et al., 2020) WRN-28 70.31 ± 0.93 81.89 ± 0.60 78.74 ± 0.95 86.92 ± 0.63
STDA+LR∗ WRN-28 80.46 ± 0.72 87.54 ± 0.49 82.26 ± 0.86 89.98 ± 0.55
STDA+SVM∗ WRN-28 80.21 ± 0.71 86.77 ± 0.47 81.52 ± 0.81 90.35 ± 0.50

4.2.2 IMPACT OF THE NUMBER OF GENERATED FEATURES

Figure 3 shows the analysis about the classification accuracy in terms of the number of generated
features for each class during test. We can observe that the performance keeps boosting with the
increase of the number of generated features at the beginning, and then it turns stable. The linear
regression is used as the baseline method. The baseline performance from 2−shot to 11−shot works
as the upper bound of our method with the generated samples from 1 to 10 (along with the support
data, there are 2 to 11 samples per class) at the 1−shot case, while for the 5−shot case, the baseline
performance from 6−shot to 15−shot is the upper bound of our method with the generated samples
from 1 to 10 (along with the support data, there are 6 to 15 samples per class). It can be noticed
that, when one extra sample is added, our method achieves almost the (K + 1)−shot performance
on the baseline classifier, K is the number of labeled samples per class on support set. To further
prove that our data augmentation method can indeed work, we design an experiment named “Without
STDA”, which borrows data directly from base classes that are similar to the corresponding novel
classes without any transformation. As the number of base samples added to the novel classes
increases, the performance degrads drastically (show in blue curve), which indicates that adding
samples from similar base classes directly will descend the performance of the classifier. We list the
quantitative results on Table 5 show in Appendix D. To qualitatively demonstrate the effectiveness of
our approach, we show the t-SNE visualization (Van der Maaten & Hinton, 2008) of the generated
features in Figure 4, see Appendix E. It can be observed that the generated features exhibit clear
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Table 2: The few-shot classification accuracy results on CIFAR-FS and CUB datasets.

CIFAR-FS 5-way CUB 5-wayModel Backbone 1-shot 5-shot 1-shot 5-shot
In.
ProtoNet (Snell et al., 2017) ResNet12 72.20 ± 0.70 83.50 ± 0.50 71.90 87.40
Meta Navigator (Zhang et al., 2021b) ResNet12 74.63 ± 0.91 86.45 ± 0.59 − −
CA (Afrasiyabi et al., 2020) ResNet18 − − 74.22 ± 1.09 88.65 ± 0.55
TriNet∗ (Chen et al., 2019) ResNet18 − − 69.61 ± 0.46 84.10 ± 0.35
MultiSem∗ (Schwartz et al., 2022) Dense-121 − − 76.10 82.90
PSST (Chen et al., 2021) WRN-28 77.02 ± 0.38 88.45 ± 0.35 − −
MetaQDA (Zhang et al., 2021c) WRN-28 75.83 ± 0.88 88.79 ± 0.75 − −
DC+LR (Yang et al., 2020) WRN-28 − − 79.56 ± 0.87 90.67 ± 0.35
STDA+LR∗ WRN-28 80.60 ± 0.76 88.89 ± 0.54 82.50 ± 0.77 91.49 ± 0.42
STDA+SVM∗ WRN-28 79.64 ± 0.83 87.86 ± 0.57 83.37 ± 0.69 91.10 ± 0.42
Tran.
ICI (Wang et al., 2020) ResNet12 79.19 ± 0.63 86.66 ± 0.36 − −
ProtoComNet∗ (Zhang et al., 2021a) ResNet12 − − 93.20 ± 0.45 94.90 ± 0.31
LaplacianShot (Ziko et al., 2020) ResNet18 − − 80.96 88.68
TIM (Boudiaf et al., 2020) ResNet18 − − 82.20 90.80
SSR (Shen et al., 2021) WRN-28 81.60 ± 0.60 86.0 ± 0.40 − −
AIM (Lee et al., 2021) WRN-28 80.20 ± 0.55 87.34 ± 0.36 − −
STDA+LR∗ WRN-28 84.47 ± 0.74 89.30 ± 0.53 84.48 ± 0.72 91.90 ± 0.42
STDA+SVM∗ WRN-28 84.18 ± 0.80 88.56 ± 0.55 84.95 ± 0.71 91.32 ± 0.41

clustering structure, and is compatible with the support and query samples. We also compare the
rectified prototypes (denoted as the transductive prototypes) with the support prototypes (denoted
as the inductive prototypes) in the last column of Figure 4. It can be observed that the transductive
prototypes exhibit closer to the centers of the query set than the inductive ones, demonstrating the
effectiveness of our prototype rectification method.

Figure 3: Illustration of the performance change with varied number of augmented samples on
MiniImageNet, TieredImageNet and CIFAR-FS datasets. The square markers with black edge denote
the best performance points. All the classification is implemented with the linear regression (LR)
classifier.

4.2.3 APPLICATION OF OUR STDA ON OTHER BASELINES

To further test the generalization of our data augmentation technique on other baseline methods, we
apply our STDA on two few-shot classification algorithms: prototypical network (Snell et al., 2017)
and MTL (Sun et al., 2019). Results in Table 3 show that the baseline methods equipped with our
STDA technique outperform the baselines by significant margins, and the boosting in the 1-shot case
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is especially considerable, which demonstrates that the baseline methods can benefit from training
with the augmented data generated by our STDA method.

Table 3: Performance comparison of baselines with and without STDA technique on MiniImageNet.

Backbone Methods Without STDA 5-way With STDA 5-way
1-shot 5-shot 1-shot 5-shot

ResNet12 ProtoNet (Snell et al., 2017) 61.35 ± 0.87 79.54 ± 0.58 63.99 ± 0.82 80.17 ± 0.54
MTL (Sun et al., 2019) 60.82 ± 0.80 75.96 ± 0.62 63.18 ± 0.80 76.92 ± 0.65

WRN-28 ProtoNet (Snell et al., 2017) 65.50 ± 0.81 82.95 ± 0.56 76.45 ± 0.73 86.62 ± 0.49
MTL (Sun et al., 2019) 65.57 ± 0.80 79.76 ± 0.60 73.69 ± 0.78 83.09 ± 0.56

4.2.4 ABLATION STUDY

Ablation study on the constraints. To study the impact of each constraint on the final performance,
we ablate the loss term: the reconstruction loss of encoder Lenc_r, the reconstruction loss of decoder
Ldec_r, the compactness loss Lcpt and all these three constraints, respectively. The projection
constraints of the encoder and decoder are the skeletons of our framework, which cannot be ablated.
From Table 4, we can observe performance decline when any constraint is ablated. The degradation
is especially severe in the 1−shot case. We further qualitatively analyze the impact of the constraints
on the model by showing the t-SNE visualization of the generated features under ablation study.
Results shown in Figure 5 indicate that when any constraint is ablated, there is a deviation between
the generated features and the support features of the novel task. This phenomenon is in consistent
with the quantitative results in Table 4.

Table 4: Ablation study on the constraints for both inductive and transductive settings.

MiniImageNet 5-way
In TranLenc_r Ldec_r Lcpt

1-shot 5-shot 1-shot 5-shot
! ! ! 76.98 ± 0.72 86.62 ± 0.51 80.46 ± 0.72 87.54 ± 0.49

! ! 71.46 ± 0.77 84.66 ± 0.51 75.93 ± 0.85 85.66 ± 0.54
! ! 76.03 ± 0.84 85.80 ± 0.46 78.70 ± 0.78 86.23 ± 0.47
! ! 69.13 ± 0.82 84.53 ± 0.51 74.91 ± 0.90 85.94 ± 0.57

64.45 ± 0.80 82.71 ± 0.56 64.70 ± 0.80 83.10 ± 0.54

Ablation study on the networks and balancing parameters. To disentangle the impact of different
depth networks for the modules on the STDA model, we further try a non-linear deeper network for
the encoder, transformation network and decoder, respectively. Results shown in Table 7 demonstrate
that the non-linear network performs worse than the linear one. To select the best hyperparameters
for the objective function Eq. 9, we carry out an ablation study on the balancing parameters λ1, λ2
and λ3. The plots shown in Figure 8 demonstrate that 1.0 is the best value for these three parameters.
The detailed implementations are described in Appendix H and Appendix I, respectively.

Running time comparison. To show the efficiency of method, we record the running time of STDA
at different number of generated samples, and compare that with DC (Yang et al., 2020) in Table 8
(see Appendix J). Results show that our method is time-saving for both 1-shot and 5-shot cases.

5 CONCLUSION

In this paper, we propose a simple data augmentation framework to solve the extremely low-shot
classification problem. Our STDA method can effectively transfer samples from base dataset to
the novel task based on semantic transformation between similar base and novel classes. Since the
prototypes of the novel task are worked as anchor for the generated samples, we further introduce
a shortest path optimization based prototype rectification approach by incorporating the cluster
centers of the query set with the basic prototypes of support set to reduce the bias. Finally, a simple
classifier is adopted to predict labels for the test samples. It is trained with the support samples
along with the features generated by STDA method. The exhaustive ablation studies and comparison
experiments show our method outperforms the state-of-the-arts by significant margins, which proves
the generalization and effectiveness of our method.
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A ALGORITHM OF STDA

Algorithm 1: Proposed STDA algorithm
Input: Base set Dbase, novel task T = {S;Q}, iteration T .
Output: The generated novel features.

1 Select N base classes for the novel task;
2 Sample K ′ features from each selected base class by Eq. 1;
3 for t in 1 to T do
4 Impose projection and reconstruction constraints to the encoder by Eq. 2;
5 Optimize the semantic transformation network g(·; [H, z]) by Eq. 3;
6 Impose projection and reconstruction constraints to the decoder by Eq. 4;
7 Impose compactness constraint to the generated features by Eq. 6;
8 Optimize parameters {We; [H, z];Wd} of the model by minimizing Eq. 9;
9 end

B DETAILED DESCRIPTION OF DATASETS

MiniImageNet is a subset of ILSVRC-2012 (Russakovsky et al., 2015), which consists of 100 classes
that are split into 64, 16 and 20 classes for training, validation and test respectively. Each class
contains 600 images of size 84× 84× 3.

TieredImageNet is a larger subset of ILSVRC-12 dataset (Russakovsky et al., 2015), which contains
608 classes sampled from hierarchical category structure. The average number of images in each
class is 1281 of size 84× 84× 3. We use 351, 97, and 160 classes for training, validation, and test,
respectively.

CIFAR-FS is a dataset derived from CIFAR-100 with images of size 32× 32× 3. It contains 100
categories with 600 instances in each class. All the classes are split into 64, 16 and 20 for training,
validation and test.

Caltech-UCSD Birds 200 is a fine-grained dataset consisting of 200 classes of birds with a total
number of 11,788 images of size 84 × 84 × 3. Following the split in previous works (Chen et al.,
2018), we use 100, 50 and 50 classes for training, validation and test, respectively. This dataset also
provides 312-dimensional semantic attribute vectors on a per-class level.

C IMPLEMENTATION DETAILS

Pytorch is used to implement all our experiments. At the model training stage, Adam is used as the
optimizer. The initial learning rate is 0.001 and decreased to 0.2 times of the previous stage per 10
steps. The model is trained for 100 iterations per task. During the test stage, we use the logistic
regression (LR) and the support vector machine (SVM) as the classifier. The number of generated
features for different datasets are determined by the experiment in section 4.2.2. The visual features
are extracted by the pre-trained network. And the semantic features are computed by the Glove
method in an average manner of the word embeddings of each class.

D RESULTS ON DIFFERENT NUMBER OF AUGMENTED FEATURES

Table 5 presents the quantitative results of our STDA method at different number of generated
features. LR denotes the linear regression method, which is used as the classifier to evaluate our
data augmentation technique. The accuracies shown in the first line denote the performance of
LR at different support shots, while for the other lines, they present the performance of the data
augmentation based methods at different number of augmented samples. The results shown in Table 5
illustrate that our STDA method is better than DC (Yang et al., 2020) method in accuracy at different
number of augmented samples. “Without STDA” is a method that we design to prove our semantic
feature transformation process is the reason for the performance boosting. In this experiment, we
borrow samples directly from the base classes (which is semantically similar to the corresponding
novel classes) without any transformation. Results of this experiment show drastic performance
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degradation as the number of base samples increases, which demonstrates that the semantic feature
transformation process is essential, thus proves that our data transformation technique can indeed
work.

Table 5: Performance comparison on different number of augmented samples on MiniImageNet,
where features are extracted with the WRN28 backbone.

Shot Methods Accuracy (%) on various number of generated samples/shots
1 5 10 20 30 40 50

1shot

LR (baseline) 66.73 83.14 86.76 89.10 90.03 90.49 90.97
Without STDA 55.01 39.66 35.43 32.82 32.02 31.65 30.68
DC+LR (Yang et al., 2020) 61.31 66.49 66.72 66.21 67.06 67.74 67.31
STDA+LR(In) 70.46 74.83 75.43 76.47 76.98 76.71 76.21
STDA+LR(Tran) 73.81 78.64 78.98 79.47 80.46 79.81 79.72

5shot

Without STDA 81.37 71.97 66.24 60.63 56.57 54.94 53.31
DC+LR (Yang et al., 2020) 83.0 82.22 83.24 83.0 83.15 83.49 83.30
STDA+LR(In) 84.39 85.60 86.26 86.62 86.31 85.96 85.95
STDA+LR(Tran) 84.69 86.69 86.53 86.80 86.82 86.59 86.10

E T-SNE VISUALIZATION OF THE GENERATED FEATURES

To intuitively observe the distribution of the augmented samples, we show the t-SNE visualization
of the augmented samples at different numbers. From Figure 4, we can observe that the generated
features exhibit clear clustering structure, which can help train a discriminative classifier. From the
last column of Figure 4 we can observe that the transductive prototypes exhibit closer to the centers
of the query set than the inductive ones, which proves the effectiveness of our prototype rectification
method in reducing bias.

Figure 4: t-SNE visualization of the augmented samples. The transductive prototype is computed
with Eq. 8, while the inductive prototype is computed by averaging samples of each class from the
original support set. Features are extracted with WRN28-10 backbone.

F T-SNE VISUALIZATION OF THE GENERATED FEATURES UNDER ABLATION
STUDY

We show the qualitative results of the ablation study in t-SNE visualization. As shown in Figure
5 and Figure 6, we can observe that there exists a deviation between the generated samples and
the support and query samples when any constraint is ablated. As analyzed before, without the
reconstruction constraint on the encoder, it will lose some important information contained in the
original visual features during the projection from visual to semantic space. While without the
reconstruction constraint on the decoder, it will produce semantically meaningless features. Taking a
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closer look at the t-SNE visualization in third line, we can observe that the features generated without
the compactness loss exhibit more biased than that without the encoder or decoder reconstruction
constraint, which indicates that the compactness constraint contributes more to the final performance.
Furthermore, when these three constraints are removed from the optimization objective, the generated
features are far away from the support and query samples. This phenomenon is in consistent with
the quantitative results. The visualizations prove that these constraints can indeed help reduce the
distribution bias, resulting in valid augmented samples.

Figure 5: t-SNE visualization of the ablation study on the constraints: the reconstruction loss of
encoder Lenc_r, the reconstruction loss of decoder Ldec_r, the compactness loss Lcpt and all these
three constraints, respectively. Experiments are conducted on a 5-way 1-shot task from MiniImageNet
dataset.

15



Under review as a conference paper at ICLR 2023

Figure 6: t-SNE visualization of the ablation study on the constraints: the reconstruction loss of
encoder Lenc_r, the reconstruction loss of decoder Ldec_r, the compactness loss Lcpt and all these
three constraints, respectively. Experiments are conducted on a 5-way 5-shot task from MiniImageNet
dataset.

G COMPARISON ON DIFFERENT CLASSIFIERS

Figure 7 shows the comparison about the recognition accuracy with respect to different classifiers.
Comparing with the distribution calibration method (DC), our STDA method consistently yields
performance gain on different classifiers (i.e., LR, SVM and KNN), which further validates the
effectiveness of our data augmentation technique. Meanwhile, We conduct an experiment on a
shallower feature extractor ResNet12. Results shown in Table 6 demonstrate that our method is
applicable for the shallower feature space as well.

16



Under review as a conference paper at ICLR 2023

Table 6: The few-shot classification accuracy on ResNet12 feature extractor. The superscripts denote
the settings: I Inductive, TTransductive.

MiniImageNet 5way TieredImageNet 5-way CIFAR-FS 5-way
Model 1shot 5shot 1shot 5shot 1shot 5shot
LR (baseline) 61.93 ± 0.81 78.98 ± 0.59 68.58 ± 0.84 83.26 ± 0.67 67.64 ± 0.90 82.79 ± 0.65
STDA+LRI 65.75 ± 0.71 80.36 ± 0.55 68.67 ± 0.89 83.80 ± 0.63 71.30 ± 0.84 84.12 ± 0.62
STDA+LRT 69.40 ± 0.82 80.90 ± 0.55 71.37 ± 0.94 84.14 ± 0.67 75.56 ± 0.84 84.19 ± 0.64
SVM (baseline) 60.61 ± 0.84 78.50 ± 0.55 66.39 ± 0.95 83.26 ± 0.67 66.72 ± 0.91 81.89 ± 0.68
STDA+SVMI 63.34 ± 0.79 78.90 ± 0.59 67.32 ± 0.94 83.53 ± 0.60 68.74 ± 0.89 82.45 ± 0.67
STDA+SVMT 68.66 ± 0.86 79.78 ± 0.57 69.74 ± 0.92 84.25 ± 0.64 72.99 ± 0.90 83.76 ± 0.65

Figure 7: Comparison of our STDA method at different classifiers and backbones on miniImageNet
dataset.

H PERFORMANCE COMPARISON OF DIFFERENT DEPTH NETWORKS

To explicitly reveal the impact of different depth networks on the performance, we try non-linear
networks for the encoder, transformation network and the decoder, respectively, where each of them
is composed of two fully connected layers and one activation function. We compare the performance
of the model constructed with linear shallow networks and non-linear deeper networks. As can be
seen in Table 7, the non-linear network performs worse than the linear one. Since the training data is
very scarce, deeper networks will introduce more parameters, which makes the model easy to overfit
the limited training data.

Table 7: Performance comparison of the model constructed with linear networks vs non-linear net-
works in inductive setting on MiniImageNet dataset. Features are extracted with WRN28 backbone.

MiniImageNet 5way
Model 1shot 5shot
STDA+LR(linear) 76.98 ± 0.72 86.62 ± 0.51
STDA+LR(nonlinear) 70.66 ± 0.75 84.32 ± 0.50
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I ABLATION STUDY ON THE BALANCING PARAMETERS

To study the impact of the balancing parameters λ1, λ2 and λ3 on the total optimization objective eq.
9, we conduct a variable-controlling experiment on λ1, λ2 and λ3 to show the performance changing
at different values. λ1 (λ2 and λ3) is varied from 0.1 to 1 with 0.1 as interval, while the other two
parameters are fixed to 1. From Figure 8 we can observe that the performance in terms of λ1, λ2
and λ3 keeps a trend of growing as the increase of λ values in 1−shot case. While for the 5−shot
case, the performance in terms of the varying values of λ1 and λ2 keeps smooth in 5-shot case. The
growing trend in terms of the increasing value of λ3 is especially obvious for both 1−shot and 5−shot
cases. This experiment demonstrates that setting λ1, λ2 and λ3 to 1.0 is reasonable.

Figure 8: Performance change about the classification accuracy in terms of the hyperparameters
λ1, λ2 and λ3. The experiment is conducted on MiniImageNet dataset with WRN28 as the feature
extractor.

J COMPARISON OF RUNNING-TIME

Previous data augmentation works focus on learning data distribution, and generating a large number
of samples from the distribution, which is memory and time consuming. Different from these methods,
our method can achieve great performance gain by augmenting few samples, which is time saving
and sample effective.

In Table 8, we record the average running time of per few-shot task for the 5-way 5-shot and 5-way
1-shot tasks on MiniImageNet. Results show that with our STDA method, the 5-shot task is a little
slower than the 1-shot task, while the experiments on transductive and inductive settings require
similar running-time. For the DC (Yang et al., 2020) method, it exhibits great running-time gap
between the 1−shot and 5−shot tasks. The running-time increases as the number of augmented
samples grows. Our experiments are run on the GTX TITAN X GPU.

Table 8: Per few-shot task running-time comparison for the 5−way 1−shot and 5−way 5−shot tasks
on MiniImageNet.

Setting Methods
Run-time (s) for varied number of
generated samples per task
1 5 10 20 30 40 50

Tran STDA+LR(1shot) 3.1 3.5 3.6 4.5 5.3 5.9 6.6
STDA+LR(5shot) 3.6 3.9 3.6 4.8 5.5 6.0 6.6
STDA+LR(1shot) 3.0 3.6 3.6 4.5 5.2 5.9 6.6

In
STDA+LR(5shot) 3.5 3.8 3.9 4.9 5.5 6.0 7.2
DC+LR (Yang et al., 2020) (1shot) 3.5 3.1 3.8 3.7 3.7 4.1 3.7
DC+LR (Yang et al., 2020) (5shot) 9.6 9.6 9.0 9.6 9.6 10.2 12.0
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