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Abstract

Skill Incremental Learning (SIL) is the process by which an embodied agent ex-
pands and refines its skill set over time by leveraging experience gained through
interaction with its environment or by the integration of additional data. SIL facili-
tates efficient acquisition of hierarchical policies grounded in reusable skills for
downstream tasks. However, as the skill repertoire evolves, it can disrupt compati-
bility with existing skill-based policies, limiting their reusability and generalization.
In this work, we propose SIL-C, a novel framework that ensures skill-policy com-
patibility, allowing improvements in incrementally learned skills to enhance the
performance of downstream policies without requiring policy re-training or struc-
tural adaptation. SIL-C employs a bilateral lazy learning-based mapping technique
to dynamically align the subtask space referenced by policies with the skill space
decoded into agent behaviors. This enables each subtask, derived from the policy’s
decomposition of a complex task, to be executed by selecting an appropriate skill
based on trajectory distribution similarity. We evaluate SIL-C across diverse SIL
scenarios and demonstrate that it maintains compatibility between evolving skills
and downstream policies while ensuring efficiency throughout the learning process.

Source code: https://github.com/L2dulgi/SIL-C

1 Introduction

Lifelong embodied agents must continuously integrate novel knowledge from unceasing streams of
data into their evolving skill library while simultaneously leveraging previously acquired skills [[1-4]].
Skill Incremental Learning (SIL) supports this process by enabling agents to expand and refine
their skill sets over time through continual interaction with the environment or integration of new
data. Accordingly, SIL often aims to facilitate the development of hierarchical policies grounded in
reusable skills for downstream tasks [SH7]].

Recent research explores diverse formulations of SIL, such as modular skill composition [8H11]],
continual adaptation [12H14], and hierarchical policy learning [[15116] to support scalable embodied
agents. Yet, a critical challenge remains underexplored; as skills evolve over time, maintaining
compatibility with downstream policies that depend on those skills becomes increasingly difficult [[17-
20]. Without proper alignment, updated skills may invalidate previously learned policies, limiting
their reusability and generalization [21H24]].

Figure[T]illustrates a policy-compatible SIL scenario involving two types of skill-policy compatibility:
(i) Forward Skill Compatibility (FwSC), which ensures that a newly added skill can be effectively
utilized during the training of future downstream policies, and (ii) Backward Skill Compatibility
(BwSC), which ensures that existing downstream policies can continue to use newly added or updated
skills without requiring re-training, and, when applicable, benefit from improved policy performance.
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A policy-compatible Skill Incremental Learning scenario is one in which the skill library evolves incrementally while maintaining
compatibility with both previously learned and future downstream policies, without requiring policy re-training or structural adaptation.
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Figure 1: Overview of policy-compatible skill incremental learning and SIL-C framework

To address skill-policy compatibility challenges, we introduce SIL-C, a novel SIL framework with
an interface layer, enabling hierarchical skill composition to seamlessly support downstream policy
learning. For FwSC, inspired by append-only file systems, we design the framework to support
non-destructive skill updates that mitigate forgetting and to introduce clear abstractions between
task-specific policy learning and the task-agnostic evolving skill library, thereby enabling practical
lifelong learning. For BwSC, we further design the interface within the framework to provide skill
validation, which ensures that subtasks proposed by the high-level policy are contextually appropriate,
and skill hooking, which intercepts misaligned subtasks and remaps them to the most suitable skill
based on trajectory distribution similarity.

We implement both compatibility mechanisms through a lazy learning-based interface that maintains
a consistent structure, enabling seamless integration with existing SIL approaches. To achieve FwSC
and BwSC without requiring policy re-training or structural adaptation, we reformulate alignment
between subtask space and skill space through trajectory distribution similarity as an instance-based
classification problem with append-only prototype memories. By deferring decisions to inference
time and offloading only the mapping function, this approach preserves existing training procedures
while supporting the decoupled evolution of skills and policies.

With diverse SIL scenarios regarding compatibility, sample efficiency, and modularity, we evaluate
SIL-C and other SIL baselines. SIL-C improves the normalized reward of downstream policies
learned during the initial phase by an average of 18.6pp to 42.5pp across full scenarios, while the
baselines only maintain or even degrade in performance. In particular, under the few-shot imitation
setting in SIL, where each task is provided with only a single demonstration and 20% of its transitions,
SIL-C achieves nearly double the overall performance of the baseline within the BwSC evaluation.

Our contributions are summarized as follows: (1) We propose SIL-C, a novel framework for SIL
that maintains compatibility between evolving skills and downstream hierarchical policies. (2) We
introduce a lazy learning-based mapping technique that aligns the subtask space from policies with the
skill space based on trajectory distribution similarity. (3) We demonstrate the effectiveness of SIL-C
across diverse SIL scenarios, showing that it maintains skill-policy compatibility while supporting
efficient and scalable skill integration.



2 Related Work

Skill incremental learning. To achieve pre-trained behavior models for efficiently learning down-
stream tasks, prior work has explored unsupervised skill discovery [25}26] and exploited task-agnostic
data to build skill priors that can accelerate learning [27H30]. Contrastive objectives are also used
to improve representation quality [31H34]]. Several methods have been extended with new expert
demonstrations to refine or expand priors for downstream adaptation [35537]. Building on pre-trained
models, recent work has investigated continual task adaptation in offline settings, aiming to handle
streams of diverse tasks without full re-training [9, 38]]. Beyond task-level adaptation, several ap-
proaches aim to incrementally acquire and organize skills at finer abstraction levels [39] by leveraging
subgoal information [10, [11]], often via hierarchical formulations [12} [13]]. Yet, these SIL approaches
typically assume synchronous updates between a skill library and downstream policies, limiting
scalability when adding or removing skills.

Continual updates for pre-trained models. Expansion-based continual learning methods [40} 41]]
maintain task compatibility via explicit task identifiers, while recent adapter-based approaches [42-
45| enable parameter-efficient updates. However, these typically rely on frozen backbones, limiting
their ability to revise pre-trained knowledge [46]. Such issue arises in sequential decision-making [9}
111, [38]], where pre-trained policies must adapt over time. Recently, a continual pre-training approach
has been proposed to improve forward compatibility [47H49], but its integration into hierarchical
settings remains underexplored. We explore this direction in the context of lifelong skill acquisition.

Lazy learning for behavior learning. Lazy learning techniques reduce the cost of online adaptation
and mitigate forgetting by leveraging instance-based retrieval and local updates [50]]. They have been
applied in behavior learning through prototype memories and nearest-neighbor matching [S1H53]],
and in robotics applications, particularly for adapting to novel tasks from limited demonstrations [S4-
59]]. While effective for adaptation, these methods typically do not support long-term skill reuse or
accumulation without additional training. We address this by extending lazy learning into the SIL
setting, reformulating trajectory-similarity-based skill validation and hooking as an instance-based
classification mechanism that enables skill reuse and composition without policy re-training.

3 Problem Formulation

We formulate each task 7 as a Markov decision process (MDP) M = (S, A, P, R, uo,7), where S
is the state space, A is the action space, P is the transition probability of the environment, R is the
reward function, p is the initial state distribution, and +y is the discount factor. The objective is to
learn a policy 7(als; 6) that maximizes the expected return:
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To address long-horizon tasks, we adopt a hierarchical policy. A high-level policy 7, (zx|s; 01)
selects a subtask zj, which is mapped to a skill z; = v (z;,) and executed by a low-level decoder
m1(als, z;; 0;). In our setup, the mapping ¢» may be the identity map or a more general transformation,
with both zj, and z; lying in a shared latent space Z. The overall objective is denoted as J(6;, 6,) [60].

In Skill Incremental Learning (SIL), we observe a stream of datasets {Dp}f;l, where each D,
contains demonstrations for updating the skill decoder 7; at phase p. The goal is to continually update
the decoder with D,,, while maintaining or improving performance across a set of evaluation tasks 7,
presented at each phase. We assume access to task-level expert demonstrations D, of 7 for training
the high-level policy 7, enabling supervised learning and facilitating adaptation to evolving skill
sets. The high-level policy for each task 7 is updated independently of the phase and may be replaced
or fixed. Our objective is to find the collections of high- and low-level optimal parameters(©;, ©7)
over all phases, that maximize performance across all observed tasks:

(07.0;) =argmaxEc, | Y J(07.67)|, O ={00}_,, On={01}rer.
©1,0n TE€ET,

Here, 67 and 6] denote the parameters of the skill decoder 7}’ at phase p and the high-level policy 7},
for task 7, respectively.
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Figure 2: Overview of the SIL-C framework: components, updates, and integration
4 Our Framework

We introduce the SIL-C framework, a hierarchical architecture with a lazy learning interface designed
to address skill-policy compatibility in SIL. It consists of a high-level policy 7}, a low-level skill
decoder 77, and their respective learning algorithms Ay and A;. The interface layer Z connects
the two levels by mapping each subtask z;, to a skill z;. Both subtask and skill are drawn from

the shared index set Z, = {1,...,Z,}, which expands over phases by appending new indices
Z, ={Zp-1+1,...,Z,}. Given a state s, execution in SIL-C follows:
2~ (| s), i =I(s,zn), a~m(-|s,z), where z,z, € Z,. 3)

The core component of SIL-C is the bilateral lazy learning interface Z, which operates across two
spaces: subtask space X} and skill space &;. We implement this interface as a two-stage instance-
based classifier that performs trajectory similarity matching between subtasks and skills. In our
design, the subtask space A7, is represented by prototypes of subtask initial states used to predict
the corresponding subgoal, while the skill space A is represented by prototypes that capture the
distributions of initial states and subgoals for each skill. Together, these representations allow
trajectory similarity to be compared across skills and subtasks. Building on this, interface operates
in two stages: skill validation first checks whether the current subtask can achieve the task-specific
subgoal predicted by A}, given the current state; if not, skill hooking remaps the subtask to the most
feasible skill based on the current state. Figure [2illustrates the components and their integration.

4.1 Bilateral Lazy Learning Interface

Bilateral modules (U5, U7, 7). To enable efficient trajectory distribution similarity matching under
SIL, the interface Z estimates similarity through bilateral lazy learning modules: the task-side module
U$ operating on the subtask space A}, and the skill-side modules W, U$ operating on the skill space
A). The two sides communicate via abstracted trajectory distributions represented by current state s
and subgoal g pairs, where a subgoal represents a desired future state reachable from the current state
s within m steps. To map subtask zj, to an executable skill z;, the task-side module W} first predicts
the target subgoal g from s. Then, the skill-side module U{ assesses the direct executability of z,
toward g, for skill validation. If validation fails, skill-side modules W7, ¥ identify an appropriate
skill via two-stage matching conditioned on (s, g), for skill hooking.

Instance-based classifier (). To implement lazy learning in the interface, we adopt an instance-based
classifier for all modules W. Each label ¢ € C, representing a concrete prediction target (e.g., a subgoal
g or a skill index z), is modeled by a multimodal Gaussian prototype x. = {(ftc.k, Ze, k)}fzcl, where
K. denotes the number of Gaussian components for label ¢, and ¥ j, is diagonal for computational
efficiency. For a query instance x, the module computes distances to all prototypes:

de(x) = min \/(x*ﬂCk) S i (@ — per)- 4)

This Mahalanobis distance-based multimodal approach effectively captures complex distributions
for both accurate prediction and reliable validation. Specifically, it enables two operations: (i)
classification via ¥(x;C) = argmin.cc d.(x) for nearest prototype selection, and (ii) validation
via U(x,c¢) = [[d.(x) < &) for out-of-distribution detection, where .. is the square root of 99%
chi-square quantile [[61].




4.2 Interface Update

We parameterize the interface modules with append-only prototype memories. On the task-side,
classifier U} relies on task-specific memory X;" to represent subtask space X}, for each task 7. On
the skill side, classifiers U5 and ¥/ use task-agnostic shared memories X;”” and X;"* to represent
skill space A at phase p. The subtask space X}, is updated during downstream policy learning, while
the skill space A} is updated during SIL.

Skill space update (&;). At SIL phase p, SIL-C updates X} by generating skill prototypes from the
streamed dataset D,,. An unsupervised skill clustering algorithm [62} 160] segments D,, into distinct
skill groups {3} ;¢ z,, where Z, is the index set of newly discovered skills at phase p. The number
of discovered skills Z, can either be fixed or automatically determined by the clustering algorithm.
For each group &, we apply K-means separately to the state and subgoal spaces to capture the
multimodal distribution within the group. The number of sub-clusters K is selected either manually
or automatically via silhouette score [63]. This process yields sub-clusters {HZ o MY K k Z, for each
skill z. Then, we compute 1z ;, and Xz 1 to create prototype for each skill, denoted as x¢ and 2,
respectively, corresponding to skill label z. The overall process follows:

Skill Clustering K -means ke[1:Kz] Mz, k2
DP ’ {5 }ZGZ 5,9 ’ {Hz k7 k}zeg s.g } {Xz ’Xz}zez (5)

segment )

skill dataset skill groups sub-clusters skill prototypes

The resulting skill prototypes are stored in skill memory X, and X7"*.

Subtask space update (X},). At downstream policy learning for task 7, SIL-C constructs &}, by
generating subtask prototypes from the most recent expert demonstrations D, to the discretized
subgoal groups G.. To efficiently represent demonstrations, we apply the same skill clustering
algorithm [60] to derive G, followed by the same sub-clustering procedure as in the skill space
update:

Subtask Clustering K- means ke[1:Kg] Mg,k 225,k
p,  SubtaskClustering - ¢ o e al LokoZak, . (6
T segment { }gegr { k}gGQT s {Xg}gégr 6)
expert dataset subtask groups sub-clusters subtask prototypes

After prototype construction, subtask prototypes are stored in the task-specific memory X" .

4.3 Policy Integration

Policy learning on the interface. We utilize an energy-based prior [64] to guide the learning of
the high-level policy Ap. This prior is induced by the skill decoder: given a state s, the decoder
evaluates all candidate skill pairs {(s, ;) },¢z, and assigns the subtask label whose decoded action
best matches the expert action a*. Specifically, we compute the subtask label as:

2zp, = argmin||a — a*||? @)
ZZGZP

where G ~ (- | s, z;) denotes the decoded action from the skill decoder using skill z;. The decoder
is continually updated by the skill incremental learning algorithm A;.

Policy inference via the interface. The policy inference process follows the sequence defined in
Eq. (@). Given a sampled subtask z, ~ 77 (- | s) from the high-level policy, the interface first predicts
the subgoal g = U3 (s; G-) using the task-side module, conditioned on the task-specific memory
X7 Using this inferred subgoal g, the interface then performs skill validation by evaluating the
distance of subgoal-subtask pair (g, z) by skill-side module ¥ (g, z,). If the skill validation passes,
the interface returns z; = zp. Otherwise, it initiates skill hooking, seeking an alternative skill better
aligned with the inferred subgoal g. Formally, the decision rule for interface Z follows:

2n, U (g, z) =1
Z(s,2p) = " 1(9,21) , where ¢ = U3 (s;G,). 8)
Vi(s;:2"), ¥(g,2n) =0

Here, candidate skill set 2’ = {2’ € Z,|¥{(g, z’) = 1} U{z}, where z, originally inferred subtask
from the high-level policy, is included as a default fallback when no valid candidate skill exists.
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Figure 3: (Top) SIL scenario types and (Bottom) evaluation groups

5 Experiments

5.1 Experiment Settings

Environments and SIL scenarios. To evaluate skill-policy compatibility, we construct various SIL
scenarios using two simulation environments: Franka Kitchen [65 166] and Meta-World [67, [11]]. In
our experiments, we have four SIL phases where we add new skills by training the skill decoder, and
train 24 downstream task policies using the updated skills for each phase.

As illustrated in the top of Figure[3] we define two scenario types to evaluate SIL under different levels
of skill supervision. The Emergent SIL setting follows skill-based pretraining approaches [28 27],
introduces only task-agnostic demonstrations, reflecting an unsupervised SIL setup. In contrast, the
Explicit SIL setting adopts the setup from prior SIL works [12} |68]] and uses demonstrations that
exhibit clearly chunked behaviors with predefined semantics.

As shown in the bottom of Figure[3] we categorize each scenario into three evaluation groups based
on the combinations of skill decoders and policies used for task evaluation. The BwSC group pairs
the skill decoder from each phase with the policy initially trained in the first phase. The FwSC group
pairs the skill decoder from each phase with its synced policy trained using that decoder. The Overall
group aggregates both BwSC and FwSC groups to measure comprehensive compatibility.

Baselines. We evaluate three baseline groups. Type I combines skill-based pre-training with continual
learning strategies for SIL, adopting a simple skill appending scheme. We extend BUDS [62, [10]
and PTGM [60]], which discretize the skill space during pre-training. As continual learning methods,
we apply fine-tuning (FT), experience replay (ER) [69], and adapter append (AA) [38]], which
trains an adapter after the initial phase and stores it for use in subsequent phases. Type II includes
SIL approaches that use semantic goals as skill labels, relying on pre-defined supervision. They
include prototype-based skill retrieval [11] and temporal replay with model expansion [12]]. Type II1
corresponds to SIL-C, which uses the Type I configuration as its base architecture. We also report
joint-training performance, obtained by training a single decoder on the union of all skill datasets.

All baselines adopt the same goal-conditioned skill decoder architecture [60]], which conditions on
subgoals hashed by skills, and use a diffusion-based model [70, [71] for decoding. For policy learning,
they follow the same training objective, behavior cloning with a prior, as defined in Eq. (7).

Metrics. We measure skill-policy compatibility by adapting continual learning metrics from lifelong
robot learning [4}[11}38]]. All task evaluation results are normalized to 100% based on the maximum
reward defined in each environment. Forward Transfer (FWT) measures the performance of newly
trained policies after skill updates, quantifying how updated skills facilitate learning new tasks. We
report FWT at the Initial and Final phases of SIL. Backward Transfer (BWT) measures the change in
performance from initial evaluation, assessing how skill updates affect previously evaluated tasks.
Area Under the Curve (AUC) averages all phase performances within a scenario. All metrics are
measured per task and reported as averages across tasks for each evaluation group in each scenario.

For comprehensive experiment settings including implementation details, hyperparameters, and
additional configurations, please refer to the Appendix.



Table 1: Performance evaluation of skill-policy compatibility in two SIL scenarios of the Kitchen
environment with four seeds. Each row corresponds to a baseline, categorized by the skill interface
configuration, hierarchical agent structure, and the SIL algorithm used for skill decoder updates. The
symbol * denotes methods that require pre-defined semantic skill labels for both policy and decoder
training. The left side reports BwSC results, the right side reports FwSC results, and the center shows
the overall performance considering both. Best results are shown in bold. In this table, SIL-C uses
the Type I (PTGM + AA) setting as its base architecture.

Kitchen : Emergent SIL

Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Type  Skill Interface SIL Algo. | FWT %) | BWT %) AUC %) | BWT % AUC @ | BWT @) AUC @) | FWT %)
. . FT 23.5+49 | -164+58 112412 | -6.1-49  183+12 43445 267423 | 18.7+12

s Ements 1201 gR 235055 | 108551 155505 | 36070 26640 | 17905 37050 | 445570

I AA 21.944.1 13444 229440 | 157435 353420 | 30.1:39 444+26 | 57.1+75
Subgoal Bins [60] FT 45.0420 | -36.9+15 173200 | 243416 241410 | -11.7+21  36.2+16 | 247420
(PTéM) ; ER 46.8+25 | -19.7+44 321420 | -5.0428 42.5+14 9.7+35 54.0+18 | 577436

AA 45.0+3.1 2.6+09  46.9+3 15.4+17  58.2+1 281441  66.1+06 | 83.6+3.1

I Skill-prototypes [[L1]* AA 55.1+18 0.5+31 55.542 0.5+238 55.7+2 09422 55.8424 | 56.9+409
Instructions [12]* ER 54.0424 | 18.5+40 67.8+11 | 19.1427 703410 | 19.7+20 68.7+19 | 774428

1T SIL-C (w/ PTGM) AA ‘ 5294209 ‘ 18.6+12  66.8+26 ‘ 22.0+24 71.8+13 ‘ 25440  T1.9+09 ‘ 87.2+32
Subgoal Bins [60] Joint | - | | = | - - | 86.9:22

Kitchen : Explicit SIL

Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Type  Skill Interface SIL Algo. ‘ FWT %) ‘ BWT %) AUC %) ‘ BWT %) AUC %) \ BWT %) AUC %) ‘ FWT @)
. - FT 14.6+00 | -13.6=10  4.4=+08 -9.5+06 6.5+05 -5.4+06  10.5+04 3.0+19

U Ements (0201 kR 146200 | 0205  147:0s | 14015 267001 | 280222 356517 | 37.020s

I AA 14.6+00 0.0-+0.0 14.6+00 | 20.9+1.1 325410 | 41.9:23  46.0417 | 62.8+30
Subgoal Bins [60] FT 14.6-00 | -14.4=02  3.8+02 -8.9+1.0 7.0+09 17439 0 12.1+15 1.7+21
(PTéM) ER 14.6+03 | -1.5+11 13.5+08 | 17.2412 293411 | 359+17  41.5+15 | 52.0+75

AA 14.5+02 | 0.0+0.1 14.6+04 | 25.8410 36.7+08 | 51.6+19 53.3+14 | 79.8+22
I Skill-prototypes [L11* AA 14.6:00 | 0.0-00  14.6:00 | 1844115 33.6+35 | 443281 47.8+01 | 75.0=127
Instructions [12]}* ER 14.6+00 | -0.6=27 14.1+21 | 19.1+34 309420 | 38.7+44 43.6+33 | 60.2+83

it SIL-C (w/ PTGM) AA | 146100 | 425430 46,5123 | 462005 540421 | 498124 519:15 | 80.6+63
Subgoal Bins [60] Joint | | | - - \ - - | 86.9:22

5.2 Skill-Policy Compatibility : Backward and Forward

Table[T]presents the skill-policy compatibility evaluation for the Franka Kitchen environment, covering
both Emergent and Explicit skill incremental scenarios. It jointly reports BwSC and FwSC, and the
overall performance shows that SIL-C achieves the highest AUC among all baselines.

Backward Skill Compatibility (BwSC). The left side of Table [I] reports the performance of the
Initial phase policy after subsequent skill updates, evaluated across all phases. Compared to Type
I baselines, SIL-C achieves a higher initial performance (/nitial FWT) and closely matches the
performance of methods with predefined skill labels. This suggests that SIL-C can robustly replace
lower-confidence skills via skill validation and hooking. Furthermore, SIL-C matches the BWT and
AUC scores of Type II methods. However, this is partly due to the nature of the Emergent scenario in
Franka Kitchen, where future skills are already available and fully observable from the start, creating
a near-oracle setting. In Explicit scenarios with incrementally revealed skill labels, SIL-C consistently
improves performance, whereas most Type II methods show near-zero BWT, merely preserving initial
performance without adaptation. Meanwhile, Type I baselines with limited replay suffer from skill
forgetting, with only the AA variant maintaining backward compatibility but failing to improve it.

Forward Skill Compatibility (FwSC). The right side of Table|[I|reports performance when policies
are retrained at each phase to align with updated skills. SIL-C and PTGM with append-only skill
learning achieve comparable final performance (Final FWT) to joint training, highlighting effective
utilization of accumulated skills. It also achieves the highest AUC, indicating strong forward com-
patibility. Among Type I methods, ER and AA yield positive BWT, suggesting that newly acquired
skills contribute to subsequent policy learning, although less effectively than SIL-C.

In Appendix |C} we provide additional overviews and extend the experiments with diverse configura-
tions of SIL algorithms to further motivate our design choices, and present experiments with varying
SIL phase orderings, showing that SIL-C consistently maintains skill-policy compatibility.



Table 2: Few-shot imitation results on Kitchen Emergent SIL. Shots denotes expert demonstrations
per task for high-level policy training. Ratio indicates the proportion of transitions uniformly sampled
from each demonstration. All baselines use SIL algorithm AA for skill decoder.

Kitchen : Emergent SIL

Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final

Type  Skill Interface Shots  Ratio | FWT %) | BWT (%) AUC @) | BWT @) AUC %) | BWT %) AUC %) | FWT @)
5 100% | 40.5+09 04+24  40.8+21 | 10.0+14  49.1+00 | 19.6+20 553424 | 67.6+60

. Subgoal Bins [60] 3 100% | 34.7+2.1 0.7+49  35.1+25 | 59443 38.6:20 | 11.04506 402410 | 457436

(PTGM) 1 100% | 26.5+19 1.7+25 27.7+22 6.1+24 31.7+09 | 10.5+34 343409 | 37.8+19
1 50% 28.6+57 | -0.8+44 27.9+32 1.045.1 29.5+138 2.9+60 30.8+12 | 36.5+40
1 20% 257435 | 29420 23.5+00 1.5+48 27.0+12 59+76  30.1+25 | 30.5+44
5 100% | 47.4+32 | 113424  559+46 | 17.5512  62.4+27 | 23.6+42  65.1+23 | 75.8+44
SIL-C 3 100% | 444+18 | 11.2425 52.8420 | 1494120 572+:18 18.6+33 58.4+12 | 68.5+40

I (w/PTGM) 1 100% | 431554 | 119525 520553 | 157451 565:57 | 194245  57.6:20 | 65.7+36
1 50% 41.6+48 | 11.7423  504+47 | 149+:26 543127 | 18.0447 551416 | 672435
1 20% 373464 | 120433 46.4+57 | 14456 49706 | 168499 49.9+30 | 58.5+51
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Figure 4: Results on Kitchen and Meta-World tasks under Emergent and Explicit skill incremental
scenarios. Each group of bars represents a skill update phase (x-axis), and the y-axis shows the scaled
reward. Darker bars represent evaluation with the initial policies. Lighter bars show performance after
re-training with updated skills. Diamonds () indicate the application of SIL-C to each baseline. The
skill decoder uses the AA strategy for Kitchen and ER for Meta-World.

5.3 Sample Efficiency: Downstream Few-shot Imitation Learning

Effect of number of demonstrations. Table 2] shows that across all demonstration budgets, SIL-C
outperforms the baseline, highlighting the benefit of skill validation and hooking via lazy learning
under limited supervision. With 5 demonstrations per task (5-shots), SIL-C improves overall per-
formance AUC from 49.1% to 62.4% and Final FWT from 67.6% to 75.8%, indicating utility even
with ample supervision. When using only 1 demonstration per task (1-shot), the gains become more
significant, with AUC increasing from 31.7% to 56.5% and Final FWT from 37.8% to 65.7%.

Effect of transition sampling ratio. Reducing the number of transitions extracted from demonstra-
tions (from 100% to 20%) has only a moderate effect on SIL-C, which still maintains a positive BWT
and achieves an AUC above 46% on BwSC. In contrast, the baseline degrades substantially, with
AUC dropping below 24%. This indicates that the skill-conditioned interface provides robustness to
sparse supervision by substituting missing transitions with reusable behaviors. These results suggest
that the interface enables strong generalization by leveraging prior skills in low-data regimes.

5.4 Modularity: Under Varying Design Choices for Hierarchical Architecture

Figure[d] shows that across all scenarios, SIL-C consistently improves Initial Policy performance by
enhancing BwSC, regardless of environment, skill clustering strategy, or SIL algorithm for low-level
decoder. In the Franka Kitchen environment, as shown in Table[I] SIL-C enables both BUDS and
PTGM with AA to make more effective use of their accumulated skills, leading to more efficient
reuse. This effect is clearly reflected in the visualized performance. In the Meta-World environment,
unlike in Kitchen, both BUDS and PTGM use ER to train a shared skill decoder. While this promotes
generalization and enables reuse of new skills without policy re-training, the actual gains remain
limited. When SIL-C is applied, we observe a clear improvement in evaluation with the initial policy,
suggesting that skill validation and hooking are effective in filtering unreliable skills. Although SIL-C
relies less on broadly generalized skills from ER, it tends to reuse verified skills more precisely,
which may contribute to safer and more stable policy execution.
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Figure 5: Ablation of the SIL-C lazy learning interface in the Kitchen Emergent SIL scenario using
PTGM with AA configuration. (Left) Per-phase performance across three settings. (Right) Evaluation
trajectories example illustrating selected subtasks and corresponding skills used to solve the task:
open microwave — move kettle — turn on top burner — open hinge cabinet.

Table 3: Performance under varying input noise levels in Kitchen Emergent SIL scenario. All baselines
use the same SIL algorithm AA for the decoder.

Kitchen : Emergent SIL

Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Type  Skill Interface Noise | FWT %) | BWT %) AUC %) | BWT % AUC %) | BWT %) AUC @) | FWT %)
x1 45.0+3.1 2.6+09  46.9+37 | 154+17 582417 | 28.1+41  66.1+06 | 83.6+3.1
I Subgoal Bins [60]  x2 444545 | 0.8420  45.0434 | 107427 535400 | 205439  59.7+19 | 68.6+35
(PTGM) %3 35.8453 | 05437  36.1+29 | 3.2456 385115 59477  40.2+17 | 40.5446
x5 197417 | -1.2434  18.8+17 | -1.8424 182409 | -24+25 17.9+11 | 159+16
x1 529420 | 18.6+12  66.8+26 | 22.0424  T71.8+13 | 254+40 T1.9+00 | 87.2+432
I SIL-C X2 49.7+06 | 11.3+18  582+15 | 16.7+11  64.0+13 | 22.1+19  66.3+18 | 76.4+26
(w/ PTGM) x3 35.6120 | 13.6142  45.8+31 | 154100 488115 | 17.3:34 485110 | 529130

x5 19.6+23 434113 22.8+424 3.8404 22.9+14 3.3441 22.1+14 | 23.144.1

6 Ablation and Analysis

6.1 Lazy Learning Interface Ablation

Figure [5] ablates lazy learning interface and policy integration contributions across three settings:
policy-only, SIL-C with a random policy, and SIL-C with a learned policy. While the policy-only
configuration cannot leverage newly added skills without retraining. In contrast, the SIL-C w/
random policy shows that skill validation and hooking mechanisms alone offer minimal decision-
making capability via trajectory distribution similarity matching, but still underperform due to
limited generalization ability compared to using a learned high-level policy. The SIL-C w/ learned
policy further improves performance by using skill validation with out-of-distribution detection to
correct subtask-skill mismatches, which is crucial for error-sensitive long-horizon tasks. Evaluation
trajectories show that while the random policy fails immediately from inconsistent subtask selection
and the policy-only configuration struggles with the not-yet-acquired skill move kettle, SIL-C
completes tasks through the interface remapping subtasks to utilize newly added skills.

6.2 Robustness

Table [3] evaluates robustness in the Kitchen environment by scaling input noise during evalua-
tion, where the noise parameter [65] is increased from x 1 to x5. SIL-C consistently outperforms
PTGM+AA across all noise levels. Notably, under x5 noise, SIL-C maintains a positive BWT of
4.3%. The performance gap further increases with larger skill library sizes. For example, under
x 3 noise, the FWT difference grows from a marginal —0.2% Initial FWT to 12.4% Final FWT at
convergence with 80 skills, where SIL-C achieves 52.9% compared to 40.5% for PTGM+AA.

This robustness stems from architectural differences in handling noisy observations. When noise
corrupts high-level policy outputs, the bilateral interface in SIL-C performs skill validation to detect
out-of-distribution subtasks and skill hooking to remap them based on trajectory similarity. In
contrast, the static skill mapping in PTGM+AA cannot adapt to distributional shifts, leading to error
accumulation in long-horizon tasks. The widening performance gap suggests that trajectory-based
matching becomes increasingly effective as the skill repertoire expands.
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Figure 6: Analysis with varying | Z,| and |G, | of SIL-C (w/ PTGM, AA) in Kitchen Emergent SIL
scenario. Rows represent different values of | Z,,| while columns represent different values of |G |.
AUC results shown for (Left) BwSC, (Center) Overall performance, and (Right) FwSC.

6.3 Skill and Subtask Space Resolution

Figure|6|examines how the resolution of skill and subtask spaces influences FwSC and BwSC. We
vary the number of skill groups per phase (| Z,|) and subtask groups per task (|G.|) in SIL-C (with
PTGM and AA). Starting from the default setting in Table (1Z,| = 20, |G| = 20), we test doubled
and halved values to assess sensitivity to space resolution, which is determined by the granularity and
quality of unsupervised clustering. Full results are reported in Appendix [D.T]

Skill space resolution (| 2, |). Increasing | Z, | from 10 to 40 raises overall AUC from 61.5% to 75.5%
when |G, | = 40. This improvement is consistent across all subtask settings, with | Z,,| = 40 yielding
the best performance in both BwSC (70.3%) and FwSC (75.8%). Higher skill space resolution also
reduces dependence on subtask space resolution. With |Z,| = 40, BwSC remains stable across
subtask configurations (69.2%-70.3%), indicating that sufficient skill diversity compensates for
coarse subtask space.

Subtask space resolution (|G;|). The effect of subtask space resolution depends on skill space
resolution. With coarse skill space (|Z,| = 10), increasing |G- | from 10 to 40 changes performance
only marginally (61.5% to 61.4% in Overall Performance). In contrast, with finer skill space (\Zp| =
40), the same increase yields gains (73.8% to 75.5%). This shows that sufficient skill diversity is
necessary for benefiting from finer subtask space, as coarse skill space limits the effect of additional
subtask prototypes.

7 Conclusion

We present SIL-C, a framework for policy-compatible skill incremental learning (SIL) that introduces
a bilateral lazy learning interface to preserve FwSC and BwSC without requiring full re-training
or structural adaptation of downstream policies. Empirical results demonstrate that, by ensuring
skill-policy compatibility, SIL-C consistently improves performance, efficiency, and modularity.

Future Directions. While our approach performs well in the simulation-based environments with
well-defined state representations, future work may explore settings with more diverse or noisy skill
distributions, where unsupervised clustering alone becomes less effective. Enhancing robustness
in such conditions and leveraging minimal goal information for exploration can improve sample
efficiency. Additionally, monitoring skill reliability and distribution shifts during deployment may
help enforce expected behaviors and detect anomalies, contributing to safer execution.

Impact Statement. Our framework aims to support large-scale deployment in practical settings
where new skills must be integrated without disrupting existing behaviors. By maintaining policy
compatibility and enabling decentralized skill sharing, SIL-C provides a foundation for scalable
robotic systems that can evolve over time. This line of research has potential to assist the development
of adaptive, modular agents in applied domains.
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A SIL-C Implementation
This section details key notations in [A.T|and operational steps in [A.2]and throughout the method. We
aim to facilitate understanding of concepts described in the main text and supplementary explanations

provided in this appendix.

A.1 Notations

This subsection summarizes all notations used throughout the paper.

Table 4: Notation used in the paper

Symbol Meaning Symbol Meaning

MDP fundamentals

M (S, A, P, R, po,7) S State space

A Action space P Transition probability

R Reward function 10 Initial-state distribution

vy Discount factor (0 < y < 1) s State

a Action r, R Step reward; episode return

™ (Stochastic) policy T Task identifier

Hierarchical policy

Th High-level policy M Low-level skill decoder

Zh High-level subtask index 2 Low-level skill index

0 Parameters of 7, 0, Parameters of m;

zZ Discrete subtask/skill index space

Skill Incremental Learning (SIL)

14 SIL phase index P Total # of phases

{Dp}g:1 Datastream (task-agnostic trajectories) Ty Evaluation task set at phase p

Z, Subtask/skill index set at phase p D, Expert demonstrations for task 7

s High-level policy for task 7 ﬂ'f Skill decoder at phase p

07 Params of 7, for task 7 67 Params of ; at phase p

Lazy-Learning Interface (bilateral modules & instance based classifier)

Xy Subtask space X, skill space

g Subgoal state m Steps ahead to define g

U5 (s;Gr) Task-side subgoal predictor: returns g X, ,;T Task memory of 7 (subtask prototypes)

Ui (g,2) Skill-side validator: 1 iff d,(¢g) <d, x7P Skill memory at phase p (subgoal-based prototypes)
Ui(s; 2) Skill-side classifier (restricted to Z'): returns z; X" Skill memory at phase p (state-based prototypes)
Z(s,zn) Interface (Eq. (8)) z' Candidate skills s.t. ¥ (g, 2’)=1

Oc Distance threshold for class ¢ de(x) Mahalanobis distance to class-c prototype

Xe Prototype for class ¢ fbe,ks Se,k  Mean and (diagonal) covariance of k-th Gaussian
K. # of sub-clusters (modes) for x.. T Query instance (e.g., s or g)

Prototype construction (skill & subtask spaces)

& Clustered skill group Z, Index set of skills discovered at phase p
Hs ks Hg_ 1 Sub-clusters for skill Z (state/subgoal) K- # of sub-clusters for skill z
X5, x2 Prototypes for skill z (state/subgoal) Mz, 2z, Mean, covariance of skill-Z sub-cluster
& Clustered subtask group G, Subtask label set (from demos)
Sk Sub-clusters for subtask of subgoal g (state) Ky # of sub-clusters for subtask of subgoal g
X5 Subtask prototype (state) gk, 25,k  Mean, covariance of subtask sub-cluster of subgoal g
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A.2 Algorithms

We provide phase-level training and run-time inference procedures that instantiate the SIL-C frame-
work using the append-only prototype memories and the bilateral lazy-learning interface described in
Sec. 4.

Algorithm 1 SIL-C on SIL & Policy Learning with Interface at phase p

Require: Phase index p, streamed dataset D,, set of evaluation tasks 7,, demonstrations {DT}TeTp s
previous decoder 7Tl(p ~1, previous memories XZS7(p -1, X/ (=1 previous index set Z,_,
Ensure: Updated decoder 7}, updated memories X;”, X", updated index set Z,,, trained high-

level policies {7, } e, , task memories { X" } ;7

# SIL AT PHASE-p
# SKILL SPACE UPDATE (EQ. @)) >
Skill clustering: segment Dy, into {;}5c =
Initialize X;F 0, X7+ 0
forall z € Z, do
Sub-clustering: apply K-means to £; to obtain {’H; k> 7—[; & fjl
Prototype creation: compute {1z 1., Xz 4 }1=, and form x, 2
Add prototypes: X"« X7 U{xs}, X7P X" U {x{}
Memory append: Xls’pe)(ls’(p_l) UXx™?, Xlg’peXlg’(p_l) ux?P

# LOW-LEVEL SKILL DECODER UPDATE >
Train 7; with A; on D, to obtain 7]’
Index growth: Z, < Z,_1 U Z,

# DOWNSTREAM POLICY TRAINING AT PHASE-p

for all 7 € 7, do

# SUBTASK SPACE UPDATE (EQ. (6)) >
Initialize X" <)

Subtask clustering: segment D into {£;} 50,

forallg € G, do

Sub-clustering: apply K-means to &; to obtain {H; k}fzg 1

Prototype creation: compute {115, X4} .7, and form X3

Add prototypes: X" < X" U {x;}

# LABEL ASSIGNMENT WITH UPDATED DECODER (EQ. @)) >
for all transition (s, a*) € D, do

. . 2 N
i Zp argzrlrélgp ||a—a*H2’ a~ml(] s, 2)
# HIGH-LEVEL POLICY OPTIMIZATION >

Update 7], by minimizing E, .-)[—log 7] (z}; | s)]

return (71-;07 Xls.’pv X[g1p7 Zp? {77}:}767’,,7 {X}f,T}TE'Tp)

Phase training (Alg.[T). (A) Skill space update. At the beginning of phase p, the streamed dataset
D, is segmented into skill groups {€z}; z, ((®)). For each group, we perform K-means in the
state and subgoal spaces to obtain sub-clusters {'H;E ks 7—[; .+ and form Gaussian prototypes X, x2
with diagonal covariance. Newly created prototypes are appended to the skill memories X", X"
without altering past entries, and the skill decoder is updated to 7}’; the index set grows append-only
as Z, < Z, 1 U Zp. (B) Policy learning on the interface. For each task 7, we build the subtask
memory by clustering D into {£;}5¢¢g, and constructing state-side prototypes {x3} ((6)). Labels
for behavior cloning are assigned by the energy-based prior that selects z;, minimizing the decoder
mismatch ({7)), and 7] is trained with cross-entropy over (s, z;).
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Algorithm 2 SIL-C Evaluation with Interface

Decoder 7}, policy 7}, interface modules W;"*, W’ wy™,
task memory G, skill index set Z,, initial state s

Initialize R < 0, s < sg

while episode not terminated do

# HIGH-LEVEL POLICY

zn ~ 1 (zn | 8) > sample subtask
# INTERFACE INFERENCE (SUBTASK SPACE)

g 977 (s; Gr) > predict subgoal
# INTERFACE INFERENCE (SKILL SPACE) (EQ. (]3[))

if U7 (g, z,) = 1 then > skill validation
‘ 2] < Zn

else > skill hooking

Z' {2 ez, | ¥P(g,2)=1}U{z}
Z] \Iff’p(s; Z"

# LOW-LEVEL SKILL DECODER

a~m(als, ) > sample action
_ Execute a; observe reward r and next state s'; R <+ R+ 1; s+ s
return R
Policy mh(zyls) | ~o_ | s - '”"Hy—ﬂ
S~ S am ‘
| sz Seo
v N
Wi (s) (i) Skill validation 9-- = (ii) Skill hooking ¢
S
l 9,2 Accept ? ' SN
p=1 { ? Reject p=>1 ~
lpig ) * Y7 (s)
I
9‘ z, @ Accept @ Accept fo

Skill decoder m; P(al s, z)
Figure 7: Visualization of agent inference procedure with SIL-C

Agent Inference (Algoritm 2}, Figure 7). Given the current state s, the high-level policy samples a
subtask z, ~ 7] (2 | s), and the task-side module predicts a subgoal g = ¥; (s; G, ). The interface first
performs skill validation with the skill-side validator W: if ¥7 (g, z,) = 1, the subtask is accepted
(z1 = z); otherwise, skill hooking restricts the candidate setto 2’ = {2’ € Z, | ¥{(g,7') =
1} U {z,} and chooses z; = U7 (s; Z’) (restricted classification). Equivalently, validation can be
written as d.(g) < 0, using the Mahalanobis distance in Eq. (4). This two-stage instance-based
procedure operationalizes Eq. (8) and realizes compatibility at inference without policy re-training.
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A.3 Pseudocode

## Initialization
from collections import defaultdict
from scipy.stats import chi2

Interface = {

"skills":  defaultdict(lambda: {"subgoal": [], "state": [1}),
"subtasks": defaultdict(lambda: defaultdict(list)),
} # Gaussian component = (mean, precision)

pi_l, pi_h = Nome, {}

def label_dist(x, comps): # Eqg.(4)
def maha(x, comp):
mu, Sigma_inv = comp
d =x - mu
return d.T @ Sigma_inv @ d
return min(maha(x, c) for ¢ in comps)

def chi2_thr(comps, conf=0.99):
dim = comps [0] [0] .shape [0]
return chi2.ppf(conf, dim)

## Policy compatible skill incremental learning
for p in range(1, P + 1):
# Skill space update Eq.(5)
chi_gz, chi_sz = create_skill_prototypes(cluster_skills(D_p))
for z in chi_gz:
Interface["skills"] [z] ["subgoal"].extend(chi_gz[z])
Interface["skills"] [z] ["state"].extend(chi_sz[z])
# Skill incremental learning
pi_l = train_low_level_decoder(D_p, Interface["skills"], pi_1)

# Downstream policy learning
for tau in T_p:
# Subtask space update Eq. (6)
chi_g = create_subtask_prototypes(cluster_subtasks(D_tau))
for g in chi_g:
Interface["subtasks"] [taul [g] .extend(chi_glg]l)

# Policy learning on the interface Eq. (7)
labels = assign_subtask_labels(D_tau, Interface["skills"], pi_1)
pi_h[tau] = train_high level_policy(D_tau, labels)

## Policy inference via the interface
def infer_action(s, tau, conf=0.99):
# High-level policy: subtask proposal
z_h = pi_h[tau] (s)
g = predict_subgoal(s, Interface["subtasks"][taul)
delta = chi2_thr(Interface["skills"] [z_h] ["subgoal"], conf)

# Interface: skill validation and skill hooking Eq. (8)
if label_dist(g, Interface["skills"][z_h]["subgoal"]) <= delta:
z_.1 =2z_h
else:
cand = [z for z in Interface["skills"]
if label_dist(g, Interface['"skills"][z]["subgoal"]) <= deltal] + [z_h]
z_1 = min(cand, key=lambda z:
label_dist(s, Interface["skills"][z]["state"]))

# Low-level decoder: action execution
return pi_1(s, z_1)

Figure 8: Python style pseudo code of SIL-C
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We provide Python-style pseudo code in Figure [§]to illustrate the SIL-C implementation. The code
shows how the append-only prototype memories are constructed and updated during each phase, and
how the bilateral interface performs skill validation and hooking at inference time using Mahalanobis
distance matching.

A.4 Hyperparameters

We apply a consistent set of hyperparameters to update each space in the SIL-C interface for both the
Kitchen and Meta-World environments. The configuration, used in Table[I] is summarized in Table 5]

Table 5: Default hyperparameter configuration for SIL-C

Skill-Side (per phase) Task-Side (per task)
Sub-clusters per skill (Kz) | 4 Sub-clusters per sub-task (Kg) | 4
Goal offset (m) 20 | Goal offset (m) 20

B Experimental Settings

B.1 Environments

Franka Kitchen [65] is a long-horizon manipulation environment where a robot must complete
multi-stage tasks by interacting with various kitchen objects such as a microwave, kettle,
burners, light switches, and cabinet doors. We use the kitchen-mixed-v0O dataset
for experiment. Each demonstration consists solely of state-action transitions, without any re-
ward signals or task labels. The state space is 60-dimensional, encompassing both the robot
arm state and the states of the manipulated objects. The action space is 9-dimensional, corre-
sponding to the 9 degrees of freedom (DoF) of the Franka robotic arm. Each task requires the
robot to complete a sequence of 4 subtasks(stage) selected from a fixed set of 7 predefined sub-
tasks: open microwave, move kettle, turn on top burner, turn on bottom burner,
light switch, open hinge cabinet, open slide cabinet. A reward of 1.00 is given for
each subtask successfully completed in the correct order, yielding a maximum of 4.00 when all
subtasks are completed. For evaluation, we normalize the reward such that the maximum score is
100.

Multi-stage Meta-World extends the original Meta-World benchmark [67]], which includes 50 diverse
single-step robot tasks, by composing multiple tasks into sequential stages within a single episode.
Each multi-stage task requires an agent to complete 4 subtasks in a fixed order, mimicking realistic
long-horizon objectives puck, drawer, button, door, box, handle, lever, stick [77].
We use the Easy dataset introduced by [[L1]], which consists of composed tasks involving 4 objects
selected from a subset of: puck, drawer, button, door, with varied subtask sequences. Each
demonstration consists solely of state-action transitions, without any reward signals or task labels. The
state space is 140-dimensional, capturing both the robot arm state and the states of the relevant objects.
The action space is 4-dimensional, corresponding to the 4 degrees of freedom of the robotic arm. Each
task consists of 4 sequential subtasks selected from the predefined set: slide puck, close drawer,
push button, open door, close box, press handle, pull lever, and insert stick into
red box. As in the Franka Kitchen environment, a reward of 1.00 is given for each subtask completed
in the correct order, with a maximum cumulative reward of 4.00 per task. For evaluation, we normalize
the reward so that the maximum possible score is 100.

B.2 SIL Scenario

In each phase p, a new skill dataset D,, is provided to train the skill decoder. Subsequently, based on
the trained low-level skill decoder, 24 task-specific high-level policies are individually trained.
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Table 6: Kitchen: Emergent SIL Table 7: Meta-World: Emergent SIL

Kitchen : Emergent SIL Meta-World: Emergent SIL
Phase | Skill Dataset Phase | Skill Datasets
microwave bottom burner  light switch slide cabinet
bottom burner top burner light switch slide cabinet p uck drawer  button door
microwave bottom burner top burner light switch puCk drawer door button
1 microwave bottom burner  slide cabinet  hinge cabinet 1 pUCk button drawer door
microwave bottom burner top burner slide cabinet pUCk button door drawer
bottom burner top burner slide cabinet  hinge cabinet puck door drawer  button
kettle bottom burner top burner slide cabinet puCk door button drawer
microwave bottom burner top burner hinge cabinet
microwave kettle bottom burner  hinge cabinet drawer P uck button door
microwave kettle top burner hinge cabinet drawer puck door button
2 kettle bottom burner  top burner  hinge cabinet 2 drawer  button puck door
microwave kettle top burner light switch drawer  button door puck
microwave top burner light switch  hinge cabinet drawer door puck button
microwave kettle light switch  hinge cabinet drawer door button puck
microwave light switch slide cabinet  hinge cabinet
3 microwave kettle slide cabinet  hinge cabinet button puCk drawer door
microwave kettle bottom burner  slide cabinet button puck door drawer
microwave kettle light switch  slide cabinet 3 button drawer puck door
kettle top burner light switch  slide cabinet button  drawer door puck
kettle bottom burner  slide cabinet  hinge cabinet button door puck drawer
4 kettle bottom burner  light switch  hinge cabinet button door drawer puck
kettle bottom burner top burner light switch
kettle light switch  slide cabinet  hinge cabinet door puck  drawer button
kettle bottom burner  light switch slide cabinet door pUCk button  drawer
4 door drawer puck  button
door drawer button  puck
door button  puck  drawer
door  button drawer  puck
Table 8: Kitchen: Explicit SIL Table 9: Meta-World: Explicit SIL
Kitchen: Explicit SIL Meta-World: Explicit SIL
Ph kill D
ase | Skill Datasets Phase | Skill Datasets
1 | microwave
2 | kettle / bottom burner 1 ‘ puck
3 | top burner/ light switch 2 ‘ drawer
4 slide cabinet / hinge cabinet
| £ 3 | button
4 | door

B.2.1 Datastream Types : Emergent and Explicit SIL

Emergent SIL. In the Emergent SIL scenario, we divide each dataset into four datastreams by
grouping full task-agnostic demonstrations, resulting in datastreams that contain a mixture of tasks
without explicit task identifiers. To facilitate scenario construction and explanation, we partition the
dataset using task information. To maintain the task-agnostic nature of skill learning, this information
is not exposed during skill-incremental learning, and the learning process remains fully task-agnostic.
In the case of Franka Kitchen, we collect task demonstrations based on the predefined subtask
goal information provided by the environment. Failed or truncated trajectories are discarded, and
we identify 24 distinct tasks. The resulting datastream composition is summarized in Table [6] For
Meta-World, we follow a similar approach, segmenting the dataset into 24 tasks, corresponding
to all 4! possible subtask sequence permutations, by verifying subtask goal completion using the
environment’s built-in success conditions. The datastream configuration is shown in Table

Explicit SIL. In the Explicit SIL scenario, we segment each dataset into shorter demonstrations based
on predefined skill boundaries specified by the environment. These skill segments are then grouped
into four datastreams. To facilitate scenario construction and explanation, we use skill labels provided
by the environment to organize the data. However, this information is not exposed to the agent during
training, and the learning process remains fully skill-agnostic. For Franka Kitchen, we segment
trajectories by identifying transitions that correspond to each predefined subtask. These are clustered
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by subtask type to form skill-specific datastreams, as shown in Table [8] For Meta-World, we apply a
similar segmentation strategy, isolating the trajectory from the beginning of each subtask to the point
where the agent returns to a neutral position. These segments are then clustered according to subtask
identity, resulting in the skill incremental setup summarized in Table 0]

B.2.2 Evaluation Groups for SIL Scenarios

At each phase p, a new skill dataset D,, is used to train the skill decoder. Using this updated
decoder, we then train 24 task-specific high-level policies, one for each evaluation task. Across
both environments, we evaluate all 24 tasks listed in Table [6] and Table[7] by training a dedicated
policy for each task. This setup enables us to evaluate bidirectional compatibility. Specifically, we
measure Backward Skill Compatibility (BwSC) by checking whether policies trained in earlier phases
remain functional with updated skills. In parallel, we assess Forward Skill Compatibility (FwSC) by
determining whether new policies can effectively leverage skills learned in previous phases.

Formally, the evaluation groups for BwWSC,; and FwSC of task 7 are defined as:

7,(1 1 7,(1 2 T,(1
BwSC, = (7', xM), (ap ™ 2@y (ap @ 2P )
FwSC, = [(a; M, a), (mp 7P, (@ )] (10)

1)

Here, ﬂ';;’ denotes the initial high-level policy trained with the skill decoder from the first phase

p = 1. For any phase p > 1, 7TfTL7(p)

)

refers to the updated high-level policy synchronized with the

corresponding skill decoder 7Tl(p at phase p.

B.3 Baseline Details

We categorize our baselines into four distinct types based on their methodology and compatibility
with the Skill Incremental Learning (SIL) scenario.

Type I: Skill-based approaches with continual learning. Type I combines skill-based pre-training
with continual learning strategies using a simple skill-space appending scheme. We adopt two
hierarchical skill pre-training methods:

* BUDS [62] [10]: BUDS [62] segments trajectories into fixed-length intervals and merges
them bottom-up based on trajectory similarity, and was later adopted as the foundation in
LOTUS [10] for continual imitation learning. It discovers skills by clustering these segments.
In our implementation, we base our hyperparameter choices on those reported in BUDS. To
support goal-conditioned skill decoder learning, we annotate each trajectory with subgoal
states prior to skill discovery. For each discovered skill, we select its goal representation as
the subgoal state closest to the average of the subgoals observed across its transitions. Each
phase can generate up to 10 skills, but the actual number is determined automatically using
the silhouette score. In the Kitchen environment, this resulted in an average of approximately
8 skills per phase.

* PTGM [60]: PTGM leverages subgoal state information during skill decoding by discretiz-
ing the subgoal state space and treating each subgoal bin as a distinct skill. This approach
supports pre-training in open domains and demonstrates strong performance on downstream
tasks, particularly in complex environments, often outperforming skill pre-training methods
based on continuous skill representations. In our experiments, we adopt the hyperparameters
from the PTGM paper for the Kitchen domain. Each phase produces a total of 20 skill
clusters.

In both methods, we define the subgoal state for each transition as the state reached after m = 20 steps.
To support the SIL scenario, we expand the skill set at each phase by appending newly discovered
skills to those from previous phases. This expansion is strictly append-only and does not modify
previously learned skills.

These pre-trained skills are integrated with continual learning or adaptation strategies as follows:

* Fine-Tuning (FT): The simplest approach. The skill decoder is incrementally trained on
each new skill without access to prior data, no memory or replay is used.
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* Experience Replay (ER) [[69]: In our implementation, a replay buffer stores 10% of the
data from each previous phase. During training in the next phase, these stored samples are
interleaved with new data at a 1:1 sampling ratio to mitigate forgetting.

* Adapter Append (AA) [38]: In the first phase, we pre-train the entire model. Starting from
the second phase, we freeze the pre-trained model and train a separate LoRA adapter [[78]]
for each new phase, using rank 4 for the Emergent scenario and rank 16 for the Explicit
scenario. During evaluation, we use the adapter corresponding to the phase in which the skill
was introduced. This strategy, introduced in TAIL [38]], preserves skill-policy compatibility
by preventing forgetting in both the base model and its adapted parameters. However, it
limits the ability to transfer or incorporate newly acquired skills across different phases.

Type II: Semantic representation-based skill incremental learning approaches. These methods
rely on predefined semantic subgoals as skill labels. They incorporate prototype-based skill retrieval
and model expansion with temporal replay.

* Skill-prototypes + (AA) [[11]]: Performs skill retrieval using a prototype memory, where
each prototype is linked with adapter parameters and indexed by persistent semantic skill
labels. We set the number of skill prototype bases to 50. Following the original setup, tasks
are learned using semantic subgoal labels provided in a fixed sequence.

* Instructions + (ER) [12]: Defines and learns skills incrementally from semantic representa-
tions. We adopt its trajectory-based temporal replay to support skill incremental learning.

To ensure a fair comparison, these methods are restricted to using only the semantically labeled skills
available for policy training at the corresponding SIL phase p. Trajectories without semantic skill
labels are merged with the skill from the previous transition.

Type III: SIL-C. Our method builds on the Type I structure and its configuration. In our SIL setup,
we assign four sub-clusters to each skill prototype. For subtask prototype construction, we follow the
PTGM algorithm, setting 20 prototypes per task and assigning four sub-clusters to each prototype as
well.

High-level policy and skill decoder implementation. For all baselines, we implement the high-level
policy as a four-layer MLP that acts as a classifier for sub-task prediction. To enable behavior cloning
in SIL-C, we generate supervision signals using Eq. (/) and train the classifier with cross-entropy
loss.

The skill decoder, used across all baselines, is a goal-conditioned policy consisting of two components.
The first maps each skill to a hashed embedding. Following the skill decoder architecture proposed in
[60]], we compute each skill embedding as the subgoal state closest to the centroid of the subgoal
states comprising that skill. We then feed this subgoal state, along with the current state, into a
conditional denoising diffusion model with four conditioned denoising blocks. The model denoises
from Gaussian noise to reconstruct the corresponding action.

For Type II methods, where skills are defined semantically (e.g., using natural language descriptions),
we embed the descriptions using the text-embedding-3-large model from OpenAl and use these
vectors directly as skill representations.
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Table 11: Default skill decoder configu-

ration
Table 10: Default policy configuration Hyperparameter Value
Diffusion Model DDPM [/0]
Hyperparameter Value Denoising step 64
MOdel . MLP Schedule Linear
Hidden size 512 Linear start le-4
Hidden layers 4 Linear end 2e-2
Dropout = 0.1 Block MLP
State input dim 60 Hidden dimension | 512
Optimizer Adam Layers 4
L . 4 Dropout 0.0
earning rate 1x10 . .
3 09 Clip denoised True
1 .
Optimizer Adam
Learning rate 2 x107°
1 0.9

B.4 Metrics

For each scenario, we evaluate the FwSC and BwSC groups using three metrics: Forward Transfer
(FWT), Backward Transfer (BWT), and Area Under the Curve (AUC). Overall performance is
reported by computing each metric over the union of both groups. Let ™P denote the normalized
reward for task 7 at phase p, evaluated using the corresponding high-level policy and skill decoder.
For example, 777 = (W;’(l), i}') for the BwSC group, and r™? = (m,;"”, «!) for the FwSC group.
This score reflects task performance under the given high-level and low-level policy configuration.
We assume a fixed evaluation task set 7;, which is used across all phases, i.e., 7, = 7; for all

ped{l,...,P}

Forward Transfer (FWT) measures the performance of newly trained policies after skill updates,
quantifying how updated skills facilitate learning new tasks.

FWT™P = p™P (11)

We report both the Initial FWT, computed at p = 1, and the Final FWT, computed at the final phase
p=P.

Backward Transfer (BWT) quantifies the influence of skill incremental learning on previously

acquired task performance. It is defined as the average change in performance across phases, relative
to phase 1:

P
1
BWTT = = >~ (77 = 7)) (12)
p=2

Area Under the Curve (AUC) captures the overall performance trend across all skill learning phases,
computed as the mean normalized reward:

P
T 1 T
AUC” = f;_lr P (13)

We report the final values for each metric by averaging over all evaluated tasks 7 € T .

B.5 Training Details
Compute Resources We conducted our experiments in the following computing environments:

* AMD Ryzen 9 7950X3D 16-Core Processor with a single RTX 4090 GPU. OS: Ubuntu
22.04, CUDA Version: 12.4, Driver Version: 550.144.03
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* AMD Ryzen Threadripper PRO 5975WX 32-Core CPU with 2x RTX 4090 GPUs. OS:
Ubuntu 22.04, CUDA Version: 12.4, Driver Version: 550.144.03

* AMD Ryzen Threadripper PRO 5975WX 32-Core CPU with 2x RTX 4090 GPUs. OS:
Ubuntu 22.04, CUDA Version: 12.2, Driver Version: 535.230.02

Training Framework Details We implemented our framework using JAX [79] to efficiently ac-
celerate training and handle the continual phase’s alternating training and evaluation process. All
software dependencies are included with the released code for full reproducibility. The versions of
core libraries are:

* jax: 0.4.34

* jaxlib: 0.4.34
e flax: 0.10.2

* optax: 0.1.9

Experiment Compute Estimates For experiments on Kitchen and Meta-World, we ran 4 seeds in
parallel (4 processes on a single GPU). Each run took approximately 4 hours and 30 minutes, broken
down as follows:

* Training: 1 hour for training 4 skill update phases, covering a total of 96 policy training
runs (24 tasks per phase).

¢ Evaluation: 3 hours and 30 minutes for 168 task evaluations (24 tasks x [3 BwSC + 4
FwSCY).

Total Compute Usage

* Main experiments only: Approximately 225 GPU hours (RTX 4090), including core
experiments and additional SIL scenario evaluations.

» Experiments including Appendix: Approximately 500 GPU hours (RTX 4090), covering
extended experiments and additional SIL evaluations.

* All experiments, including preliminary and discarded runs: An estimated 600 GPU
hours (RTX 4090), accounting for exploratory and failed runs not included in the final
results.

B.6 Evaluation Details

To report performance metrics, we used four random seeds and report the mean and standard deviation
across them. For each scenario, the normalized reward of a given task was computed by running the
evaluation three times and averaging the results. The averaged value was recorded as the reward for
that task.
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Table 12: Performance evaluation of skill-policy compatibility in two SIL scenarios of the Franka-
Kitchen environment with four seeds. Each row corresponds to a baseline, categorized by the skill
interface configuration, hierarchical agent structure, and the SIL algorithm used for skill decoder
updates. The symbol * denotes methods that require pre-defined semantic skill labels for both policy
and decoder training. The left side reports BwSC results, the right side reports FwSC results, and the
center shows the overall performance considering both.

Kitchen : Emergent SIL

Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Type Skill Interface SIL Algo. ‘ FWT %) ‘ BWT @%) AUC %) ‘ BWT %) AUC %) ‘ BWT %) AUC %) ‘ FWT %)
. . FT 235449 | 164458 11.2 -6.1+49  18.3+12 43445 26705 | 18.7+12
cUpsEmens 02U pg 235000 | -108+61 155020 | 36000 266000 | 179405 37.0:10 | 445470
I AA 21.9+4.1 1344 22.9+40 | 157435 353400 | 30.1+39 444206 | 57.1475
FT 45.0420 | -36.9+15 173409 | 243416 241410 | -11.7421 362416 | 24.7+20
Subgoal Bins [60] ER (10%) 46.8+25 | -19.7+44  32.1+29 | -5.0428 425414 9.7+33 54.0+18 | 577436
(PT(gEM) ’ ER (50%) 482419 | 92422 413420 | 58418 531418 | 208419  63.8+17 | 747420
MT (100%) | 48.4+14 | -3.1+18 46.1+09 | 11.6409 584+12 | 26.2+09 68.1+1 81.3+45

AA | 45.0451 | 2.6+09  46.9+37 | 154417 582417 | 28.1+41  66.1=06 | 83.6+3
I Skill-prototypes [[11]* AA 55.1+18 | 0.5+31 555427 | 0.5+28  55.7+27 0.9+22  55.842 56.9-+49
Instructions [12]* ER 54.0+24 | 18.5+40 67.8+11 19.1+2 703+10 | 19.7420 68.7+19 | 77.4+258
It SIL-C MT (100%) | 52.7+28 152428 64.1-06 | 19.7421  69.6+21 | 24.3+17  709+17 | 82.7+07
AA 529420 | 18.6+12  66.8426 | 22.0424  T1.8+13 | 254440 719400 | 87.2432
- Sub-goal Bins [60] Joint | - | - - | = = \ - - | 86.9+22

C Additional Experiments

C.1 Motivating Examples

Table [[2) extends our main results with additional baselines to demonstrate a critical challenge in
skill incremental learning: even multi-task learning, often considered an oracle baseline in continual
learning, fails to achieve backward skill compatibility (BwSC).

Multi-task learning fails to enable compositional skill reuse. We evaluate PTGM with varying
replay ratios (10%, 50%, 100%) to understand the limits of experience replay in SIL. Even with
100% replay, where the model has access to all previous data, PTGM achieves only -3.1% BWT
in the BWSC setting. This negative transfer indicates that despite having full access to historical
data, the method cannot leverage newly acquired skills to improve existing policies without complete
retraining. The pattern persists across all replay configurations: ER (10%) shows -19.7% BWT,
ER (50%) shows -9.2% BWT, and even multi-task learning (MT 100%) exhibits negative transfer.
These results reveal a fundamental architectural limitation: naive combinations of continual learning
approaches with skill-based pre-training fail to support dynamic skill composition.

SIL-C enables true compositional learning without retraining. In contrast, SIL-C achieves
substantial positive backward transfer across both continual learning strategies: 15.2% BWT with
MT (100%) and 18.6% BWT with AA. This improvement is not merely incremental but represents
a qualitative difference in capability. While baseline methods require complete policy retraining to
utilize new skills (as evidenced by their improved FwSC but poor BwSC performance), SIL-C’s lazy
learning interface enables existing policies to dynamically compose newly acquired skills at inference
time. This compositional property is particularly evident in the overall performance metrics, where
SIL-C maintains competitive or superior AUC scores on BwSC (64.1% with MT, 66.8% with AA)
while simultaneously achieving the highest final performance (82.7% and 87.2% FWT respectively).

The significance of these results extends beyond numerical improvements: they demonstrate that
SIL-C fundamentally changes how skills and policies interact in hierarchical reinforcement learning,
enabling true lifelong learning where each new skill enhances the agent’s entire behavioral repertoire
without the computational burden of retraining.

C.2 Skill-Policy Compatibility : Overview and Ordering Effects
Figure [9] presents phase-wise normalized rewards across four SIL datastreams, each defined by a

different permutation of skill datasets from Table[T|(Seq. 1). The corresponding evaluation metrics for
each stream are summarized in Table |13} These experiments assess both backward skill compatibility
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Franka Kitchen Emergent — Seq. 1 (1-2-3-4) 80 Franka Kitchen Emergent — Seq. 2 (4-3-2-1)

Franka Kitchen Emergent — Seq. 4 (2-1-4-3)

I itial policy (darker) Il BuUDS +ER Il BuDS +AA PTGM + ER PTGM +AA
Synced Policy (brighter) I skill-prototypes + AA Il Instructions + ER, AA SIL-C (Ours; PTGM + AA)

Figure 9: Phase-wise normalized rewards across four Kitchen Emergent Skill Incremental datas-
treams, each corresponding to a different permutation of skill execution order. Each bar group shows
performance for different methods under both initial and retrained (Synced) policies.

(BwSC), which captures the evolution of the initial policy over phases, and forward skill compatibility
(FwSC), measured after the skill policies have been resynchronized and retrained. In the BwSC
setting, SIL-C consistently achieves the highest normalized rewards or matches the performance of
methods that use pre-defined semantic skills. After retraining(Synced Policy) in the FwSC setting,
SIL-C continues to show the highest performance across all phases.

Each sequence corresponds to a permutation of phase orders from Table[6] In Seq. 2, the dataset
of first phase does not include demonstrations for open microwave, so even methods that rely on
pre-defined semantic skills fail to execute this task in early phases. Once policies are retrained, SIL-C,
SIL with semantic skills, and PTGM+AA reach similar levels of performance. A similar issue appears
in Seq. 3, where demonstrations for turn on top burner are absent in the initial phase. Only
SIL-C maintains high performance throughout, showing strong skill-policy compatibility despite the
delayed exposure to this skill. Seq. 4 follows the same pattern for open slide cabinet, where
again only SIL-C maintains high rewards both before and after retraining.

Additionally, methods that combine semantic retrieval with skill prototypes exhibit decreasing
performance over successive phases, particularly in the Emergent skill incremental setting. As the
diversity of skills increases, these methods are more susceptible to incorrect skill retrieval, which in
some cases results in performance degradation relative to earlier phases. Overall, SIL-C is the only
method that consistently maintains skill-policy compatibility without requiring prior knowledge of
future skills. This property is essential for scalable, SIL.
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Table 13: Additional experiments for testing robustness to incremental ordering. Experiments were
conducted on the Franka Kitchen environment using various combinations of phase orderings. Each
row represents a baseline method, organized according to the skill interface setting, hierarchical agent
architecture, and the specific SIL algorithm applied for skill decoder updates. The * symbol indicates
methods requiring pre-specified semantic skill labels during both policy and decoder training phases.
The left columns present the BwSC results, the right columns show the FwSC results, while the
central columns report the overall combined performance. The best results are indicated in bold. In
this table, SIL-C utilizes the Type I (PTGM + AA) approach as its foundational architecture.

Kitchen : Emergent SIL Seq. 1 (1-2-3-4)

Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Type  Skill Interface SIL Algo. | FWT %) | BWT %) AUC @) | BWT %) AUC %) | BWT @) AUC %) | FWT (%)
Skill Segments [62/[10] ER 23.5+38 | -10.8+81  15.5+23 | 3.6+70 26.6:25 | 17.9+65 37.0+30 | 445470
I (BUDS) AA 21.9+4.1 13444 229+40 | 157435 353400 | 30.1439 444406 | 57.1475
Subgoal Bins [[60] ER 46.8425 | -19.7+44 321420 | -5.0428 42.5:14 | 97433 54.0+18 | 577436
(PTGM) AA 45.0+3.1 2.6+09  46.9:37 | 154+ 58.2+1 28.1+41  66.1+06 | 83.6+43.1
I Skill-prototypes [L1]* AA 55.1+18 0.5+3.1 55.5+27 | 0.5+28  55.7+27 09422 558424 | 56.9+49
Instructions [12]* ER 54.0424 | 18.5+40 67.8+11 | 19.1+27 703410 | 19.7+20 68.7+19 | 774428
it SIL-C AA | 529420 | 186412  66.8+26 | 22.0424  T1.8+13 | 254+40  T19+09 | 872432
- Subgoal Bins [60] Joint | - | - - | - = \ - - | 86.9:+22
Kitchen : Emergent SIL Seq. 2 (4-3-2-1)
Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Type  Skill Interface SIL Algo. | FWT %) | BWT %) AUC @) | BWT %) AUC %) | BWT @) AUC %) | FWT (%)
Skill Segments [62/[10] ER 179413 | -44+20 14.6+1 9.9+23 26417 | 242408 36.1+19 | 421445
I (BUDS) AA 19.5+17 -0.242.1 19.4-+09 14.0.-22> 315113 282404  40.7+17 | 552445
Subgoal Bins [60] ER 26.1+12 | -10.3425  184+12 | 93+13 341103 | 288411 47.7+10 | 628435
(PTGM) AA 252422 | 0.6+1 25.6+25 | 197410 42.1+16 | 38925 543415 | 75.542
I Skill-prototypes [11]* AA 319402 | -3.1+02  29.5+03 | 137410 43.6:10 | 305120  54.7+16 | 60.5+63
Instructions [12]* ER 29.8+15 | -5.3+27 258412 | 147423 423106 | 34.6+25 557407 | 75.7+12
1 SIL-C AA | 252400 | 289416  469+30 | 357110 55.8:1s | 425:24  57.0412 | 793420
- Subgoal Bins [60] Joint | - | - - | - = \ - - | 86.9:+22
Kitchen : Emergent SIL Seq. 3 (3-4-1-2)
Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Type  Skill Interface SIL Algo. | FWT %) | BWT % AUC @) | BWT %) AUC %) | BWT @) AUC %) | FWT (%)
Skill Segments [62/[10] ER 325407 | -13.2421  22.6+15 | -2.6+28 303407 8.0+35 38.5+06 | 404436
I (BUDS) AA 31.8+12 1.2+20 32.6+08 | 11.7+17  41.8+12 | 22.3+17  48.5+15 | 572422
Subgoal Bins [60] ER 29.7420 | -6.9+22  24.5:08 | 9.8+30  38.1:13 | 264143 49500 | 65242
(PTGM) AA 29.6+16 1.1+15  304+07 | 183418 453402 | 35400  56.2+05 | 73.3+16
I Skill-prototypes [L1]* AA 307410 | 19.7+05  45.5:09 | 25.6406 527410 | 315409 544415 | 56.7+0s
Instructions [12]* ER 30.1+21 | 22.1+26  46.7+13 | 297427  55.6+16 | 37.3+32  58.1+420 | 79.1437
i SIL-C AA | 37.2:00 | 265416 570419 | 289417 62.0:24 | 312427  60.6+31 | 79.5:13
- Subgoal Bins [60] Joint | - | - - | - = \ - - | 86.9:22
Kitchen : Emergent SIL Seq. 4 (2-1-4-3)
Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Type  Skill Interface SIL Algo. | FWT %) | BWT %) AUC @) | BWT %) AUC %) | BWT @) AUC %) | FWT (%)
Skill Segments [62/[10] ER 31.9+19 | -20.2+36 16.7+10 | -8.1439 24.9+16 4.0+47 348420 | 464425
I (BUDS) AA 34.0429 | -0.1434  33.9:21 7.2+432 40.2+1.6 14.6+32  449+11 | 61.0+32
Subgoal Bins [60 ER 48.3+05 | -20.3+40 33.0+28 | -55+25 43.6:20 94424 55.3422 | 59.7+438
(PTGM) AA 46.4+20 1.0420  47.1+19 | 114221 56.2:090 | 21.8+2 62.7+03 | 72.8+14
I Skill-prototypes [11]* AA 56.0+32 | -12.1445 46.9+14 | 91455  482:00 | -6.0462  51.5+22 | 51.74380
Instructions [[12]* ER 57.9429 49422 61.6+16 9.7+238 66.2+1.1 145433  68.8+10 | 76.3+54
i SIL-C AA | 52.8:24 | 172410 657430 | 20.0009  69.9:25 | 229:28  69.9424 | 80.4:14
- Subgoal Bins [60] Joint | - | - - | - - \ - - | 86.9:22

D Additional Analysis

D.1 Extended Skill and Subtask Space Resolution Analysis
Table [I4]reports the full results corresponding to Figure[6] showing the performance of SIL-C (with

PTGM and AA) under different skill and subtask space resolutions. Following the setup in Section 6.3,
we test both halved and doubled values of |Z,| and |G, | relative to the default configuration.
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Table 14: Performance under varying skill and subtask clustering configurations in Kitchen Emergent
SIL scenario. All baselines use the same SIL algorithm AA for the decoder. Analysis with varying
|G-| and | Z,| in Kitchen Emergent SIL scenario. Here, |G| denotes the number of subtasks into
which expert demonstration data D, are segmented and | Z,,| indicates the number of skills derived
from the datastream D,, at each phase p.

Kitchen : Emergent SIL

Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Type  Skill Interface |Z,| 1G-| | FWT @) | BWT % AUC@®% | BWT@% AUC % | BWT @ AUC @) | FWT @
I Sub-goal Bins @) 10 - | 467:20 | 0201 462:1s | 105614 553526 | 2111 622455 | 760:4
(PTGM) 20 - [ 4500 | 26500 469+57 | 154507 582417 | 28.0-41 660506 | 83.6+1
40 -] 52.8+16 | <0502 52.4+15 | 129409 638410 | 262417 724=10 | 86.4+54
10 51.6+2.1 3.9+25 54.5+09 | 11.6+16 61.5:10 | 19.4+1 66.1+20 | 76.842.1
10 20 49.8+22 5.0+23 535430 | 14.0:25 61.8422 | 23.0+35 67.1+16 | 78.1+26
40 517426 | 42435  549:306 | 1134350 614430 | 184427  655+21 | 74.0+3.
it SIL-C 10 48.6+1 16.0+33  60.6+13 | 2784141 67.1+07 | 27.1+0 68.9+12 | 81.3+18
(w/ PTGM) 20 20 529420 | 18.6+12 66.8+26 | 22.0+24  T1.8+13 | 254440 T71.9+00 | 87.2432
40 523416 | 161412  64.6+16 | 20.8007 70.4+15 | 25.6+05 T1.7+16 | 86.2+31
10 55.1+15 | 18.8+23 692410 | 21.5417 738404 | 242400 733416 | 88.0424
40 20 54.0+12 | 18.8422  68.1+05 | 225416  73.3+0 26.1+1 73.6+15 | 88.8434
40 55.5+10 | 19.7+22  703+18 | 234+14  755+13 | 27.1+14  758+11 | 90.5+02
First, we analyze Type I (Subgoal Bins). At |Z,| = 10, the skill space resolution is too coarse,

leading to limited overall performance (55.3% AUC). The BwSC evaluation group shows weak
results (46.2%), and the BWT score remains negative. Increasing to |Z,| = 20 improves overall
AUC to 58.2%, and FwSC evaluation results rise to 66.1%, but BWT still indicates poor transfer. At
| Z,| = 40, Type I gains further, with 63.8% AUC and 72.4% in FwSC evaluation, yet BwSC remains
low (52.4%). These results show that while higher skill space resolution helps Type I, static subgoal
binning as the interface is unable to leverage newly added skills without retraining the policy, which
is reflected by persistently low BWT in the BwSC evaluation group.

When |Z,| = 10, Type III shows clear improvements over Type 1. It achieves higher Initial FWT
(51.6-51.7%) and stronger AUC in the BwSC evaluation group (up to 54.9%). Importantly, the BWT
score is positive, indicating that SIL-C enables backward transfer even at coarse resolution, which is
not observed in Type 1.

When | Z,| = 20, Type III shows consistent improvements over Type L. It achieves higher Initial FWT
(48.6-52.3%) and stronger results in both the BwSC (up to 68.6%) and FwSC (up to 71.9%) evaluation
groups. Importantly, the BWT score increases significantly, confirming that SIL-C leverages moderate
resolution more effectively than static binning.

When | Z,| = 40, Type III achieves the strongest improvements. It achieves higher Initial FWT (up
to 55.5%) and consistently high results in both the BwSC (70.3%) and FwSC (75.8%) evaluation
groups. Most notably, the BWT score peaks at 19.7, the best among all configurations. In contrast,
Type I also benefits from higher resolution but remains far behind, with 63.8% overall AUC, 72.4%
in FwSC, 52.4% in BwSC, and negative BWT.

In summary, increasing skill resolution improves both overall performance (AUC) and evaluation
results across BwSC and FwSC groups. Moreover, SIL-C (Type III) consistently leverages this
advantage to achieve strong skill-policy compatibility, which is not observed in the static subgoal
binning baseline (Type I).

D.2 Subtask Space Analysis on Few-shot Imitation Learning

Table[I5]expands on Table 2] by replacing the prototype-based representation in the SIL-C subtask
space with an element-wise retrieval strategy across 1-5 shot scenarios. Element-wise retrieval
consistently yields stronger performance than prototype-based representations.

In the 5-shot setting, for example, it achieves a +4.2% absolute gain in overall AUC (66.6% vs.
62.9%) and +3.3% in final FWT (79.1% vs. 75.8%). This performance gap persists across shot counts,
highlighting the benefit of fine-grained memory when the budget allows. Notably, SIL-C supports
both representations and can incorporate element-wise memory when additional storage is available.
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Table 15: Comparison between Gaussian prototypes (Prototype) and simple instance accumulation
(Element) in the subtask space of the Franka Kitchen Emergent skill incremental scenario under
varying shot settings (1, 3, 5). Memory per task indicates the number of embedding vectors stored in
the subtask space for a single task (e.g., p or ), with relative usage at 100% corresponding to the
configuration in Table T}

Kitchen : Emergent SIL

Ablations Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Instance Shots  Memory per Task | FWT %) | BWT %) AUC %) | BWT @) AUC @) | BWT @) AUC %) | FWT %)
5 160 (100%) 4744532 | 113424 559+46 | 175412 624427 | 23.6+42  65.1+23 | 75.8+44
Prototype 3 160 (100%) 444418 | 112425  52.8+429 | 149400 572418 | 18.6+33 584+12 | 68.5+40
1 160 (100%) 43.1+54 | 119428  52.0453 | 15.7+31  56.5+37 194+458  57.6+20 | 65.7+36
5 1000 (625%) 503+46 | 13.9+43  60.74+64 | 20.6+16 66.6+44 | 243453  68.5+25 | 79.1+34
Element-wise 3 600 (375%) 489430 | 15.6446  60.6+25 | 193442 654421 | 23.0:39  66.1+13 | 77.3+36
1 200 (125%) 423436 8.3:33 48.5+43 | 14.6404 548106 | 21.0438 58.0+19 | 64.6:32

D.3 Robustness to Observation Noise

We extend the analysis in Table 3] which compares SIL-C against PTGM+AA across different noise
levels with Gaussian noise scaled by factors of x 1 to x5 in Franka Kitchen [65].

SIL-C maintains compatibility under noise. As shown in Table[3] SIL-C consistently outperforms
PTGM+AA across all noise levels and evaluation metrics. Most notably, SIL-C maintains positive
backward transfer (BWT) even under extreme noise (x5: 4.3% vs. -1.2%), while PTGM+AA suffers
from catastrophic forgetting with negative BWT. This gap becomes more pronounced in the final
phase with approximately 80 skills, where SIL-C achieves 23.1% FWT compared to 15.9% for
PTGM+AA under x5 noise.

Trajectory matching provides noise resilience. The robustness gap stems from fundamental ar-
chitectural differences. Under noise, high-level policies produce increasingly unreliable subtask
selections. The bilateral lazy learning interface in SIL-C handles this through: (i) skill validation that
detects out-of-distribution subtasks, and (ii) skill hooking that remaps to appropriate skills based on
trajectory similarity. The static skill mapping of PTGM+AA, however, cannot adapt to noise-induced
distributional shifts, leading to compounding errors in long-horizon tasks.

Performance scales with skill repertoire size. The advantage of SIL-C grows as training progresses.
Under x3 noise, the performance gap increases from 0% (Initial FWT: 35.6% vs. 35.8%) to 12.4%
(Final FWT: 52.9% vs. 40.5%). This scaling effect suggests that skill validation and hooking become
more valuable as the skill library expands, opening the possibility for more robust lifelong learning
systems that can maintain performance even in challenging real-world like conditions.

D.4 Analysis on Distance Metrics for Instance-based Classification

Table 16: Comparison across distance metrics (Mahalanobis, Euclidean) and sub-cluster selection
strategies (Fixed, Auto) in the Franka Kitchen Emergent Scenario. We define 100% as the configura-
tion matching the number and memory usage of sub-clusters per prototype used in Table [T} Fixed
uses a predetermined number of sub-clusters, while Auto determines the number of sub-clusters
using the silhouette score. The left columns report initial forward transfer (Initial) and backward skill
compatibility (BwSC), which evaluate existing policies with updated skills. The right columns report
forward skill compatibility (FwSC), assessing the effectiveness of new policies with learned skills,
and final forward transfer (Final). The central columns indicate overall performance, combining
BwSC and FwSC.

Kitchen : Emergent SIL

Baselines Initial BwSC (Initial) Overall performance FwSC (Synced) Final
Type Distance Type Sub-clusters per prototype ‘ FWT %) ‘ BWT (%) AUC %) ‘ BWT %) AUC %) ‘ BWT %) AUC %) ‘ FWT %)
Mahalanobis Fixed Kz, K5 = 4.0 (100%) | 52.9+20 | 18.6+12  66.8+26 | 22.0404  71.8413 | 254440 719209 | 87.2432
m ’ Auto Kz, K5 ~ 2.5 (63.5%) | 52.7+30 | 16.6:25  65.1420 | 19.6:26  69.5:16 | 22.7429  69.7+14 | 80.6+32
Euclidean Fixed Kz, K3 = 4.0 (50%) 52.2+4 5.5+23 56.3+3.1 143447  64.5:08 | 23.2+72  69.6+0 81.0+356
uchdea Fixed K, K; = 8.0 (100%) | 54026 | 56525 58215 | 144110 663117 | 231014 713220 | 829428

We ablate the choice of distance metric in the instance-based classifier, comparing Mahalanobis
and Euclidean distances with varying memory configurations as shown in Table Memory usage
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is measured relative to storing 4 sub-clusters with both mean and covariance per prototype (100%
baseline).

Mahalanobis distance enables better trajectory matching. Across all configurations, Mahalanobis
distance consistently outperforms Euclidean distance. With the baseline configuration, Mahalanobis
achieves 66.8% AUC in BwSC while Euclidean only reaches 56.3%, a 10.5% gap. This difference is
most pronounced in backward compatibility, where Mahalanobis maintains 18.6% BWT compared to
5.5% for Euclidean, demonstrating superior ability to align evolving skill distributions with existing
policies.

Memory-performance trade-off with automatic clustering. When using automatic sub-cluster
selection via silhouette score, the Mahalanobis variant reduces memory to 63.5% while maintaining
competitive performance (65.1% vs. 66.8% AUC in BwSC). This 3.2% performance drop for 36.5%
memory savings presents a viable option for resource-constrained deployments, as the SIL-C still
significantly outperforms Euclidean variants even with reduced memory.

Richer skill distribution modeling improves compatibility. The performance gap between distance
metrics demonstrates the importance of capturing skill distributions accurately. Euclidean distance
with 4 sub-clusters (50% memory) achieves only 56.3% AUC in BwSC, and even doubling to 8
sub-clusters (100% memory) reaches just 58.2% AUC. In contrast, Mahalanobis distance with 4 sub-
clusters achieves 66.8% AUC despite using diagonal covariance for efficiency. This 8.6%-10.5% gap
shows that modeling variance, even in simplified diagonal form, is more effective than simply adding
more isotropic prototypes. The Euclidean approach scales poorly because increasing prototypes
cannot compensate for the lack of directional information, while Mahalanobis captures essential
trajectory variations that distinguish functionally different skills. This enables more accurate skill
validation and hooking, particularly critical for backward compatibility where precise distribution
matching determines whether existing policies can leverage new skills.

D.5 Analysis on Instance-based Classifier Thresholding

Figure |10/ shows the stability of confidence intervals s Synced
used for threshold selection in the Emergent SIL sce- '

nario. Overall, varying the threshold between 80%  £70-0 vl
and 99% results in minimal differences in both the ~ ge75 Initial
confidence intervals and performance. This indicates <,

that our bounding method does not simply adjust o5

the threshold for skill validation, but instead serves T - % o5 %
as an effective mechanism for filtering out out-of- Confidence interval
distribution cases. Figure 10: Ablation on SIL-C threshold

D.6 Memory and Time Analysis

Memory. Each instance-based classifier stores Gaussian prototypes in both skill and subtask spaces.
The memory cost for skill prototypes is dim x | Z,| x K, x 2 float values, and for subtask prototypes
itis dim x |G,| x K4 x 2. Here, dim is the dimension of the state or subgoal embedding. Each
(i, X) pair is stored using a diagonal covariance matrix. K, and K, denote the average number of
sub-clusters per skill and subtask, respectively.

In the Kitchen Emergent and Explicit skill incremental settings with dim = 60, skill prototypes
occupy 150KB and subtask prototypes occupy 37.5KB, as shown in Table[I] In the Meta-World
benchmark with dim = 140, the memory usage increases to 350KB for skill prototypes and 87.5KB
for subtask prototypes.

Time. Each Mahalanobis distance computation with diagonal covariance requires 4 x dim floating
point operations: dim subtractions, dim squarings, dim divisions, dim — 1 additions, and one square
root. For dim = 60, the total is 240 FLOPs per (u, ) pair.

In the best case, a proposed zj, is directly accepted as the skill z; during the skill validation process
using a selected subgoal from the subtask space. This process requires (|G- | x K, + 1) x 240 FLOPs.
In the worst case, zj, is rejected during skill validation, and skill hooking requires selecting candidate
skills Z’ and scoring them to choose the appropriate skill z;. The total computational cost is up to
{(1G+] x Kg+ 1)+ (2 x |Z,| x K, + 1)} x 240 FLOPs.
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Table 17: Mean and variance (ms) of evaluation function timing in the Kitchen Emergent Skill
Incremental scenario. kbls denotes the task with the following sequence: move kettle, turn on
bottom burner, light switch, open slide cabinet, and btls denotes: turn on bottom
burner, turn on top burner, light switch, open slide cabinet.

Baselines kbls-Initial btls-Initial kbls-Final btls-Final
Type Method | Mean Var Mean Var | Mean Var Mean Var
I PTGM + AA ‘ 28.089 2.042 28.117 1.784 ‘ 27.693 1978 28.052 2.191

I SIL-C + (PTGM + AA) | 29.042 2341 27.782 2324 | 28.787 2732 28.538 2.320

Table reports the inference time (mean and variance) of the hierarchical model, consisting of the
policy, interface, and skill decoder, in the Kitchen Emergent Skill Incremental scenario. All timings
were measured on an AMD Ryzen 9 7950X3D CPU with a single NVIDIA RTX 4090 GPU, running
Ubuntu 22.04, CUDA 12.4, and driver version 550.144.03. The Initial phase (p = 1) corresponds
to the evaluation after 20 skill prototypes were generated, while the Final phase (p = 4) reflects
evaluation after the final phase with a total of 80 skills. Compared to Type I, the mean inference time
of Type III increased by 0.953 ms and 1.094 ms in the kbls-Initial and kbls-Final , respectively. In the
btls-Initial, the mean time decreased by 0.335 ms, while in the btls-Final, it increased by 0.486 ms.
While a greater number of skills generally leads to longer retrieval time, the additional overhead was
minimal compared to overall policy and skill decoder inference time, and variation due to runtime
system state was more prominent in practice.
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NeurlIPS Paper Checklist

¢ Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction explicitly state the motivation and objective of
SIL-C and outline three core contributions corresponding to the methods and experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

* Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We outline future work that aims to address current limitations by incorporating
external feedback, particularly in light of the trade-off observed between generalizability
and compatibility.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

* Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We support our method by showing experimental results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
* Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details, scenarios, metrics and datasets are described in Sec-
tions 5-6 and Appendix A-D; also abstract provide the Git repository.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

* If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

* If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

* If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

* We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

* Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A public anonymized Git repository is provided in abstract which contains
code and instructions. Experimental settings are also discussed throughout section 5-6 and
appendix.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

* Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 and Appendix A give datasets, hyper-parameters, continual learning
methods and evaluation metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

* Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report our results with variance, using at least four seeds for each experi-
ment.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

* Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: We provide them in appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

¢ Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics in every respect.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

* Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the the potential impacts in the conclusion section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

37


https://neurips.cc/public/EthicsGuidelines

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

» Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|

Justification: This work is not expected to pose any significant risk of negative societal
impact thus explicit safeguards for responsible data or model release were considered
unnecessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

* Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All baselines and datasets are cited in the References section. Additional
information, including license and version details, will be provided in the appendix.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
¢ New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets were introduced in this paper.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
* Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: Not applicable to this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

* Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable to this paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
¢ Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification: Not applicable to this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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