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ABSTRACT

We create a reusable Transformer, BrainBERT, for intracranial field potential
recordings bringing modern representation learning approaches to neuroscience.
Much like in NLP and speech recognition, this Transformer enables classifying
complex concepts, i.e., decoding neural data, with higher accuracy and with much
less data by being pretrained in an unsupervised manner on a large corpus of
unannotated neural recordings. Our approach generalizes to new subjects with
electrodes in new positions and to unrelated tasks showing that the representa-
tions robustly disentangle the neural signal. Just like in NLP where one can study
language by investigating what a language model learns, this approach enables
investigating the brain by studying what a model of the brain learns. As a first
step along this path, we demonstrate a new analysis of the intrinsic dimensionality
of the computations in different areas of the brain. To construct BrainBERT, we
combine super-resolution spectrograms of neural data with an approach designed
for generating contextual representations of audio by masking. In the future, far
more concepts will be decodable from neural recordings by using representation
learning, potentially unlocking the brain like language models unlocked language.

1 INTRODUCTION

Methods that analyze neural recordings have an inherent tradeoff between power and explainability.
Linear decoders, by far the most popular, provide explainability; if something is decodable, it is
computed and available in that area of the brain. The decoder itself is unlikely to be performing the
task we want to decode, instead relying on the brain to do so. Unfortunately, many interesting tasks
and features may not be linearly decodable from the brain for many reasons including a paucity of
annotated training data, noise from nearby neural processes, and the inherent spatial and tempo-
ral resolution of the instrument. More powerful methods that perform non-linear transformations
have lower explainability: there is a danger that the task is not being performed by the brain, but
by the decoder itself. In the limit, one could conclude that object class is computed by the retina
using a CNN-based decoder but it is well established that the retina does not contain explicit in-
formation about objects. Self-supervised representation learning provides a balance between these
two extremes. We learn representations that are generally useful for representing neural recordings,
without any knowledge of a task being performed, and then employ a linear decoder.

The model we present here, BrainBERT 1, learns a complex non-linear transformation of neural data
using a Transformer. Using BrainBERT, one can linearly decode neural recordings with much higher
accuracy and with far fewer examples than from raw features. BrainBERT is pretrained once across
a pool of subjects, and then provides off-the-shelf capabilities for analyzing new subjects with new
electrode locations even when data is scarce. Neuroscientific experiments tend to have little data in
comparison to other machine learning settings, making additional sample efficiency critical. Other
applications, such as brain-computer interfaces can also benefit from shorter training regimes, as
well as from BrainBERT’s significant performance improvements. In addition, the embeddings of
the neural data provide a new means by which to investigate the brain.

1https://github.com/czlwang/BrainBERT
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Figure 1: (a) Locations of intracranial electrodes (yellow dots) projected onto the surface of the
brain across all subjects for each hemisphere. (b) Subjects watched movies while neural data was
recorded (bottom, example electrode trace). (c) Neural recordings were converted to spectrograms
which are embedded with BrainBERT. The resulting spectrograms are useful for many downstream
tasks, like sample-efficient classification. BrainBERT can be used off-the-shelf, zero-shot, or if
data is available, by fine-tuning for each subject and/or task. (d) During pretraining, BrainBERT is
optimized to produce embeddings that enable reconstruction of a masked spectrogram, for which it
must learn to infer the masked neural activity from the surrounding context.

BrainBERT provides contextualized neural embeddings, in the same way that masked language
modeling provides contextual word embeddings. Such methods have proven themselves in areas
like speech recognition where a modest amount of speech, 200 to 400 hours, leads to models from
which one can linearly decode the word being spoken. We use a comparable amount of recordings,
43.7 hours across all subjects (4,551 electrode-hours), of unannotated neural recordings to build
similarly reusable and robust representations.

To build contextualized embeddings, BrainBERT borrows from masked language modeling (Devlin
et al., 2019) and masked audio modeling (Baevski et al., 2020; Liu et al., 2021). Given neural activ-
ity, as recorded by a stereo-electroencephalographic (SEEG) probe, we compute a spectrogram per
electrode. We mask random parts of that spectrogram and train BrainBERT to produce embeddings
from which the original can be reconstructed. But unlike speech audio, neural activity has fractal
and scale-free characteristics (Lutzenberger et al., 1995; Freeman, 2005), meaning that similar pat-
terns appear at different time scales and different frequencies, and identifying these patterns is often
a challenge. To that end, we adapt modern neural signal processing techniques for producing super-
resolution time-frequency representations of neurophysiological signals (Moca et al., 2021). Such
techniques come with a variable trade-off in time-frequency resolution, which we account for in our
adaptive masking strategy. Finally, the activity captured by intracranial electrodes is often sparse.
To incentivize the model to better represent short-bursts of packet activity, we use a content-aware
loss that places more weight on non-zero spectrogram elements.

Our contributions are:

1. the BrainBERT model — a reusable, off-the-shelf, subject-agnostic, and electrode-agnostic
model that provides embeddings for intracranial recordings,

2. a demonstration that BrainBERT systematically improves the performance of linear de-
coders,

3. a demonstration that BrainBERT generalizes to previously unseen subjects with new elec-
trode locations, and

4. a novel analysis of the intrinsic dimensionality of the computations performed by different
parts of the brain made possible by BrainBERT embeddings.

2 METHOD

The core of BrainBERT is a stack of Transformer encoder layers (Vaswani et al., 2017). In pre-
training, BrainBERT receives an unannotated time-frequency representation of the neural signal as
input. This input is randomly masked, and the model learns to reconstruct the missing portions.
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Figure 2: BrainBERT can be trained to either use spectrograms computed by a traditional method,
such as the short-time Fourier Transform (top left), or modern methods designed for neural data,
such as the superlet transform (bottom left). Shown above are spectrograms from a single elec-
trode over a 5s interval. Superlets provide superresolution by compositing together Morlet wavelet
transforms across a range of orders. As in Liu et al. (2021), we mask multiple continuous bands
of random frequencies and time intervals (top right, red horizontal and vertical rectangles). Since
the temporal resolution of superlets falls off as the inverse function of frequency (bottom right), we
adopt a masking strategy that re�ects this.

The pretrained BrainBERT weights can then be combined with a classi�cation head and trained on
decoding tasks using supervised data.

Architecture Given the voltage measurementsx 2 Rr � t of a single electrode sampled at rater
for t seconds, we �rst �nd the time-frequency representation�( x) = Y 2 Rn � m , which hasn
frequency channels andm time frames. BrainBERT is built around a Transformer encoder stack
core (Vaswani et al., 2017) withN layers, each withH attention heads and intermediate hidden
dimensiondh . The inputs to the �rst layer are non-contextual embeddings for each time frame,
E 0

in = ( WinY + P), which are produced using a weight matrixWin 2 Rdh � n and combined with
a static positional embeddingP (Devlin et al., 2019). Each layer applies self-attention and a feed
forward layer to the input, with layer normalization (Ba et al., 2016) and dropout (Srivastava et al.,
2014) being applied after each. The outputsE j

out of thej -th layer, become the inputs to the(j +1) -th
layer. The outputs of BrainBERT areE N

out, the outputs at theN -th layer.

During pretraining, the hidden-layer outputs from the top of the stack are passed as input to a spectro-
gram prediction head, which is a stacked linear network with a single hidden layer, GeLU activation
(Hendrycks & Gimpel, 2016), and layer normalization.

Time-frequency representations BrainBERT can take two different types of time-frequency rep-
resentations as input: the Short-Time Fourier Transform (STFT) and the superlet transform (Moca
et al., 2021), which is a composite of Morlet wavelet transforms; see appendix A.

Due to the Heisenberg-Gabor uncertainty principle, there exists an inherent trade-off between the
time and frequency resolution that any representation can provide. The most salient difference
between the STFT and superlet transform is the way they handle this trade-off. For the STFT,
resolution is �xed for all frequencies. For the superlet transform, temporal resolution increases with
frequency. This is a well-motivated choice for neural signal, where high frequency oscillations are
tightly localized in time.

For both types of representations, the spectrograms are z-scored per frequency bin. This is done
in order to better reveal oscillations at higher frequencies, which are usually hidden by the lower
frequencies that typically dominate in power. Additionally, the z-score normalization makes Brain-
BERT agnostic to the role that each frequency band might play for different tasks. Speci�c fre-
quency bands have previously been implicated in different cognitive processes such as language
(Babajani-Feremi et al., 2016), emotion (Drane et al., 2021), and vision (Jia et al., 2013). By inten-
tionally putting all frequency bands on equal footing, we ensure that BrainBERT embeddings will
be generic and useful for a wide variety of tasks.

Pretraining During pretraining, a masking strategy is applied to the time-frequency representa-
tion Y 2 Rn � m , and an augmented view of the spectrogram,~Y , is produced. Given~Y , BrainBERT
creates representations for a spectrogram prediction network, which produces a reconstructionŶ of
the original signal; see �g. 1.d.
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For the STFT, we adapt the masking strategy of Liu et al. (2021), in which the spectrogram is cor-
rupted at randomly chosen time and frequency intervals. The width of each time-mask is a randomly
chosen integer from the range[steptime

min ; steptime
max]. Following Devlin et al. (2019), intervals selected

for masking are probabilistically either left untouched (probabilitypID), replaced with a random
slice of the same spectrogram (probabilitypreplace), or �lled in with zeros otherwise; see appendix D
for the pseudocode summary and parameter settings. The procedure for masking frequency intervals
is similar, but the width is chosen from the range[stepfreq

min; stepfreq
max].

For the superlet model, we use an adaptive masking scheme that re�ects the variable trade-off in
time-frequency resolution made by the continuous wavelet transform. The temporal width of the
time mask increases with the inverse of frequency. Similarly, when masking frequencies, more
channels are masked at higher frequencies; see appendix C for parameters.

The model is optimized according to a novelcontent awareloss. For speech audio modeling, it is
typical to use an L1 reconstruction loss (Liu et al., 2020; 2021):

L L =
1

jM j

X

( i;j )2 M

�
�Y i;j � Ŷ i;j

�
� (1)

whereM is the set of masked spectrogram positions.

But intracranial neural signal is characterized by spiking activity and short oscillation bursts. Fur-
thermore, since the spectrogram is z-scored along the time-axis, approximately 68% of the z-scored
spectrogram is 0 or< 1. So, with just a bare reconstruction loss, the model tends to predict 0 for
most of the masked portions, especially in the early stages of pretraining. To discourage this and to
speed convergence, we add a term to the loss which incentivizes the faithful reconstruction of the
spectrogram elements that are far away from 0, for some threshold .

L C =
1

jf (i; j ) j Y i;j >  gj

X

( i;j ) j ( i;j )2 M; Y i;j >

�
�Y i;j � Ŷ i;j

�
� (2)

This incentivizes the model to faithfully represent those portions of the signal where neural processes
are most likely occurring.

Then, our loss function is:
L = L L + � L C (3)

Fine-tuning After pretraining, BrainBERT can be used as a feature extractor for a linear classi�er.
Then, given an input spectrogramY 2 Rn � 2l , the features areE = BrainBERT(Y ). For a window
sizek, the center2k features areW = E :;l � k :l + k , and the input to the classi�cation network is
the vector resulting from taking the mean ofW along the time (�rst) axis. We usek = 5 , which
corresponds with a time duration of� 244ms. During training, BrainBERT's weights can either
be frozen (no �ne-tuning) or they can be updated along with the classi�cation head (�ne-tuning).
Fine-tuning uses more compute resources, but often results in better performance. We explore both
use cases in this work.

Data Invasive intracranial �eld potential recordings were collected during 26 sessions from 10
subjects (5 male, 5 female; aged 4-19,� 11.9,� 4.6) with pharmacologically intractable epilepsy.
Approximately, 4.37 hours of data were collected from each subject; see appendix J. During each
session, subjects watched a feature length movie in a quiet room while their neural data was recorded
at a rate of 2kHz. Brain activity was measured from electrodes on stereo-electroencephalographic
(SEEG) probes, following the methods of Liu et al. (2009). Across all subjects, data was recorded
from a total of 1,688 electrodes, with a mean of 167 electrodes per subject. Line noise was removed
and the signal was Laplacian re-referenced (Li et al., 2018). During pretraining, data from all sub-
jects and electrodes is segmented into 5s intervals, and all segments are combined into a single
training pool. The complete preprocessing pipeline is described in appendix F.

3 EXPERIMENTS

For pretraining purposes, neural recordings from 19 of the sessions (� duration = 2 :3hrs) was selected,
and the remaining 7 sessions (� duration = 2 :55hrs) were held out to evaluate performance on de-
coding tasks; see section 3 Tasks. All ten subjects are represented in the pretraining data. In total,
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Sentence
onset

Speech/Non-
speech

Pitch Volume Task Avg.

Linear (.25s, time domain) :54� :04 :52� :03 :48� :09 :54� :09 :52� :07
Linear (5s, time domain) :63� :04 :58� :06 :58� :07 :56� :19 :59� :11
Linear (.25s, STFT) :60� :04 :53� :04 :51� :06 :52� :06 :54� :06
Linear (.25s, superlet) :59� :03 :53� :03 :52� :06 :53� :08 :54� :06
Deep NN (5s, 5 FF layers) :72� :10 :67� :08 :57� :06 :54� :11 :63� :12

BrainBERT (STFT) :82 � :07 :93 � :03 :75 � :03 :83� :09 :83 � :09
random initialization :68� :10 :59� :11 :50� :05 :61� :11 :60� :12
without content aware loss :81� :07 :90� :12 :68� :06 :84 � :04 :81� :11

BrainBERT (superlet) :78� :08 :86� :06 :62� :05 :70� :10 :74� :12
random initialization :66� :09 :54� :04 :52� :07 :60� :05 :58� :09
without content aware loss :74� :12 :79� :14 :59� :05 :70� :13 :71� :14
without adaptive mask :78� :08 :86� :05 :70� :04 :76� :06 :77� :08

Table 1: BrainBERT improves the performance of linear decoders across a wide range of tasks.
The tasks vary from low-level perceptual tasks like determining the volume of the audio that the
subject heard, mid-level tasks like determining if the subject is listening to speech, and high-level
tasks like determining if the subject heard the start of a new sentence as opposed to some other
audio of speech. Five baselines (top): four linear decoders with varying receptive �elds (taking as
input either 0.25s and 5s of the neural recordings) and varying input modalities (the time-domain
signal or spectorgrams computed by STFT or Superlets). BrainBERT with either STFT or Superlets
(bottom). A linear decoder is trained on top of the embeddings from BrainBERT, jointly tuning both
the parameters of BrainBERT and the linear decoder. See Table 2 for results where BrainBERT
is held �xed. Results are reported on the 10 best-performing electrodes (as measured by AUC)
selected with the linear model (5s, time domain) model. This ensures that results are biased away
from BrainBERT and toward the linear decoders. Despite this, BrainBERT signi�cantly outperforms
any other decoders, often by very large margins. Five different ablations are described in the text.

there are 21 unique movies represented across all sessions — the set of movies used in pretrain-
ing does not overlap with the held-out sessions. From this held-out set, for each task, session, and
electrode, we extract annotated examples. Each example corresponds with a time-segment of the
session recordings with time stampt. Depending on the classi�er architecture, the input for each
example is either 0.25s or 5s of surrounding context, centered ont. The time-segments in each split
are consistent across electrodes.

We run two sets of experiments, pretraining BrainBERT separately on both STFT and superlet repre-
sentations. Pretraining examples are obtained by segmenting the neural recordings into 5s intervals.

Tasks To demonstrate BrainBERT's abilities to assist with a wide range of classi�cation tasks, we
demonstrate it on four such tasks. Tasks range from low-level perception such as determining the
volume of the audio the subject is listening to, to mid-level tasks such as determining if the subject
is hearing speech or non-speech, as well as the pitch of the overheard words, and higher-level tasks
such as determining if the subject just heard the onset of a sentence as opposed to non-speech sounds.
BrainBERT is pretrained without any knowledge of these tasks.

Volume of the audio was computed automatically from the audio track of the movie. Segments of
neural recordings that corresponded to where audio track that was one standard deviation above or
below the mean in terms of volume were selected. Speech vs. non-speech examples were manu-
ally annotated. An automatic speech recognizer �rst produced a rough transcript which was then
corrected by annotators in the lab. Pitch was automatically computed for each word with Librosa
(McFee et al., 2015) and the same one standard deviation cutoff was used to select the data. Sentence
onsets were automatically derived from the transcript. In the case of the sentence onset task and the
speech vs. non-speech task, the two classes were explicitly balanced. See appendix J for the exact
number of examples used per class. All results are reported in terms of the ROC (receiver operating
characteristic) AUC (area under the curve), where chance performance is 0.50 regardless of whether
the dataset were balanced or not. The data was randomly split into a 80/10/10 training/validation
set/test set.

Baselines To establish baselines on supervised performance, we train decoding networks both
on the raw neural signalx and on the time-frequency representations,�( x). We train two linear
classi�ers, at two different time scales, which take the raw neural signal as input. One network re-
ceives250ms of input, which is approximately the same size (244ms) as the window of BrainBERT
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Sentence
onset

Speech/Non-
speech

Pitch Volume Task Avg.

BrainBERT (STFT) :66� :03 :63� :05 :51� :07 :60� :05 :60� :08
random initialization :62� :04 :57� :04 :52� :06 :59� :07 :57� :06
without content aware loss :65� :04 :64� :04 :51� :07 :60� :05 :60� :08

BrainBERT (superlet) :71 � :06 :69 � :06 :53� :07 :60� :08 :63 � :10
random initialization :62� :03 :56� :05 :52� :06 :59� :08 :57� :07
without content aware loss :68� :06 :67� :07 :53� :07 :60� :07 :62� :09
without adaptive mask :67� :06 :66� :06 :54 � :06 :60� :07 :62� :08

Table 2: BrainBERT can be used with �ne-tuning or without by freezing its weights. In Table
1, we showed results that include �ne-tuning, jointly tuning the linear decoder and BrainBERT.
Here, we show AUC with frozen weights. BrainBERT with frozen parameters and just a linear
decoder has the same performance as the deep NN shown in Table 1. We get the best of both
worlds: performance of deep networks and explainability of linear decoders. Note that superlet-
based BrainBERT generalizes better without �ne-tuning than the STFT-based BrainBERT.

embeddings received by the classi�er network. The other linear network receives 5s of raw signal,
which is the size of the receptive �eld for the BrainBERT embeddings. These networks provide
baselines on the amount of linearly decodable information available in the raw signal. To get a sense
of what is possible with more expressive power, we also train a deep network, which has 5 stacked
feed forward layers.

Because BrainBERT receives a time-frequency representation,�( x), as input, we also train two lin-
ear networks that take time-frequency representations (either STFT or superlet) as input. Complete
descriptions of each network architecture is given in appendix E.

Evaluation is performed per task and per electrode. In order to keep computational costs reasonable,
we only evaluate on a subset of electrodes. Our comparison to the baselines thus proceeds in two
stages. First, the Linear (5s time domain input) network is trained once per electrode, for all data
recorded in the held-out sessions; see section 3. Then, we select, per task, the top 10 electrodes,
Stask, for which the linear decoder achieves the best ROC-AUC. For each task, this setStask is held
�xed for all baselines, ablations, and comparisons to our model.

4 RESULTS

BrainBERT is pretrained as described above in an unsupervised manner without any manual anno-
tations. Our goal is for BrainBERT to be usable off-the-shelf for new experiments with new data.
To that end, we demonstrate that it improves decoding performance on held-out data and held-out
electrodes. Next, we show that its performance is conserved for never-before-seen subjects with
novel electrode locations. After that, we demonstrate that a linear decoder using BrainBERT em-
beddings outperforms the alternatives with 1/5th as much data. Finally, we show that not only are
BrainBERT embeddings extremely useful practically, they open the doors to new kinds of analyses
like investigating properties of the computations being carried out by different brain regions.

Improving decoding accuracyWe compared a pretrained BrainBERT against the baseline models
described above (variants of linear decoders and a 5 feed-forward layer network); see table 1. Using
the linear decoder (5s time domain input) on the original data, without BrainBERT, we chose the 10
best electrodes across all of the subjects. This puts BrainBERT at a disadvantage since its highest
performing electrodes might not be included in the top 10 from the linear decoder. Then we inves-
tigated if BrainBERT could offer a performance improvement when performing the four tasks with
data from these 10 electrodes. Decoding BrainBERT embeddings resulted in far higher performance
on every task. On average, a linear decoder using BrainBERT had an AUC of 0.83. The baseline
deep network had an AUC of 0.63. A linear decoder on the unprocessed data had an AUC of 0.59.
This difference is very meaningful: it takes a result which is marginal with a linear decoder and
makes it an unquali�ed success using BrainBERT.

Decoding accuracy without �ne-tuning In the previous experiment, we �ne-tuned BrainBERT in
conjunction with the linear decoder. In table 2, we report results without �ne-tuning, only updating
the parameters of the linear decoder. BrainBERT without �ne-tuning has an average AUC of 0.63,
on par with the baseline deep network. This is what we mean by BrainBERT being the best of both
worlds: it provides the performance of a complex network with many non-linear transformations
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Figure 3: Using a linear decoder for classifying sentence onsets either (left) directly with the neural
recordings or (right) with BrainBERT (superlet input) embeddings. Each circle denotes a different
electrode. The color shows the classi�cation performance (see color map on right). Electrodes are
shown on the left or right hemispheres. Chance has AUC of 0.5. Only the 947 held-out electrodes are
shown. Using BrainBERT highlights far more relevant electrodes, provides much better decoding
accuracy, and more convincingly identi�es language-related regions in the superior temporal and
frontal regions.

Figure 4: BrainBERT can be used off-the-shelf for new experiments with new subjects that have
new electrode locations. The performance of BrainBERT does not depend on the subject data being
seen during pretraining. We show AUC averaged across the four decoding tasks (table 1), in each
case �netuning BrainBERT's weights and training a linear decoder. Ten held-out electrodes were
chosen from the held-out subject's data. As before, these electrodes have the highest linear decoding
accuracy on the original data without BrainBERT. The �rst two columns in each group show Brain-
BERT decoding results when a given subject is included in the pretraining set (blue), and when that
subject is held out (orange). The performance difference between the two is negligible, and both
signi�cantly outperform the linear decoding baseline (green), showing that BrainBERT is robust
and can be used off the shelf. Error bars show a 95% con�dence interval over the ten electrodes.

while only tuning a task-speci�c linear decoder. Note that STFT provides the best performance
when �ne-tuning BrainBERT while superlets appear to be more robust when not �ne-tuning.

Ablations BrainBERT might work only because of its structure; even a random network can
disentangle part of its input. To verify that the pretraining is useful, in both table 1 and table 2
we show that BrainBERT with randomly initialized weights is considerably worse at increasing
decoding accuracy than the pretrained BrainBERT. For example, BrainBERT with STFT and �ne-
tuning gains on average 0.23 AUC over its randomized ablation on average (table 1). In BrainBERT,
the weights matter, not just the structural prior.

BrainBERT has two other novelties in it: the content aware loss and the superlet adaptive mask.
We evaluate the impact on both in table 1 and table 2. The content aware loss has a mild impact
on performance, e.g., BrainBERT with superlets and �ne-tuning gains 0.01 AUC, increasing perfor-
mance in 3 out of 4 tasks by about 5%. The adaptive mask has a similar impact, e.g., on the same
model it also gains 0.01 AUC increasing performance on 2 out of 4 tasks by about 5%. Cumulatively
these changes have a signi�cant impact on performance, although a second order one compared to
BrainBERT itself.

Generalizing to new subjects Since BrainBERT is meant to be used off-the-shelf to provide a
performance boost for neuroscienti�c experiments, it must generalize to never-before-seen subjects
with novel electrode locations. To test this, we perform a hold-one-out analysis. For a given subject,
we train two variants of BrainBERT with superlet input, one that includes all subjects and one
where the subject is held out. We evaluate the �ne-tuning performance on all of the four tasks
described above with both variants. In this analysis, we include only the held-out subject's best 10
electrodes (while previously we had included the best 10 electrodes across all subjects). We �nd
that the performance difference while generalizing to a new subject with new electrode locations is
negligible; see �g. 4. For all cases, BrainBERT still gains a large boost over a linear decoder on the
original data. BrainBERT generalizes extremely well to new subjects.
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Figure 5: BrainBERT not only improves decoding accuracy, but it does so with far less data than
other approaches. Performance on sentence onset classi�cation is shown for an electrode in the
superior temporal gyrus (red dot in brain inset). Error bars show standard deviation over 3 random
seeds. Linear decoders (blue) saturate quickly; deep neural networks (green, 5 FF layers, details
in text) perform much better but they lose explainability. BrainBERT without �ne tuning matches
the performance of deep networks, without needing to learn new non-linearities. With �ne-tuning,
BrainBERT signi�cant outperforms, and it does so with 1/5th as many examples (the deep NN peak
at 1,000 examples is exceeded with only 150 examples). This is a critical enabling step for other
analyses where subjects may participate in only a few dozen trials as well as for BCI.

Improved data ef�ciency Not only does BrainBERT increase performance, it does so with far
fewer training examples than a linear decoder or the baseline deep network require. In �g. 5, we
compare the decoding AUC of baseline models and BrainBERT variants as a function of training
examples. All models are trained on the data of a single electrode in the left superior temporal gyrus,
which was selected from a full-brain analysis (see �g. 3) to �nd the electrode with the best combined
ranking of linear decoding (5s time duration) and BrainBERT performance. BrainBERT has a much
steeper learning curve: it achieves the performance of the best baseline model with 1,000 examples
with only 150 examples. In addition, if more examples are available, BrainBERT is able to use them
and further increase its performance.

Intrinsic dimension BrainBERT's embeddings provide value beyond just their immediate uses
in increasing the performance of decoders. We demonstrate a �rst use of these embeddings to
investigate a property of the computations in different areas of the brain without the restrictive lens
of a task. We ask: what is the representation dimensionality (ID) of the neural activity? In other
words, what is the minimal representation of that activity? Work with arti�cial networks has shown
that this quantity can separate input and output regions from regions in a network that perform
computations, such that high ID regions re�ect increased intermediate preprocessing of the data
(Ansuini et al., 2019).

Given a pretrained BrainBERT model, we estimate the intrinsic dimension at each electrode by way
of principal component analysis (PCA); see appendix I. For each electrode, we �nd the number
of PCs required to account for 95% of the variance in the signal (see �g. 6). We �nd that results
are locally consistent, and that intrinsic dimension seems to vary fairly smoothly. To determine
where high ID processing is located, we take the electrodes which fall in the top 10-th percentile.
These electrodes mainly fall in the frontal and temporal lobes. Among these electrodes, the regions
with the highest mean ID are the supramarginal gyrus, which is involved with phonological pro-
cessing (Deschamps et al., 2014), the lateral obitofrontal cortex, involved with sensory integration
(Rolls, 2004), and the amygdala, involved with emotion (Gallagher & Chiba, 1996). The intrinsic
dimension is computed without respect to any decoding task, e.g. speech vs. non-speech or volume
classi�cation, and provides a novel view of functional regions in a task agnostic way.

Investigations into the embedding space of models of neural data like BrainBERT are in their in-
fancy. They could in the future lead to an understanding of the relationship between brain regions,
the general �ow of computation in the brain, and brain state changes over time such as during sleep.

5 RELATED WORK

Self-supervised representations Our work builds on masked-spectrogram modeling approaches
from the �eld of speech processing (Liu et al., 2021; 2020; Ling & Liu, 2020), which use a re-
constructive loss to learn representations of Mel-scale audio spectrograms. In other �elds, self-
supervised models have been used to produce representations for a variety of downstream applica-
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