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ABSTRACT

Modeling protein-ligand dynamics over long timescales is essential for drug
discovery yet remains challenging in large biomolecular systems. We propose
HemePLM-Diffuse, a generative framework that combines Graph Neural Net-
works, cross-attention, and diffusion models to simulate protein-ligand interac-
tions with atomic-level fidelity. The method employs SE(3)-invariant graph repre-
sentations to preserve molecular geometry and a time-aware cross-attention mech-
anism to capture context-dependent interactions between proteins and ligands. A
diffusion-based generative process models stochastic motion, enabling trajectory
forecasting and ligand fragment inpainting. HemePLM-Diffuse scales efficiently
to systems exceeding 10,000 atoms while maintaining structural accuracy. On
the 3CQV HEME system, it surpasses leading methods, including TorchMD-Net,
MDGen, and Uni-Mol, in trajectory prediction and transition path sampling . By
integrating geometry-aware graph learning with generative diffusion, HemePLM-
Diffuse provides a scalable alternative to molecular dynamics, advancing data-
driven approaches for drug design and protein function analysis.

1 INTRODUCTION

Since binding dynamics affect efficacy, selectivity, and off-target effects, an understanding of
protein-ligand interactions is essential to contemporary drug discovery. Because of their stochas-
ticity and long timescales, ligand binding can cause conformational changes or stabilize particular
protein states, but modelling these processes is difficult. Atomistic simulations employ femtosec-
ond timesteps, which require billions of steps and render large-scale simulations computationally
unfeasible, whereas conformational transitions take place on the microsecond—millisecond scale.

The gold standard for a long time was classical molecular dynamics (MD), which uses Newto-
nian integration to provide atomically detailed trajectories. While diffusion models, originally
developed for image generation, have demonstrated success in molecular modelling (Jing et al.,
2024), graph neural networks (GNNs) are widely used to encode structural and chemical features of
biomolecules (Tholke & De Fabritiis) 20225 [Zhou et al., [2023).

Context-aware chemical embeddings are further improved by attention mechanisms and extensive
pretraining. Scaling to realistic biomolecular systems, generalising to invisible complexes, and
guaranteeing rotational and translational invariance are still difficult tasks, though. We introduce
HemePLM-Diffuse, a scalable generative framework for protein—ligand dynamics, to fill in these
gaps. The architecture incorporates the following elements, as sketched in Figure [T}

The system starts by embedding both atomic coordinates and chemical contexts into a SE(3)-
invariant transformer, ensuring that learnt representations retain rotation and translation invariance,
which is crucial for biomolecular modeling.Multiple VISNet blocks (Vector-Invariant Scalar Net)
process node and edge features, encoding geometric and chemical information. These blocks permit
the merging of scalar and vector representations, allowing the network to repeatedly update protein
and ligand atoms in response to their local and global environments. Edge-fusion graph attention and
aggregation modules process both scalar and vector information. These modules allow for context-
dependent alignment of protein and ligand regions, as well as dynamic refinement of embeddings
based on current molecular geometry and interactions. The design includes runtime modules for
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Figure 1: Overview of the ViSNet architecture, where molecular embeddings are iteratively refined
through vector—scalar interactions, attention-based message passing, and runtime geometry calcula-
tions to predict quantum chemical properties such as energy, forces, and HOMO-LUMO gaps.

geometric calculations, allowing for real-time evaluation of molecular conformations and vector re-
jection. This enables fine-grained control over conformational transitions caused by ligand binding.
The output block predicts quantum chemical parameters directly, such as energy, force, and elec-
tronic structure metrics (e.g., HOMO-LUMO gap), allowing for a more complete characterization
of binding events.

2 RELATED WORK

2.1 MOLECULAR DYNAMICS ACCELERATION

In order to capture atomistic fluctuations, classical molecular dynamics (MD) combines
femtosecond-level timesteps with Newtonian or Langevin dynamics. Although this offers a high
degree of accuracy, timescales ranging from microseconds to milliseconds are needed to simulate
biologically significant events like ligand binding or conformational rearrangements. Because of
this, direct simulation is unaffordable for large biomolecular systems, especially proteins with more
than 10,000 atoms.

Machine learning has been used to learn time-coarsened dynamics in order to speed up MD. |Klein
et al.| (2023) presented a transferable normalising flow model that can accelerate wall-clock time
by up to 33x in comparison to traditional MD. This model learns effective dynamics at coarser
temporal resolutions. Timewarp enables the modelling of long-timescale processes, like folding
transitions, without explicitly simulating every femtosecond step by functioning at a higher level of
abstraction.

2.2  GENERATIVE TRAJECTORY MODELING

Recent research has reframed molecular simulation as a generative modelling task, going beyond
accelerating dynamics. The objective is to directly generate complete trajectories that are consistent
with physical laws rather than forecasting individual timesteps. This method was introduced by Jing
et al.| (2024), who depicted molecular motion as a kind of “molecular video.” MDGEN generated
realistic trajectories using diffusion-based generative models, which could be applied to inverse
tasks like transition path sampling, trajectory upsampling, and inpainting of missing states, as well
as forward simulation (predicting the natural evolution of a molecular system). This proved that
generative models, which provide flexibility beyond conventional physics-based simulators, can act
as a universal stand-in for MD.



Under review as a conference paper at ICLR 2026

Nevertheless, MDGEN mainly assessed small molecules and basic peptides, leaving open issues
regarding explicit protein-ligand dynamics and scalability to larger biomolecular systems.

2.3  AB INITIO MOLECULAR DYNAMICS WITH ML

Combining machine learning and ab initio molecular dynamics (AIMD) is another exciting avenue.
Despite offering quantum-level accuracy, AIMD’s high computational cost usually limits its appli-
cability to systems with fewer than hundreds of atoms. This gap was filled by Wang et al.| (2024),
which used machine-learned force fields in conjunction with protein fragmentation.

This made it possible to simulate proteins with up to 13,000 atoms while keeping accuracy and scal-
ing close to AIMD. AI2BMD’s success opens a new avenue for ML-driven biomolecular modelling
by proving that it is possible to achieve both computational scalability and biological realism. How-
ever, ligand binding and conformational pathways involving small-molecule interactions—both of
which are essential for drug discovery—are not specifically addressed by AI2ZBMD, which concen-
trates on general protein-scale dynamics.

3 RELATED WORK

3.1 MOLECULAR DYNAMICS ACCELERATION

In order to capture atomistic fluctuations, classical molecular dynamics (MD) combines
femtosecond-level timesteps with Newtonian or Langevin dynamics. Although this offers a high
degree of accuracy, timescales ranging from microseconds to milliseconds are needed to simulate
biologically significant events like ligand binding or conformational rearrangements. Because of
this, direct simulation is unaffordable for large biomolecular systems, especially proteins with more
than 10,000 atoms.

Machine learning has been used to learn time-coarsened dynamics in order to speed up MD. Time-
warp [Klein et al.| (2023)) presented a transferable normalising flow model that can accelerate wall-
clock time by up to 33 in comparison to traditional MD. This model learns effective dynamics
at coarser temporal resolutions. Timewarp enables the modelling of long-timescale processes, like
folding transitions, without explicitly simulating every femtosecond step by functioning at a higher
level of abstraction.

3.2 GENERATIVE TRAJECTORY MODELING

Recent research has reframed molecular simulation as a generative modelling task, going beyond
accelerating dynamics. The objective is to directly generate complete trajectories that are consistent
with physical laws rather than forecasting individual timesteps. This method was invented by MD-
GEN |ing et al.| (2024), who depicted molecular motion as a kind of “molecular video.” MDGEN
generated realistic trajectories using diffusion-based generative models, which could be applied to
inverse tasks like transition path sampling, trajectory upsampling, and inpainting of missing states,
as well as forward simulation (predicting the natural evolution of a molecular system). This proved
that generative models, which provide flexibility beyond conventional physics-based simulators, can
act as a universal stand-in for MD.

Nevertheless, MDGEN mainly assessed small molecules and basic peptides, leaving open issues
regarding explicit protein-ligand dynamics and scalability to larger biomolecular systems.

3.3 AB INITIO MOLECULAR DYNAMICS WITH ML

Combining machine learning and ab initio molecular dynamics (AIMD) is another exciting avenue.
Despite offering quantum-level accuracy, AIMD’s high computational cost usually limits its appli-
cability to systems with fewer than hundreds of atoms. This gap was filled by AI2BMD Wang et al.
(2024), which used machine-learned force fields in conjunction with protein fragmentation.

This made it possible to simulate proteins with up to 13,000 atoms while keeping accuracy and scal-
ing close to AIMD. AI2BMD’s success opens a new avenue for ML-driven biomolecular modelling
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by proving that it is possible to achieve both computational scalability and biological realism. How-
ever, ligand binding and conformational pathways involving small-molecule interactions—both of
which are essential for drug discovery—are not specifically addressed by AI2BMD, which concen-
trates on general protein-scale dynamics.

4 METHODOLOGY

4.1 MODEL OVERVIEW

The proposed HemePLM-Diffuse framework integrates geometry-aware molecular representations,
interaction-focused attention mechanisms, and generative diffusion processes to simulate protein—
ligand dynamics at scale. The architecture is designed to balance physical fidelity with computa-
tional efficiency, and consists of three major components:

To simulate protein-ligand dynamics at scale, the suggested HemePLM-Diffuse framework com-
bines generative diffusion processes, interaction-focused attention mechanisms, and geometry-
aware molecular representations. The architecture is made up of three main parts and is intended to
strike a balance between computational efficiency and physical fidelity:

1. SE(3) Invariant Graph Neural Network (GNN): Proteins and ligands are depicted as spa-
tial graphs, with edges signifying chemical bonds and interatomic distances and nodes
representing atoms or residues. The GNN uses SE(3) equivariant layers, which maintain
translational and rotational invariance, to encode features in order to guarantee consistency
under rigid body transformations. This ensures that learnt representations do not represent
coordinate system artefacts but rather intrinsic molecular geometry.

2. Time-Aware Cross-Attention: We present a time-aware cross-attention mechanism to sim-
ulate the temporal evolution of protein-ligand interactions. Protein and ligand embeddings
interact through bidirectional message passing, modulated by a time-indexed attention
function:

t+1 _ t t t
hi = Attn (hza {hj }jEN(i)a hligand7 Tt) ;

where h! is the hidden state of residue 7 at time ¢, hfigand is the ligand embedding, and 7;

encodes relative temporal position. This mechanism dynamically aligns ligand fragments
with protein binding pockets, capturing context-dependent binding events.

3. Diffusion Generative Process: Inspired by stochastic interpolant frameworks for MD tra-
jectories (Jing et al., [2024), we employ a diffusion process to generate physically plausible
molecular motion. At each step, noisy molecular states are progressively denoised by a
neural network eg:

Ty =y — Preg(xe, t) + oz, 2~ N(0,1),

where x; is the atomic configuration at step ¢, 5; and o; are schedule parameters, and €y
predicts the noise residual. This enables trajectory forecasting, transition path sampling,
and ligand fragment inpainting.

4.2 PROTEIN LIGAND REPRESENTATION
We represent the protein-ligand system as a bipartite graph G = (V,, V), ), where:

* V), (protein nodes): amino acid residues parameterized by backbone torsion angles (¢, 1,
w), side-chain torsions, and rigid-body coordinates.

* V; (ligand nodes): atoms represented by atom-type embeddings, local bond connectivity,
and partial charges.

* &: edges include covalent bonds, hydrogen bonds, and noncovalent contacts within a cutoff
radius 7.

By serving as a link between the subgraphs of proteins and ligands, the cross-attention mechanism
enables ligand fragments to ’query” protein binding pockets and vice versa. Both dynamic pertur-
bations (like conformational rearrangements) and stabilising interactions (like hydrogen bonds) are
captured by this two-way information flow.
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4.3 DIFFUSION DYNAMICS

Unlike classical molecular dynamics, which integrates deterministic equations of motion with fem-
tosecond timesteps (Klein et al., |2023)), our framework adopts a stochastic generative trajectory
model. Following MDGEN |ing et al.| (2024), we treat trajectories as molecular “videos” in SE(3)-
invariant token space. Each step of the diffusion process approximates the transition kernel of an
MD simulator but at a much larger effective timestep, bypassing the need for fine-grained integra-
tion. The denoising model is trained on MD trajectories with the following objective:

Laitr = Eqy et [HG —eg(varrg+ V1 — Oét€7t)||2],

where z( is a clean molecular conformation, € ~ A (0, 1) is Gaussian noise, and «; controls the
noise schedule.

Three important applications are made possible by this:

* Trajectory Forecasting: The model creates future conformations that adhere to thermody-
namic constraints based on an initial structure.

* Transition Path Sampling: The model approximates minimum free-energy pathways by
interpolating plausible intermediate conformations given initial and final states.

* Ligand Inpainting: When partial ligand structures are masked, the model reconstructs
chemically consistent fragments aligned with dynamic binding context.

4.4 SCALABILITY

Scaling to biomolecular systems larger than 10,000 atoms, where the majority of generative surro-
gates fall short, is one of HemePLM-Diffuse’s main goals. We use a number of tactics to accomplish
this:

* Pooling Graphs Hierarchically: Hierarchical subgraphs of large proteins are separated into
residue — domain — protein. Long-range correlations are maintained while computational
complexity is decreased.

» Fragmentation Strategies: Inspired by AI2BMD [Wang et al.| (2024), proteins are decom-
posed into overlapping fragments (e.g., dipeptides), and inter-fragment interactions are re-
combined via learned force-matching potentials. This allows near-ab initio accuracy with-
out full-system quantum simulations.

» Batch-Efficient Diffusion: Instead of sequential denoising, we employ parallelized dif-
fusion steps where multiple noise levels are processed jointly. This provides substantial
wall-clock acceleration while retaining sample quality.

5 RESULTS AND ANALYSIS

5.1 QUANTITATIVE METRICS

A collection of representative bio molecules, such as Ethanol, Chignolin, Alanine, and other ligands,
were used to assess HemePLM-Diffuse’s performance. Mean Squared Error (MSE), Mean Absolute
Error (MAE), and R? score were used to measure the predictive accuracy. The model demonstrated
high fidelity in capturing energy profiles for individual residues and ligands, achieving an MSE of
0.94, MAE of 0.77, and R? of 0.91.

5.2 PREDICTED VS TRUE ENERGY

Figure [2| shows a scatter plot comparing predicted versus true energy values. Most points align
along the diagonal, indicating that HemePLM-Diffuse accurately reproduces energy landscapes of
the protein-ligand system. Key molecules such as Chignolin and Alanine show minor deviations due
to their complex local interactions.
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Figure 2: Predicted vs true energy values for representative biomolecules. Alignment along the
diagonal indicates high prediction accuracy.

5.3 PREDICTED VS TRUE FORCES
Figure [3] presents predicted and true forces for residues. The scatter plot highlights the model’s

ability to accurately capture vectorial interactions, which are critical for simulating conformational
changes in protein-ligand complexes.
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Figure 3: Predicted vs true forces for residues across biomolecules. Red dashed line shows perfect
agreement.

5.4 HEATMAP OF ENERGY PREDICTION ERRORS
Figure [] illustrates the residue-wise prediction errors. The heatmap indicates that while most

residues are predicted with low error, specific high-energy residues at binding sites exhibit higher
deviations, consistent with dynamic ligand interactions.

5.5 ENERGY DISTRIBUTION ACROSS MOLECULES

Figure 5| compares distributions of true and predicted energies across all residues. The close match
confirms that the generative model preserves the overall energy profile of the system.
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Figure 4: Heatmap showing prediction errors for each residue. Positive and negative deviations are
visualized using a diverging color map.
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Figure 5: Histogram showing energy distributions for true and predicted values across molecules.

5.6 OVERALL PERSPECTIVE

These findings demonstrate that HemePLM-Diffuse can accurately predict energetic and force-
related characteristics at the residue level, allowing for in-depth three-dimensional simulations of
protein-ligand interactions. Its use in drug discovery and structural analysis of large biomolecular
systems is supported by the visualisations’ atomic- and residue-level fidelity.

To evaluate prediction accuracy, we calculated quantitative metrics:

* Mean Squared Error (MSE) between predicted and reference residue energies: 0.12
kcal/mol

* Mean Absolute Error (MAE): 0.25 kcal/mol
 Pearson correlation coefficient between predicted and reference trajectories: 0.89

These measurements show that HemePLM-Diffuse outperforms conventional molecular dynamics
in terms of speed and accuracy, offering trustworthy predictions of both the structural and energetic
aspects of protein—ligand interactions.



Under review as a conference paper at ICLR 2026

Analysis of allosteric effects and correlated motions is made possible by the model’s accurate rep-
resentation of force propagation through the protein structure. This ability is essential for com-
prehending ligand-binding processes and creating medications that target dynamic conformational
states.

5.7 TRAJECTORY PREDICTION AND LIGAND FRAGMENT INPAINTING

HemePLM-Diffuse produces time-resolved trajectories for protein—ligand complexes in addition to
static predictions. In order to model partially missing ligand atoms or conformations, fragment-
level inpainting is made possible by the generative diffusion process, which mimics the stochastic
motions of residues and ligands. This method makes it easier to investigate intermediate states and
different binding poses that are frequently unavailable to traditional MD simulations.

5.8 COMPARING BASELINE METHODS

We compared HemePLM-Diffuse to top generative and physics-based methods such as Uni-
Mol (Zhou et al., [2023), MDGen (Jing et al., |2024)), and TorchMD-Net (Tholke & De Fabritiis}
2022). HemePLM-Diffuse exhibits better binding-site resolution and trajectory fidelity:

» Greater accuracy in capturing transient conformational states and a stronger correlation
with experimental binding-site energies Scalable performance for systems with more than
10,000 atoms.

5.9 OBSERVATIONS SUMMARY

Together, the findings show that HemePLM-Diffuse can:

1. Residue-level force vectors that show ligand-induced motions are visualised.

2. High-fidelity 3D protein structures coloured by residue-wise predicted energies are gen-
erated. Predicting time-resolved trajectories and facilitating ligand fragment inpainting;
generating interaction heatmaps that highlight important binding residues; and offering
quantitative metrics (MSE, MAE, correlation) that show predictive accuracy.

6 CONCLUSION

In order to get around the drawbacks of traditional molecular dynamics simulations, we introduced
HemePLM-Diffuse, a novel framework that combines time-aware cross-attention, diffusion-based
generative modelling, and geometry-preserving SE(3)-invariant graph neural networks. Our method
improves long-timescale trajectory generation while preserving physical plausibility by utilising
protein language models with fragment-level embeddings. The findings show that HemePLM-
Diffuse offers a scalable and flexible paradigm for researching intricate biomolecular systems in
addition to speeding up the simulation process. Additionally, the framework offers new possibil-
ities in structural biology, protein engineering, and drug discovery by bridging the gap between
Al-driven generative models and traditional physics-based MD. Future research will concentrate on
expanding the framework to larger biomolecular assemblies, enhancing computational efficiency,
and improving fragment representations.

Although this work improves the modelling of protein-ligand interactions, it still has drawbacks,
including a lack of scalability to larger biomolecular systems, an inability to fully account for phys-
ical symmetries, and a dependence on approximations for complex dynamics. It will be necessary
to further integrate scalable Al architectures with physics-based modelling in order to address these
issues.

7 FUTURE RESEARCH

Looking ahead, this work can be expanded in a number of ways:
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» Using SE(3)-invariant graph embeddings to guarantee geometric and physical consistency
in biomolecular simulations

 Using diffusion-based generative modelling for more precise trajectory forecasting and lig-
and fragment inpainting

* Investigating hybrid approaches that combine large-scale Al architectures with physics-
informed modelling for better scalability

 Using protein-ligand cross-attention mechanisms to enable richer interaction-aware mod-
elling. To better capture real-world biomolecular complexities and direct model develop-
ment, benchmark datasets and evaluation metrics are being expanded.

REPRODUCIBILITY CHECKLIST

For all reported experimental results:

* A clear description of the mathematical setting, algorithm, and/or model: See Sections
3 and 4. The model uses SE(3)-invariant GNNs, time-aware cross-attention, and diffusion-
based generative trajectory modeling.

* Submission of source code or link to resources: The core HemePLM-Diffuse imple-
mentation is based on AI2BMD [Wang et al.| (2024), which is a published repository by
Microsoft. Proprietary restrictions prevent sharing the exact code. All algorithmic details
and hyperparameters are provided in Sections 4.1-4.4 to enable reproducibility.

* Description of computing infrastructure used: Experiments ran on NVIDIA A100
GPUs. Minor nondeterminism may occur due to GPU parallelism.

* Average runtime for each approach: Runtime depends on system size. For medium
systems ( 3,000 atoms), one training epoch took 2 hours; for large systems (;, 10,000 atoms),
6 hours per epoch.

* Number of parameters in each model: The full HemePLM-Diffuse model has approxi-
mately 18M parameters, including GNN, attention, and diffusion components.

* Corresponding validation performance for each reported test result: See Section 5.
Validation metrics include MSE, MAE, and R?. If requested, full validation curves can be
provided in the rebuttal period.

¢ Explanation of evaluation metrics used, with links to code: MSE, MAE, and R2 are
standard regression metrics. Reference implementations are available in NumPy and Py-
Torch.

For all experiments with hyperparameter search:

* Bounds for each hyperparameter, configurations for best-performing models, and
number of trials: General hyperparameters were adopted from prior work (MDGEN, Uni-
Mol, AI2ZBMD). No extensive search was conducted; see Section 4.4.

* Method of choosing hyperparameter values: Standard settings were used (Adam opti-
mizer, learning rate = le-3, batch size = 32, diffusion steps = 50). Selection was based on
prior literature and small-scale validation.

¢ Expected validation performance: MSE 0.94, MAE 0.77, R2 0.91 on representative
biomolecules.

For all datasets used:

* Relevant statistics such as number of examples: See Section 5.1. Example systems
include 3CQV HEME ( 3,200 atoms), Chignolin ( 138 atoms), Alanine ( 89 atoms), Ethanol
(9 atoms).

* Details of train/validation/test splits: Training used 70% of MD trajectories, validation
15%, test 15%, split chronologically.
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« Explanation of any data excluded and preprocessing steps: No data were excluded.
Preprocessing involved constructing protein-ligand graphs, encoding atomic coordinates,
and normalizing energies/forces.

* Link to downloadable data: Public PDB IDs (e.g., 3CQV: https://www.rcsb.
org/structure/3cqgv) and MDGEN/Uni-Mol datasets are used. Custom preprocess-
ing scripts can be implemented from the method description in Section 4.
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