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ABSTRACT

Recovering unbiased properties from biased or perturbed simulations is a cen-
tral challenge in rare-event sampling. Classical Girsanov Reweighting (GR) of-
fers a principled solution by yielding exact pathwise probability ratios between
perturbed and reference processes. However, the variance of GR weights grows
rapidly with time, rendering it impractical for long-horizon reweighting. We intro-
duce Marginal Girsanov Reweighting (MGR), which mitigates variance explosion
by marginalizing over intermediate paths, producing stable and scalable weights
for long-timescale dynamics. Experiments demonstrate that MGR (i) accurately
recovers kinetic properties from umbrella-sampling trajectories in molecular dy-
namics, and (ii) enables efficient Bayesian parameter inference for stochastic dif-
ferential equations with temporally sparse observations.

1 INTRODUCTION

Estimating expectations under complex stochastic systems is central to modern machine learning in
the sciences and engineering application. Direct sampling from the target law is often infeasible,
so reweighting techniques express these expectations as averages under a more tractable reference
law. Indeed, these reweighting strategies are fundamental tools in computational chemistry (Mey
et al., 2014), mathematics (Beskos & Roberts, 2005), finance (Pascucci, 2011), and machine learning
(Domke & Sheldon, 2018). Unfortunately, their practical use is often limited by estimator variance.

This reweighting principle is important in the analysis of stochastic dynamics, where probability
laws are defined over path space (Sørensen, 2004; Donati et al., 2017). For example, in molecular
dynamics (MD), perturbed potentials are used to overcome free energy barriers due to slow mixing
or interest in rare events, and reweighting is then required to recover unbiased quantities such as free
energies and transition rates (Torrie & Valleau, 1977; Kästner, 2011; Mey et al., 2014). Similarly,
in parameter inference for stochastic differential equations (SDEs), simulations are often carried
out under a reference parameter, with likelihood ratios reweighting alternative candidates to form
posterior distributions (Li et al., 2020; Ghosh et al., 2022). Across both settings, a common way to
compute the importance weights is provided by Girsanov’s theorem (Girsanov, 1960).

Girsanov reweighting (GR) (Girsanov, 1960) provides a pathwise ratio, which enables a change of
measure between SDEs that share the diffusion but differ in drift (Sørensen, 2004; Donati et al.,
2017; 2022). Despite this elegance, two practical limitations arise. First, weight variance grows
rapidly with time horizon, causing the exponentiated weights to explode or vanish in long timescales.
Second, the weights are inherently tied to specific trajectories. Yet many quantities of interest—such
as MD transition probabilities or SDE likelihoods—depend only on endpoints and require marginal
ratios that integrate over all intermediate paths. Together, these issues severely restrict the use of
Girsanov reweighting in long timescales and large systems.

To address these limitations, we propose a machine learning–based approach: Marginal Girsanov
Reweighting (MGR). Instead of relying on full-path Girsanov weights, which become numerically
unstable for long trajectories, MGR learns marginal density ratios between end-points of trajectories.
The key idea is to leverage accurate short-lag Girsanov weights and iteratively compose them into
longer-lag ratios using neural classifiers. We formulate ratio estimation as a binary classification
problem, where a neural network distinguishes between samples from reference and target distri-
butions (Menon & Ong, 2016; Choi et al., 2021). By combining the mathematical foundation of
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xt+kτ

wkτ(xt, xt+kτ) = 𝔼 [wGR
kτ ∣ Xt = xt, Xt+kτ = xt+kτ]

xt

GR

MGR

xt xt+kτ

p(xt+kτ ∣ xt)

p̃(xt+kτ ∣ xt)

x
Figure 1: Marginal Girsanov Reweighting (MGR). For the given pairs, MGR defines the marginal
weight as expectation of pathwise Girsanov reweighting (GR) factors as introduced in Section 4.1.

Girsanov reweighting with the flexibility of neural ratio estimation, MGR enables reliable inference
across domains where traditional estimators break down. To summarize:

• We propose Marginal Girsanov Reweighting (MGR), an iterative learning approach, which
estimates transition-based density ratios by marginalizing over intermediate paths.

• We implement MGR as a binary classification task with a weighted cross-entropy objective.

• We demonstrate the effectiveness of MGR on reweighting problems in two distinct domains
(i) recovering unbiased thermodynamic and kinetic properties from biased MD simulations,
and (ii) parameter posterior inference for SDEs from noisy observations.

2 RELATED WORK

Accelerated sampling via perturbations In many physical and molecular systems, direct sam-
pling from the target dynamics is computationally infeasible due to slow mixing or the rarity of
the events of interest. This has motivated a broad class of perturbation-based accelerated sampling
methods that modify the dynamics to facilitate exploration. In molecular dynamics, metadynamics
(Huber et al., 1994; Barducci et al., 2008) and umbrella sampling (Torrie & Valleau, 1977; Kästner,
2011) add additional energy (Grubmüller, 1995) to reaction coordinates in order to accelerate ex-
ploration. (Swendsen & Wang, 1986; Sugita & Okamoto, 1999; Wang et al., 2011) change the
temperature of the system to help cross barriers.

Reweighting of Dynamics and Path Sampling Reweighting is a necessary technique to recover
the original dynamic from the accelerated data (Kamenik et al., 2022). For thermodynamic quan-
tities, methods such as the weighted histogram analysis method (WHAM) (Gallicchio et al., 2005;
Souaille & Roux, 2001) and the multistate Bennett acceptance ratio (MBAR) (Shirts & Chodera,
2008), provide efficient estimators of equilibrium energies and have been applied to multiple win-
dows enhanced sampling. Recent work also (Dibak et al., 2022; Wang et al., 2022; Moqvist et al.,
2025; Invernizzi et al., 2022) uses machine learning to estimate the energy differences between
different temperatures.

For kinetics, finite-lag transition densities help characterize long time behavior, where intermediate
states can be ignored (Wu et al., 2017; Schreiner et al., 2023; Klein et al., 2023; Diez et al., 2024;
2025). With enhanced-simulation data, unbiased kinetics can be recovered by: combining multiple
equilibrium ensembles (Mey et al., 2014) within a reversible Markov-state-model framework (Prinz
et al., 2011; Husic & Pande, 2018), or directly learning the eigenfunctions of transfer operators
from the biased simulations (Devergne et al., 2024). Recently, Girsanov-based path reweighting,
which explicitly calculates the Radon–Nikodym derivative in configuration space (Donati et al.,
2017; 2022; Schafer & Keller, 2024), has drawn our attention.

Bayesian inference for SDEs In classical Bayesian inference for parametric SDEs, the drift and
diffusion structures are given analytically, but contain unknown parameters. With only discrete and
sparsely observed data, the likelihood of these observations is analytically intractable. A common
strategy is to simulate latent paths under a reference SDE that is numerically stable or computa-
tionally convenient, and then express the likelihood ratio relative to the target SDE via Girsanov’s
theorem (Girsanov, 1960; Sørensen, 2004). This approach underlies a wide range of inference
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algorithms, including particle MCMC (Andrieu et al., 2010), and series-expansion–based infer-
ence (Lyons et al., 2014; Ghosh et al., 2022). It has wide applications in life sciences (Fuchs, 2013;
Bunin, 2017) and financial modeling (Jones, 1998; Eraker, 2001). Recent advances in simulation-
based inference (SBI) provide neural posterior by amortizing inference over large collections of
simulated data pairs (Cranmer et al., 2020; Gloeckler et al., 2024; Cai et al., 2023). These meth-
ods require extensive simulation across a broad parameter range, and aim to learn a surrogate and
black-box simulator. In our paper, we focus on the former—classical Bayesian inference—which
operates in the physics-informed regime where the underlying SDE mechanism is known. The main
challenge arises from the high variance of path-space likelihood ratios.

3 PRELIMINARIES

3.1 BROWNIAN DYNAMICS AND MIXING

A diffusion process described by a stochastic differential equation (SDE) satisfies

dXt = f(Xt, t)dt+ g(t) dWt, X0 = x0, (1)

where Xt ∈ Rd denotes the state of the stochastic process at time t, f(·, t) : Rd → Rd is a drift
vector, g(t) ∈ R is the diffusion coefficient, and Wt ∈ Rd is a standard Wiener process. In a fixed
time horizon t ∈ [0, T ], the associated path probability measure induced by Eq. 1 is denoted by µ.

However, direct simulation from the target law is often infeasible (Sørensen, 2004; Vanden-Eijnden
et al., 2010), such as slow mixing in molecular dynamics and unknown parameters in Bayesian
inference, as illustrated in Section 2. This motivates us to introduce a perturbation to the drift,
replacing f(·, t) with f̃(·, t), while keeping the diffusion coefficient g(t) unchanged. The associated
path probability measure is denoted by µ̃.

Although such perturbed dynamics are easier to simulate, they alter the underlying probability mea-
sure and thus distort the statistics of the original system. By calculating the Radon-Nikodym deriva-
tive dµ

dµ̃ (x) between two path measures, we can analyze the original dynamics in Eq. 1 by reweight-
ing the trajectories x = {xt}t∈[0,T ] under the perturbed paths.

3.2 GIRSANOV REWEIGHTING THEORY

A common approach to compute the Radon–Nikodym derivative of µ respect to µ̃ is provided by
Girsanov’s theorem (Girsanov, 1960; Donati et al., 2017). If two diffusion processes share the same
diffusion coefficient but have different drifts, their path measures can be transformed from one to
the other.

Here, we consider the trajectory segment under the perturbed dynamics, xt,τ = {xs}t+τs=t from xt
to xt+τ , t ∈ [0, T − τ ]. Using an Euler–Maruyama discretization, the corresponding discrete-time
trajectory

{
xt = x0, x1, x2, . . . , xt+τ = xN

}
is observed with discretization step ∆t = τ/N . Then

the likelihood ratio between the original path µ and the perturbed path µ̃, conditional on the same
starting state xt, can be calculated as

logwGR
τ (xt,τ ) = log

dµ

dµ̃
(xt,τ |xt)

≈
N−1∑
k=0


(
f(xk, tk)− f̃(xk, tk)

)⊤

g (tk)

√
∆tξk − ∆t

2

∥∥∥∥∥∥
(
f(xk, tk)− f̃(xk, tk)

)
g (tk)

∥∥∥∥∥∥
2
 , (2)

where
√
∆t ξk =

xk+1 − xk − f̃
(
xk, tk

)
∆t

g(tk)

i.i.d.∼ N (0,∆t · Id) represents the Wiener increment

associated with the simulation step xk → xk+1 under the perturbed dynamics.

Eq. 2 provides a solution for recovering original properties from perturbed simulations. However,
two major difficulties arise in practice. First, in computing logwGR

τ , long time horizons τ will
introduce an accumulation of noise terms, e.g. ξk in Eq. 2, which causes the variance to grow with
trajectory length. Upon exponentiation, the weights will explode or vanish. Detailed analysis can be
found in Appendix A. Second, when comparing the τ -lag transition probabilities from xt to xt+τ
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under the perturbed and original dynamics, Girsanov reweighting yields a ratio along a specific
simulated path, which is a biased proxy for the true marginal quantity (see Section 4.1 for details).
Motivated by these two problems, our work develops a model that can estimate a more stable and
accurate marginal weights for long time intervals and large systems.

4 MARGINAL GIRSANOV REWEIGHTING

4.1 SETUP

In stochastic dynamics, probability laws are typically defined over path space, capturing either
a single long trajectory or mutiple trajectories x = {xt}t∈[0,T ] under a given stochastic pro-
cess. However, in many practical applications, our focus shifts from full paths to the paired data
{(xt, xt+τ )}t∈[0,T−τ ] between two time points separated by a fixed lag time τ . Under the standard
ergodic assumption, the transition-based representation provides meaningful dynamical information.

For example, in molecular dynamics (MD), the analysis of kinetics and transport properties (Prinz
et al., 2011; Tiwary et al., 2015; Mardt et al., 2018) is often carried out. The central object is
then the transition probability between metastable states over a specified lag time. Similarly, in SDE
parameter inference, discrete-time observations are available at sparse intervals of time horizons, and
inference relies on computing the likelihood of these observation pairs (Sørensen, 2004; Golightly
& Wilkinson, 2008). In these contexts, the object of interest is not the full path law µ(x), but rather
the finite-time transition probability p (xt+τ | xt) induced at two time points.

Let p (xt+τ | xt) denote the transition probability induced by the original process in Eq. 1, and let
p̃ (xt+τ | xt) denote the transition probability under the perturbed dynamics. The ratio between
these two transition quantities defines a reweighting factor wτ (xt, xt+τ ) =

p(xt+τ |xt)
p̃(xt+τ |xt)

.

Instead of computing the intractable conditional density directly, we consider the joint distribution
over such pairs. Letting ρτ (xt, xt+τ ) and ρ̃τ (xt, xt+τ ) denote the joint densities under the original
and perturbed processes respectively, the reweighting ratio can be expressed as

wτ (xt, xt+τ ) =
p (xt+τ | xt) ρ (xt)
p̃ (xt+τ | xt) ρ (xt)

=
ρτ (xt, xt+τ )

ρ̃τ (xt, xt+τ )
.

This representation highlights that the ratio of transition density ratio can be seen as the ratio of
joint distributions. Furthermore, it admits a natural transformation in terms of the Radon–Nikodym
derivative over path space

wτ (xt, xt+τ ) = Eµ̃
[
dµ

dµ̃
(xt,τ ) | Xt = xt, Xt+τ = xt+τ

]
. (3)

Detailed proof can be found in Appendix B. Based on the pathwise Girsanov weights dµ
dµ̃ (xt,τ ), we

propose the Marginal Girsanov Reweighting (MGR) to learn the reweighting factor for given paired
data with long time interval (see Figure 1).

4.2 TRAINING ALGORITHM

hθ

(xt, xt+kτ) ∼ ρ̃ ρ ∝ ct ⋅ ρ̃

wkτ(xt, xt+kτ)

Trajectory μ̃

Paired data (xt, xt+(k−1)τ,τ)

k = 1

Classifier model hθ(xt, xt+kτ)

Evalue wkτ = h*θ /(1 − h*θ )
k + 1

Step 1: Collecting paired data

Weights ct = w(k−1)τ ⋅ wGR
τ

Step 2: Assigning weights

Step 3: Training classifier

k = 1
ct(xt, xt+τ) = wGR

τ (xt, xt+τ)
k > 1

ct(xt, xt+kτ) = w(k−1)τwGR
τ

xt
xt+τ

xt xt+kτ

xt+(k−1)τ

Figure 2: The training algorithm of MGR as illus-
trated in Sections 4.2 and 4.3

We denote by wkτ (xt, xt+kτ ) the likelihood
ratio from configuration xt at time t to xt+kτ
at time t + kτ . For the case k = 1, i.e., over
a short lag time, Girsanov reweighting wGR

τ in
Eq. 2 provides a relatively stable and pathwise
estimate of the ratio. Our goal is to develop
a Marginal Girsanov Reweighting (MGR) ap-
proach that can reliably estimate the ratio for
longer lag times with k ≫ 1.

Our method, MGR, adopts an iterative training
strategy based on either a long discretized sim-
ulation trajectory or multiple discretized trajec-
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tories under perturbed path µ̃. Suppose the ratio w(k−1)τ has already been obtained. Then the ratio
wkτ at lag time kτ can be constructed as follows:

Step 1. We collect pairs of the form
(
xt, xt+(k−1)τ,τ

)
for t ∈ [0, T − kτ ] from the perturbed

simulation trajectory, where each pair consists of a state and a trajectory segment.

Step 2. In this step, we construct approximations of perturbed and original distributions of
(xt, xt+kτ ) based on the following identity:

Eρkτ (xt,xt+kτ )[O(xt, xt+kτ )] =Eρ(k−1)τ (xt,xt+(k−1)τ )·µ(xt+(k−1)τ,τ |xt+(k−1)τ )[O(xt, xt+kτ )]

=Eρ̃(k−1)τ (xt,xt+(k−1)τ )·µ̃(xt+(k−1)τ,τ |xt+(k−1)τ )[ctO(xt, xt+kτ )] ,

for any bounded measurable test function O(·, ·) : Rd × Rd → R. The first equality holds because
ρkτ can be regarded as the marginal distribution of (xt, xt+kτ ) defined by ρ(k−1)τ (xt, xt+(k−1)τ ) ·
µ(xt+(k−1)τ,τ | xt+(k−1)τ ), and the second equality follows from the principle of importance sam-
pling, with weight

ct = w(k−1)τ (xt, xt+(k−1)τ ) · wGR
τ

(
xt+(k−1)τ,τ

)
. (4)

Since w(k−1)τ is inherited from the previous iteration and wGR
τ can be computed as described in

Section 3.2, the pairs collected in Step 1 can be used to approximate the perturbed and original joint
distributions ρ̃kτ and ρkτ as

ρ̃kτ (x, y) ≈ 1

T − kτ
∑
t

δ(x− xt) δ(y − xt+kτ ),

ρkτ (x, y) ≈
∑
t

ct δ(x− xt) δ(y − xt+kτ )∑
t′ ct′

,

where δ denotes the Dirac delta function. When accurate estimates of w(k−1)τ are available and the
dataset size is sufficiently large, the above approximations can be shown to be consistent. A detailed
proof is provided in Appendix C.

Step 3. Finally, using the joint distributions ρ̃kτ (x, y), ρkτ (x, y) in Step 2, we approximate the
marginal weight wkτ (x, y) by a classifier-based density ratio estimator (see Section 4.3 for details).
The inferred ratio from the optimal binary classifier is then used for the next iteration.

This three-step procedure effectively extends short-time pathwise Girsanov weights to long-time
marginal ratio. First, we train the model wτ using the short τ -lag Girsanov weights. Then, we
iterate three steps above to progressively learn wkτ until k ≫ 1. The workflow is summarized in
Figure 2. In the next subsection, we introduce the ratio estimation method used in MGR Step 3.

4.3 CLASSIFIER-BASED DENSITY RATIO ESTIMATION

Many machine learning methods have been proposed for density ratio estimation (Menon & Ong,
2016; Choi et al., 2021; 2022; Yu et al., 2025). A widely used approach is probabilistic classification
(Menon & Ong, 2016), which reformulates likelihood ratio estimation as a binary classification task.
In this setting, a binary classifier with a sigmoid output h(·, ·) : Rd × Rd → [0, 1] is trained to
discriminate between paired samples (xt, xt+kτ ) drawn from the perturbed distribution ρ̃kτ and the
original distribution ρkτ .

We define the optimal classifier h∗θ as the probability that a given pair (xt, xt+kτ ) comes from ρkτ ,
i.e., h∗θ(xt, xt+kτ ) = ρkτ (xt, xt+kτ )/ (ρkτ (xt, xt+kτ ) + ρ̃kτ (xt, xt+kτ )). Then, the density ratio
can be estimated as

wkτ (xt, xt+kτ ) =
ρkτ (xt, xt+kτ )

ρ̃kτ (xt, xt+kτ )
=

h∗θ(xt, xt+kτ )

1− h∗θ(xt, xt+kτ )
. (5)

Unlike standard density ratio estimation, where samples from both distributions are available and
the ratio can be learned via cross-entropy loss, our setting in MGR is different. We only have
samples from the perturbed distribution ρ̃kτ together with the corresponding weight ct assigned to
each sample. To address this, we employ a weighted cross-entropy loss:

L(θ) = −Et [ct log hθ(xt, xt+kτ ) + log (1− hθ(xt, xt+kτ ))] , (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where (xt, xt+kτ ) denotes the paired data collected from the perturbed trajectory with lagtime kτ .
The weights ct are constructed from the output of the previous model w(k−1)τ and short-lag Gir-
sanov reweighting wGR

τ according to Eq. 4, and are normalized over the entire dataset.

After sufficient training on either a single long trajectory or multiple trajectories, the estimatorwkτ in
Eq. 5 converges to the marginal ratio, and then serves as a component for the next iteration. Through
the iterative training scheme, MGR can attain stable marginal ratios under long lag times and in
complex systems. The complete training procedure is summarized in Algorithm 1 and illustrated
in Figure 2. For completeness, we compare a range of ablations and discuss other potential model
choices (see Appendix F.1), but defer a more systematic investigation to future work.

5 EXPERIMENTS

5.1 MOLECULAR DYNAMICS

MGR has particularly useful applications in the analysis of kinetic properties in molecular dynamics
(MD) (Donati et al., 2017; 2022). In particular, it can be employed in the construction of Markov
state models (MSMs) (Prinz et al., 2011) at a given lag time.

In an MSM framework, the dynamics are characterized by a transition probability matrix Pτ ,
where each entry is obtained by normalizing the corresponding cross-correlation Cij(τ). This
quantity measures the probability of observing a transition from state i at time t to state j at
time t + τ . Under biased or enhanced sampling trajectories µ̃, we want to recover the unbi-
ased properties using reweighting. For each observed transition pair (xt, xt+τ ), a marginal weight
wτ (xt, xt+τ ) is assigned to the cross-correlation Cij(τ) = Eµ̃

[
wτ (xt, xt+τ )1Bi

(xt)1Bj
(xt+τ )

]
,

where wτ (xt, xt+τ ) is estimated by MGR. In our evaluation, we focus on the following several key
indicators. Detailed definitions and explanations are provided in Appendix E.1.

• Effective sample size (ESS): Since the true transition density ratio is analytically intractable,
relative ESS is then used as a reference indicator for weight stability (Freeman, 1966). A
larger ESS implies more reliable statistical estimates, and the results are shown in Ap-
pendix E.1.

• Implied timescales (ITS): Each eigenvalue λi(τ) of the transition probability matrix defines
an implied timescale ti(τ) = − τ

log λi(τ)
. We examine several dominant implied timescales

(ITS) as well as their sum. For each individual ITS, it shows the slow physical timescale of
the system. For their sum, an accurate tracking of the exponential decay with increasing lag
time is expected, which reflects the intrinsic relaxation behavior of the system dynamics.

• Dominant eigenfunctions and stationary distribution: The leading eigenfunctions characterize
the slow dynamical modes, while the stationary distribution represents the long-time equilib-
rium of the system. Accurate recovery of these quantities is essential for validating kinetic
properties.

We primarily compare the results obtained from Marginal Girsanov Reweighting (MGR) with those
produced by pathwise Girsanov reweighting (GR) (Donati et al., 2017). Guidelines for selecting a
suitable short lag τ and network for training in MGR are provided in the Appendices F.2 and F.4.

5.1.1 ONE DIMENSIONAL FOUR WELL

We first consider a one-dimensional four-well potential system (Prinz et al., 2011), which serves as a
prototypical example for testing reweighting methods. The unbiased energy landscape contains four
metastable states separated by barriers, with the two intermediate wells located at higher energies. To
accelerate sampling, we introduce a biased potential that lowers the energy of the two intermediate
wells. Detailed energy function and simulation information can be found in Appendix E.1.1.

Figure 3 presents the results for the four-well system. The left panel shows the dominant left eigen-
functions at lagtime 300∆t (∆t = 0.001). GR provides partial correction but still exhibits clear
deviations, particularly in the central wells. By contrast, MGR yields eigenfunctions that are in
close agreement with the unbiased results. It demonstrates that MGR enables accurate recovery of
both equilibrium and kinetic properties. The results of dominant right eigenfunctions and the ESS
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Figure 3: Results for the one-dimensional four-well potential system. Left: Dominant left ({ϕi})
eigenfunctions of the transition matrix at lagtime 300∆t. (ϕ1 denotes the stationary distribution.)
Unbiased results serve as reference, while Biased trajectories, Biased reweighted by GR (Biased-
GR), and Biased reweighted by MGR (Biased-MGR) are compared. Right: sum of the first 5
eigenvalues, reflecting the intrinsic relaxation behavior of the dynamics, as a function of lag time.

curve are shown in Figure S.2, where the ESS for GR decays rapidly at long lag times, reflecting
the instability. In contrast, our model MGR maintains substantially higher ESS across lag times,
stabilizing reweighting .

We also compare the sum of the first five eigenvalues of the transition matrix in the right panel.
The results of MGR closely follow the unbiased reference and exhibit smoother exponential decay,
whereas GR suffers from strong fluctuations. This indicates that MGR more accurately captures
the intrinsic relaxation dynamics of the system. For completeness, the several individual dominant
implied timescales (ITS) are reported in Figure S.3.

5.1.2 ALANINE DIPEPTIDE

We next consider alanine dipeptide (Donati et al., 2017; Wu et al., 2020), a widely used benchmark
system in molecular dynamics for studying conformational transitions. The backbone torsion angles
ϕ and ψ are two important reaction coordinates, containing several important metastable basins.
Sampling transitions between these basins is challenging due to the presence of high free-energy
barriers. To accelerate exploration, we perform biased simulations by introducing umbrella poten-
tials along ϕ and ψ, which distort the original equilibrium distribution and transition probabilities.
Detailed energy function and simulation information can be found in Appendix E.1.2.

Figure 4 shows the results for alanine dipeptide. a) reports the sum of the first five eigenvalues as
a function of lag time. MGR consistently follows the unbiased reference, whereas GR shows clear
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Figure 4: Results for the 22 atoms Alanine Dipeptide system. a) sum of the first five eigenvalues,
reflecting the intrinsic relaxation behavior of the dynamics, as a function of lag time (lagtime unit
is 40fs). b) Dominant left eigenfunctions of the transition matrix with corresponding ITS values
are shown in the title at lag time 1.6ps. Unbiased results serve as reference. c) Dominant left
eigenfunctions from the biased trajectory and the MGR-recovered results. GR fails to construct a
convergent Markov state model due to excessive variance.
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deviations. Due to the large variance and low ESS values, GR fails to provide a reliable MSM for
lag times exceeding 10τ = 400fs. b) shows the dominant left eigenfunctions and the corresponding
implied timescales (ITS) at lag time 40τ = 1.6ps under the unbiased trajectory. These serve as
our evaluation reference. Using MGR, we reweight the biased trajectory to recover the unbiased
properties. Since GR has already failed at this timescale, only MGR results are reported in c).
Both the eigenfunctions and implied timescales demonstrate that MGR successfully reproduces the
unbiased behavior. Detailed comparisons of ESS and individual ITS are provided in Figure S.6.

These two examples demonstrate that MGR achieves consistently strong performance in molecular
dynamics. It maintains stable effective sample sizes, produces reliable implied timescales, and ac-
curately recovers equilibrium and kinetic properties, even under large system and at long lag times
where traditional GR fails. These results highlight the effectiveness of MGR, especially in mitigating
variance growth and removing path dependence. As a result, MGR provides a practical framework
for reweighting biased simulations in MD.

5.2 BAYESIAN INFERENCE OF SDE PARAMETERS

Another important application of MGR lies in the Bayesian posterior inference of SDEs (Sørensen,
2004; Golightly & Wilkinson, 2008; Li et al., 2020; Ghosh et al., 2022). MGR is used to estimate
the parameters of a stochastic differential equation from discrete observations. Detailed illustration
can be found in Appendix E.2.

Consider a d-dimensional diffusion process, whose drift term contains unknown parameters θ. In-
stead of simulating the SDE for every candidate θ, we set a reference parameter θ0, and generate
reference trajectories under θ0.

Through the MGR model introduced in Section 4, we utilize short-lag Girsanov weights
wGR,θ
τ (xt,τ ) = dµθ

dµ̃θ0
(xt,τ ) in Eq. 2 iteratively, where the drift difference is f(·, t; θ) − f(·, t; θ0).

After training, stable marginal weights wθkτ (·, ·) are used to estimate the likelihood of sparse obser-
vations y = {y(t = 0) = y0, y1, ..., y(t = T ) = yK}, where kτ = T/K:

wθkτ (y) =
p(y | θ)
p(y | θ0)

= Πi
p(yi+1 | yi; θ)
p(yi+1 | yi; θ0)

= Πiw
θ
kτ (y

i, yi+1).

This allows us to construct a stable likelihood ratio based on the given paired observations
{(yi, yi+1)}. Consequently, posterior expectations can be evaluated by importance sampling with
observations y:

E[θ | y] =
∫
θ p(θ | y)dθ ≈

∑
θ θ w

θ
kτ (y)p(θ)∑

θ w
θ
kτ (y)p(θ)

.

Leveraging short-lag, pathwise Girsanov factors, MGR constructs reliable likelihood ratios over long
observation intervals and time horizons, which enables accurate posterior estimation of the param-
eters. In this example, we primarily compare MGR with the particle marginal Metropolis–Hastings
(PMMH) algorithm (Golightly & Wilkinson, 2008; Hoffman et al., 2014) and a variational inference
(VI) approach (Ghosh et al., 2022).
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Figure 5: Results for Bayesian inference in the Graph Ornstein–Uhlenbeck process. a) Posterior es-
timates of θ1 and θ2 under different observation horizons. Estimation of θ1 is challenging, and MGR
yields more stable posteriors. For θ2, MGR achieves highly concentrated and precise estimates. b)
Posterior estimates with mean and standard deviation at the longest observation horizon T = 30.
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Figure 6: Results for Bayesian inference in the Stochastic Lotka-Volterra system. a) Posterior es-
timates of θ1 and 100 × θ2 under different observation horizons. b) Posterior distributions by the
mean of all time horizons.

5.2.1 GRAPH ORNSTEIN-UHLENBECK

we first consider the Ornstein–Uhlenbeck (OU) process (Courgeau & Veraart, 2022) defined on a
graph structure,

dXt = −A(θ1)(Xt −B(θ2)) dt+ σ dWt, Xt ∈ R2, A(θ1) =

(
1 −θ1

−θ1 1

)
, B(θ2) =

(
θ2

1

)
,

where σ = 0.5, and t ∈ [0, 30]. We set the reference parameter as θ10 = 0.5, θ20 = 4,
and a latent trajectory are generated under this reference parameter. We consider a grid of 225
candidate parameters, where the detailed simulation settings and parameters candidates are pro-
vided in Appendix E.2.1. For the observations, we sample every unit time step t = 1 along
the simulation path. At each sampling point, Gaussian noise is introduced to obtain observations
y = {y(t = 0) = y0, y1, . . . , y(t = 30) = y30}, yi ∼ N (xi, 0.25I).

Figure 5 reports the posterior estimates under different observation trajectory lengths. We observe
that θ1 is more difficult to identify: VI exhibits noticeable bias, while PMMH shows substantial
fluctuations and unstable convergence. In contrast, MGR consistently yields better estimates across
different horizons. For θ2, which is easier to infer due to its stronger signal in the dynamics, MGR
again provides highly accurate and concentrated posteriors, clearly outperforming the alternatives.

5.2.2 STOCHASTIC LOTKA-VOLTERRA

Finally, we consider the stochastic Lotka–Volterra model (Wilkinson, 2018), which describes a pop-
ulation comprising of two competing species: prey grows intrinsically at rate θ1 and is depleted due
to predators at strength θ2; predator dies intrinsically at rate θ1 but increases through predation with
the same interaction strength θ2. This system can be defined by

dXt = A(Xt,θ) dt+ σ dWt, Xt ∈ R2, A(Xt,θ) =

(
θ1X1

t − θ2X1
tX

2
t

θ2X1
tX

2
t − θ1X2

t

)
,

where σ = 0.1 and t ∈ [0, 50]. We set the reference parameter as θ10 = 0.4, θ20 = 0.003,
and simulate a latent trajectory under this reference parameter. We also consider a grid of 225
candidate parameters, where the detailed simulation settings and parameters candidates are pro-
vided in Appendix E.2.2. For the observations, we sample every unit time step t = 2 along
the simulation path. At each sampling point, Gaussian noise is introduced to obtain observations
y = {y(t = 0) = y0, y1, . . . , y(t = 50) = y25}, yi ∼ N (xi, 25I).

Figure 6 reports the posterior estimates under different observation trajectory lengths. As the time
horizon T (and thus the number of observations) increases, both PMMH and VI exhibit growing
bias and variability. In contrast, MGR remains essentially flat across T and closely tracks accurate
posterior estimates of the parameters.

By estimating the marginal likelihood ratio between paired observations, MGR can effectively avoid
weight degeneracy that afflicts the baseline methods. Across these two examples, MGR shows
reliable and efficient Bayesian posterior estimates under both long lag times and extended time
horizons, which makes it a practical tool for posterior inference in complex stochastic systems.
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6 CONCLUSION

Our work introduces Marginal Girsanov Reweighting (MGR), an innovative approach for estimating
unbiased properties from perturbed paired data. Based on biased pathwise Girsanov reweighting
(GR)—which computes the ratio along a specific trajectory—MGR learns a marginal estimator by
integrating over intermediate states. This approach mitigates the variance blow-up of GR and yields
an unbiased estimate of the transition probability under long lags.

We show that MGR can be implemented using standard density ratio ratio estimation setups with
only minor adaptions, and outperforms several base-lines on benchmarks spanning multiple different
fields.

Despite MGR’s advantages, challenges remain. When the perturbed drift deviates substantially from
the reference dynamics, GR weights become unstable, which in turn hampers MGR training. Care-
ful choice of reaction coordinates is therefore essential in practice. Moreover, while we implemented
MGR using standard classifier-based ratio estimation, richer neural estimators and architectures hold
promise for further gains. In addition, given the rapid development of physical systems and molecu-
lar dynamics, an interesting direction is to extend MGR toward simulation-based Bayesian inference
and multi-ensemble estimators. Exploring these directions will broaden the scope of MGR, paving
the way for robust, ML-driven reweighting methods applicable across scales, domains, and dynam-
ical systems.

ACKNOWLEDGEMENTS

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg Foundation and by the National Natural
Science Foundation of China (NSFC) under grant number 12171367. Preliminary results were en-
abled by resources provided by the National Academic Infrastructure for Supercomputing in Sweden
(NAISS) at Alvis (project: NAISS 2025/22-463), partially funded by the Swedish Research Council
through grant agreement no. 2022-06725.

REFERENCES

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte carlo
methods. Journal of the Royal Statistical Society Series B: Statistical Methodology, 72(3):269–
342, 2010.

Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-tempered metadynamics: a
smoothly converging and tunable free-energy method. Physical review letters, 100(2):020603,
2008.

Alexandros Beskos and Gareth O Roberts. Exact simulation of diffusions. 2005.

Leo Breiman. The strong law of large numbers for a class of markov chains. The Annals of Mathe-
matical Statistics, 31(3):801–803, 1960.

Guy Bunin. Ecological communities with lotka-volterra dynamics. Physical Review E, 95(4):
042414, 2017.

Xin Cai, Jingyu Yang, Zhibao Li, Hongqiao Wang, and Miao Huang. Simulation-based transition
density approximation for the inference of sde models. arXiv preprint arXiv:2401.02529, 2023.

Kristy Choi, Madeline Liao, and Stefano Ermon. Featurized density ratio estimation. In Uncertainty
in Artificial Intelligence, pp. 172–182. PMLR, 2021.

Kristy Choi, Chenlin Meng, Yang Song, and Stefano Ermon. Density ratio estimation via infinitesi-
mal classification. In International Conference on Artificial Intelligence and Statistics, pp. 2552–
2573. PMLR, 2022.

Valentin Courgeau and Almut ED Veraart. Likelihood theory for the graph ornstein-uhlenbeck
process. Statistical Inference for Stochastic Processes, 25(2):227–260, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020.

Timothée Devergne, Vladimir R. Kostic, Michele Parrinello, and Massimiliano Pontil. From bi-
ased to unbiased dynamics: An infinitesimal generator approach. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information
Processing Systems, volume 37, pp. 75495–75521. Curran Associates, Inc., 2024. doi: 10.52202/
079017-2404. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/89edef87915d31de3437b6b2ac5f79e7-Paper-Conference.pdf.
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Chodera, Christof Schütte, and Frank Noé. Markov models of molecular kinetics: Generation
and validation. The Journal of chemical physics, 134(17), 2011.

Joana-Lysiane Schafer and Bettina G Keller. Implementation of girsanov reweighting in openmm
and deeptime. The Journal of Physical Chemistry B, 128(25):6014–6027, 2024.

Mathias Schreiner, Ole Winther, and Simon Olsson. Implicit transfer operator learning: Multiple
time-resolution models for molecular dynamics. Advances in Neural Information Processing
Systems, 36:36449–36462, 2023.

Michael R Shirts and John D Chodera. Statistically optimal analysis of samples from multiple
equilibrium states. The Journal of chemical physics, 129(12), 2008.

Helle Sørensen. Parametric inference for diffusion processes observed at discrete points in time: a
survey. International statistical review, 72(3):337–354, 2004.

Marc Souaille and Benoıt Roux. Extension to the weighted histogram analysis method: combining
umbrella sampling with free energy calculations. Computer physics communications, 135(1):
40–57, 2001.

Yuji Sugita and Yuko Okamoto. Replica-exchange molecular dynamics method for protein folding.
Chemical physics letters, 314(1-2):141–151, 1999.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation: A comprehen-
sive review (statistical experiment and its related topics). 2010.

Robert H Swendsen and Jian-Sheng Wang. Replica monte carlo simulation of spin-glasses. Physical
review letters, 57(21):2607, 1986.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Pratyush Tiwary, Vittorio Limongelli, Matteo Salvalaglio, and Michele Parrinello. Kinetics of
protein–ligand unbinding: Predicting pathways, rates, and rate-limiting steps. Proceedings of
the National Academy of Sciences, 112(5):E386–E391, 2015.

Glenn M Torrie and John P Valleau. Nonphysical sampling distributions in monte carlo free-energy
estimation: Umbrella sampling. Journal of computational physics, 23(2):187–199, 1977.

Eric Vanden-Eijnden et al. Transition-path theory and path-finding algorithms for the study of rare
events. Annual review of physical chemistry, 61:391–420, 2010.

Lingle Wang, Richard A Friesner, and BJ Berne. Replica exchange with solute scaling: a more effi-
cient version of replica exchange with solute tempering (rest2). The Journal of Physical Chemistry
B, 115(30):9431–9438, 2011.

Yihang Wang, Lukas Herron, and Pratyush Tiwary. From data to noise to data for mixing physics
across temperatures with generative artificial intelligence. Proceedings of the National Academy
of Sciences, 119(32):e2203656119, 2022.

Darren J Wilkinson. Stochastic modelling for systems biology. Chapman and Hall/CRC, 2018.
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A VARIANCE OF GIRSANOV REWEIGHTING

We analyze the variance behavior of Girsanov reweighting over a continuous time interval [t, t+ τ ].
According to Girsanov theory Girsanov (1960), the log-weight under the Girsanov transformation
can be expressed as

logwGR
τ (xt,τ ) =

∫ t+τ

t

u (xs, s)
⊤
dWs −

1

2

∫ t+τ

t

∥u (xs, s)∥2 ds,

where u(xt, t) :=
f(xt,t)−f̃(xt,t)

g(t) denotes the rescaled drift difference.

Given a fixed control path ut,τ := {u(xs, s)}t+τs=t , the expectation and variance of the log-weight are

E
[
logwGR

τ (xt,τ ) | ut,τ
]
= −1

2

∫ t+τ

t

∥u(xs, s)∥2 ds,

Var
(
logwGR

τ (xt,τ ) | ut,τ
)
=

∫ t+τ

t

∥u(xs, s)∥2 ds.

We now consider a time-discretized version of the variance over an interval [t, t + τ ] with N steps
of size ∆t = τ/N . Denote the discretized control as u0:N−1

t,τ := {u(xk, tk)}N−1
k=0 . Exponentiating

this log-weight, the conditional variance of the log-weight becomes

Var
(
wGR
τ

(
x0:N
t,τ

)
| u0:N−1

t,τ

)
= exp

(
N−1∑
k=0

∥∥u(xk, tk)∥∥2 ∆t) .
This reveals that the variance of the Girsanov weight grows exponentially with both trajectory dura-
tion τ and the dimension of control magnitude u, where ∥u(·, t)∥2 scales with the dimension d.

B RATIO OF TRANSITION DENSITY

Let xt,τ = {xs}t+τs=t denote the path space of continuous trajectories. We consider two probabil-
ity measures, which are µ(xt,τ ) (the original process defined in Eq. 1) and µ̃(xt,τ ) (the perturbed
process with drift term f̃(·, t)). For any bounded measurable test function O : Rd × Rd → R,

Eρτ (xt,xt+τ ) [O(xt, xt+τ )] =

∫
O(xt, xt+τ )ρτ (xt, xt+τ )dxtdxt+τ

=

∫
O(xt, xt+τ )δ(Xt − xt)δ(Xt+τ − xt+τ )dµ(xt,τ )

=

∫
O(xt, xt+τ )δ(Xt − xt)δ(Xt+τ − xt+τ )

dµ

dµ̃
(xt,τ )dµ̃(xt,τ )

=

∫
O(xt, xt+τ )ρ̃τ (xt, xt+τ )

dµ

dµ̃
(xt,τ )dµ̃(xt,τ )

:= Eρ̃τ (xt,xt+τ ) [wτ (xt, xt+τ )O(xt, xt+τ )] ,

where wτ (xt, xt+τ ) = Eµ̃
[
dµ
dµ̃ (xt,τ ) | Xt = xt, Xt+τ = xt+τ

]
. Here, ρτ (xt, xt+τ ), ρ̃τ (xt, xt+τ )

denote the joint marginal distributions under the original and perturbed processes respectively.

This formulation suggests that the ratio of transition densities wτ (xt, xt+τ ) can be estimated by
Girsanov reweighting. However, beyond the well-known issue of rapidly growing variance in Ap-
pendix A, Girsanov reweighting computes weights tied to specific trajectories xt,τ , whereas the
desired transition ratio wτ (xt, xt+τ ) corresponds to an expectation over paths connecting the given
endpoints.

C CONSISTENCY OF THE APPROXIMATE ρkτ (x, y)

For the given iteration k > 1, let Z := Xt+(k−1)τ and denote the short lag-τ path xt+(k−1)τ,τ =

{xs}t+kτs=t+(k−1)τ . For any bounded measurable O : Rd × Rd → R, an unbiased estimation of
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transition properties can be obtained by

Eρkτ (xt,xt+kτ ) [O(xt, xt+kτ ))] = Eρ̃(k−1)τ (xt,z), µ̃(xt+(k−1)τ,τ |z) [ctO(xt, xt+kτ )] ,

where ct = w(k−1)τ (xt, z)w
GR
τ (xt+(k−1)τ,τ ). Here, w(k−1)τ (xt, z) is the marginal weights in-

herited from the previous iteration, and wGR
τ (xt+(k−1)τ,τ ) is the pathwise Girsanov reweighting

introduced in Section 3.2.

In practice we approximate this expectation by Monte Carlo. Extract all paired data
{(xi,x0:N

i+(k−1)τ,τ )}
M
i=1 under µ̃ from either a single long trajectory or multiple trajectories,

where each short segment x0:N
i+(k−1)τ,τ connects the intermediate endpoints (zi, yi) with lag

τ , (thus the total lag between xi and yi is kτ ). With an assigned pathwise weight ci =
w(k−1)τ (x

i, zi)wGR
τ (x0:N

i+(k−1)τ,τ )), the expectation can be estimated by

Eρkτ (xt,xt+kτ ) [O(xt, xt+kτ )] ≈
M∑
i=1

ciO(xi, yi)∑M
i=1 c

i
.

The estimation error approaches zero when w(k−1)τ is accurate and M →∞.

Proof:

By Chapman–Kolmogorov (Hachigian, 1963), we have

Eρkτ (xt,xt+kτ ) [O(xt, xt+kτ )] =

∫
ρkτ (xt, xt+kτ )O(xt, xt+kτ )dxtdxt+kτ

=

∫
ρ(k−1)τ (xt, z)p(xt+kτ | z)O(xt, xt+kτ )dzdxtdxt+kτ

=

∫
ρ(k−1)τ (xt, z)p(xt+kτ | z)
ρ̃(k−1)τ (xt, z)p̃(xt+kτ | z)

·

ρ̃(k−1)τ (xt, z)p̃(xt+kτ | z)O(xt, xt+kτ )dzdxtdxt+kτ .

According to Section 4.1, p(xt+kτ |z)
p̃(xt+kτ |z) = Eµ̃(xt+(k−1)τ,τ )

[
wGR
τ (xt+(k−1)τ,τ ) | Z = z,Xt+kτ = xt+kτ

]
and w(k−1)τ (xt, z) =

ρ(k−1)τ (xt,z)

ρ̃(k−1)τ (xt,z)
. It yields

Eρkτ (xt,xt+kτ ) [O(xt, xt+kτ )] =

∫
ρ̃(k−1)τ (xt, z)p̃(xt+kτ | z)w(k−1)τ (xt, z)w

GR
τ (xt+(k−1)τ,τ )

O(xt, xt+kτ )µ̃(dxt+(k−1)τ,τ | z, xt+kτ )dzdxtdxt+kτ

=

∫
ρ̃(k−1)τ (xt, z)µ̃(dxt+(k−1)τ,τ | z)

w(k−1)τ (xt, z)w
GR
τ (xt+(k−1)τ,τ )O(xt, xt+kτ )dzdxt

:=Eρ̃(k−1)τ (xt,z), µ̃(xt+(k−1)τ,τ |z) [ctO(xt, xt+kτ )] .

Due to the fact Eρkτ (xt,xt+kτ ) [O(xt, xt+kτ )] = Eρ̃kτ (xt,xt+kτ ) [wkτ (xt, xt+kτ )O(xt, xt+kτ )], we
can also prove wkτ (xt, xt+kτ ) = Eρ̃(k−1)τ (xt,z), µ̃(xt+(k−1)τ,τ |z) [ct], which provides the theoretical
consistency across all lag scales.

Let {(xi, yi)}Mi=1 be endpoint pairs sampled under µ̃ and their pathwise weights drawn from ci =
w(k−1)τ (x

i, zi)wGR
τ (x0:N

i+(k−1)τ,τ ). By the strong law of large numbers for Markov chains with
ergodic assumption (Breiman, 1960),
M∑
i=1

ciO(xi, yi)∑M
i=1 c

i

a.s.−−→Eρ̃(k−1)τ (xt,z), µ̃(xt+(k−1)τ,τ |z) [ctO(xt, xt+kτ )] = Eρkτ (xt,xt+kτ ) [O(xt, xt+kτ ))] .

D TRAINING ALGORITHM

To summarize the MGR procedure, we present the full training and evaluation process in Algo-
rithm 1. At each iteration indexed by lag time kτ , the goal is to train a classifier to estimate the
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marginal density ratio wkτ (xt, xt+kτ ) between the original and perturbed transition distributions.
This is achieved by constructing pathwise weights ct that combine the short-time Girsanov weight
wGR
τ with the model prediction from the previous iteration w(k−1)τ . The resulting wkτ is then used

in the next iteration, allowing the model to progressively extend from short to long lag times.

Algorithm 1 Marginal Girsanov Reweighting (MGR)
Require: Simulation trajectory {xt}Tt=0 from perturbed dynamics, lagtime τ , the maximum training

iteration K, learining rate η.
1: for k = 1 to K do

Step 1: Collect paired data
2: Collect training pairs {(xt, xt+kτ )}T−kτ

t=0 ;
Step 2: Compute pathwise weights

3: Compute Girsanov weight wGR
τ (x0:N

t+(k−1)τ,τ ) using Eq. 2;
4: Compute pathwise weight:
5: if k = 1 then
6: ct = wGR

τ (x0:N
t+(k−1)τ,τ );

7: else
8: ct = w(k−1)τ (xt, xt+(k−1)τ )w

GR
τ (x0:N

t+(k−1)τ,τ );
9: end if

Step 3: Train density ratio estimator
10: for each training epoch do
11: for each minibatch {(x(i), y(i), c(i))}Bi=1 drawn from {(xt, xt+kτ , ct)}T−kτ

t=0 do
12: Compute weighted binary classification loss with normalized weight c(i):

L(θ) = − 1

B

B∑
i=1

[
c(i) log hθ(x

(i), y(i)) + log(1− hθ(x(i), y(i)))
]
;

13: Update parameters: θ ← θ − η · ∇θL(θ);
14: end for
15: end for
16: Update the marginal ratio wkτ (xt, xt+kτ ) =

h∗
θ(xt,xt+kτ )

1−h∗
θ(xt,xt+kτ )

;
17: end for
18: return Marginal ratio wkτ (xt, xt+kτ ) by model

E EXPERIMENTAL DETAILS

E.1 MOLECULAR DYNAMICS

In this section, we provide further details on the experimental setup, evaluation metrics, and imple-
mentation of MGR in the molecular dynamics (MD) setting described in Section 5.1.

For each observed transition pair (xt, xt+τ ), a marginal weightwτ (xt, xt+τ ) is assigned. The cross-
correlation then becomes

Cij(τ) = Eµ
[
1Bi

(xt)1Bj
(xt+τ )

]
= Eµ̃

[
wτ (xt, xt+τ )1Bi

(xt)1Bj
(xt+τ )

]
≈

∑
t wτ (xt, xt+τ )1Bi

(xt)1Bj
(xt+τ )∑

t wτ (xt, xt+τ )
.

Here wτ (xt, xt+τ ) is estimated by MGR in our model. In the GR baseline, wτ (xt, xt+τ ) is com-
puted via pathwise Girsanov reweighting. Once the corrected matrix is constructed, standard MSM
analysis can be performed.

We adopt the following metrics, as described in the main text, to assess the performance of MGR:

Effective Sample Size (ESS): ESS is a popular metric to measure the variance of weights and is
regarded as a metric for quantifying goodness of reweighting ratio on importance sampling. De-
noting {wkτ (xi, yi)}Mi=1 the weights assigned to data pairs, we compare the relative ESS, defined
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as

rESSkτ =
1

M
ESSkτ =

(
∑
t wkτ (xt, xt+τ ))

2

M
∑
t wkτ (xt, xt+τ )

2
.

The relative ESS value lies in the interval (0, 1], and a higher value indicates reduced variance and
greater weight stability.

Implied Timescales (ITS): ITS is obtained by eigendecomposition of the reweighted transition
probability matrix. We evaluate both individual timescales and their cumulative behavior as a func-
tion of lag time τ , comparing with the unbiased reference to assess how well dynamical relaxation
is captured.

For a lagtime τ transition matrix, let 1 = λ1(τ) > λ2(τ) ≥ λ3(τ) ≥ · · · be the leading eigenvalues.
Each eigenvalue defines an implied timescale

ti(τ) = −
τ

lnλi(τ)
.

Each ti measures the relaxation time of a distinct slow dynamical mode: larger ti means slower
decay (stronger metastability).

Beyond inspecting individual ti, it is important to track an aggregate relaxation measure over the
first m slow modes:

Sm(τ) :=

m+1∑
i=2

λi(τ) =

m+1∑
i=2

exp

(
− τ

ti(τ)

)
.

This quantity decays exponentially with lagtime τ , because ti(τ) of a slow mode is usually approx-
imately constant across τ . Accurate tracking of this decay indicates that the model captures the
intrinsic relaxation behavior of the dynamics (i.e., the spectrum of slow processes). In practice, we
report: (i) several dominant ITS ti(τ) to assess mode-wise accuracy, and (ii) the aggregate Sm(τ)
over the first m ITS, to summarize overall slow relaxation captured by the estimated transition ma-
trix.

Dominant eigenfunctions and stationary distribution: For a lagtime τ transition matrix P , the
stationary distribution π satisfies π⊤P = π⊤ and represents the long-time equilibrium. Equiv-
alently, π is the first left eigenvector ϕ1 of P with eigenvalue 1. The remaining leading eigen-
functions (right eigenfunctions {ψ2,ψ3, ...}, left eigenfunctions {ϕ2,ϕ3, ...}) with eigenvalues
1 > λ2 ≥ λ3 ≥ · · · encode the slow dynamical modes: their sign pattern and level sets parti-
tion state space into metastable regions and provide approximate coordinates. Accurate recovery of
π validates thermodynamics, and accurate recovery of {ψi,ϕi} validates kinetics.

E.1.1 1 DIMENSIONAL FOUR WELL

We consider an overdamped Langevin dynamics on a one–dimensional four–well landscape,

dXt = −∇V (Xt) dt+ σ dWt,

where V (x) = 4
(
x8 + 0.8e−80x2

+ 0.2e−80(x−0.5)2 + 0.5e−40(x+0.5)2
)

, σ = 1.
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Figure S.1: Energy and density of 1D four-well system. Left: Energy profiles of unbiased poten-
tial V (x), biased potential Ṽ (x) = V (x) + U(x), and the bias term U(x). Right: Theoretical
unnormalized probability of the system.
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Figure S.2: Left: Dominant right ({ψi}) eigenfunctions of the transition matrix at lagtime 300∆t.
Right: Relative ESS as a function of lag time comparing GR and MGR.
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Figure S.3: The first four implied timescales (ITS) versus lag time. Each panel reports ti(τ) for
mode i = 2, ..., 5 (log scale). MGR tracks the unbiased ITS with less fluctuation, while GR deviates
at long lagtimes.

To accelerate barrier crossings between the two intermediate wells, we introduce a perturbed poten-
tial

dXt = −∇Ṽ (Xt) dt+ σ dWt,

where Ṽ (x) = V (x)+U(x), U(x) = 2e−kx
2

, k = 15. Illustrations of the potentials and stationary
densities are provided in Figure S.1.

We use the Euler–Maruyama scheme with time step ∆t = 10−3. Each run is integrated up to
T = 10, 000, yielding T/∆t = 107 samples per trajectory. We initialize at X0 = 0 and simulate
a single trajectory. During the perturbed run, we record the discrete time Girsanov log-weights
according to Eq. 2, i.e.,

logwGR
∆t(x) = −∇U(x)

√
∆t ξ − ∆t

2
(∇U(x))

2
,

where ξ is the corresponding noise in the simulation.

We set τ = 50∆t as the reference short GR lagtime during training. At this short lagtime, the
Girsanov weights are numerically stable, with ESS ≈ 0.43. Guidelines for selecting a suitable short
lag τ are provided in Appendix F.2. In each training iteration k, we normalize the pathwise weights

ct =
w(k−1)τ (xt, xt+(k−1)τ )w

GR
τ (x0:N

t+(k−1)τ,τ )

1
M

∑
t

(
w(k−1)τ (xt, xt+(k−1)τ )wGR

τ (x0:N
t+(k−1)τ,τ )

) , (S.1)

where M is the number of total paired data in our training dataset. After training, we obtain the
estimated marginal ratio wkτ (xt, xt+kτ ) =

h∗
θ(xt,xt+kτ )

1−h∗
θ(xt,xt+kτ )

for reweighting.

The reweighted transition counts yield an approximation of the unbiased transition matrix, enabling
standard MSM analysis. The dominant right eigenfunctions and the relative Effective sample size
(ESS) as a function of lag time are shown in Figure S.2 and Figure S.3 reports the first 4 implied
timescales individually. Furthermore, Figure S.4 displays the density plot of the transfer operator,
which can also be reweighted by MGR ratio

ρkτ (x, y) = ρ(x)pkτ (x, y)

= e−V (x)ρ̃(x)wkτ (x, y)p̃kτ (x, y)

= e−V (x)wkτ (x, y)ρ̃kτ (x, y).
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Figure S.4: Density plot of the transfer operator for Four Well, defined on the discrete spatial range
[0, 40] with a lag time of 300∆t. Red indicates high transition probability, white zero transition
probability.

In a four-well landscape, the first three slow kinetic modes are important. The slowest ITS (ITS
component 2) corresponds to the global left–right rearrangement across the highest barriers. ITS
component 3 and the third eigenfunctions in Figures 3, S.2 capture the exchanges between the two
left wells (left-pair exchange), while ITS component 4 and associated eigenfunctions resolve the
remaining transfer with the two right wells (right-pair exchange). The rest of ITS is small and
unstable across lagtimes, reflecting fast relaxation rather than a meaningful slow process.

E.1.2 ALANINE DIPEPTIDE

We performed all-atom MD simulations of acetyl-alanine-methylamide (Ac-A-NHMe, alanine
dipeptide) in implicit water. The simulation was carried out with the OPENMM 8.2 simulation
package (Eastman et al., 2023) at 300K. The system employed the Amber14 force field with OBC2
implicit water (“amber14-all.xml”, “implicit/obc2.xml”). Dynamics were propagated
with an Underdamped Langevin integrator with time step 2fs. The aggregated simulation time was
1µs. Coordinates and Girsanov reweighting (GR) factors were saved every 20 steps (40fs) using the
Girsanov-enabled OPENMM implementation (Schafer & Keller, 2024).

For enhanced sampling, we applied a dihedral bias to the backbone torsions ϕ and ψ. The unbiased
dihedral potentials were

V (ϕ) = 0.27 cos(2ϕ) + 0.42 cos(3ϕ),

V (ψ) = 0.45 cos(ψ − π) + 1.58 cos(2ψ − π) + 0.44 cos(3ψ − π),

and the perturbation was a quadratic restraint

U(ϕ, ψ) =
1

2
κϕϕ

2 +
1

2
κψψ

2, κϕ = κψ = 1,

so that the biased potential is Ṽ (·) = V (·) +U(ϕ, ψ). The perturbation lowers the energy barrier in
targeted regions of the (ϕ, ψ) free-energy surface, thereby facilitating transitions among metastable
basins (Figure S.5), but it also distorts equilibrium and kinetics.
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Figure S.5: Alanine dipeptide dihedral energy function. Left: ϕ torsion: unbiased energy V (ϕ)
and biased function V (ϕ) + 1

2κϕϕ
2. Right: ψ torsion: unbiased energy V (ψ) and biased function

V (ψ) + 1
2κψψ

2.
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Figure S.6: Relative ESS and the first four implied timescales (ITS) versus lag time in Alanine
dipeptide. a) Relative ESS as a function of lag time comparing GR and MGR. b) Each panel reports
ti(τ) for mode i = 2, ..., 5 (log scale). MGR tracks the unbiased ITS with less fluctuation, while
GR shows huge deviation. GR totally fails to construct a valid MSM beyond lag time longer than
10τ = 400fs.
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Figure S.7: Dominant eigenfunctions at lagtime τ and 10τ of biased trajectories, reweighting by
GR.

We set τ = 40fs as the reference short GR lagtime during training. At this short lagtime, the Gir-
sanov weights are numerically stable, with ESS ≈ 0.31. In each training iteration k, we normalize
the pathwise weights according to Eq. S.1.

The reweighted transition counts yield an approximation of the unbiased transition matrix, enabling
standard MSM analysis. For alanine dipeptide, we construct the MSM in the key reaction coordi-
nates (ϕ, ψ) space. In our model, we likewise use only two angles as inputs to the ratio estimator,
which yields satisfactory performance.

The results are shown in Figure 4, and Figure S.6 further reports ESS and the first 4 ITS individually.
As the lagtime increases, the variance of pathwise GR grows rapidly and the effective sample size
collapses. Beyond 10τ , GR fails to produce a stable transition matrix and thus cannot construct a
valid MSM. For illustration, we plot the dominant eigenfunctions at τ and 10τ reweighted by GR in
Figure S.7. At τ , GR yields corrected modes, but at 10τ the modes become distorted and metastable
partitions blur. In contrast, MGR retains stable eigenfunctions across lags as shown in Figure 4 that
closely match the unbiased reference, consistent with its higher ESS and accurate ITS.

E.2 BAYESIAN INFERENCE OF SDE PARAMETERS

Consider a d-dimensional diffusion process that satisfies the following SDE:

dXt = f(Xt, t; θ)dt+ g(t)dWt, X0 ∼ p0,

whereXt ∈ Rd denotes the state at time t, f(·, t; θ) is the drift depending on the unknown parameter
vector θ, g(·) is the diffusion coefficient, and Wt is a standard Wiener process. Suppose we observe
noisy measurements y = {y(t = 0) = y0, y1, ..., y(t = T ) = yK} at equally spaced time intervals
with lag time T/K. The goal is to infer the unknown parameter vector θ from these observations.
Within the Bayesian framework, we assign a prior distribution p(θ) and aim to recover the posterior

p (θ | y) ∝ p (y | θ) p (θ) .

The main difficulty lies in computing the likelihood p(y|θ). Since the process X = {x(t = 0) =
x0, x1, ..., x(t = T ) = xK} is governed by the SDE with parameter θ, the likelihood requires
integrating over all possible trajectories,

p (y | θ) =
∫
p (y | X, θ) p (X | θ) dX,

which is generally intractable.
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Instead of simulating the SDE for every candidate θ, we set a reference parameter θ0. We then
generate reference trajectories under θ0 and compute the ratio of likelihood ratio between candidates
θ to θ0. According to Girsanov reweighting in Section 3.2, the ratio dp(X|θ)

dp(X|θ0) can be recorded during
the simulation, where the drift difference in Eq. 2 is f(Xt, t; θ)− f(Xt, t; θ0).

Through the MGR model introduced in Section 4, we approximate the ratio with the given observa-
tion pair (yi, yi+1)

wθkτ (y) =
p(y0:K |θ)
p(y0:K |θ0)

= Πi
p(yi+1|yi; θ)
p(yi+1|yi; θ0)

= Πiw
θ
kτ (yi, yi+1). (S.2)

Consequently, posterior expectations can be evaluated by importance sampling using observations
under θ0:

E[θ | y] =

∫
θ p(θ | y)dθ

=

∫
θ
p(y | θ)p(θ)

p(y)
dθ

=

∫
θ
p(y | θ)
p(y | θ0)

p(y | θ0)p(θ)
p(y)

dθ

=

∫
θ p(y|θ)p(y|θ0)p(θ)p (y | θ0) dθ∫ p(y|θ)
p(y|θ0)p(θ)p (y | θ0) dθ

≈
∑
θ θ w

θ
kτ (y)p(θ)∑

θ w
θ
kτ (y)p(θ)

. (S.3)

For the baseline particle marginal Metropolis–Hastings (PMMH) algorithm (Golightly & Wilkinson,
2008; Hoffman et al., 2014) and a variational inference (VI) approach (Ghosh et al., 2022). We use
the default setting in their original paper.

E.2.1 GRAPH ORNSTEIN-UHLENBECK

We consider a two dimensional Graph Ornstein-Uhlenbeck (OU) process as introduced in Sec-
tion 5.2.1. The Euler–Maruyama scheme with time step ∆t = 10−3 is used to generate a trajectory
and the simulation is integrated up to T = 30, yielding M = T/∆t = 3 × 104 samples. A set
of 30 evenly spaced values constitute the observations y, and each observation is corrupted with
Gaussian noise of σ = 0.5, shown in Figure S.8. We consider 15 candidate values of θ1 in the range
[0.1, 1.5] with increments of 0.1, and 15 values of θ2 in the range [0.5, 7.5] with increments of 0.5.
The resulting grid consists of 225 parameter combinations, and for each of them we compute the
corresponding Girsanov reweighting during simualtion.

Figure S.8: Observations of Graph Ornstein-Uhlenbeck.

E.2.2 STOCHASTIC LOTKA-VOLTERRA

We consider a two dimensional stochastic Lotka-Volterra system as introduced in Section 5.2.2.
The Euler–Maruyama scheme with time step ∆t = 10−3 is used to generate a trajectory and the
simulation is integrated up to T = 50, yielding M = T/∆t = 5× 104 samples. A set of 25 evenly
spaced values from this path corrupted with Gaussian noise of σ = 5 constitute the observations y,
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shown in Figure S.9. We consider 15 candidate values of θ1 in the range [0.3, 0.5] with increments
of 0.014, and 15 values of 100 × θ2 in the range [0.2, 0.4] with increments of 0.014. The resulting
grid consists of 225 parameter combinations, and for each of them we compute the corresponding
Girsanov reweighting during simualtion.

Figure S.9: Observations of Stochastic Lotka-Volterra.

E.3 MODEL ARCHITECTURE

Our classifier estimator hθ(·, ·) in MGR is modeled by 3 layer MLPs, augmented with Fourier feature
encodings (Tancik et al., 2020). We consider two types of encoding γ(v), (v = [xt, xt+kτ ] is the
concatenation of the paired data):

Positional encoding: γ(v) = [sin(v), cos(v), sin(2v), cos(2v), ..., sin(Bv), cos(Bv)], where
B = 10 denotes the scaling number.

Gaussian encoding: γ(v) = [cos(Bv), sin(Bv)], where B ∈ Rm×2d is sampled from N (0, 10).

Both Fourier-feature variants converge faster during training and yield comparable estimation accu-
racy. Detailed comparison is reported in Appendix F.4. In our experiments, we adopt a positional-
encoding MLP with ReLU activations.

F ABLATION

F.1 NEURAL RATIO ESTIMATION

Ratio estimation (Sugiyama et al., 2010) is a fundamental technique for comparing two distribu-
tions. Kernel moment matching, e.g. KMM (Gretton et al., 2009), matches all the moments with
reproducing kernels, which is effective and computationally efficient. Probabilistic classification
recasts ratio estimation as posteriors from a binary classifier (Menon & Ong, 2016), showing pow-
erful fitting capability. Featurized classification with normalizing flows (Choi et al., 2021) further
performs classification in a learned latent space, mitigating issues caused by large distributional dis-
crepancies. Path-based methods (Choi et al., 2022; Yu et al., 2025) connect the two distributions
via a continuous probability path and estimate the density ratio by integrating a learned time score.
By constructing consecutive path distributions, it alleviates the problems caused by poor overlap
between two densities.

However, unlike the standard setting with samples from both distributions, here we only have sam-
ples from one distribution plus reference weights linking two distributions. We therefore conducted
minor adaptions to estimators below and compare their performance on Four well system. We also
adapted the path-based method (Yu et al., 2025), but it exhibited numerical instability in our setting.

Standard classifier (weighted BCE) Following Section 4.3, we train a binary classifier on end-
point pairs (xt, xt+kτ ) with weighted cross-entropy in Eq. 6.

Featurized classifier (weighted BCE) We first map each paired sample to a latent representation
zϕ = Φ(xt, xt+kτ ;ϕ), and then perform the classifier-based ratio estimation in this feature space. A
joint training objective is adopted (Choi et al., 2021):

Ljoint = αLBCE(θ, ϕ) + (1− α)Llatent(ϕ),
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where LBCE(θ, ϕ) = −Et [ct log hθ(zϕ) + log (1− hθ(zϕ))] is the weighted binary cross entropy
in latent space, Llatent(ϕ) denotes the objective for optimizing encoder network, and α = 0.5 is a
hyperparameter.

Here, we consider two encoders to map data into latent space: (i) an invertible normalizing-flow
encoder (Classifier-NF) (Choi et al., 2021), and (ii) a non-bijective MLP encoder (Classifier-MLP).
Classifier–NF guarantees ratios computed in feature space are equivalent to those in input space,
whereas Classifier-MLP uses more flexible, non-invertible networks at the cost of potential infor-
mation loss. For Classifier-NF, we train the encoder by maximum likelihood loss LKL

latent(ϕ) (Dinh
et al., 2016; Choi et al., 2021), and for Classifier-MLP, we minimize a sliced 2-wasserstein distance
LWass

latent(ϕ)(Kolouri et al., 2018) between the latent variables and a standard Gaussian.

Comparative results are reported in Figure S.10, where featurized classifiers did not show measur-
able improvement over a standard classifier. We adopt the standard classifier in Section 4.3, which
provides satisfying results. Alternative advanced ratio estimators, and their applications, require
further investigation.
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Figure S.10: Neural ratio estimators ablation on the 1D Four well system. Left: Sum of the first
5 eigenvalues as a function of lagtime across different ratio estimators. Right: The first 2 ITS as a
function of lagtime across different ratio estimators.

F.2 LAGTIME CHOSEN

Selecting the suitable short lag τ used in wGR
τ is crucial for MGR. Large τ will inflate the variance

of Girsanov weights and can destabilize training, while small τ will require many iterations to reach
long timescales, accumulating approximation error and cost. As a practical rule, we recommend
choosing τ , which the relative ESS of the Girsanov weights falls in the range 0.3 ∼ 0.5. This strikes
a balance between weight degeneracy and excessive iteration depth.

Take Four well system as an example. We train MGR with short-lag values τ ∈ {25, 50, 75, 100,
150}∆t. The corresponding relative ESS of wGR

τ is {0.73, 0.43, 0.24, 0.11, 0.06}. All other settings
are kept identical. We then compare the dominant second implied timescale (ITS2) across evaluation
lags in Figure S.11. It shows that the model trained under τ = 50∆t produces the most stable ITS2
and matched the unbiased (reference) result most closely. As τ increases, the discrepancy between
the model results and the unbiased reference grows.
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Figure S.11: Lagtime ablation on the 1D Four well system. Left: ITS2 as a function of lagtime for
models trained with different short-lag values τ . Right: Mean and standard deviation of the ITS2
error, aggregated over all evaluation lags for models trained with different short-lag values τ .

F.3 THE RANGE OF CANDIDATE PARAMETERS

A practical question in Bayesian inference is how to determine an appropriate range of candidate
parameters around the reference value. In principle, the Girsanov reweighting estimator is valid for
any parameter shift, but its variance grows rapidly when the reference and target dynamics exhibit
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little overlap. Usually, the candidate parameters should typically be chosen as small perturbations
around the reference value so that the path distributions remain close and the reweighting remains
stable.

To investigate this effect, we performed an ablation study on the GraphOU and Lotka–Volterra
(LV) SDEs using a broader candidate range. For each parameter value, we computed the effective
sample size (ESS) of the raw Girsanov weights, which quantifies the degree of overlap between
the reference and target dynamics. As shown in Figure S.12, the ESS values decay sharply as
the parameter deviates from the reference, indicating that reliable reweighting is possible within a
suitable perturbation region.
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Figure S.12: ESS as a function of candidate parameters. ESS values computed from the raw Gir-
sanov weights for the GraphOU (left) and LV (right) SDE examples.

F.4 MODEL ARCHITECTURE

To demonstrate network efficiency, we compare a plain MLP, a positional encoding MLP, and a
Gaussian encoding MLP on Four well system in Figure S.13. Both Fourier-feature models (Posi-
tional and Gaussian) converge faster than the plain MLP (Base). Three models show comparable
estimation accuracy during evaluation.
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Figure S.13: Network ablation on the 1D Four well system. Left: Training curve as a function
of training steps across different networks. Right: Sum of the first 5 eigenvalues as a function of
lagtime across different networks.
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