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Abstract
Simulating human reasoning in open-ended tasks has long been a central aspira-1

tion in AI and cognitive science. While large language models now approximate2

human responses at scale, they remain tuned to population-level consensus, often3

erasing the individuality of reasoning styles and belief trajectories. To advance4

the vision of more human-like reasoning in machines, we introduce HugAgent5

(HUman-Grounded AGENT Benchmark), which rethinks human reasoning simula-6

tion along three dimensions: (i) from averaged to individualized reasoning, (ii)7

from behavioral mimicry to cognitive alignment, and (iii) from vignette-based8

to open-ended data. The benchmark evaluates whether a model can predict a spe-9

cific person’s behavioral responses and the underlying reasoning dynamics in10

out-of-distribution scenarios, given partial evidence of their prior views. HugAgent11

adopts a dual-track design: a human track that automates and scales the think-aloud12

method to collect ecologically valid human reasoning data and a synthetic track for13

further scalability and systematic stress testing. This architecture enables low-cost,14

extensible expansion to new tasks and populations. Experiments with state-of-15

the-art LLMs reveal persistent adaptation gaps, positioning HugAgent as the first16

extensible benchmark for aligning machine reasoning with the individuality of17

human thought. The benchmark, along with its complete data collection pipeline18

and companion chatbot, is open-sourced as HugAgent and TraceYourThinking.19

Figure 1: Illustration of HugAgent operationalizing “average-to-individual” reasoning adaptation: a
gray robot repeats population consensus, then observes an individual’s nuanced reasoning, gradually
aligns with that individual (turning colorful), and finally adapts under counterfactual updates (e.g.,
with eco-lamps). This illustrates the shift from consensus mimicry to individualized reasoning.

1 Introduction20

Background. Large language models (LLMs) are increasingly used as social simulators—to role-21

play individuals, build digital twins, and generate synthetic (‘silicon’) samples for testing social22

and policy ideas[1–4]. These systems promise scalability and accessibility: instead of recruiting23

thousands of people, researchers and practitioners can use LLMs to approximate human perspectives24

at scale. Yet because LLMs are pretrained on population-level corpora, they tend to collapse into an25

“average voice,” capturing consensus patterns while erasing the individuality of personal histories,26

beliefs, and reasoning styles[5–7].27

This paper asks a core question: can LLMs move from simulating the average to28

simulating the individual?29
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In other words, can they predict how a specific person would think, believe, and reason in new30

scenarios, given evidence of their past views? We formalize this broad challenge as average-to-31

individual reasoning adaptation, a measurable task that targets intra-individual fidelity in human32

simulation(formally defined in Section 2).33

Motivation. Current benchmarks fail to capture this ability, across three key dimensions. 1 Intra-34

agent vs. inter-agent fidelity. Existing pluralistic alignment benchmarks probe group dynamics35

and social influence[8], but neglect whether models can faithfully reproduce reasoning within a36

single agent, which is crucial for identity-consistent modeling. 2 Reasoning traces vs. behavioral37

outcomes. Large-scale “digital twin” datasets such as Agent Bank [1] and Twin-2K-500 [9] primarily38

assess static behavioral outcomes, but not the evolving reasoning trajectories of a single individual,39

which are essential for credible social simulation [10]. 3 Open-ended vs. vignettes. Commonsense40

and social reasoning benchmarks (e.g., SocialIQA, ATOMIC) often reduce diverse answers to a41

single ground truth [11, 12]. Opinion-oriented datasets likewise emphasize aggregate patterns over42

individual variation [2, 6]. Theory-of-Mind style tests typically rely on short vignettes with designer43

labels [13, 14], which limits ecological validity and overlooks first-person reasoning traces that could44

serve as a richer gold standard [15].45

Methodology. Motivated by these gaps, we introduce HugAgent, a benchmark that targets intra-46

agent fidelity by operationalizing average-to-individual reasoning adaptation as a measurable task.47

For Dimension 1 , HugAgent shifts the granularity from inter-agent to intra-agent fidelity: given a48

person’s profile and reasoning history, a model must predict both their current belief state and how49

it would evolve when presented with new counterfactual evidence. In Dimension 2 , HugAgent50

advances beyond static outcomes toward reasoning trajectories. It collects first-person, out-loud51

self-reports as gold-standard reasoning traces. These traces offer a deeper target for prediction than52

the choice outcomes or survey responses typically captured in lab experiments. To address Dimension53

3 , instead of relying on vignette-style benchmarks, HugAgent builds evaluation around open-ended54

contexts. We curated real-world topics, beginning with socially and politically controversial issues55

that introduce inherent conflicts. Through sustained follow-up questions, the benchmark probes56

participants’ deliberate, System 2 style reasoning[16, 17], transforming the dataset from toy settings57

into complex, open-ended domains. For a broader discussion of prior work on personalization, social58

reasoning, and user modeling in LLMs, we refer readers to Appendix A.59

To build such a benchmark at scale while retaining ecological validity(i.e., the extent to which findings60

reflect reasoning as it occurs in real-world contexts), HugAgent combines two complementary tracks.61

A synthetic track provides large, controlled datasets where belief shifts and reasoning paths can62

be systematically manipulated[18, 19]. A human-grounded track applies the same protocol to real63

human participants, yielding data anchored in individual variation[20].64

Contributions. Our contributions are fourfold:65

• What does it mean to adapt from the average to the individual? We formalize average-to-66

individual reasoning adaptation as a measurable task: predicting an individual’s beliefs and67

reasoning trajectory from partial self-reported data, rather than collapsing variation into an68

“average” label.69

• How well do today’s models perform? We introduce HugAgent, a dual-track benchmark70

(synthetic + human) that evaluates both Belief State Inference and Belief Dynamics Update.71

Initial experiments with state-of-the-art LLMs provide baseline results and reveal adaptation gaps.72

https://anonymous.4open.science/r/HugAgent73

• Where do they fail, and what can improve? Building on these evaluations, we conduct detailed74

error analyses across synthetic agents, human participants, and state-of-the-art LLMs. This75

uncovers recurring failure modes and points to concrete avenues for alignment.76

• How can such evaluation scale and persist? We release the entire pipeline as open source,77

including a semi-structured interview chatbot that elicits fine-grained, “out-loud” reasoning78

data on arbitrary topics. This provides the community with previously lacking resources for79

capturing not only static answers but also the reasoning processes behind them, ensuring HugA-80

gent is reproducible, extensible, and sustainable. https://anonymous.4open.science/r/81

trace-your-thinking82

By making “average-to-individual” reasoning adaptation measurable, HugAgent takes a first step83

toward a reproducible framework for studying human simulation at the level of individual reasoning.84
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2 Problem Setup and Theoretical Framing85

We operationalize individual reasoning through belief states (snapshots) and belief dynamics (updates86

under interventions). This framing allows measurable comparison while respecting the diversity of87

human reasoning paths.88

2.1 Formalization89

We formalize average-to-individual reasoning adaptation by modeling an individual i’s belief state90

as a distribution over d factors91

bi ≡ Pϕi(s | Ci), s ∈ Rd,

with context Ci (e.g., demographics, transcripts). Under an intervention It, beliefs evolve via92

bt+1
i = U(bti, It), ∆bti = Ebt+1

i
[s]− Ebti

[s].

Tasks. (i) Belief State Inference: infer stance/factor polarity from Ci. (ii) Belief Dynamics Update:93

predict stance shifts ∆̂si given (Ci, I). Metrics include accuracy, mean absolute error (MAE), and94

rank correlation.95

2.2 Theoretical Anchors: Probabilistic and Causal Perspectives96

We use normative models as anchors rather than assumptions. (1) Bayesian / PLoT. Idealized revision97

follows Bayesian conditioning b′i(s) ∝ bi(s) p(I | s), interpreting language as probabilistic evidence98

over latent stances. We also draw on the Probabilistic Language of Thought (PLoT) framework[21],99

which extends Bayesian inference to compositional linguistic structures. (2) Structural Causal Mod-100

els (SCM). Interventions act as do(I) on a causal graph of values/reasons, yielding counterfactual101

belief shifts E[s | do(I)]. We additionally represent a person’s value–reason structure as a signed102

directed graph Gi; we hypothesize that similarity between such graphs (e.g., via graph edit distance103

or learned embeddings) may predict cross-domain transfer, motivating our Hypothesis H2 and left as104

future work. Human reasoning deviates from these ideals; the anchors provide principled baselines105

for analysis.106

2.3 Guiding Hypotheses107

Grounding HugAgent in theory enables us to frame four guiding hypotheses that serve as lenses for108

interpreting empirical results, rather than assumptions to be fully verified:109

• H1 (Intra-individual consistency): With sufficient context (e.g., demographic features or prior110

transcripts), LLMs can stably capture an individual’s belief state.111

• H2 (Cross-domain transfer bound): Reasoning patterns transfer partially across domains, and112

accuracy under domain transfer is significantly lower than in-domain performance.113

• H3 (Population prior reliance): Without individual context, LLMs default to global population114

priors rather than individual-specific cues.115

• H4 (Context information gain): Prediction accuracy increases monotonically with context length,116

until saturation.117

These hypotheses move the benchmark beyond performance reporting: they test structural claims118

about how LLMs approximate, or fail to approximate the individuality of human reasoning.119

Validation roadmap. To substantiate these hypotheses, we highlight four key control experiments120

that serve as evidence of individuality; later sections return to each in detail.121

What counts as evidence of individuality? (control experiments)

• Population Prior Baseline – predict only from aggregate distributions (see Sec. 6.1).
• Identity Shuffle Control – shuffle person–context pairs (see Sec. 6.2).
• Per-Person Leave-One-Out – use partial history to predict held-out responses (see Sec. 4.2).
• Context-Length Ablation – vary context size to test information gain (see Sec. 5).

122
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3 HugAgent Benchmark123

Grounded in the theoretical setup in Section 2, we now introduce HugAgent, which translates these124

principles into concrete tasks (Sec. 3.2), a scalable data collection pipeline (Sec. 3.3), and evaluation125

protocols (Sec. 3.5).126

Figure 2: Two benchmark tasks. Task 1 (Belief State Inference) infers stance and reasons from
prior context; Task 2 (Belief Dynamics Update) predicts stance shifts and its reasoning under new
evidence.

3.1 Design Principles127

• Open-ended but deeper. Emphasize depth over breadth: semi-structured dialogue with targeted128

follow-ups surfaces individuality while avoiding over-scaffolding; ground truth comes from129

self-reports [22, 20, 1].130

• Two observable proxies. We evaluate (i) belief state inference and (ii) belief dynamics up-131

date—tractable targets that avoid requiring exact trace imitation; cf. proxy-label benchmarks132

[23–25].133

• Dual track. Human interviews provide ecological realism; synthetic agents provide controlled134

stress tests via scripted causal belief graphs—preventing circularity and enabling scale.135

• Human ceiling. Test–retest reliability defines the upper bound, aligning with psychology standards136

[26, 27] and recent large-scale simulations [9, 1].137

See Appendix K for extended discussion.138

3.2 Task Definition139

We formalize reasoning adaptation as predicting how an individual’s belief state changes under new140

evidence.141

Belief representation. A belief at time t is bt = (st,wt), where st ∈ {1, . . . , 10} is a stance score142

and wt is a distribution over K reason weights.143

Belief update. Given evidence e, an update operator U produces bt+1 = U(bt, e). In humans, bt+1144

comes from self-reports; in synthetic agents, from scripted rules with known ground truth.145
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Tasks. We instantiate two tasks: (i) Belief State Inference: predict (st,wt) from prior responses.146

(ii) Belief Dynamics Update: predict (st+1,wt+1) given (bt, e). Figure 2 shows concrete examples147

of both tasks in HugAgent.148

Figure 3: HugAgent benchmark pipeline. Inputs (demographics, questionnaires, and transcripts) flow
through two components: a questionnaire that provides demographic anchors, stance baselines, and
counterfactual updates, and a semi-structured chatbot that elicits individualized reasoning. Together
these elements define two benchmark tasks: (i) belief state inference—recovering stance and factor
polarity from context, and (ii) belief dynamics update—predicting stance shifts and reweighting under
new evidence. (A) The chatbot maintains a causal belief network of factors, used to identify the most
critical nodes and edges for follow-up. (B) A question generator derives targeted, context-specific
probes from this network to structure the dialogue.

3.3 Building HugAgent: Scalable Elicitation of Individual Reasoning149

HugAgent is built through a two–stage pipeline (Figure 3).150

1. The questionnaire stage collects demographics, a baseline stance (st, 1–10), reason weights (wt,151

1–5), and counterfactual interventions with updated stances and reasons. These structured responses152

provide gold labels for Belief Dynamics Update and serve as anchors for aligning free text to factors.153

2. The chatbot stage elicits 8–20 question–answer pairs through semi-strutctured interview, combin-154

ing open-ended elaborations (Context QAs) with concise polarity judgments (GT QAs). This setup155

captures both participants’ belief, reasoning styles and explicit preferences on each decision factor.156

Each transcript thus supports both benchmark tasks: Belief State Inference (using Context and GT157

QAs) and Belief Dynamics Update (using Context QAs, questionnaire responses upon interventions).158

Survey-provided updates are never revealed in dialogue, preventing leakage.159

Finally, we establish a human reliability ceiling through test–retest elicitation of a subset of items,160

reporting intra-individual consistency with Intraclass Correlation (ICC) and quadratic-weighted161

kappa (QWK) with 95% confidence intervals. Further design choices, intervention phrasing, prompt162

templates, and quality-control rules are detailed in Appendix K.163

3.4 Dataset Statistics164

Applying this pipeline yields HugAgent, a dataset spanning three socially salient domains: healthcare,165

surveillance, and zoning. These domains were chosen for their ecological validity, diversity of166

viewpoints, and internally rich trade-offs (e.g., affordability vs. neighborhood character, privacy vs.167

safety).168
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Human track. From over 120 participants, we retained 54 whose survey and interview data met169

predefined quality-control criteria (see Appendix M). Task 1 (belief state inference) contains 356170

labeled questions, and Task 2 (belief dynamics update) contains 1,386 items, distributed as shown in171

Table 1.172

Synthetic track. We construct a parallel synthetic track by assigning each agent a scripted causal173

belief network (CBN) that defines its reasoning structure and deterministic update rules. All syn-174

thetic agents follow the same survey and interview protocol as in the human track, allowing direct175

comparison under identical tasks. In total, the benchmark includes 500 synthetic agents, from which176

we use a stratified subset of 50 agents for computation and analysis. Unless otherwise specified, all177

experiments reported in this paper are conducted on this subset. Both the full and subset data are178

included in the benchmark release. Detailed construction procedures are provided in Appendix N.179

Human Track (N=54) Synthetic Track (N=500)

Task / Domain Health Surv. Zoning Total Health Surv. Zoning Total

Belief State Inf. 108 122 126 356 1,303 1,297 1,302 3,902
Belief Dyn. Update 472 364 550 1,386 3,888 2,610 3,818 10,316

Total Items 580 486 676 1,742 5,191 3,907 5,120 14,218

Table 1: Dataset statistics by task and domain. Human track (N=54 participants) provides ecological
validity; synthetic track (N=500 scripted agents) scales coverage.

3.5 Evaluation Protocols180

Finally, we highlight the evaluation protocols that ensure HugAgent’s utility as a scientific benchmark.181

182

Evaluation metrics. We evaluate belief state inference using accuracy, the proportion of exact183

matches with ground-truth labels. For belief dynamics update, we report four metrics: (i) accuracy,184

the proportion of predictions within a tolerance band of the true response (±1 for 5-point, ±2185

for 10-point scales); (ii) mean absolute error (MAE), the average magnitude of deviation from186

the ground truth, with all responses normalized to a 5-point scale for consistency; (iii) directional187

accuracy measures whether the predicted belief update matches the ground truth in direction(increase,188

decrease, or no change); and (iv) average to individual (ATI) score, following the GLUE [28] and189

SuperGLUE [29] scoring paradigm, we derive an overall score via hierarchical aggregation, where190

normalized task-specific metrics (accuracy, MAE, directional accuracy) are combined into belief191

dynamics update and averaged with belief state inference, with human and random guess performance192

used as upper and lower bounds for normalization. Formal definitions and computation details are193

given in Appendix Q.1.194

Leakage control. We masked attribution targets, drew interventions from external surveys, and195

presented each item independently with minimal-overlap prompts (see Appendix J.1 for templates).196

Human baselines. We re-contacted a subset of participants for a short-interval (14-day) test–retest197

study. Across all sessions, 54 participants contributed data. Of these, 18 completed the retest, and198

13 were retained following a demographic consistency check. Belief State Inference yielded an199

accuracy of 84.84% (SD = 8.90, 95% CI: [80.00, 89.68]). Belief Dynamics Update achieved an200

accuracy of 85.66% (SD = 7.66, 95% CI: [80.91, 90.40]) and a mean absolute error of 0.68 (SD201

= 0.20, 95% CI: [0.55, 0.80]). The directional accuracy was 88.92% (SD = 9.89, 95% CI: [82.09,202

96.24]). These scores establish a human consistency ceiling, as outlined in Section 3.1, against which203

model performance can be benchmarked.204

4 Main Results205

4.1 Baselines206

We compare models against clear anchors: (i) an upper bound defined by real human performance,207

measured through test–retest consistency (see Section 3.1); (ii) a lower bound defined by random208

guessing, reflecting chance performance; and (iii) a set of strong pretrained language models,209

including GPT, Gemini, LLaMA, and Qwen, which serve as high-performing but non-agentic baselines210

without explicit memory, personalization, or retrieval components.211
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To evaluate the role of agent-like structure in modeling belief reasoning, we further include two212

agent-style LLM baselines that incorporate memory or retrieval. The first is the Generative Agents213

baseline, reproduced following the setup of Park et al. [30], using Qwen2.5-32B-instruct as the214

base model. The second group includes two variants of retrieval-augmented generation (RAG).215

The first, RAG, follows the standard setup [31], replacing the original full QA context with the top-k216

retrieved QA pairs (k = 5). The second, RAG with Full Context, appends the retrieved QA pairs to217

the original input, allowing the model to jointly condition on both. This variant evaluates whether218

retrieval can serve as an auxiliary signal rather than a substitute for agent-specific context. Detailed219

settings and full results are provided in Appendix C.220

4.2 Overall Performance221

Tables 2 summarize performance. We evaluate using the metrics introduced in Section 3.5. For222

belief state inference, best-performing LLMs approach but do not match human accuracy, trailing223

by 4–6 points. Open-source LLaMA and Qwen rival GPT-4o, while smaller or less aligned models224

lag significantly. For belief dynamics update, gaps are larger: models frequently mispredict the225

direction of stance change or fail to adjust reason weights, yielding higher error than human baseline.226

Model
Belief State Inference Belief Dynamics Update

ATI (% ↑)Acc. (% ↑) Acc. (% ↑) MAE (↓) Dir. Acc. (% ↑)
Real Synth. Real Synth. Real Synth. Real Synth. Real

Human 84.84 — 85.66 — 0.68 — 88.92 — 100.00

OpenAI Models
GPT-4o 74.66±2.86 67.93±6.04 63.11±1.19 58.61±5.22 1.29±0.04 1.44±0.23 82.27±1.02 76.83±0.46 68.99±0.80

GPT-5-mini 75.30±2.13 62.78±9.63 58.21±2.41 57.25±5.78 1.43±0.08 1.47±0.22 77.02±2.02 73.69±3.76 63.44±2.25

o3-mini 75.12±4.49 69.67±8.87 64.54±4.91 56.48±7.42 1.22±0.12 1.45±0.26 71.29±2.87 64.34±4.24 62.84±1.82

Other Closed-Source Models
Gemini 2.0 Flash 69.95±6.01 59.66±5.73 60.55±3.19 54.73±7.52 1.35±0.03 1.48±0.25 83.31±0.19 68.58±0.00 61.73±0.20

DeepSeek-R1 75.43±0.94 70.75±6.00 64.88±2.94 61.16±2.82 1.29±0.03 1.38±0.19 79.69±0.91 76.20±1.10 68.91±1.11

Qwen-plus 77.57±1.27 67.81±3.65 58.93±2.45 55.29±8.40 1.40±0.05 1.49±0.26 77.17±0.61 75.82±4.48 67.26±0.94

Qwen-max 77.40±1.04 67.74±4.08 58.86±2.44 55.20±8.21 1.40±0.05 1.49±0.26 77.17±0.48 76.54±3.28 67.00±0.54

Open-Source Models
LLaMA 3.3 70B 76.39±4.33 71.74±7.73 67.57±4.08 58.35±6.17 1.24±0.08 1.49±0.25 79.56±0.36 74.93±2.48 71.47±0.28

Qwen2.5-32B-instr. 77.17±0.81 68.21±3.18 58.96±2.46 55.37±8.37 1.40±0.05 1.49±0.26 76.88±0.29 75.32±4.62 66.51±0.26

Qwen2.5-7B-instr. 77.18±1.61 67.81±3.32 58.82±2.38 55.33±8.35 1.40±0.04 1.49±0.26 77.12±0.80 74.95±4.38 66.63±1.31

Memory-Augmented Baselines
RAG1 75.46±3.01 63.06±8.68 51.90±1.42 51.85±7.92 1.57±0.05 1.56±0.27 72.25±0.57 66.70±2.71 57.06±0.94

RAG-FC1 77.56±1.20 72.82±3.74 59.97±1.44 59.34±4.67 1.39±0.04 1.45±0.21 76.80±0.80 76.81±1.53 67.43±0.65

Generative Agents1 76.19±0.96 73.48±3.82 58.22±2.51 55.43±7.63 1.40±0.05 1.49±0.26 76.13±2.45 82.76±0.36 64.29±1.87

Non-Learning Baselines
Global Majority 65.77±0.00 64.30±0.00 58.18±0.00 54.60±0.00 2.54±0.00 2.37±0.00 17.93±0.00 21.95±0.00 4.44±0.00

Random Guess 51.89±5.18 50.62±4.47 43.12±2.06 50.36±3.55 1.88±0.09 1.62±0.15 46.74±3.28 29.78±13.18 0.00±5.80

Table 2: Average results for both Belief State Inference and Belief Dynamics Update. Macro-averages
are reported as mean±std over 5 runs. Best-performing non-human (upper-bound) results in each
column are highlighted in bold.

5 Main Findings227

Finding 1: Preserving Identity Across Domains is Harder Than Expected228

Task Model Health → Surv Surv → Zone Zone → Health Avg

Belief State Inference (Accuracy % ↑) Qwen2.5-32B-instr. 53.52±1.52 58.69±1.10 55.08±1.20 55.76±2.54

GPT-4o 58.52±0.77 65.41±1.58 51.75±1.03 58.56±5.88

Belief Dynamics Update (Accuracy % ↑) Qwen2.5-32B-instr. 44.41±0.98 24.84±0.60 30.15±0.35 33.13±8.58

GPT-4o 49.49±0.87 42.47±0.50 41.96±0.30 44.64±3.60

Belief Dynamics Update (MAE ↓) Qwen2.5-32B-instr. 1.69±0.01 1.94±0.01 2.05±0.01 1.89±0.16

GPT-4o 1.55±0.01 1.60±0.00 1.71±0.00 1.62±0.07

Table 3: Cross-domain swap test: models are trained with QA context from one domain and evaluated
on another domain for the same participant. We report performance for Healthcare→ Surveillance,
Surveillance→ Zoning, Zoning→ Healthcare, and their average. Reported as mean ± std over 5
runs.

To evaluate whether models can generalize a person’s contextual information across domains, we229

conduct a cross-domain swap test. Each model is given QA context from one domain and evaluated on230

1RAG [31], RAG-FC = RAG with Full Context [31], Generative Agents [30].
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another domain for the same participant (for example, using context from Healthcare and testing on231

Surveillance). Based on Table 2, we selected GPT-4o and Qwen2.5-32B-instruct as representative232

models from two categories: closed-source SOTA and strong open-source baseline.233

Under cross-domain transfer, model performance degrades substantially compared to within-domain234

evaluation. GPT-4o achieves an average of 58.56% on belief state inference, compared to its within-235

domain score of 74.66%, while Qwen2.5-32B-instruct drops from 77.17% to 55.76%. In the236

Belief Dynamics Update task, GPT-4o declines from 63.11% to 44.64%. The degradation is most237

pronounced in belief dynamics update, where compounding errors accumulate across domains. These238

findings suggest that current models depend heavily on domain-specific linguistic and contextual cues,239

resulting in limited cross-domain reasoning transfer. This underscores the importance of evaluating240

within-person, cross-domain consistency as a key indicator of robust generalization, and suggests241

that improving transferability requires focusing on essential, domain-relevant context rather than242

surface-level correlations.243

Finding 2: More Context Doesn’t Always Help244

Model Context Belief State Inference (Accuracy % ↑) Belief Dynamics Update (Accuracy % ↑) Belief Dynamics Update (MAE ↓)

Health Surv. Zone Avg Health Surv. Zone Avg Health Surv. Zone Avg

GPT-4o
5 QAs 68.89±0.51 73.93±1.07 72.22±0.00 71.68±2.26 61.48±0.35 67.80±0.45 63.27±0.36 64.19±2.78 1.26±0.01 1.19±0.01 1.24±0.00 1.23±0.03
10 QAs 67.59±1.73 72.30±0.37 72.06±0.66 70.65±2.46 62.29±0.33 64.56±0.39 65.82±0.39 64.22±1.55 1.28±0.00 1.26±0.01 1.21±0.01 1.25±0.03
20+ QAs 71.11±0.77 75.25±0.90 77.62±0.35 74.66±2.86 61.57±0.19 63.74±0.58 64.04±0.20 63.11±1.19 1.27±0.01 1.35±0.01 1.26±0.01 1.29±0.04

Gemini 2.0 Flash
5 QAs 61.30±0.41 65.25±0.45 65.08±0.00 63.87±1.92 59.70±0.09 65.71±0.30 62.25±0.21 62.56±2.56 1.36±0.00 1.23±0.00 1.34±0.00 1.31±0.06
10 QAs 60.19±0.65 64.75±0.00 71.27±0.35 65.40±4.72 58.22±0.28 62.58±0.23 65.20±0.16 62.00±2.99 1.37±0.00 1.30±0.01 1.26±0.00 1.31±0.05
20+ QAs 63.89±0.00 68.20±0.37 77.78±0.00 69.95±6.01 56.23±0.12 62.25±0.37 63.16±0.10 60.55±3.19 1.39±0.00 1.33±0.00 1.33±0.00 1.35±0.03

Qwen2.5-32B-instr.
5 QAs 68.33±1.21 73.11±2.68 65.08±0.56 68.84±3.77 59.45±0.55 62.53±0.57 63.38±0.69 61.79±1.84 1.36±0.00 1.31±0.01 1.27±0.01 1.31±0.04
10 QAs 75.37±4.47 75.90±1.80 67.78±1.06 73.02±4.66 58.52±0.74 60.66±0.60 63.02±0.47 60.73±1.99 1.41±0.01 1.36±0.01 1.27±0.01 1.35±0.06
20+ QAs 77.96±0.41 76.56±0.45 76.98±0.79 77.17±0.81 56.82±0.41 57.80±0.25 62.25±0.16 58.96±2.46 1.43±0.00 1.43±0.01 1.33±0.01 1.40±0.05

Table 4: Question masking / length scaling for both Belief State Inference and Belief Dynamics
Update. Reported as mean ± std over 5 runs. Best results per column are highlighted in bold.

To examine how context length influences model performance across tasks, we varied the number245

of Context QAs (5, 10, 20+). Based on Table 2, we selected GPT-4o, Gemini2.0Flash, and246

Qwen2.5-32B-instruct as representative models from three categories: closed-source SOTA,247

lightweight efficient, and strong open-source baseline.248

The core result is that belief state inference accuracy rises monotonically with additional dialogue and249

saturates at 20+ questions, whereas belief dynamics update accuracy peaks at 5–10 questions before250

declining. Longer context provide richer cues for recovering belief states but also introduce noise that251

impairs belief updating. This asymmetry suggests that context length benefits belief state inference252

through scale, while belief dynamics update is vulnerable to cognitive overload, likely disrupting253

System2 reasoning and prompting fallback to heuristic shortcuts[16, 17]. We next investigate whether254

these context-length effects stem from surface-level pattern matching rather than genuine identity255

modeling.256

6 Why It Happens: Diagnostic Ablations257

Section 5 revealed a consistent failure to preserve identity across domains. Here we ask why: is it258

because models never learned to use personal information, or because they use it in an associative,259

non-generalizable way? To answer this, we conduct two diagnostic ablations.260

6.1 Population Prior vs. Individual Context261

Task Method Accuracy (% ↑) MAE (↓)

Healthcare Surveillance Zoning Avg Healthcare Surveillance Zoning Avg

Belief State Inference

GPT-4o (No-Context) 55.93±1.40 66.07±1.37 53.49±1.99 58.49±5.83 N/A
GPT-4o (Full-Context) 71.11±0.77 75.25±0.90 77.62±0.35 74.66±2.86 N/A
Qwen2.5-32B-instr. (No-Context) 45.19±1.66 59.02±1.16 48.57±1.30 50.92±6.23 N/A
Qwen2.5-32B-instr. (Full-Context) 77.96±0.41 76.56±0.45 76.98±0.79 77.17±0.81 N/A

Belief Dynamics Update

GPT-4o (No-Context) 34.62±0.68 48.24±0.31 36.62±0.52 39.83±6.24 1.77±0.01 1.51±0.01 1.84±0.01 1.70±0.15
GPT-4o (Full-Context) 61.57±0.19 63.74±0.58 64.04±0.20 63.11±1.19 1.27±0.01 1.35±0.01 1.26±0.01 1.29±0.04
Qwen2.5-32B-instr. (No-Context) 34.58±0.55 33.90±0.60 27.89±0.38 32.12±3.15 1.89±0.01 1.75±0.01 1.99±0.01 1.88±0.10
Qwen2.5-32B-instr. (Full-Context) 56.82±0.41 57.80±0.25 62.25±0.16 58.96±2.46 1.43±0.00 1.43±0.01 1.33±0.01 1.40±0.05

Table 5: Comparison of No-Context (population prior) and Full-Context (with individual transcripts)
settings. Reported as mean ± std over 5 runs.

We first test whether models improve their predictive performance when given individual context,262

using a population-level prior as the baseline. The No-Context setting provides only demographic263

background, while the Full-Context setting additionally includes transcripts and survey answers. As264

shown in Table 5, GPT-4o achieves substantially higher performance when provided with individual265

context: its belief-state inference accuracy increases from 58.49% with demographic priors to266
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74.66% with full context, and its belief-dynamics-update accuracy from 39.83% to 63.11%. The267

consistent gains in Full-Context indicate that models leverage individual cues rather than popula-268

tion priors, showing that the benchmark captures identity-sensitive reasoning rather than general269

demographic trends.270

6.2 Cross-Person Generalization271

Method Belief State Inference Belief Dynamics Update
Accuracy (% ↑) Accuracy (% ↑) MAE (↓) Dir. Acc. (% ↑)

GPT-4o 54.44±6.37 39.30±2.84 1.93±0.10 63.56±0.76
Qwen2.5-32B-instr. 60.44±3.22 38.16±3.28 2.02±0.13 69.17±1.06

Table 6: Cross-person swap test: QA context from one participant is used to predict another partici-
pant’s responses within the same domain. Belief State Inference reports accuracy; Belief Dynamics
Update reports accuracy, MAE, and directional accuracy (Dir. Acc.). Results are reported as mean ±
std over 5 runs, averaged across domains.

We then test whether the observed gains reflect genuine identity modeling or simply the benefit272

of having richer, more fine-grained context. In this Cross-Person setting, QA context from one273

participant is used to predict another’s responses within the same domain. As shown in Table 6,274

performance drops sharply, e.g., GPT-4o achieves only 39.30% belief-dynamics-update accuracy with275

an MAE of 1.93, showing that models fail to generalize when identity cues are mismatched. These276

results suggest that improvements in the Full-Context setting arise from learning identity-specific277

patterns rather than simply benefiting from additional contextual detail.278

Summary. Together with the findings in Section 5, these ablations reveal that current models’279

failure to preserve identity across domains is not because they ignore individual context in inference,280

but rather implies a reliance on associative context matching instead of identity-consistent reasoning.281

7 Discussion and Open Challenges282

Topic selection is not neutral. What we ask shapes who a model appears to simulate. Highly283

controversial topics elicit richer value trade-offs and sharper updates; homogeneous topics compress284

variation and inflate apparent accuracy. We propose treating topic choice as an explicit experimental285

variable: (i) curate pairs of domains with high vs. low opinion dispersion; (ii) report results stratified286

by a simple controversy index C (e.g., stance variance + polarity entropy) so scores are comparable287

across corpora; (iii) add dilemma framings (e.g., fairness vs. safety) to probe value conflicts rather288

than single-axis opinions. Practically, this turns “topic selection” from a hidden confound into a289

controlled factor that the community can measure and replicate.290

Comparative benchmarks, transfer, and ethics-by-design. Personalization that succeeds only291

within-domain but fails across domains is not robust. We propose a comparative benchmark292

protocol that (i) pairs controversial vs. homogeneous topics, (ii) contrasts intuition vs. deliberation,293

and (iii) evaluates within-person, cross-domain transfer as a core metric. Preregistered topic panels294

and per-item metadata (controversy index C, tension flags, latency) will aid comparability. Ethically,295

tension induction must be consentful and minimal, with disclosed framings, capped length, and296

opt-out. The challenge is designing evaluation that respects persons while probing the hard cases297

where individuality matters most.298

8 Limitations and Conclusion299

Our study is constrained by a modest human sample due to resource limits, yet this is complemented300

by a synthetic track that provides controlled variation and an open, end-to-end pipeline for collecting301

and processing human subject data. This design enables the community to expand the dataset302

both in domain coverage and scale at minimal cost. Even so, HugAgent offers a benchmark for303

average-to-individual reasoning adaptation, uniting ecological validity with scalability. Analyses304

reveal structured failure modes in current LLMs, positioning HugAgent as a reproducible testbed for305

evaluating how well foundation models can represent human diversity at the individual level when306

acting as human proxies, and for extending the notion of trustworthiness from behavioral imitation307

to cognitive reasoning fidelity.308
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A Related Work566

Social Simulation, Digital Twins, and Population Panels. A growing line of work simulates567

societies with LLM agents. Early “silicon samples” use LMs to approximate human samples in568

stylized tasks [2], while Generative Agents extend to rich daily-life environments with memory and569

social coordination [30]. This has scaled to population panels—e.g., simulations of 1,000 people [1]570

and digital-twin datasets such as Twin-2K-500 [9]—as well as community/role-play platforms for571

real-time social interaction [32] and personification benchmarks [19, 3]. These approaches provide572

breadth and largely static outcome measures; HugAgent adds depth via think-aloud transcripts that573

trace reasoning trajectories, counterfactual interventions to test belief updates, and a human test–retest574

reliability ceiling to anchor claims [33, 26, 27].575

Social Reasoning and Theory of Mind. Work on Theory of Mind (ToM) in AI draws from576

developmental psychology tests such as the false-belief task [13], Sally-Anne [34], and Strange577

Stories [35], later reformulated as computational tasks [36, 37]. Scaled language models brought578

ToM into broad benchmarks [38, 39, 20, 14] and inspired synthetic testbeds such as BigToM [40],579

HI-TOM [41], FANToM [42], and MMToM-QA [43]. More recent directions ground ToM in580

dialogues and social contexts [44, 12, 45], or frame it through Bayesian belief attribution [46]. Yet581

these benchmarks remain synthetic, vignette-based, and decontextualized, missing ecological and582

demographic variability [5, 47].583

Parallel lines in AI reasoning emphasize world and agent models: causal world modeling [48–50]584

and the LAW framework, which coordinates world, agent, and language models [51]. Within this585

framing, HugAgent extends ToM evaluation by asking whether models can map natural language586

into personalized belief states and update them consistently under interventions, bridging synthetic587

ToM tasks and socially grounded reasoning.588
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B Auxiliary Dataset589

Our core benchmark is designed around interview transcripts, where each data point consists of590

demographic information, a context in the form of question–answer pairs, and ground-truth first-591

person self-reports. This setup defines a clean belief inference language task: given demographic592

cues and conversational context, models must infer individual beliefs and predict reactions.593

To complement this benchmark, we also release an auxiliary demographics-only dataset (39 users,594

each with survey responses and demographic attributes). While these records do not support direct595

belief inference, they enable principled baselines and transfer settings. Concretely, we implemented a596

demographic–linear regression model based on survey responses, and further tested Qwen-Plus on597

the main belief dynamics update task with auxiliary supervision from a subset of 15 users. Results598

from both the demographic-linear baseline and the augmented Qwen-Plus setting are reported in599

Table 7, illustrating how population-level priors can inform personalized inference.600

Table 7: Results on the auxiliary demographics-only setting. Comparison of a demographic-only
prior baseline and Qwen-Plus with auxiliary supervision across three domains. Higher accuracy and
lower MAE indicate better performance.

Domain Demographic-only prior Qwen-Plus w/ auxiliary data

Accuracy MAE Accuracy MAE

Healthcare 0.130 2.954 0.524 1.792
Zoning 0.202 2.954 0.474 1.765
Surveillance 0.081 2.797 0.589 1.819
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C HugAgent Benchmark Details601

We introduce the HugAgent Benchmark (HUman-Grounded Theory of Mind), a new evaluation suite602

for reasoning fidelity in generative agents. HugAgent formalizes the task of causal BN reconstruction603

from human interviews, and provides (1) a dataset of annotated causal belief graphs derived from604

natural language Q&A, and (2) multi-level evaluation metrics (node, edge, motif) to assess structural605

alignment between human and agent reasoning.606

Unlike prior benchmarks focused on behavioral imitation or chain-of-thought generation, HugAgent607

directly evaluates whether agents can reconstruct the latent causal structures that underlie human608

judgments. This benchmark responds to recent concerns that LLM-based agents risk flattening609

individual identity representations by grounding evaluation in structured, human-annotated causal610

beliefs.611

Data schema and cognitive grounding612

Inspired by cognitive science, we use causal BNs to represent the reasoning structures underlying613

human decision-making. Rather than modeling surface discourse, our schema captures latent causal614

dynamics by explicitly linking belief variables, affective states, and behavioral intentions in a directed615

graph. This design supports psychologically grounded and structurally coherent representations of616

human reasoning.617

Schema Design Each participant’s causal BN is represented as a structured JSON object composed618

of three main components: nodes, edges, and qa_history. This schema is designed to encode619

causal beliefs extracted from interviews, with each element indexed by a unique ID to enable motif620

analysis, simulation, and evidence tracing.621

Nodes Each node represents a belief concept and includes a label, a model-generated confidence622

score (ranging from 0.0 to 1.0), and a list of source_qa IDs that support the node’s existence. Nodes623

also track their incoming_edges and outgoing_edges for efficient graph traversal.624

Edges Edges capture directed causal links between nodes. Each edge includes a source node ID,625

a target node ID, and an aggregate_confidence score reflecting the model’s overall belief in626

the causal connection. A modifier (in the range [−1.0, 1.0]) represents the direction and strength of627

influence: positive values indicate causal support, negative values indicate inhibition. Each edge is628

backed by a list of individual QA-based evidence entries with associated confidence scores.629

QA History The qa_history component stores raw interview responses, mapping each QA pair630

to its corresponding extracted causal relations. Each QA entry includes the original question and631

answer texts, as well as a list of extracted_pairs, where each pair links a source node to a target632

node with a confidence score.633

This data structure supports fine-grained analysis of belief formation, causal reasoning, and evidence634

provenance across participants.635

Dataset Construction636

We collected over 100 interviews from participants recruited through the Prolific platform. Top-637

ics—such as urban upzoning, surveillance cameras, and universal healthcare—were chosen to elicit638

reflective, ecologically valid reasoning.639

Transcript Collection640

To construct structured causal BNs from qualitative interviews, we developed a semi-structured,641

cognitively grounded elicitation framework. This framework guides LLMs in extracting inter-642

pretable causal structures from natural language dialogue and generating follow-up questions that643

balance open-ended exploration with targeted inquiry [52, 53].644

Human Annotation Protocol645

We asked annotators to label causal BNs using soft labels, capturing graded beliefs and allowing for646

variation across annotators. Our human-in-the-loop annotation tool supports annotators in assigning647

confidence scores to each node and edge[54].648
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Annotators were also recruited from Prolific[47]. During selection, we followed three principles: (1)649

double-blind annotation, (2) matching annotators with similar backgrounds, and (3) using shared650

guidelines to maintain consistency. Annotation instructions were carefully designed to ensure651

reproducibility and interpretability.652

Evaluation Settings653

All models are evaluated under a consistent inference setup. We fix the random seed to 42 and set654

the temperature to 0.1 for all experiments. Models from the GPT and Gemini series are executed in655

batch inference mode, while all other models use real-time completion inference. All outputs are656

constrained using function calling to ensure structured and valid responses. Prompts adopt a pure657

in-context learning format without any examples or reasoning demonstrations.658

For the Generative Agents setting, following [30], we employ Qwen2.5-32B-instruct to analyze659

the dialogue transcript and generate three high-level expert reflections that serve as auxiliary reasoning660

cues during inference. For the two retrieval-augmented variants of RAG[31], we adopt a TF-IDF661

retriever to identify the top five most relevant QA pairs.662

Human Baselines663

We re-contacted a subset of participants for a short-interval (14-day) test–retest study. Across all664

sessions, 54 participants contributed data. Of these, 18 completed the retest, and 13 were retained665

following a demographic consistency check.666

Belief State Inference yielded an accuracy of 84.84% (SD = 8.90, 95% CI: [80.00, 89.68]). By topic,667

accuracies were 87.50% for Surveillance (SD = 8.29, 95% CI: [82.81, 92.19]), 81.54% for Zoning668

(SD = 15.11, 95% CI: [73.32, 89.75]), and 84.53% for Healthcare (SD = 13.90, 95% CI: [76.97,669

92.09]).670

Belief Dynamics Update achieved an accuracy of 85.66% (SD = 7.66, 95% CI: [80.91, 90.40]) and a671

mean absolute error of 0.68 (SD = 0.20, 95% CI: [0.55, 0.80]). Across topics, accuracy was 85.75%672

for Healthcare (SD = 10.68), 85.33% for Surveillance (SD = 12.98), and 85.86% for Zoning (SD673

= 10.08). Corresponding mean absolute errors were 0.66 (SD = 0.28, 95% CI: [0.49, 0.83]) for674

Healthcare, 0.72 (SD = 0.35, 95% CI: [0.50, 0.93]) for Surveillance, and 0.67 (SD = 0.28, 95% CI:675

[0.49, 0.84]) for Zoning.676

In the Belief Dynamics Update tasks, we decompose directional accuracy into two components:677

(1) change detection—the model’s ability to detect whether a belief change has occurred, and (2)678

direction adjustment—the model’s ability to predict the direction of that change (increase, decrease,679

or no change) (detailed definitions are provided in Appendix Q.1).680

Overall, the directional accuracy was 88.92% (SD = 9.89, 95% CI: [82.09, 96.24]). The results681

across topics are summarized as follows:682

• Healthcare: change detection = 80.00% (SD = 25.82, 95% CI: [61.53, 98.47]); direction adjust-683

ment = 96.67% (SD = 10.54, 95% CI: [89.13, 100.00]); directional accuracy = 91.67% (SD =684

11.06, 95% CI: [83.76, 99.58]).685

• Surveillance: change detection = 90.00% (SD = 16.10, 95% CI: [78.48, 100.00]); direction686

adjustment = 88.33% (SD = 19.33, 95% CI: [74.51, 100.00]); directional accuracy = 88.83% (SD687

= 15.15, 95% CI: [77.99, 99.67]).688

• Zoning: change detection = 80.00% (SD = 23.31, 95% CI: [63.33, 96.67]); direction adjustment689

= 90.00% (SD = 21.08, 95% CI: [74.92, 100.00]); directional accuracy = 87.00% (SD = 18.14,690

95% CI: [74.03, 99.97]).691
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Full Results692

Model
Human Dataset (N=54)

Belief State Inference Belief Dynamics Update
Acc. (% ↑) Acc. (% ↑) MAE (↓)

Health Surveil. Zoning Health Surveil. Zoning Health Surveil. Zoning

Human 84.53 87.50 81.54 85.75 85.33 85.86 0.66 0.72 0.67

OpenAI Models
GPT-4o 71.11±0.77 75.25±0.90 77.62±0.35 61.57±0.19 63.74±0.58 64.04±0.20 1.27±0.01 1.35±0.01 1.26±0.01

GPT-5-mini 73.15±2.36 76.89±0.90 75.87±0.43 59.92±1.05 55.16±1.09 59.56±0.73 1.37±0.02 1.54±0.02 1.40±0.01

o3-mini 69.26±1.21 77.38±1.70 78.73±0.87 60.08±0.28 62.53±1.16 71.02±0.79 1.31±0.02 1.29±0.03 1.07±0.01

Other Closed-Source Models
Gemini 2.0 Flash 63.89±0.00 68.20±0.37 77.78±0.00 56.23±0.12 62.25±0.37 63.16±0.10 1.39±0.00 1.33±0.00 1.33±0.00

DeepSeek-R1-0528 76.11±0.41 75.41±1.16 74.76±0.66 61.44±0.58 68.30±0.63 64.91±0.41 1.33±0.00 1.27±0.02 1.26±0.01

Qwen-plus_2025-07-28 78.70±0.65 76.39±1.22 77.62±0.66 56.74±0.59 57.86±0.15 62.18±0.18 1.44±0.01 1.43±0.01 1.34±0.00

Qwen-max_2024-10-15 78.52±0.77 76.39±0.37 77.30±0.43 56.78±0.64 57.69±0.27 62.11±0.35 1.43±0.01 1.44±0.01 1.34±0.00

Open-Source Models
LLaMA_3.3_70B 70.74±0.51 80.66±0.45 77.78±0.00 64.28±0.38 65.33±0.23 73.09±0.31 1.31±0.01 1.29±0.01 1.14±0.01

Qwen2.5-32B-instr. 77.96±0.41 76.56±0.45 76.98±0.79 56.82±0.41 57.80±0.25 62.25±0.16 1.43±0.00 1.43±0.01 1.33±0.01

Qwen2.5-7B-instr 78.33±0.51 75.74±2.06 77.46±0.43 56.82±0.41 57.64±0.45 62.00±0.34 1.43±0.01 1.43±0.01 1.34±0.01

Memory-Augmented Baselines
RAG1 71.67±0.51 78.36±1.37 76.35±0.35 50.64±0.58 53.68±0.60 51.38±0.24 1.60±0.01 1.50±0.00 1.60±0.00

RAG-FC1 77.22±0.83 76.72±0.93 78.73±0.87 58.73±0.55 59.34±0.34 61.85±0.15 1.43±0.01 1.41±0.01 1.33±0.01

Generative Agents2 76.11±0.41 77.21±0.37 75.24±0.66 57.67±0.76 55.66±0.69 61.35±0.38 1.43±0.01 1.44±0.01 1.34±0.00

Table 8: Results on Human dataset for belief state inference and belief dynamics update tasks across
three policy topics (Health, Surveillance, Zoning). Values are mean±std over 5 runs. For belief
dynamics update, both Accuracy and MAE are reported separately. Best non-human results per
column are in bold.

Model
Synthetic Dataset (N=50)

Belief State Inference Belief Dynamics Update
Acc. (% ↑) Acc. (% ↑) MAE (↓)

Health Surveil. Zoning Health Surveil. Zoning Health Surveil. Zoning

OpenAI Models
GPT-4o 60.76±0.00 75.00±0.77 68.03±0.58 52.71±0.29 65.00±0.35 58.11±0.48 1.72±0.00 1.18±0.01 1.41±0.01

GPT-5-mini 50.38±1.88 72.39±1.24 53.61±26.80 51.09±0.91 64.44±0.46 56.23±1.63 1.74±0.01 1.21±0.02 1.46±0.02

o3-mini 58.23±1.55 78.48±1.19 72.30±1.47 46.90±0.81 58.46±0.28 64.07±0.37 1.80±0.02 1.29±0.00 1.26±0.01

Other Closed-Source Models
Gemini 2.0 Flash 51.90±0.00 63.48±1.24 63.61±0.45 45.28±0.19 62.96±0.00 55.93±0.22 1.77±0.00 1.18±0.00 1.49±0.00

DeepSeek-R1-0528 62.78±1.13 75.87±1.42 73.61±0.69 60.52±0.18 64.75±0.40 58.21±0.45 1.59±0.01 1.15±0.01 1.40±0.01

Qwen-plus_2025-07-28 63.80±1.44 67.83±1.97 71.80±0.73 45.11±0.37 64.94±0.17 55.83±0.53 1.80±0.00 1.18±0.01 1.50±0.01

Qwen-max_2024-10-15 62.78±2.12 68.48±0.00 71.97±0.37 45.20±0.44 64.57±0.14 55.83±0.46 1.80±0.00 1.18±0.01 1.50±0.01

Open-Source Models
LLaMA_3.3_70B 61.27±1.13 76.09±0.00 77.87±0.00 51.44±0.65 57.65±0.34 65.96±0.21 1.82±0.01 1.32±0.00 1.32±0.00

Qwen2.5-32B-instr. 64.30±0.56 68.70±0.49 71.64±0.93 45.24±0.39 65.00±0.17 55.88±0.54 1.80±0.00 1.18±0.00 1.50±0.01

Qwen2.5-7B-instr 63.80±1.13 68.48±1.33 71.15±0.90 45.11±0.29 64.81±0.22 56.08±0.25 1.80±0.00 1.18±0.01 1.50±0.01

Memory-Augmented Baselines
RAG1 51.39±1.44 67.61±0.90 70.16±1.37 43.49±0.28 61.98±0.40 50.07±0.32 1.85±0.00 1.22±0.01 1.61±0.00

RAG-FC1 68.10±1.65 76.09±1.09 74.26±1.10 53.41±0.45 64.26±0.46 60.35±0.59 1.70±0.01 1.20±0.01 1.44±0.01

Generative Agents2 68.61±0.57 77.39±0.91 74.43±0.37 46.24±0.68 64.26±0.26 55.78±0.21 1.79±0.01 1.17±0.00 1.52±0.01

Table 9: Results on Synthetic dataset for belief state inference and belief dynamics update tasks
across three policy topics (Health, Surveillance, Zoning). Values are mean±std over 5 runs. For belief
dynamics update, both Accuracy and MAE are reported separately. Best results per column are in
bold.
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Model Belief Dynamics Update

Change Detection Acc. (%↑) Direction Adjustment Acc. (%↑) Dir. Acc. (%↑)

Health Surveil. Zoning Health Surveil. Zoning Health Surveil. Zoning

Human 80.00 90.00 80.00 96.67 88.33 90.00 91.67 88.83 87.00

OpenAI Models
GPT-4o 49.36±1.59 65.83±3.12 57.14±3.01 88.89±0.00 91.49±0.53 98.33±3.33 77.03±0.48 83.79±1.31 85.98±1.71

GPT-5-mini 46.81±4.66 65.83±6.12 60.95±3.56 82.95±2.56 90.67±5.33 82.05±9.48 72.11±2.84 83.22±3.06 75.72±7.17

o3-mini 50.64±4.54 55.83±4.25 59.05±5.71 76.43±4.84 79.58±3.64 78.59±12.06 68.69±3.33 72.45±3.10 72.72±8.67

Other Closed-Source Models
Gemini 2.0 Flash 38.30±0.00 70.83±0.00 62.86±1.90 100.00±0.00 83.33±0.00 100.00±0.00 81.49±0.00 79.58±0.00 88.86±0.57

DeepSeek-R1-0528 54.47±2.17 64.67±5.20 52.38±3.01 83.62±2.10 84.42±3.75 100.00±0.00 74.87±1.86 78.50±1.50 85.71±0.90

Qwen-plus_2025-07-28 34.04±2.33 63.01±1.94 66.67±0.00 85.24±0.95 83.03±0.61 92.31±0.00 69.88±0.97 77.02±0.89 84.62±0.00

Qwen-max_2024-10-15 34.89±1.04 63.33±1.67 66.67±0.00 85.71±0.00 82.05±2.56 92.31±0.00 70.47±0.31 76.44±1.29 84.62±0.00

Open-Source Models
LLaMA_3.3_70B 68.09±3.01 54.17±0.00 53.33±1.90 80.00±0.00 85.71±0.00 100.00±0.00 76.43±0.90 76.25±0.00 86.00±0.57

Qwen2.5-32B-instr. 33.19±1.04 62.50±0.00 66.67±3.01 84.29±1.17 83.33±0.00 92.29±0.38 68.96±1.05 77.08±0.00 84.60±1.17

Qwen2.5-7B-instr 33.62±1.59 62.50±0.00 65.63±1.40 84.29±1.17 83.33±0.00 93.57±3.26 69.09±1.03 77.08±0.00 85.19±2.30

Memory-Augmented Baselines
RAG1 42.55±1.90 55.83±5.00 66.67±0.00 66.67±0.00 86.51±3.85 85.71±0.00 59.43±0.57 77.30±1.94 80.00±0.00

RAG-FC1 45.11±2.08 62.43±6.00 60.95±1.90 80.00±0.00 90.91±0.00 86.03±2.82 69.53±0.63 82.36±1.80 78.50±1.40

Generative Agents2 36.17±1.90 61.06±2.27 60.95±1.90 81.00±9.70 83.64±3.64 93.85±3.08 67.55±6.41 76.86±2.20 83.98±1.58

Table 10: Directional accuracy results on Human dataset for belief dynamics update task across three
policy topics (Health, Surveillance, Zoning). Values are mean±std over 5 runs. For each topic, we
report Change Detection Accuracy, Direction Adjustment Accuracy, and Directional Accuracy (Dir.
Acc). Best results per column are in bold.

Results on Human Dataset693

Task Model Belief State Inference (Accuracy (% ↑)) Belief Dynamics Update (Accuracy (% ↑)) Belief Dynamics Update (MAE ↓)

Health Surv. Zone Avg Health Surv. Zone Avg Health Surv. Zone Avg

Swap-cross_person
Gemini 2.0 Flash 52.78±0.65 52.79±1.49 47.46±0.66 51.01±2.76 34.19±0.12 40.71±0.36 39.35±0.16 38.08±2.91 2.13±0.01 1.85±0.01 2.05±0.00 2.01±0.12

Qwen2.5-32B-instr. 58.15±0.77 64.75±0.00 58.41±0.90 60.44±3.22 33.77±0.73 40.77±0.63 39.93±0.46 38.16±3.28 2.19±0.01 1.87±0.01 2.01±0.00 2.02±0.13

GPT-4o 50.93±7.29 61.31±0.37 51.11±0.71 54.45±6.37 37.37±0.19 43.13±0.75 37.38±0.28 39.30±2.84 2.02±0.01 1.80±0.01 1.98±0.01 1.93±0.10

Table 11: Human Cross_Person test: models trained on one participant and evaluated on another.
Reported as mean ± std over 5 runs.

1RAG [31], RAG-FC = RAG with Full Context [31].
2Generative Agents [30].
1RAG [31], RAG-FC = RAG with Full Context [31].
2Generative Agents [30].
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Results on Synthetic Dataset694

Model Context Belief State Inference (Accuracy (% ↑)) Belief Dynamics Update (Accuracy (% ↑)) Belief Dynamics Update (MAE ↓)

Health Surv. Zone Avg Health Surv. Zone Avg Health Surv. Zone Avg

GPT-4o
5 QAs 56.96±1.27 73.48±0.60 62.30±1.00 64.25±7.18 53.23±0.71 64.20±0.00 56.28±0.27 57.90±4.80 1.68±0.00 1.18±0.01 1.43±0.01 1.43±0.21

10 QAs 62.28±1.06 74.13±0.49 66.89±0.45 67.76±5.09 52.18±0.44 65.12±0.44 55.53±1.78 57.61±5.76 1.73±0.01 1.17±0.01 1.44±0.00 1.45±0.24

20+ QAs 60.76±0.00 75.00±0.77 68.03±0.58 67.93±6.04 52.71±0.29 65.00±0.35 58.11±0.48 58.61±5.22 1.72±0.00 1.18±0.01 1.41±0.01 1.44±0.23

Gemini 2.0 Flash
5 QAs 37.97±0.00 63.48±0.60 57.38±0.00 52.94±11.26 42.75±0.18 63.64±0.14 54.09±0.18 53.49±8.84 1.82±0.00 1.18±0.00 1.54±0.00 1.51±0.27

10 QAs 43.04±0.00 61.74±0.49 62.13±0.90 55.64±9.24 41.79±0.25 63.02±0.14 55.73±0.14 53.51±9.12 1.83±0.00 1.19±0.00 1.52±0.00 1.51±0.27

20+ QAs 51.90±0.00 63.48±1.24 63.61±0.45 59.66±5.73 45.28±0.20 62.96±0.00 55.93±0.22 54.73±7.52 1.77±0.00 1.18±0.00 1.49±0.00 1.48±0.25

Qwen2.5-32B-instr.
5 QAs 47.34±2.12 67.61±1.19 66.56±0.37 60.50±9.73 45.37±0.57 63.70±0.71 53.00±0.54 54.02±7.80 1.84±0.01 1.18±0.01 1.56±0.01 1.53±0.28

10 QAs 59.24±1.39 68.70±0.91 70.82±0.73 66.25±5.30 44.76±0.41 64.75±0.14 54.74±0.62 54.75±8.46 1.83±0.01 1.18±0.01 1.52±0.01 1.51±0.28

20+ QAs 64.30±0.57 68.70±0.49 71.64±0.93 68.21±3.18 45.24±0.39 65.00±0.17 55.88±0.54 55.37±8.37 1.80±0.00 1.18±0.00 1.50±0.01 1.49±0.26

Table 12: Synthetic belief state inference and belief dynamics update performance across question
lengths (5Q, 10Q, 20Q) for GPT-4o, Gemini 2.0 Flash and Qwen2.5-32B-instr.. Reported as mean ±
std over 5 runs. Best in each column (across all models) is bolded.

Task Model Health → Surv Surv → Zone Zone → Health Avg.

Belief State Inference (Accuracy (% ↑))
GPT-4o 18.99±0.90 50.22±0.49 39.67±0.73 36.29±13.44

Gemini 2.0 Flash 17.97±2.26 38.91±0.91 20.49±1.30 25.79±9.77

Qwen2.5-32B-instr. 22.78±1.55 48.26±1.97 45.57±0.73 38.87±11.91

Belief Dynamics Update (Accuracy (% ↑))
GPT-4o 43.62±0.71 55.43±0.64 35.58±0.28 44.88±8.45

Gemini 2.0 Flash 36.03±0.22 41.73±0.51 52.06±0.32 43.27±6.88

Qwen2.5-32B-instr. 34.28±0.56 23.40±0.34 26.65±0.89 28.11±4.76

Belief Dynamics Update (MAE ↓)
GPT-4o 1.64±0.01 1.45±0.01 1.73±0.00 1.61±0.12

Gemini 2.0 Flash 1.97±0.00 1.70±0.01 1.62±0.01 1.76±0.15

Qwen2.5-32B-instr. 2.16±0.01 1.88±0.01 2.12±0.01 2.05±0.13

Table 13: Synthetic Cross_Domain test: models are trained in one topic domain and evaluated on
another. Reported as mean ± std over 5 runs.

Task Model Belief State Inference (Accuracy (% ↑)) Belief Dynamics Update (Accuracy (% ↑)) Belief Dynamics Update (MAE (↓)

Health Surv. Zone Avg Health Surv. Zone Avg Health Surv. Zone Avg

Swap-cross_person
GPT-4o 41.52±1.06 54.35±0.00 33.11±0.73 42.99±9.06 40.17±0.22 52.90±0.35 36.72±0.50 43.27±7.21 2.04±0.00 1.54±0.00 2.00±0.00 1.86±0.24

Gemini 2.0 Flash 30.89±0.69 47.83±0.00 33.93±0.45 37.55±7.64 30.13±0.15 50.93±0.00 35.53±0.11 38.86±9.12 2.16±0.00 1.52±0.00 2.06±0.00 1.91±0.29

Qwen2.5-32B-instr. 42.28±1.13 55.00±0.60 34.75±0.45 44.01±8.68 32.10±0.53 52.78±0.22 35.04±0.32 39.97±9.46 2.14±0.01 1.49±0.00 2.06±0.00 1.90±0.30

Table 14: Synthetic Cross_Person test: models trained on one participant and evaluated on another.
Reported as mean ± std over 5 runs.
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D Chatbot Design695

Figure 4: Overview of the QA loop and data structures. The system integrates the Causal Belief
Network (CBN), Node Queue, and Question List to guide interaction. Stages regulate question
priorities, with an irreversible transition from Stage 1 to Stage 2 once anchor nodes ≥ 3.

Core Data Structures696

The system is built on three key data structures: (i) the Causal Belief Network (CBN), (ii) the Node697

Queue, and (iii) the Question List. Together with a staged QA loop, these structures support the698

dynamic modeling of user beliefs and the generation of targeted questions.699

Causal Belief Network (CBN)700

The CBN is the central representation of the user’s belief system. It organizes concepts as nodes and701

captures their relations as edges.702

• Nodes. Nodes represent concepts in the belief system.703

– Candidate Nodes: new concepts detected in user answers, under evaluation.704

– Belief Nodes: stable concepts that have been upgraded from candidates (e.g., due to repeated705

mentions or high user confidence).706

– Anchor Nodes: a subset of belief nodes that play a special role in question generation and stage707

transition.708

• Edges. Edges encode causal or influence relations between nodes. They specify direction (source709

→ target), polarity (positive/negative), and optionally strength.710

Node Queue711

The Node Queue maintains candidate nodes that may become belief nodes.712

• Entry Condition: a new concept first appears in user responses.713

• Upgrade Condition: node is promoted to belief node when thresholds are met (e.g., frequency of714

mention, confidence expressed by the user).715

Question List716

The Question List stores both guiding questions and follow-up questions. It is dynamically updated717

based on the current CBN and node queue, and it serves as the buffer for delivering the next question718

to the user.719

QA Loop Overview720

The overall interaction loop proceeds as follows:721
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1. Initialization. The CBN contains only a stance node.722

2. User Input. User provides a new answer.723

3. Update. Update the CBN and node queue based on the answer.724

4. Question Generation. Generate new questions using the CBN and queues; append them to the725

question list.726

5. Next Question. Select and ask the next question from the list.727

Two-Stage Design728

The QA loop has two stages. The transition occurs when the number of anchor nodes ≥ 3. This729

transition is one-way; Stage 2 never returns to Stage 1.730

• Stage 1. Only Priority 2 questions are allowed. Rationale: with too few anchors, meaningful731

relationship questions are not possible. The system must first accumulate important concepts to732

avoid premature exploration.733

• Stage 2. Questions are selected from a candidate list according to priority. Higher-priority items734

are chosen first.735

Question Priorities736

• Priority 1 – Stance Connection.737

Purpose: connect essential concepts to the user’s stance.738

Condition: isolated anchor (out-degree = 0, not connected to stance).739

Format: “How does {anchor} affect your support for {stance}? Positive or negative? How740

strong?”741

Example: “How does privacy protection affect your support for surveillance?”742

• Priority 2 – Node Discovery / Upstream Exploration.743

Purpose: discover new concepts or explore influencing factors of anchors.744

Condition: in Stage 1 or anchor has fewest in-degrees.745

Format (Stage 1): “Tell me more about {concept}.”746

Format (Stage 2): “What factors influence {anchor}? Positive or negative?”747

Examples: “Tell me more about public safety.”; “What factors influence government oversight?”748

• Priority 3 – Relationship Strengthening.749

Purpose: quantify the strength and direction of existing relationships.750

Condition: edge requires parameters or graph pattern needs completion.751

Format: “How strong is the relationship between {A} and {B}? Positive or negative?”752

Example: “How does technological advancement affect privacy protection? Strong or weak?”753

• Priority 4 – General Backup.754

Purpose: fill in missing information at the end of the interview.755

Condition: remaining questions ≤ 3 and candidate pool insufficient.756

Format: “Anything else important we have not discussed?”757

Example: “Any clarifications on your previous answers?”758
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E Semi-Structured Interview and Causal Belief Network Formalization759

Figure 5: Illustration of the semi-structured interview process and causal belief network construction.
The chatbot begins with open-ended questions and extracts candidate concepts from user responses
(Anchor Node Discovery). Once three or more anchors are identified, it transitions to targeted
follow-ups to expand causal relations (Anchor Expansion). Edges represent directional influences
with polarity, forming the evolving CBN.

Semi-Constructed Interview Design. We use GPT-4 (or Qwen for open-source deployments) as760

the backbone of a semi-structured interviewer. The model follows a two-phase logic:761

1. Anchor Node Discovery: From initial open-ended responses, the system uses noun-phrase mining762

and causal phrase detection to extract candidate belief variables. Candidates that appear in multiple763

QA pairs or show causal centrality are promoted to anchor nodes, representing key ideas around764

which reasoning is structured.765

2. Anchor Expansion: For each anchor node, the system asks targeted follow-ups (e.g., “What766

causes this?” or “What does this influence?”). These responses are parsed into edges, which767

represent directional causal relations with confidence scores and modifiers (positive or negative768

influence).769

causal BN Formalization. Each participant’s graph is a Directed Acyclic Graph (DAG), with nodes770

vi labeled by semantically grounded belief variables, and edges eij denoting belief in the causal771

influence from vi → vj . We capture the following metadata for each element:772

• Node-level: Label, frequency across QAs, semantic role (external_state, internal_affect,773

behavioral_intention), layer depth (e.g., experience→ value→ stance).774

• Edge-level: Confidence (based on question phrasing), polarity (positive or negative), and QA775

provenance.776

Edge Probability Estimation. Each edge is assigned a probability P (vj |vi) based on linguistic777

indicators in the answer and motif alignment scores:778

P (vj |vi) = σ(w1 · scausal + w2 · slinguistic + w3 · smotif) (1)
where scausal captures explicit causal phrasing, slinguistic measures structural confidence from the779

model, and smotif reflects alignment to previously seen cognitive motif patterns. σ is the logistic780

function.781

Demographic Consideration. To support downstream generalization and population modeling782

(Phase III), each interview is paired with structured demographic data (age, housing status, transporta-783

tion mode, etc.). These attributes allow later stages to interpolate motif distributions and simulate784

representative reasoning across diverse population groups.785

Stopping Criteria. The system continues alternating between node discovery and causal expansion786

until one or more termination conditions are met: (1) no new anchor nodes emerge, (2) motif-based787

reasoning paths reach convergence, or (3) information gain across simulated stances falls below a788

threshold.789
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Forward Simulation and Inference. Once an intervention is identified, the causal BN is used to790

simulate the effects of this intervention. The intervention is applied to the graph as a DO-operation791

which cuts all incoming edges to the intervened node and updates its distribution. This is followed by792

a forward simulation to propagate the effects through the network.793

Post-processing includes analyzing changes in node probabilities and identifying significant shifts,794

particularly those related to policy objectives. These results help explain the agent’s behavior and795

evaluate proposed interventions. This structured method empowers stakeholders to make data-driven796

decisions based on causal dynamics.797
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F Questionnaire General Design798

The questionnaire serves as the foundational layer of HugAgent, designed to capture both baseline799

beliefs and structured reasoning factors before participants engage in interactive chatbot interviews.800

The survey was administered through the Prolific platform, ensuring a diverse and demographically801

balanced pool of respondents. Importantly, not all participants were asked to complete the chatbot802

phase; instead, all participants began with the questionnaire, and only a subset was later recruited803

for semi-structured chatbot interviews. This two-stage design allows us to ground conversational804

transcripts in an already standardized and validated set of structured responses.805

The questionnaire is structured into three complementary components. First, participants provide806

demographic information, including age, gender, education, income, housing status, neighborhood807

context, and transportation habits. These variables are aligned with U.S. Census and urban planning808

survey standards, enabling stratified analyses of systematic variability in beliefs across groups809

(e.g., renters versus homeowners, high-income versus low-income). Second, participants answer810

stance and intervention items, rating their support on a 1–10 scale and updating their stance under811

hypothetical scenarios (e.g., reduced rent under upzoning, reduced household costs under universal812

healthcare, reduced crime under surveillance). Third, each topic includes a standardized reason813

pool, a set of common factors such as affordability, fairness, privacy, safety, and neighborhood814

character. After reporting their stance, participants rate on a 1–5 scale how strongly each reason815

influences their opinion. This structure provides interpretable ground-truth (GT) data for reasoning816

dimensions and enables cross-participant comparability, since all individuals evaluate the same set of817

reasons. By aggregating these structured ratings, we can test whether models not only predict overall818

support levels but also recover the latent weighting of reasons that drive human decision-making.819

These structured ratings also serve as a reference for aligning open-ended chatbot responses with820

quantitative belief factors, creating a consistent bridge between free-text explanations and structured821

data.822

Question Types823

We define distinct question types to systematically probe both interpretive reasoning (inferring hidden824

beliefs) and predictive reasoning (anticipating belief change).825

Type 1.1: Stance elicitation (baseline beliefs). Participants report initial support levels on a 1–10826

scale (e.g., “How much do you support allowing taller apartment buildings in your neighborhood?”).827

This provides the starting point for belief state modeling.828

Type 1.2: Reason evaluation. Participants rate how strongly predefined reasons (e.g., economic829

benefits, fairness, neighborhood character, privacy, efficiency) influence their stance on a 1–5 scale.830

The reason pools are shared across all respondents within a topic, allowing structured comparison831

across individuals and providing ground-truth data on how value dimensions shape beliefs.832

Type 1.3: Contextualized interview beliefs. Through chatbot dialogue, participants explain or833

justify their stance in natural language. These free-form responses provide latent belief evidence,834

which models must interpret to infer hidden attitudes. The transcripts can be cross-validated against835

the structured reason evaluations for consistency.836

Type 2.1: Scenario-based interventions. Participants evaluate counterfactual scenarios (e.g., “If837

rent prices fall by 15% after upzoning, how would your stance change?”). This probes dynamic838

updating of beliefs in response to outcomes.839

Type 2.2: Normative fairness interventions. Scenarios manipulate fairness dimensions (e.g., “If840

upzoning applied equally to wealthy neighborhoods” or “If cameras were controlled by local boards”).841

These tasks test whether models capture fairness-based belief shifts.842

Type 2.3: Conditional trade-offs. Participants consider hybrid conditions (e.g., “Universal health-843

care exists alongside private insurance” or “Surveillance footage stored for 48 hours only”). These844

tasks require reasoning under institutional or design constraints.845
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Task Type Upzoning Surveillance Cameras Universal Healthcare

Belief Infer-
ence

Q: “On a scale from 1 to
10, how much do you sup-
port allowing taller apart-
ment buildings in your
neighborhood?” A: “Prob-
ably around 3. I worry it
changes the character of
the area.”
Target: Low support
(3/10); belief: upzoning
harms neighborhood char-
acter.

Q: “How comfortable do
you feel being monitored
by public cameras?” A:
“Honestly, it makes me un-
easy. I don’t trust how the
footage is used.”
Target: Low comfort;
belief: privacy concerns
about surveillance.

Q: “Do you feel your cur-
rent health insurance pro-
vides adequate coverage?”
A: “Not really, I often
avoid going to specialists
due to cost.”
Target: Insurance inade-
quate; belief: high costs
limit access.

Reaction Pre-
diction

Scenario: “After the city
allows more apartments,
rent prices drop 15%.
Your monthly rent is no-
ticeably lower.”
Target: Support increases
(e.g., +2 on 1–10 scale).

Scenario: “After installing
cameras, neighborhood
break-ins fall and rob-
beries drop by 20%.”
Target: Support increases
(stronger acceptance).

Scenario: “After switch-
ing to universal healthcare,
household out-of-pocket
costs fall by $3,000 annu-
ally.”
Target: Support increases
(e.g., from 6/10 to 9/10).

Table 15: Illustrative examples of HugAgent questionnaire and interview tasks. Each domain includes
both belief inference and reaction prediction items, enabling evaluation of models on stance attribution
and dynamic belief updating.

G Zoning Opinion Questionnaire (Human Evaluation)846

To rigorously evaluate the fidelity of our generative agents’ responses against real human participants,847

we conducted a structured public opinion survey titled General Housing & Upzoning Public Opinion848

Survey. The survey was carefully designed to facilitate comparison between human-generated849

responses and those from LLM-based agents, specifically targeting residents of United states.850

Motivation and Objectives851

This survey aimed to assess public opinion on urban upzoning scenarios, capturing nuanced attitudes852

toward housing policies and their underlying reasoning. Our goal was to determine whether generative853

agents could reliably replicate human response patterns, especially regarding sensitive issues such as854

neighborhood change, density increases, and emotional responses like YIMBY (Yes In My Backyard)855

and NIMBY (Not In My Backyard).856

Survey Structure and Methodology857

The survey comprised two primary sections:858

Section 1: Demographic and Background Information Participants provided detailed demo-859

graphic data aligned with U.S. Census Bureau categories:860

• Age861

• Housing status (owner or renter)862

• Income levels863

• Occupation864

• Marital status865

• Presence of children866

• Transportation mode867

• Monthly rent as a percentage of income868

• Residential mobility869

• ZIP code or proximity-based location verification870
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To ensure data quality, participants were required to explicitly answer an attention check question.871

Section 2: Scenario-Based Opinion Measurement Participants were first asked general zoning872

questions and rated their support for allowing larger, taller apartment buildings in their neighborhood873

on a 1–10 Likert scale (1 = strongly oppose, 10 = strongly support). Each scenario was accompanied874

by a set of related factors, which participants evaluated on a 1–5 scale (1 = no impact, 5 = very large875

impact), regardless of whether the impact was positive or negative. The factors included:876

• Housing supply and availability877

• Affordability for low- and middle-income residents878

• Neighborhood character and visual compatibility879

• Traffic and parking availability880

• Walkability and access to amenities881

• Noise, congestion, or infrastructure strain882

• Fairness and distribution of development883

• Economic vitality for local businesses884

• Building height/scale relative to surroundings885

• Property values or homeownership concerns886

Clarifying examples were provided to ensure consistent interpretation of impact ratings.887

Data Collection and Implementation888

The survey was implemented using Google Forms and distributed via the Prolific platform, with889

compensation set at $12/hour. Participants were guided through the survey flow with embedded890

instructions and examples to ensure comprehension and engagement.891

Transparency892

All survey items, design rationales, and filtering criteria are publicly documented to support repro-893

ducibility and public trust. This enables rigorous evaluation of generative agents’ ability to simulate894

human attitudes under complex, emotionally and politically sensitive policy conditions.895
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H Universal Healthcare Questionnaire896

Motivation and Objective897

This survey was designed to evaluate whether a structured reasoning system—based on Bayesian898

networks extracted from interviews and conditioned large language models (LLMs)—can simulate or899

recover human judgments on complex policy issues. In this case, we focus on universal healthcare, a900

topic involving tradeoffs across fairness, cost, autonomy, and trust.901

Rather than simply measuring stance, the survey was constructed to expose the participant’s reasoning902

pathway, enabling fidelity evaluation at both outcome and process levels.903

Survey Structure and Methodology904

The survey design draws on the four-stage cognitive model of survey response [55]:905

• Comprehension: Questions were phrased clearly and definitions were provided (e.g., what906

universal healthcare entails).907

• Retrieval: Participants were asked to recall relevant experiences (e.g., delays in care, interactions908

with public systems).909

• Judgment: Participants evaluated tradeoffs and reflected on personal values.910

• Response: Structured Likert scales captured quantified opinions.911

Survey Components912

The survey includes:913

• Stance Rating: Support for universal healthcare on a 1–10 scale.914

• Personal Experience: Items capturing healthcare access and insurance adequacy.915

• Baseline Reason Evaluation: Participants rated 13 carefully constructed reasons (e.g., fairness,916

efficiency, innovation) for their general influence on stance.917

Counterfactual Scenarios918

To probe reasoning dynamics and test the model’s sensitivity to causal perturbations, four counterfac-919

tual scenarios were introduced, each followed by a stance re-rating and a focused subset of reasons.920

Scenarios included:921

1. National cost reduction with increased wait times.922

2. Household savings of $3,000 annually.923

3. Retention of private insurance alongside a public system.924

4. Coverage limited to essential services.925

Participants re-evaluated selected reasons in the context of each scenario (e.g., “I worry about tax926

increases” or “Universal healthcare might reduce personal choice in care”) on a 1–5 scale, allowing927

analysis of belief shifts.928

Reason Design929

Reasons were drawn from qualitative policy discourse and refined to:930

• Reflect distinct value dimensions (e.g., equality, responsibility, institutional trust).931

• Avoid biasing language (neutral framing, no moral triggers).932

• Enable both positive and negative stance justifications across political orientations.933

Each reason was independently interpretable and mapped to latent causal factors in the underlying934

Bayesian model. Subsets of reasons were assigned to each counterfactual scenario to ensure relevance935

while reducing redundancy.936
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I Surveillance Camera Questionnaire937

Motivation and Objective938

This survey is designed to evaluate the reasoning fidelity of structured models such as Bayesian939

Networks (BNs) when paired with large language models (LLMs). Specifically, it tests whether a940

BN+LLM system can simulate human responses to policy questions about public surveillance more941

faithfully than a baseline persona-based LLM. To do this, we use controlled question design inspired942

by cognitive science and causal reasoning frameworks.943

Survey Structure and Methodology944

The survey design draws on the four-stage cognitive model of survey response [55]:945

1. Comprehension: Understand the question and context.946

2. Retrieval: Recall relevant experiences and beliefs.947

3. Judgment: Synthesize and evaluate relevant considerations.948

4. Response: Map judgment to a scale-based response.949

This model guides both our baseline attitude elicitation and our counterfactual design. The survey950

consists of:951

Section 1: Baseline Stance and Experience Participants rate their general support for public952

surveillance (1–10), followed by personal experiences such as feelings of safety, comfort, and negative953

interactions with surveillance technology.954

Section 2: General Reason Evaluation Participants evaluate the importance of twelve potential955

reasons (1–5 Likert scale) influencing their baseline stance, including factors like privacy, crime956

prevention, power misuse, and behavioral impacts.957

Section 3: Counterfactual Scenarios and Dynamic Reasoning Participants are then presented958

with three hypothetical surveillance policy changes:959

• Crime Reduction vs. False Arrest Tradeoff960

• Limited Data Retention (48h)961

• Community-Controlled Surveillance962

For each scenario:963

• Participants rate how the new information affects their stance (1–10 scale).964

• Then, they re-evaluate a scenario-specific subset of 3–5 reasons (1–5 scale) that are most relevant965

under the new condition.966

This design allows us to evaluate whether the model (and human) responses adjust not only the final967

stance, but also the internal reasoning paths—a critical distinction for validating structural cognitive968

models.969

Design Highlights970

• Cognitive fidelity: Question wording avoids surface cues and forces reasoning across multiple971

values (e.g., privacy vs. safety, trust vs. control).972

• Counterfactual sensitivity: Each scenario targets a specific edge in the causal BN, enabling us to973

observe how reason weights shift under perturbation.974

• Explanation delta: By comparing reason weights before and after each scenario, we quantify975

whether the model exhibits structural adaptation or static stance mimicry.976

Data Collection and Implementation977

The survey was implemented using Google Forms and distributed via the Prolific platform, with978

compensation set at $12/hour. Participants were guided through the survey flow with embedded979

instructions and examples to ensure comprehension and engagement.980
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Transparency981

All survey items, design rationales, and filtering criteria are publicly documented to support repro-982

ducibility and public trust. This enables rigorous evaluation of generative agents’ ability to simulate983

human attitudes under complex, emotionally and politically sensitive policy conditions.984
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J Prompt985

J.1 Task formatting prompt986

System Prompt

zoning: "You are an expert at analyzing conversations about urban policy to extract causal
beliefs.
surveillance": "You are an expert at analyzing conversations about surveillance and public
safety to extract causal beliefs.
healthcare": "You are an expert at analyzing conversations about healthcare policy to extract
causal beliefs.

987

User Prompt

Based on the following conversation about {conversation_topic}, identify ALL question-
answer pairs that reveal the person’s beliefs about causal relationships between different
factors.
Conversation: {context_text} Your task: 1. Find ALL Q&A pairs that show how the person
believes one factor affects another (up to 10 pairs) 2. For each pair, create a direct question
asking about the influence level using everyday language 3. Based on the person’s answer,
determine their belief about the effect.
Selection rule: - PRIORITIZE items with dependency_level >= 1 (needs-context). If fewer
than 10 such items exist, then fill the remainder with the best dependency_level = 0 items. -
Prefer diverse factor pairs; avoid near-duplicates.

Return JSON format as an array.
{answer_options_text}
Use simple, everyday language for the factors. Examples by topic:
Zoning: "building more housing" instead of "upzoning policies", "traffic congestion", "neigh-
borhood character" .
Surveillance: "installing cameras" instead of "surveillance systems", "crime rates", "privacy
concerns" .
Healthcare: "universal coverage" instead of "healthcare policy", "wait times", "healthcare
costs".
Return up to 10 belief inference questions maximum.

988

J.2 Evaluation prompt989

System Prompt

You are an expert psychologist specializing in Theory of Mind and belief inference.
Your task: analyze conversation transcripts to infer what the participant believes about causal
relationships. Focus on understanding their mental model - what they think causes what, not
what is objectively true.
Consider their background, conversation patterns, and implicit beliefs expressed through
their responses. Base your inference strictly on evidence from their statements, not general
assumptions.

990

User Prompt

{Context QA + Demographic information}
Based on the evidence above (including Conversation History and Person’s Background),
respond with ONLY the single letter (options_str) that best represents this person’s belief.)

991
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K Extended Design Principles992

Open-ended reasoning as principle Our benchmark targets reasoning as a dynamic and individu-993

alized process, rather than static prediction. We therefore adopt an open-ended elicitation principle:994

instead of pre-defining fixed question banks, HugAgent uses a single guiding question to initiate995

a semi-structured conversation. All follow-up questions are generated adaptively within the same996

dialogue, grounded in the participant’s own responses. This design enables deep, conversational997

reasoning to unfold while minimizing artificial scaffolding from the chatbot itself. We do not claim998

fully open-world coverage; rather, we emphasize open-domain extensibility: by simply swapping999

the guiding question, the benchmark can be ported to new domains while maintaining consistency1000

in evaluation. Such minimal-interaction protocols align with prior work showing that lightweight1001

conversational scaffolds preserve ecological validity in human reasoning studies [56, 57, 12, 58].1002

This principle directly motivates the guiding-question chatbot protocol we describe in Appendix1003

D.1004

Proxy tasks of reasoning To evaluate whether models capture not only what individuals believe1005

but also how their beliefs evolve, we operationalize reasoning through two proxy tasks: belief state1006

inference (recovering stance and factor polarity from context) and belief dynamics update (predicting1007

stance shifts and reweighting under new evidence). These tasks follow the tradition of modeling belief1008

revision as a tractable proxy for underlying cognitive processes [59, 60]. While other proxies could1009

be envisioned, these two are the most direct operationalizations of individual reasoning trajectories,1010

balancing interpretability and task difficulty. This motivates our benchmark’s two-task structure,1011

detailed in Appendix D.1012

Dual-track design: human and synthetic agents Human data provide ecological validity: rich,1013

idiosyncratic reasoning paths embedded in natural language. Synthetic agents, by contrast, provide1014

controllability and scale: fully specified stance profiles and deterministic update rules allow stress-1015

testing model adaptation under known ground truth. Together, the two tracks are complementary:1016

humans as ecological baselines, synthetics as controlled stress tests. This mirrors dual-track designs1017

in cognitive science and simulation benchmarks, where naturalistic and synthetic data jointly enhance1018

validity and reproducibility [49, 61]. Synthetic agents are not intended to replace human data but to1019

serve as a complementary axis of evaluation. This dual-track design is what anchors HugAgent1020

between ecological realism and controlled generalization tests.1021

Extended Rationale: Synthetic Stage Justification Synthetic data in HugAgent follows the same1022

legitimacy principles as established ToM and social reasoning benchmarks. Rather than letting1023

LLMs freely invent beliefs, we first define a formal structure—a causal belief graph specifying nodes1024

(beliefs), edges (causal relations), and interventions (external stimuli). Synthetic agents then evolve1025

along this graph to generate new belief states and reasoning trajectories. The graph itself provides1026

the ground truth for evaluation (e.g., stance updates, trajectory alignment), while LLMs merely1027

render these states into natural language explanations. This ensures that labels are independently1028

controlled and falsifiable, avoiding the risk of self-validation. As in prior benchmarks, sampled1029

human verification is performed for quality assurance.1030

Upper bound via test–retest reliability A natural question is whether human annotators could1031

serve as the benchmark baseline. While this is common in many benchmarks, HugAgent tasks present1032

unique challenges: they involve long, naturalistic transcripts and fine-grained belief trajectories.1033

In principle, annotators could be asked to re-read transcripts and label stance updates, but such1034

procedures are slow, error-prone, and risk conflating annotators’ own heuristics with the original1035

participant’s reasoning. This creates a fidelity–feasibility tradeoff: while feasible, the outcome would1036

be a proxy of third-party interpretation, rather than a faithful measure of the individual’s reasoning1037

process.1038

Instead, we adopt test–retest reliability as the human ceiling. Here, the same participant is re-sampled1039

or re-interviewed, and the consistency of their own responses provides a direct measure of reliability.1040

This practice is well established in psychology and survey research, and has been adopted in recent1041

large-scale reasoning datasets facing similar challenges [30, 9]. Compared to annotator baselines,1042

test–retest reliability offers a more precise and ecologically valid upper bound for model performance,1043

aligned with the benchmark’s goal of capturing intra-individual reasoning fidelity. This principle1044

defines how we report the human ceiling in HugAgent.1045
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L Data Full Example1046

User’s Demographic:

Attribute Example (Anonymized Participant)

Housing Experience Has lived in the same residence for several years
Age 30
Moved Last Year Same house 1 year ago
Housing Status Owner-occupied
Transportation Car / Truck / Van
Household Income $75,000–$99,999
Occupation Sales and office occupations
Marital Status Not married
Children Has children
Neighborhood Safety Very safe. I rarely worry about crime
Health Insurance Private insurance, no disability
Education High school graduate or equivalent
Citizenship Native-born U.S. citizen
Financial Situation Gets by, but money is tight

Table 16: Example anonymized participant profile used in analysis (for illustration only). Personally
identifiable details have been generalized or omitted.

1047

Interview QA1048

Note: The following excerpt reflects a simulated or anonymized participant’s responses. It may1049

contain biased or stereotypical opinions that do not represent the authors’ or dataset creators’ views.1050

It is included purely for analysis of belief attribution and reasoning behavior.1051

1. Q: To what extent do you support or oppose upzoning policies that allow for higher density1052

housing in traditionally single-family neighborhoods? Please explain your reasoning.1053

A: I don’t support it at all. I’m worried that it’ll cause overcrowding if cheaper apartments or1054

housing were made. Aside from that, we know that statistically, lower income people tend to have1055

more of the criminal population in them, isn’t that right? So this might cause the crime rates to go1056

up!1057

2. Q: What do you think are the most significant impacts, positive or negative, of increasing housing1058

density in residential neighborhoods?1059

A: I’ve mentioned the potential for crime rates to go up, that’s the real worry here. Lots of new1060

lower income people, lots of potential criminals.1061

3. Q: How do you think upzoning policies might affect housing affordability in urban areas?1062

A: They’d most likely lower the price of rent because of “competition”. But at what cost? The1063

safety of the people!1064

4. Q: What impact do you believe increased housing density might have on neighborhood character1065

and quality of life?1066

A: Safety for sure. Low income places simply have more potential for crimes due to people being1067

tempted to commit criminal acts for survival.1068

5. Q: How do you think upzoning might affect transportation systems and traffic congestion in cities?1069

A: It’s going to worsen! Look, there was a time when I used to take the bus to get to work every1070

day when I still didn’t have a car. I live in a big city and sometimes, the bus couldn’t take all of1071

us! That caused me to get late a couple of times since there wasn’t even any standing room. So1072

imagine, a rush of new low income people to this area, probably they don’t have cars so they’ll1073

rely on buses, it’ll just be extra strain on the buses and not everyone would be able to get on the1074

bus at all.1075

6. Q: What role do you believe local government should play in regulating housing development1076

and density?1077

A: The government really shouldn’t be too involved with many things. Just minimally involved.1078

Less government involvement, the better.1079

7. Q: How might environmental concerns factor into decisions about urban density and zoning?1080

A: I don’t personally care about these so-called “environmental concerns”. I’m not some kind of1081

environmental activist or terrified climate change believer. As long as something doesn’t dump1082

toxic waste or all sorts of hazardous material in my area, then it’s good.1083

34



8. Q: What economic effects, both positive and negative, might result from changing zoning laws to1084

allow more multi-family housing?1085

A: More new people, more potential customers for businesses in the area obviously. BUT we1086

also have to think that these are low income people if we’re talking about low income housing.1087

So businesses targeting low income people would most likely benefit, but the more upscale ones1088

wouldn’t.1089

9. Q: How do you think the interests of current residents versus future residents should be balanced1090

when making zoning decisions?1091

A: The current residents should ALWAYS be prioritized, they were there first. New people should1092

always be considerate of the people living wherever they’re planning to move to. It’s just basic1093

human decency.1094

10. Q: What role do you think social equity and access to opportunity play in discussions about1095

zoning and housing policy?1096

A: I am totally against EQUITY. Equity means taking opportunities away from someone in order1097

to give it to somebody else who probably didn’t earn it. I don’t like the idea of redistributing what1098

a successful person has.1099

11. Q: How confident are you that changes in Higher density housing lead to changes in Support for1100

Upzoning? Does it have a positive effect (increasing it) or a negative effect (decreasing it)? How1101

strong is this effect?1102

A: It’s going to be NEGATIVE. If we’re talking about people, it’s not just quantity that we’re1103

supposed to worry about, but also the quality. So we can say “Don’t judge a book by their cover”,1104

but we also must think that people are in the situation they are for a reason. So if we’re going to1105

get flooded by low income people, we have to ask, “Why are they low income?” Of course not all1106

low income people are bad, but majority of criminals are low income people.1107

12. Q: What factors do you think influence Support for Upzoning, and how strong is their impact?1108

Please also indicate if these influences are positive (increasing) or negative (decreasing).1109

A: Definitely the idea of SAFETY is a huge factor. Just imagine you live in a peaceful neighbor-1110

hood where crime isn’t really a problem, then suddenly a huge number of new low income people1111

flood in to your community and suddenly kids start getting bullied at the playground, people start1112

getting mugged left and right. Safety is really a big concern!1113

13. Q: Does Crime rates have a positive or negative effect on Support for Upzoning, and how signifi-1114

cant is this effect? Does it have a positive effect (increasing it) or a negative effect (decreasing it)?1115

How strong is this effect?1116

A: That’s what I’ve been talking about this entire conversation, the potential for CRIME! As I’ve1117

already stated numerous times, it’s a MAJOR concern and an influx of low income people would1118

definitely affect the crime rate!1119

14. Q: Would small changes in Housing affordability lead to noticeable changes in Support for1120

Upzoning, or would it take larger shifts? Does it have a positive effect (increasing it) or a negative1121

effect (decreasing it)? How strong is this effect?1122

A: At first people would probably think things will be better because rent might go down a bit,1123

BUT that’s not guaranteed. Second, SAFETY is really something that people are probably not1124

willing to compromise.1125

15. Q: Would small changes in Safety lead to noticeable changes in Support for Upzoning, or would1126

it take larger shifts? Does it have a positive effect (increasing it) or a negative effect (decreasing1127

it)? How strong is this effect?1128

A: If there’s really no way about avoiding the creation of some kind of tall low income apartment1129

building for the sake of “equity”, then the next best thing would be to thoroughly do background1130

checks on all the renters. For example, there should be strictly nobody in there with a criminal1131

record.1132

16. Q: How would you describe the relationship between Low Income People and Support for1133

Upzoning? Is it a strong or weak connection? Does it have a positive effect (increasing it) or a1134

negative effect (decreasing it)? How strong is this effect?1135

A: Well of course low income people would support the creation of low income rental building.1136

But the problem is that people already living in the community, like me, wouldn’t support it at all1137

for fears of safety worsening.1138

17. Q: Is the effect of Minimal Regulation on Support for Upzoning immediate, or does it take time1139

to develop? Does it have a positive effect (increasing it) or a negative effect (decreasing it)? How1140

strong is this effect?1141

A: Any policy takes TIME to develop. Rushed policies just end up in disaster because it won’t be1142

well thought out.1143
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18. Q: Would small changes in Impact on businesses lead to noticeable changes in Support for1144

Upzoning, or would it take larger shifts? Does it have a positive effect (increasing it) or a negative1145

effect (decreasing it)? How strong is this effect?1146

A: No. As I’ve said, low income people will only provide benefit to businesses targeting low1147

income customers. Mid to upscale businesses wouldn’t benefit from them because they won’t1148

be able to afford their products and services. In short, not all businesses would be in support of1149

having some kind of low income housing in the area if all they’re going to be able to afford are1150

low income stuff.1151

19. Q: How would you describe the relationship between Basic human decency and Support for1152

Upzoning? Is it a strong or weak connection? Does it have a positive effect (increasing it) or a1153

negative effect (decreasing it)? How strong is this effect?1154

A: There are people who make decisions based on feelings alone. Yes, they’ll think it’s “decent”1155

to allow low income people to have low income housing in their community, BUT often, these1156

people don’t think about the consequences that would affect the people already living in the1157

community. They are too focused on helping others that they don’t realize they are causing harm1158

to themselves.1159

20. Q: Is the effect of Redistribution on Support for Upzoning immediate, or does it take time to1160

develop? Does it have a positive effect (increasing it) or a negative effect (decreasing it)? How1161

strong is this effect?1162

A: That’s definitely going to be a huge NEGATIVE right away. Nobody in their right mind1163

would want themselves to be compromised for others. So let’s think about what happens if in a1164

moderately wealthy area, they allowed low income housing in the name of “equity”. For actual1165

home owners (not renters), the value of their properties would go down. These are properties that1166

they’ve worked for years to maintain, and suddenly, in the name of “equity”, is it alright to allow1167

the values to go down? No of course not! So we have to always think about how low income1168

housing would affect the people already living in the community.1169

21. Q: Would small changes in Negative Effect lead to noticeable changes in Support for Upzoning,1170

or would it take larger shifts? Does it have a positive effect (increasing it) or a negative effect1171

(decreasing it)? How strong is this effect?1172

A: No, it’s called “Negative Effect” because it affects people in a bad way. Nobody would support1173

anything like that knowingly.1174

22. Q: What factors affect Upzoning policies, and which ones have the strongest influence? Please1175

also indicate if these influences are positive (increasing) or negative (decreasing).1176

A: As I’ve been saying this entire conversation, the major facor that affects people’s support for1177

low income housing is the SAFETY, the potential for crime rates to go up, and these things will1178

definitely always affect support for low income housing negatively.1179

23. Q: Does Community Resistance to Upzoning have a positive or negative effect on Support for1180

Upzoning, and how significant is this effect? Does it have a positive effect (increasing it) or a1181

negative effect (decreasing it)? How strong is this effect?1182

A: Of course community resistance won’t support low income housing, that’s the point. People1183

would resist these places from being built in order to protect the community from potential safety1184

concerns.1185

24. Q: How would you describe the relationship between Time for policy development and Support1186

for Upzoning? Is it a strong or weak connection? Does it have a positive effect (increasing it) or a1187

negative effect (decreasing it)? How strong is this effect?1188

A: Of course “Time” will always have something to do with whether low income housing would1189

be allowed or not. For example, maybe a politician would take his time forming some kind of1190

bill concerning low income housing and he’ll wait for enough public support before officially1191

launching it in order to increase its chances of succeeding.1192

25. Q: Would small changes in Low Income Housing lead to noticeable changes in Support for1193

Upzoning, or would it take larger shifts? Does it have a positive effect (increasing it) or a negative1194

effect (decreasing it)? How strong is this effect?1195

A: No, even small changes in low income housing won’t change people’s support for it because it1196

will negatively affect the community. People already know it’s most likely going to be the cause1197

of many safety concerns aside from property devaluation.1198

26. Q: Does Equity have a positive or negative effect on Support for Upzoning, and how significant is1199

this effect? Does it have a positive effect (increasing it) or a negative effect (decreasing it)? How1200

strong is this effect?1201

A: Equity has NEGATIVE effects on people already living in the community, because the point1202

of equity is to take from those people (land space) and to redistribute it to other people (the low1203
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income people). People might try to frame it as “helping the poor”, but you can help poor people1204

in other ways without harming the community.1205

27. Q: How would you describe the relationship between Support for low income housing and Support1206

for Upzoning? Is it a strong or weak connection? Does it have a positive effect (increasing it) or a1207

negative effect (decreasing it)? How strong is this effect?1208

A: People are directly against low income housing because it’s more likely to bring bad stuff with1209

it that good ones. The consequences outweigh the positives.1210

Sample Survey: Housing / Upzoning1211

Baseline Stance1212

• Q1. On a scale from 1 to 10, how much do you support or oppose allowing bigger, taller apartment1213

buildings in your neighborhood?1214

1 2 3 4 5 6 7 8 9 10
Strongly Oppose Neutral Strongly Support1215

Reason Evaluation (Baseline)1216

Q1r. How much do the following reasons influence your general opinion on upzoning?1217

Reason Scale (1–5)

Building more homes helps with the housing crisis. (A)
This gives more housing choices for middle- and lower-
income people. (B)
Taller buildings might change the look and feel of the neigh-
borhood. (C)
More traffic and parking is a real concern. (D)
I’m worried about my property value or investment. (I)

1218

Scenario 1: Rent Drop1219

• Q2. After the city allows more apartments in low-density areas, rent prices drop 10–15%. Your1220

monthly rent is noticeably lower. It’s easier to find a decent place. How would this affect your1221

stance?1222

1 2 3 4 5 6 7 8 9 10
Much Less Supportive Neutral Much More Supportive1223

Reason Evaluation (Scenario 1)1224

Q2r. To what extent do the following reasons influence your stance?1225

Reason Scale (1–5)

Building more homes helps with the housing crisis. (A)
More traffic and parking is a real concern. (D)
Everyone should help handle the growth. (N)
More people means more business for local shops. (O)
I’d worry about noise and crowding on my block. (P)

1226
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M Quality-Control Protocol1227

We applied a standardized protocol to ensure that only participants with reliable and reproducible1228

data were retained. The following criteria were applied sequentially:1229

1. Redundant responses: cases where the participant repeatedly produced near-identical statements1230

without substantive variation.1231

2. Meta-level questioning: transcripts dominated by repeated challenges to the validity of the task1232

itself rather than substantive reasoning about the topic.1233

3. Insufficient length: responses falling below a minimum threshold of tokens or turns, preventing1234

meaningful inference of reasoning structure.1235

4. Sparse causal belief networks: chatbot elicitation yielding fewer than five unique nodes, limiting1236

the interpretability of downstream causal graph construction.1237

This filtering ensured that the retained dataset reflects consistent engagement with the task, while1238

minimizing artifacts that could compromise the validity of subsequent analyses.1239
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N Synthetic Agent Construction (Algorithmic)1240

N.1 Problem Setting and Notation1241

We construct a synthetic agent population A for topics T =1242

{ZONING, HEALTHCARE, SURVEILLANCE}. Each agent a ∈ A for topic t ∈ T has (i) a1243

Causal Belief Network (CBN) G = (V,E), (ii) a demographic profile d, (iii) an initial belief1244

state b0 = (s0,w0) with stance s0 ∈ {1, . . . , 10} and reason weights w0 ∈ ∆K−1, and (iv) a1245

deterministic update operator U that maps (bt, e) 7→ bt+1 given an intervention e.1246

Topic-level statistics. From human CBN corpora we estimate topic-specific sufficient statistics1247

Θt = {µn, σn, µe, σe, αimp, βimp, αconf, βconf,V}: node/edge count moments (µn, σn) and (µe, σe),1248

Beta parameters for node importance and edge confidence, and a topic vocabulary V for label1249

generation. A content hash over source JSON files ensures cache validity.1250

N.2 CBN Sampling Model1251

Graph size. We draw |V | ∼ TruncNorm(µn, σn, [nmin, nmax]) and |E| ∼1252

min{LogNormal(µ′
e, σ

′
e), |V |(|V | − 1)/2} with log-space moments chosen to match (µe, σe).1253

Node attributes. For each v ∈ V :1254

importance(v) ∼ Beta(αimp, βimp), evidence(v) ∼ Poisson(λt).

Text label ℓ(v) is generated by sampling m ∈ {2, 3, 4} tokens from V (frequency-weighted) and1255

filling a topic template.1256

Edge attributes and topology. We form a hub–spoke backbone plus random residual edges.1257

For each selected hub h (top-q by importance), connect h→ u for u ∈ V \{h} with probability1258

proportional to 0.7 · importance(u) + 0.3 until a target degree. Each edge e = (u→v) gets:1259

conf(e) ∼ Beta(αconf, βconf), sign(e) ∈ {−1, 0,+1}with p+, p0, p−, weight(e) ∼ Beta(αw, βw).

We then add random non-duplicate edges until |E| is reached.1260

Stance node selection. Let deg(v) be (undirected) degree. Define score σ(v) = 0.7 ·1261

importance(v) + 0.3 · deg(v)/maxu deg(u). Sample stance node v⋆ from top-3 nodes according to1262

σ(v) (softmax). Ensure weak connectivity from v⋆ to all nodes (add minimal edges if needed).1263

N.3 Deterministic Update Operator1264

Let reasons be a fixed topic-specific set {r1, . . . , rK} aligned to V . Given intervention e encoded as1265

factor deltas ∆f ∈ R|V |, we update stance and reason weights:1266

st+1 = clip

st + ηs
∑

(u→stance)∈E

signu wu ∆fu, 1, 10

 , (2)

wt+1 = Normalize(wt + ηw M∆f) , Mk,u = g(rk, u), (3)

where wu is the edge weight into stance, ηs, ηw are step sizes, and g(·, ·) aligns reasons to graph1267

nodes (one-hot or soft map). This yields reproducible ground truth for stance shifts and reweighting.1268

N.4 Demographic Generator and Coupling1269

We sample a demographic profile d with correlated marginals: age bands, gender, education, income,1270

housing status, employment, location, children, and rent-burden. Simple rules induce a small stance1271

prior δ(d) (e.g., renter ⇒ +δ on pro-development; older age ⇒ −δ on rapid change). We set1272

s0 ← clip(s0 + δ(d), 1, 10).1273

N.5 Natural Language Realization1274

A realization module renders (G, e, bt, bt+1) to text: (i) paraphrase e with templates; (ii) describe1275

reasons using top-m nodes connected to v⋆ by high-confidence edges; (iii) optionally ask/answer1276

interview-style QAs. LLMs are used strictly as a renderer; labels remain from the scripted dynamics1277

in §N.3 to avoid circularity.1278
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Algorithm 1: GenerateAgent(t,Θt, seeds)
Input: topic t, stats Θt, RNG seeds
Output: agent (G, d, b0, {(ej , bj)}mj=1, text)

1 Sample |V |, |E|; create V with importance, evidence, label from V;
2 Build E via hubs + random; assign conf, sign, weight;
3 Select stance node v⋆; ensure connectivity;
4 Sample demographics d; set b0 = (s0,w0) and apply prior δ(d);
5 for j = 1 to m do
6 Sample intervention ej (topic-specific deltas ∆f );
7 bj ← U(bj−1, ej) using Eqns. (1)–(2);
8 Realize (ej , bj−1, bj) to text; append to transcript;
9 return packaged JSON: graph G, demographics d, {(ej , bj−1, bj)}, transcript;

N.6 End-to-End Generation1279

N.7 Complexity and Scaling1280

Graph sampling is O(|V |+ |E|); hub wiring adds O(|V | log |V |) for sorting. Per-agent conversation1281

of m turns is O(m) render calls. The pipeline trivially parallelizes across agents and topics.1282

N.8 Quality Control and Determinism1283

Graph validity: degree bounds, stance reachability, parameter ranges. Topic relevance: label1284

vocabulary coverage threshold. Determinism: all stochastic steps are seeded; topic stats are cached1285

with file hashes. Leakage control: interventions and post-update labels never appear in the dialogue1286

context used for model evaluation.1287

N.9 Release Schema1288

Records are released as JSON:1289

• belief_graph: nodes with label, importance; edges with source, target, sign, weight,1290

confidence; stance node id.1291

• demographic: age, gender, education, income, housing, employment, location, children, burden.1292

• state_before/state_after: stance (1–10), reason weights (1–5 or normalized).1293

• intervention: structured deltas and a natural-language paraphrase.1294

• transcript: ordered QA pairs (renderer output).1295

N.10 Human–Synthetic Similarity1296

To assess whether synthetic agents provide a faithful approximation of human reasoning structures,1297

we compare structural statistics of belief graphs across the two tracks. As shown in Figure 6, the1298

distributions of key properties—including graph size (nodes, edges), sparsity (edge density, average1299

degree), and semantic alignment (importance, confidence, anchor-node ratio)—exhibit strong overlap1300

between real and synthetic agents. Notably, synthetic graphs reproduce the long-tailed variation1301

in node and edge counts observed in human data, while maintaining comparable distributions of1302

stance-related weights. This alignment suggests that the synthetic track can serve as a scalable proxy1303

for human reasoning traces, capturing core structural regularities even as it abstracts away from1304

individual variability.1305

N.11 Limitations1306

Synthetic agents offer coverage and ablation control but abstract from human variability (noise,1307

inconsistency, framing sensitivity). Thus, results on this track are stress tests and should be interpreted1308

alongside the human-grounded track, which provides the ecological ceiling.1309
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Figure 6: Distributional comparison of structural statistics between human-grounded (blue) and
synthetic (red) belief graphs. Synthetic graphs replicate key patterns such as node/edge counts,
confidence levels, and anchor-node ratios, supporting their use as controlled stress-test agents.

O Benchmark Task Structure1310

To clarify how HugAgent maps input materials to evaluation tasks, we provide here a consolidated1311

overview of the benchmark structure. As shown in Figure 7, raw inputs include (i) demographic1312

profiles, (ii) structured questionnaires, and (iii) open-ended chatbot transcripts. These inputs are1313

transformed into two core task families:1314

• Task 1: Belief State Inference. Given a participant’s responses and contextual cues, models1315

must infer the person’s stance and factor-level attribution. Example questions include: “Does the1316

respondent view low-income housing as a positive or negative effect on property values?”1317

• Task 2: Belief Dynamics Update. After an intervention (e.g., rent decrease, policy change,1318

technological improvement), models must predict both the stance shift (1–10 scale) and the1319

reweighting of reasons (1–5 scale). Example questions include: “How would a 10% reduction in1320

rents affect the respondent’s stance on upzoning?”1321

Each topic domain—zoning, healthcare, and surveillance—is instantiated with multiple scenarios1322

and corresponding reason mappings. This ensures comparability across domains while preserving1323

topic-specific ecological validity.1324
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Figure 7: Overview of the HugAgent benchmark structure. Inputs (demographics, questionnaires,
and transcripts) are mapped to outputs, including belief state inference (Task 1) and belief dynamics
update (Task 2).

P User Journey and Use Cases of TRACE-YOUR-THINKING (A1325

Semi-structured Chatbot Eliciting Human Reasoning)1326

This appendix provides a detailed user guide and representative use cases for TRACE-YOUR-1327

THINKING, our semi-structured chatbot system designed to elicit human reasoning at scale. We1328

describe both participant-facing (user) and researcher-facing (admin) views, followed by system1329

outputs and illustrative use cases. We use open science practices as an example here. Our design1330

emphasizes three goals: (i) lowering barriers for participants, (ii) giving researchers flexible and1331

reliable control, and (iii) producing structured outputs that make reasoning analyzable at scale.1332
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Participant Journey (User View)1333

Participants experience a streamlined workflow that reduces friction while maximizing the richness1334

of collected reasoning.1335

Step 1: Consent and ID submission. Recruitment begins on the Prolific platform, where partic-1336

ipants are shown eligibility criteria and compensation details. Upon accepting the study, they are1337

redirected to a Google Form where they confirm basic requirements (age ≥ 18, residence within a1338

specified region, consent for anonymous data usage). Entering their Prolific ID links the responses1339

to the recruitment system, enabling follow-ups without storing personal identifiers, as is shown in1340

Figure 8.1341

Figure 8: Participant view of the onboarding and interview flow (Consent)

Figure 9: Participant view of the welcome page

Step 2: Login and onboarding. Participants are then redirected to the TRACE-YOUR-THINKING1342

website. After inputting their Prolific ID, they are guided through a short tutorial. This tutorial1343

introduces input modalities (typed text vs. voice-to-text) and explicitly informs users that all answers1344

can be revised either immediately or retrospectively. A persistent progress bar at the top of the1345

interface communicates task completion, reducing dropout risk by making expectations transparent.1346

This part is shown in Figure 9.1347

Step 3: Semi-structured interview. The core of the participant journey is the semi-structured1348

interview, which unfolds in a guided yet flexible flow: introduction→ guiding questions→ follow-up1349

probes→ final review. This design balances standardization with open-ended flexibility, allowing for1350

wide variation in content, style, and depth of responses.1351

Participants can choose between typed responses and spoken input, enabling a think-aloud protocol1352

that captures more spontaneous reasoning processes. Figure 10 illustrates the onboarding screen1353

where both input modes are explained, while Figure 11 shows a participant actively using voice1354

input to answer a question. Once the interview begins, participants can monitor their progress via a1355
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Figure 10: Participant view of the onboarding of the chatbot, including audio and text input

persistent progress bar (Figure 12), which reduces fatigue by making task completion transparent.1356

During processing, the interface will show the processing status while still generating new questions1357

and allow users to answer (Figure 13).1358

Participants can not only edit their responses immediately but also review the entire transcript at the1359

end of the interview. As shown in Figures 14 and 15, the system presents an overview of all questions1360

and answers, enabling users to backtrack, refine, and self-correct their reasoning. This mirrors how1361

real-world reasoning often evolves over multiple passes rather than being fixed in a single draft.1362

Step 4: Submission and compensation. Once satisfied, participants submit their responses. Fig-1363

ures 16 and 17 demonstrate the submission stage, where participants re-enter their Prolific ID to1364

confirm completion and finalize their session. The system redirects them back to Prolific, which1365

automatically verifies completion and issues compensation. This tight integration ensures high-quality1366

participation while minimizing administrative overhead.1367
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Figure 11: Participant view of using audio to give the answer

P.1 Researcher Journey (Admin View)1368

The system provides a dedicated control panel that makes data collection transparent, configurable,1369

and scalable. Unlike static survey platforms, admins can adapt the study design on the fly and extract1370

structured reasoning outputs.1371

Recruitment integration. Admins can publish tasks directly on Prolific, embedding the study link1372

into recruitment posts. Prolific’s filters (approval rate, demographics, geography) allow targeted1373

participant pools, while stored Prolific IDs support longitudinal follow-ups. This design enables1374

researchers to re-engage the same individuals across time or across topics, making it uniquely suitable1375

for longitudinal reasoning studies.1376

Session management. The Session Management dashboard (Fig. 18) displays all ongoing and1377

completed interviews with metadata including status, progress, and timestamps. From this panel,1378

admins can (i) reorder questions, (ii) export raw QA data, or (iii) export causal graphs for downstream1379

analysis. This unified view makes it easy to monitor study progress at scale and to recover high-fidelity1380

reasoning traces.1381

Configurable guiding questions. Admins can design and adjust the interview protocol using1382

a guiding question editor (Fig. 19). Each question has metadata (short text, full text, category),1383

can be toggled on/off, and can be reordered dynamically. This flexibility makes it possible to test1384

multiple hypotheses without rewriting the underlying system. In practice, this feature has been used1385

to swap tutorial vs. research questions and to experiment with different probing strategies, making1386

the platform versatile for diverse research programs.1387

Global settings. Admins can set a global interview topic (e.g., policy, healthcare, surveillance)1388

with a single configuration (Fig. 20). This allows open-ended reasoning tasks to be deployed across1389

arbitrary domains, ensuring that the platform is not tied to a fixed task. In effect, the system generalizes1390

beyond a dataset-collection tool to become a reusable infrastructure for eliciting reasoning in any1391

domain.1392

P.2 Research Outputs (System Features)1393

The system is designed to produce outputs that go beyond raw transcripts, giving researchers structured1394

and analyzable data.1395

Raw QA transcripts. All participant responses are preserved verbatim (Fig. 21). This ensures that1396

qualitative nuances (hesitations, personal anecdotes, colloquial phrasing) are not lost. At the same1397

time, transcripts provide the raw material for quantitative benchmarking, enabling evaluations of1398

stance classification, belief calibration, and reasoning depth. The ability to capture both structured and1399

noisy responses is a feature, not a limitation: it reflects the diversity of real-world human reasoning.1400

Dynamic causal graphs. The distinctive feature of TRACE-YOUR-THINKING is the automatic1401

construction of causal graphs in real time (Fig. 22). As participants answer questions, the system1402

incrementally extracts stance nodes (opinions), belief nodes (anchors), and candidate nodes (sup-1403

porting reasons). The graph expands as reasoning unfolds, producing a structured representation of1404

how beliefs and justifications interconnect. This design is important for two reasons: (i) it transforms1405

unstructured reasoning into analyzable graph data, and (ii) it enables researchers to trace belief1406

updates step by step, rather than relying only on final outcomes. These graphs can be exported for1407

downstream tasks such as reasoning alignment, structural consistency evaluation, or cross-domain1408

transfer prediction.1409
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Figure 12: Participant view of answering questions and the interview progress

P.3 Use Cases1410

The flexibility of the system enables multiple research paradigms:1411

• Baseline data collection: Build large-scale corpora of reasoning traces in a controlled domain1412

(e.g., housing policy), establishing benchmarks for human reasoning diversity.1413

• Cross-domain transfer: Instantly switch topics (e.g., from zoning to healthcare) by editing global1414

settings, to study how reasoning patterns generalize across domains.1415

• Longitudinal studies: Re-engage the same participants over weeks or months via Prolific IDs,1416

enabling the study of belief updates and reasoning drift.1417

• Human–model benchmarking: Compare LLM predictions against human causal graphs to1418

quantify intra-agent fidelity, context sensitivity, and adaptation gaps.1419
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Figure 13: Participant view while AI is processing questions, but the participant can still answer the
following questions without waiting
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Figure 14: Participant view of the overview of the questions and answers. One can edit and go back
to any of their answer.
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Figure 15: Participant view of the end of the overview of the questions and answers

Figure 16: Participant view of reentering prolific id for submission
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Figure 17: Participant view of the end of the test

Figure 18: Admin session management panel with status tracking, progress monitoring, and export
functionality. Researchers can monitor studies in real time and batch export reasoning data.
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Figure 19: Guiding question editor. Researchers can toggle tutorial vs. research questions, reorder
them dynamically, and experiment with alternative protocols. They can also choose to skip some
questions by changing the status.

Figure 20: Global interview settings. With one change, the system can adapt to entirely new domains,
enabling domain-agnostic deployment.
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Figure 21: Sample QA transcripts highlighting variation in response depth and style. The system
captures both structured argumentation and spontaneous informal commentary.
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Figure 22: Dynamic causal graph visualization. Nodes capture beliefs, stances, and supporting
reasons, updated continuously as the participant responds.
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Q Evaluation1420

Q.1 Evaluation Metrics1421

Let yi denote the ground-truth response for instance i, ŷi the model prediction, and N the total number1422

of instances. For belief dynamics update tasks, let yprev
i denote the participant’s pre-intervention1423

score.1424

Accuracy.

Acc =
1

N

N∑
i=1

1
[
|ŷi − yi| ≤ τ

]
,

where τ is the tolerance band (τ = 1 for 5-point scales, τ = 2 for 10-point scales).1425

Mean Absolute Error (MAE).

MAE =
1

N

N∑
i=1

|ŷi − yi|.

Directional Accuracy. We define directional accuracy as a two-stage weighted metric: (1) detecting1426

whether a belief change occurred, and (2) if so, correctly predicting the direction of change (increase,1427

decrease, or no change). To better reflect the importance of directional reasoning, a higher weight is1428

assigned to the second stage.1429

DirAcc = λ · 1
N

N∑
i=1

1[(∆yi = 0 ∧∆ŷi = 0) ∨ (∆yi ̸= 0 ∧∆ŷi ̸= 0)]

+ (1− λ) · 1

|C|
∑
i∈C

1[sgn(∆yi) = sgn(∆ŷi)] ,

(4)

where ∆ŷi = ŷi − ŷprev
i and ∆yi = yi − yprev

i denote predicted and true belief changes, respectively.1430

C = { i | ∆ŷi ̸= 0 ∧∆yi ̸= 0 } is the set of samples where both predicted and true beliefs changed.1431

We set λ = 0.3 by default, placing greater emphasis on directional correctness.1432

This weighting reflects the intuition that correctly inferring the direction of belief change is more1433

informative than merely detecting whether a change occurred. While the first stage (change detection)1434

captures a coarse perceptual judgment that can often be guessed in noisy or stable settings, the second1435

stage(directional correctness)reveals whether the model truly understands and reasons about belief1436

dynamics. Hence, emphasizing the latter better reflects a model’s fidelity to human-like reasoning1437

processes and its capacity to simulate belief evolution.1438

Average-to-Individual (ATI) Score. To provide a single comprehensive measure of model perfor-1439

mance across both static and dynamic belief tasks, we define a unified score, Average-to-Individual1440

(ATI) score, that integrates the Belief State Inference (BSI) and Belief Dynamics Update (BDU)1441

components into a normalized value within [0, 1]. Specifically, SBSI denotes the normalized accuracy1442

score for static belief state inference, while SBDU aggregates multiple metrics from the belief dynam-1443

ics update task, including tolerance accuracy, normalized MAE, and directional reasoning accuracy.1444

The unscaled ATI score is computed as:1445

ATIunscaled = 1
2SBSI +

1
2

[
1
2

(
1
2SBDU-mae-norm + 1

2SBDU-acc
)
+ 1

2SDirectional-acc

]
. (5)

where each subscore S· ∈ [0, 1] represents a normalized evaluation metric. For MAE-based compo-1446

nents, normalization is defined as:1447

SBDU-mae-norm = max
(
0, min(1, 1− MAE

MAEmax
)
)
, (6)

where MAEmax denotes the task-specific upper bound of allowable error. The unified score assigns1448

equal weights to the state component (SBSI) and the update component (SBDU). Within the update1449

branch, tolerance accuracy and MAE are equally weighted (0.5 each) to ensure a balanced consider-1450

ation of robustness and precision. The directional reasoning component (SDirectional-acc) is assigned1451
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an equal weight (0.5) relative to the combined MAE and accuracy branch, reflecting its comparable1452

importance in capturing belief-updating dynamics.1453

To facilitate interpretation relative to human performance and baseline behavior, we linearly rescale1454

ATIunscaled to a 0–100 scale:1455

ATI =
ATIunscaled − ATIrandom

ATIhuman − ATIrandom
× 100, (7)

where ATIrandom and ATIhuman denote the unscaled ATI scores of the random guess baseline and human1456

upper bound, respectively. Under this rescaling, a score of 0 indicates random-level performance,1457

while 100 represents human-level performance.1458

Q.2 Computation Details and Track Usage1459

Unless otherwise specified, all quantitative analyses and unified average to individual (ATI) score1460

computations are performed on the human track, which serves as the primary evaluation benchmark1461

due to its ecological validity and authentic reasoning diversity.1462

The synthetic track follows the same survey and interview protocol but is designed for auxiliary and1463

extensibility testing. It provides a controlled setting for examining model sensitivity, scaling behavior,1464

and cross-domain generalization under scripted causal belief networks (CBNs). While the human1465

track grounds evaluation in real participant reasoning, the synthetic track extends the benchmark1466

toward scalable stress testing and potential future applications in simulated social environments.1467

In practice, model predictions for both tasks—belief state inference (BSI) and belief dynamics update1468

(BDU)—are first computed independently. All metrics (accuracy, MAE, and directional accuracy)1469

are averaged across the three domains (healthcare, surveillance, zoning) before aggregation into1470

the unified score defined in Equation 5. Reported results in Section 4 and subsequent findings are1471

therefore based on the human track unless explicitly noted otherwise.1472
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R Use of LLM Usage1473

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.1474

It is important to note that the LLM was not involved in the ideation, research methodology, or1475

experimental design. All research concepts, ideas, and analyses were developed and conducted by1476

the authors. The contributions of the LLM were solely focused on improving the linguistic quality of1477

the paper, with no involvement in the scientific content or data analysis.1478

The authors take full responsibility for the content of the manuscript, including any text generated or1479

polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and1480

does not contribute to plagiarism or scientific misconduct.1481
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