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ABSTRACT

Implicit Neural Representations (INRs) provide a continuous mapping between
the coordinates of a signal and the corresponding values. As the performance of
INRs heavily depends on the choice of nonlinear-activation functions, there has
been a significant focus on encoding explicit signals within INRs using diverse
activation functions. Despite recent advancements, existing INRs often encounter
significant challenges, particularly at fine scales where they often introduce noise-
like artifacts over smoother areas compromising the quality of the output. More-
over, they frequently struggle to generalize to unseen coordinates. These draw-
backs highlight a critical area for further research and development to enhance
the robustness and applicability of INRs across diverse scenarios. To address
this challenge, we introduce the Prolate Spheroidal Wave Function-based Implicit
Neural Representations (PIN), which exploits the optimal space-frequency do-
main concentration of Prolate Spheroidal Wave Functions (PSWFs) as the nonlin-
ear mechanism in INRs. Our experimental results reveal that PIN excels not only
in representing images and 3D shapes but also significantly outperforms existing
methods in various vision tasks that require INR generalization, including image
inpainting, novel view synthesis, edge detection, and image denoising.

1 INTRODUCTION

Discrete representations of images and shapes currently dominate computer vision tasks, with ben-
efits derived from their convenience in storage and computation. Nonetheless, it is worth noting
that memory consumption escalates exponentially with the dimensions and resolutions of the data.
Moreover, the discrete formation limits the expressivity with the finite discrete grid size or volume
size. Implicit Neural Representation (INR) (Sitzmann et al., 2020; Tancik et al., 2020) provides an
alternative mechanism that continuously represents signals parameterized through Multi-layer Per-
ceptions (MLPs). INRs are usually fully connected neural networks designed to learn a continuous
mapping between coordinates of a signal to the corresponding signal values, resulting in a compact
representation of the signal with arbitrary resolution. Beyond representation (Chen et al., 2023b;
Saragadam et al., 2022), INRs have demonstrated prominent advantages in various vision tasks, in-
cluding image reconstruction (Czerkawski et al., 2021; Saragadam et al., 2023), medical imaging
(Shen et al., 2022; Sun et al., 2021), and novel view synthesis (Barron et al., 2021; Mildenhall et al.,
2020; Niemeyer et al., 2020).

Despite the evident advantages delineated above for INRs in vision computing tasks, properties of
some inherent structures of INRs present obstacles to a more widespread application in various vi-
sion tasks. First, the expressivity of INRs is heavily influenced by the choice of activation function
(Sitzmann et al., 2020; Ramasinghe & Lucey, 2022; Saragadam et al., 2023). The original INRs
employing ReLU as activation function were demonstrated to exhibit poor performance in signal
representation tasks due to the spectral bias of MLPs (Basri et al., 2020; Rahaman et al., 2019),
which favors learning low-frequency and lacks the ability to represent fine details. Also, when re-
constructing from sparse measurements, INRs tend to overfit to the coordinates used during training,
i.e., the INR can only accurately represent the signal values of the trained coordinates, leading to
blurry or noisy reconstructions.

Fourier features (Tancik et al., 2020) or positional encoding (Mildenhall et al., 2020) is a trans-
formation which maps low-dimensional coordinates to high-dimensional features, enabling MLP’s
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input layer to embed high frequencies and learning the high-frequency content of a signal (Tancik
et al., 2020). Several alternative nonlinearities including sinusoids (Sitzmann et al., 2020), Gaussian
functions (Ramasinghe & Lucey, 2022), and Gabor Wavelets (Saragadam et al., 2023) have been
proposed as replacements for ReLUs along with positional embedding schemes, often leading to
notable enhancements in signal encoding capabilities. One key property of Gaussians and Gabor
Wavelets is their good balance of joint space-frequency energy concentration, which explains their
efficient performance according to classical signal processing. Nevertheless, another limitation of
current INR design is their high sensitivity to hyperparameter selection of parameters. Gaussian and
Gabor wavelet nonlinearities require to set a predefined frequency or scale parameter for the INR
to achieve competitive performance. How to determine best hyperparameters for the INR activation
function and how to initialize the network is still heuristic, and highly dependent on the processing
task.

Numerous recent studies have explored the inherent properties of INRs through theoretical analyses
and experimental investigations to advance the understand of the mechanisms behind their success
and limitations. The Neural Tangent Kernel (NTK) (Jacot et al., 2018) was used to reveal that stan-
dard MLP converges very slowly to high-frequency signals in low-dimensional coordinate-based
INRs, owing to the rapid frequency fall-off of its corresponding kernels.When utilizing Fourier fea-
tures (Tancik et al., 2020) or sinusoidal activation functions (Sitzmann et al., 2020) or their recently
introduced variants (Liu et al., 2024; Shi et al., 2024; Kazerouni et al., 2024), which aim to achieve
superior representation through variable periodic activation functions, sinusoid adjustments based
on deep prior knowledge, and Fourier reparameterization, respectively, the Neural Tangent Kernel
(NTK) is transformed into a stationary (shift-invariant) kernel, enabling control over the range of
learned frequencies (Tancik et al., 2020). The work by Yüce et al. (2022) provided a theoretical
analysis of the expressivity and inductive bias of INRs, as well as the imperfect recovery resulting
from the inadequacy of input frequencies to properly capture the frequency of the signal. Exper-
imentally, Saragadam et al. (2023) investigated the first layer output of INR, demonstrating that
the spatial and frequency compactness of the activation function, as well as the multi-dimensional
non-linearity, provide more accurate representations for natural images. Roddenberry et al. (2023)
demonstrated that the output of an INR with a generic wavelet activation in the first layer can be
expressed in terms of the same wavelets.

In this paper, motivated by these recent theoretical and experimental findings, we propose the em-
ployment of a novel activation function for INRs: the Prolate Spheroidal Wave Function (PSWF).
PSWFs are designed to maximize the spatial and frequency domain energy concentration, and have
previously been used in many vision applications (Lindquist & Wager, 2008; Wendt et al., 2010;
Brown & DC, 1968) demonstrating that having an optimal balance of energy concentration in both
spatial and frequency domains is critical for efficient signal representation and approximation (Ra-
masinghe & Lucey, 2022; Saragadam et al., 2023). Our results below showcase that emplying
PSWFs as the activation function for INRs endows this architecture with greater expressivity and
generalizability as compared to sinusoidal, Gaussian, and Gabor functions which are currently used
in state-of-the-art INR implementations. We attribute this improved performance to the high energy
compactification of PSWF atoms and their flexibility, namely the ability to easily tune their hyper-
parameters to various tasks. Extensive numerical experiments demonstrate that our new INR model
excels not only in representation tasks but also in more challenging reconstruction tasks, e.g., image
inpainting, where exisitng INRs often perform poorly.

2 RELATED WORKS

Implicit Neural Representation. INRs have emerged in recent years showcasing remarkable per-
formances not only in signal representation tasks but also in many inverse vision applications, e.g.,
unordered signal representation such as 3D shape representation (Park et al., 2019; Mescheder et al.,
2019) or novel-view synthesis (Barron et al., 2021; Mildenhall et al., 2020; Niemeyer et al., 2020).
The INR represents signals by parameterizing the mappings between input coordinates and signal
values using an MLP. The MLP usage here differs from the standard approach in that the inputs are
low-dimensional coordinates instead of high-dimensional pixels. In such cases, the ReLU activation
function performs poorly due to its spectral bias. Recent works have improved the expressivity
of INRs by incorporating coordinate transformation or introducing a special type of non-linearity
for the MLP, resulting in enhanced performance in signal representation tasks. Unlike conventional
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neural networks, the training of INRs is always conducted on a case-by-case basis, which hinders
their widespread adoption in vision computing tasks. Several works have proposed accelerating
training through multi-scale methods (Saragadam et al., 2022), local blocks (Reiser et al., 2021),
Mixture-of-Expert (Wang et al., 2022), adaptive coordinate (Martel et al., 2021).

Expressivity of INRs. Despite the widespread adoption of INRs in various tasks, a thorough the-
oretical understanding is still limited. Fourier analysis was used to explore the spectral bias of
standard MLPs with ReLU (Rahaman et al., 2019; Cao et al., 2019; Basri et al., 2020), i.e. low
frequency is learning fast and robust to noise. The use of Fourier Feature Network (FFN) (Tancik
et al., 2020) or periodic non-linearity (SIREN) (Sitzmann et al., 2020) can alleviate spectral bias by
transforming the NTK to a stationary (shift-invariant) kernel. Building upon the basic property of
trigonometric function, Yüce et al. (2022) demonstrated that the expressivity of FFN and SIREN
essentially share the same expressive power, which is characterized by the linear combination of
sinusoidal functions at integer hamonics. They also identified the reason for the failure recovery as
resulting from the uncovered spectral components, which leads to severe artifacts. For non-periodic
activations, such as wavelet (Saragadam et al., 2023),Roddenberry et al. (2023) derived a bound of
functions that can be represented by INR.

3 METHODOLOGY

3.1 FORMULATION OF AN INR

An INR encodes the mapping between input coordinates r ∈ RI and corresponding signal values
f(r) ∈ RO, denoted as g : RI → RO, and the mapping ,which is g, is parameterized by a fully
connected neural network Φθ : RI → RO, where θ represents the parameters of the neural network.
For instance, when representing an image, the INR maps pixel coordinates r = (xi, yi) to the
corresponding RGB values f(r) = (Ri, Gi, Bi). The fully connected network Φθ typically an L
layer MLP, each layer given by:

z0 = γ(r)

zk = σ(Wkzk−1 + bk)), k = 1, . . . , L− 1

zL = WLzL−1 + bL.

(1)

where γ is the position encoding, σ is the nonlinear activation function. Wk, bk are weights and
biases of the k’th layer. z0 ∈ RI is the input coordinate and zL ∈ RO is the output of final layer.

3.2 WHY PSWFS?

In the recent INR literature, periodic functions such as the sinusoidal activation function and its
analogous Fourier embedding have shown to yield better approximations than ReLU, particularly
for reconstructing high-frequency components. Functions with better spatial localization, such as
Gaussian (Ramasinghe & Lucey, 2022) or Gabor wavelets (Saragadam et al., 2022) have shown
higher accuracy in image and shape representation tasks, benefiting from their analytic properties.
Even though INRs with these activations work competitively in image and shape representation
problems, they work poorly for reconstruction tasks from sparse or noisy measurements, such as
image inpainting and denoising. Furthermore, when encoding the signals, existing INRs have a
tendency to lose the balance between smoother and finer detailed areas in favor of finer details. A
reason for these limitations could be the inadequate energy compactification of INRs when employ-
ing Gabor wavelets or Gaussians. This problem is demonstrated by the great sensitivity of INRs
to the selection of scale and frequency parameters for Gaussians and Gabor wavelets (Saragadam
et al., 2023). Signal representation can be improved by adjusting these parameters for each signal
to make such activations more compact in space. However, fine tuning those parameters from sig-
nal to signal is extremely tardy, and inefficient task. In addition to that, when INRs are trained on
partial data and evaluated on the entire dataset, they fail to generalize, even with different parameter
settings. The recovered-masked areas tend to be purely noisy. Similarly, in image denoising, the
INRs tend to learn the noise, making it difficult to remove effectively. These observations motivate
us to explore alternate activation functions with better space-frequency compactification and lead to
PSWFs. Figure 1 shows the space-frequency trade-off of the existing activations along with PSWF.
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Figure 1: Space-Frequency Tradeoff of Activations: The top row illustrates how the values of
activation functions change with spatial distance, while the bottom row demonstrates how their
magnitudes vary in the Fourier domain with frequency. When an activation function compresses in
the spatial domain, it tends to have a broader spectrum in the frequency domain, and vice versa. This
phenomenon is known as the space-frequency tradeoff of functions. PSWFs are recognized for their
optimality in preserving the highest energy across both domains.

3.3 PROLATE SPHEROIDAL WAVE FUNCTIONS

PSWFs originated from a question posed by Shannon (Moore & Cada, 2004) in the 1960s: To
what extent are functions, which are confined to a finite bandwidth, also concentrated in the time
domain? Slepian (Slepian & Pollak, 1961; Slepian, 1964; Landau & Pollak, 1961b; 1962), discov-
ered that such functions are associated with the solutions to a Sturm-Liouville problem arising from
the Helmholz equation on the prolate sphere (hence the name). In a seminal sequence of papers,
Slepian, Pollak and Landau at Bell Labs introduced an integral formulation for this energy concen-
tration problem which led to the following equation (Landau & Pollak, 1961a; Slepian & Pollak,
1961) where the PSWFs ψn(c, t) are the eigenfunction solution of the integral operator problem∫ t0

−t0

ψn(c, t)
sinΩ(x− t)

π(x− t)
dt = ψn(c, x)λn(c),

where λn(c) are corresponding eigenvalues, c is the bandwidth parameter and c = t0Ω, Ω is the
cut-off frequency of λn(c). The PSWFs form an orthonormal basis of the space of Ω-bandlimited
functions with the fundamental property of being maximally concentrated in time and frequency
domain. This energy concentration property has been proven to very advantageous in various signal
processing tasks (Gosse, 2013; Hu et al., 2014; Lindquist & Wager, 2008), most notably in sampling
problems where PSWFs have been employed for image reconstruction from sparse samples (Khare
& George, 2003; Hogan et al., 2010; Lindquist, 2003). The success of PSWFs in sampling applica-
tions is of particular interest here, as it suggests their potential for efficiently representing complex
information. In our results section below, we confirm that leveraging excellent expressivity proper-
ties with robustness in the sparse and possibly noisy sampling setting; PSWFs leads to a remarkably
effective choice of activation function for INRs.

In an INR model that employs polynomial activation functions and compactly supported wavelets
as template functions in the first layer, Roddenberry et al. (2023) demonstrates that the Fourier
transform of the INR output can be characterized by the convolutions of the Fourier transforms of
the first-layer atoms with themselves. This observation can be extended to PSWFs which have not
compact support but have rapid space decay. They are a generalization of Legendre polynomials
and can be represented by the expansion:

ψn(c, t) =

∞∑
k=0

βn
kPk(t), (2)

where Pk(t) is normalized version of Legendre polynomial of order k where the coefficients βk can
be calculated by recurrence relation as shown in Moore & Cada (2004).
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As shown in Roddenberry et al. (2023) and Yüce et al. (2022), the support of scaled and shifted
versions of the template in the first layer is preserved, implying that the output at given coordinate
relies solely on the template in the first layer whose support contains this coordinate. For PSWFs
it is indeed true that the Fourier support is preserved. As a result, the Fourier output at a given
coordinate ξ is dependent only upon the PSWFs in the first layer whose Fourier support contains ξ.

4 SPACE-FREQUENCY LOCALIZATION

Strong localization in both space and Fourier domains is a highly desirable property in classical
signal processing which is known to be critical for robust signal approximations and reconstructions
(Donoho et al., 1998). In a nutshell, localization entails that the energy of a signal is highly localized,
so that complex information can be efficiently decomposed into well localized components. Emerg-
ing evidence shows that space-frequency localization of the activation function is equally important
in INRs.

For this reason, the selection of PSWFs in the PIN design has a major impact to explain their ex-
cellent performnance. The visualization in figure 1 illustrates the behavior of PSWFs across space
and Fourier domains. In the spatial domain, we can observe how PSWF is highly localized within
a specific region, rapidly tapering off away from the center. This localization is mirrored in the fre-
quency domain, where the function is confined within a finite bandwidth. In section 5 we prove that
the output of PIN Φθ(r) is a polynomial of PSWF with a degree of KL−1. Moreover, the Fourier
transform of Φθ(r) is band-limited and with rapid space decay which contributes to the advantage
in INRs.

5 LOCALIZATION AND EXPRESSIVITY PROPERTIES OF PIN

Our INR architectures can be decomposed into a mapping function γ(r) : Rd → RT0 , also called
positional encoding, followed by an MLP with weights Wk ∈ RTk×Tk−1 , biases bk ∈ RTk and
activation function ρ applied elementwise. By denoting as zk the post-activation functions, the INR
computes the output function Φθ = zL as form equation 1. Our PIN adopts the PSWFs, denoted
below with the symbol ψ, as the activation function (ρ = ψ). We choose ψ to be the PSWF of order
0.

Theorem 1. Let Φθ(r) : Rd → R be an L layer PIN, with weights Wk ∈ RTk×Tk−1 , biases
bk ∈ RTk in k-th layer, assume the activation function ψ is PSWF which can be approximated with
a polynomial of degree at most K, that is ψ(x) =

∑K
m=0 αmx

m.

Then, Φθ(r) can be expressed as polynomial of ψ(W (t)
1 γ (r) + bt) with degree at most KL−1

Φθ(r) =

KL−1∑
m=0

∑
ℓ1+ℓ2+···ℓn=m

n∏
t=1

α̂ℓt

(
ψ(W

(t)
1 γ (r) + bt)

)ℓt
.

Theorem 1 shows that the Fourier transform of Φθ(r) is a KL−1-order convolution of Fourier
transforms of PSWFs ψ. Since ψ is band-limited, and the convolution of band-limited functions is
band-limited, then Φθ(r) is also band-limited. Additionally, since convolution increases regularity,
Φθ(r) has high-order of regularity in the Fourier domain implying that Φθ(r) has very rapid decay
in space, that is it is highly localized.

6 ADAPTIVE ACTIVATION FUNCTION PARAMETERS LEARNING

We have argued above that the optimal spatial and frequency concentration of PSWF positively im-
pacts the performance of the INR model. Another critical advantage of this approach is its flexibility
to determine the best hyperparameters of the PSWF activation.

As noted above, the parameters of activation functions in WIRE and GAUSS are chosen ad-hoc
for different tasks and different signals using a grid search (Saragadam et al., 2023). However, the
activation function’s parameters resulting from such a grid search are local. i.e., they are only optimal
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for the signal that has been used in the grid search, while they are suboptimal for other signals,
affecting the expressivity of the INR model. Even if those parameters are designed to be learnable,
the initialization still impacts the parameters of the learned activation function. For instance, the
parameters in the Gabor wavelet ψ (x;ω, s) = ejωxe−|sx|2 are ω and s, representing the frequency
and scale respectively; in Gaussian function ψ (x; s) = e−(sx)2 , the parameter s represents the scale.
As the parameters of these functions appear in an exponent, it is difficult to learn wider frequency
or scale distributions.

The situation is different for our PSWF activations as we do not use an explicit formulation, but we
use a numerical approximation, so there are no explicit parameters to control. Rather, we apply an
indirect way to control the amplitude, frequency, and height characteristics of the PSWF. That is,
for the predefined PSWF function ψ(x), we instantiate the learnable PWSF activation function by
ψ̂(x) = Tψ(wx) + b. In this case, the amplitude, frequency, and height of the PSWF activation
function are indirectly controlled by T , w, and b, respectively. The construction of PSWFs as an
activation, detailed explanations and ablations on adaptive activation function parameter learning
are provided in section A.1 in Appendix.

7 EXPERIMENTS

7.1 IMAGE REPRESENTATION

Image representation, commonly referred to as image regression, is a measure that evaluates the
expressive capabilities of INRs. A superior INR should not only represent the original signal but
also preserve a substantial amount of the structural information, texture, color, and contrast of the
image. For assessing the effectiveness of INRs in image representation tasks, the Kodak Lossless
True Color Image Dataset (Franzen, 1999) was employed. This dataset was chosen to analyze the
performance of the PIN across a comprehensive set of images rather than limiting the evaluation
to a single example. Comprising 24 images with varied spatial and frequency content, the dataset
presents a robust challenge, requiring the PIN to maintain high fidelity in representation. PIN was
subsequently trained on each image in the dataset. The left panel of figure 2 showcases the 15th

image from the dataset alongside the image representations generated by various INRs. On the right
of the same figure displays the variation in PSNR across the dataset for different INRs, where each
image is indexed along the circumference of the radar plot. The PSNR values for PIN are highlighted
in black.

The child image on the left of figure 2 showcases the PIN’s color accuracy and its capability of
extracting highly varying contents of the image into the weights and biases of an INR compared
to existing INRs. A closer look at the decoded representations of the existing baselines reveals
that INRs which are only frequency-compact, like SIREN, tend towards a low-pass representation
of the explicit representation, failing to capture intricate details. On the other hand, INRs that
are both space-frequency compact but with rapid decay in both domains showcase the ability to
capture fast-varying components of images into the INR. However, when they focus more on finer
details, they fail to balance smooth regions, introducing some additional noise. As PSWFs are the
optimal representation in both domains, PIN focuses on both finer and smooth regions, encoding the
signal optimally with minimal distortion. Due to PIN’s ability to effectively focus on both high and
low-frequency components, it outperforms the existing baselines across all images in the dataset,
consistently delivering a PSNR of at least 30 dB. Additional image representation results including
a thorough evaluation on DIV2K dataset (Agustsson & Timofte, 2017), and learning curves are
provided in the supplementary material.

7.2 SOLVING THE WIDE FREQUENCY SPECTRUM CHALLENGE VIA PIN

Even though INRs are proficient at converting explicit signals to implicit representations, their per-
formance is impeded when dealing with signals that encompass a wide frequency spectrum. Specif-
ically, while INRs that incorporate Fourier feature encodings (Landgraf et al., 2022) excel at cap-
turing fine details through high-frequency components, they simultaneously introduce undesirable
noisy elements in areas that should remain smooth. Notably, according to the findings in (Landgraf
et al., 2022), SIREN (Sitzmann et al., 2020) also exhibits this limitation, struggling to maintain fi-
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Figure 2: Image representation capacity of PIN: The left image shows an instance of PIN’s rep-
resentation capacity, and the right image shows the PIN’s representation capacity evaluated on all
Kodak lossless true color images. PIN stands out as the INR that achieves the highest PSNR and
SSIM metrics, indicating minimal distortion and maximum preservation of structural information.

delity in smoother regions while effectively representing finer textures, and (Landgraf et al., 2022)
presents a hierarchical representational approach to resolve this issue. Further, rapid decaying space-
frequency non-linearities such as Gabor Wavelet (Saragadam et al., 2022) and GAUSS (Ramasinghe
& Lucey, 2022) are good at focusing on fast varying components of images and capturing them ef-
ficiently into weights and biases, but when they focus on intricate details, they lose their focus on
smooth regions and introduce some form of noisy component (see figure 3). However, as PSWFs are
known for being optimally space and band-limited, they excel in the preservation of energy concen-
tration. This characteristic allows them to adeptly represent finer details without encountering this
issue. Therefore, PIN achieves an optimal representation that maintains high fidelity across different
textural features. This effect is illustrated in figure 3, where the efficacy of PSWFs in balancing de-
tail and smoothness is visually demonstrated compared to the existing INRs. Furthermore, this issue
can be seen in the decoded representations of the child image in figure 2 as well. Therefore, from the
presented visual results, it can be clearly seen that without the need for any additional architectural
changes to INRs, PIN can resolve this wide frequency spectrum challenge.

Figure 3: Wide-Frequency spectrum challenge: Existing INRs often attempt to emphasize finer
details while not focusing much on smoother regions. This can be attributed to their nonlinearities’
space-frequency trade-offs. By contrast, PINs exhibit optimal energy concentration for a given band,
enabling them to effectively encode both fine details and smooth regions.

7.3 OCCUPANCY FIELD REPRESENTATION

When it comes to representing three dimensional occupancy fields, the topic of image representa-
tion, as explored in figure 2 extends into the realm of three-dimensional spaces. This extension
allows for an examination of the capability of INRs to depict three-dimensional signed distance
fields. In this context, the transformation occurs from a three-dimensional domain to a binary signal
space, marked by the values 1 or 0. Where, a value of 1 signifies the presence of the signal within
a predefined area, whereas a value of 0 denotes its absence from that area. For this experiment
two occupancy volumes namely Asian Dragon, and Armadillo, which are shown in figure 4, were
obtained from Stanford 3D shape dataset (Stanford University Computer Graphics Laboratory), and
sampled on a grid of 512× 512× 512, assigning a value of 1 to each voxel inside the volume and a
value of 0 to those outside. The methodology for this study was derived from the work mentioned

7
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in Saragadam et al. (2023). The obtained results are shown in figure 4. It can be observed that in
both the instances PIN effectively encode the rapidly changing three-dimensional structure into its
neural representation. In contrast, when examining the performance of WIRE and SIREN, it is evi-
dent that these architectures struggle to incorporate the quickly varying components of the structure
into their weights and biases, resulting in a representation that primarily captures lower frequency
components. While GAUSS activation function achieves performance metrics similar to PIN, a de-
tailed examination of the three-dimensional statues decoded from Gauss reveals distortions in some
uniform areas in both instances. Conversely, PIN encodes the structure accurately without introduc-
ing any additional artifacts. Furthermore, PIN’s performance has been evaluated on additional 3D
shapes, and the obtained IoU values are provided in the Appendix.

Figure 4: Occupancy fields representation capacity of PIN: PIN stands out as the INR that exhibits
the highest similarity to the ground truth occupancy field. Unlike other INRs, the PIN approach does
not converge to a low-pass representation; rather, it accurately preserves high-frequency components
throughout the training process. This characteristic enables PIN to faithfully capture intricate de-
tails, making it particularly adept for tasks requiring accurate representation of complex occupancy
patterns.

7.4 IMAGE INPAINTING

INRs are often employed to learn continuous functions from discretized signals. Once an INR
is adequately trained, it should demonstrate excellent generalization capabilities even with limited
training samples. A notable application in computer vision is image inpainting. In this approach,
during the training phase, an INR receives partial data from an image. In the testing phase, the INR
is tasked with reconstructing the missing positions of the image. Image inpainting is a measure to
determine if the learned underlying representation has overfitted to the provided training data.

We employ two testing strategies: one involves training with 70% of the data sampled randomly,
and the other uses a predefined text mask that obscures the image with varying font sizes. The top
row of the figure 5 shows inpainting results, corresponding to 70% random sampling, whereas the
bottom of the same figure shows the text-masked inapinting results. In both instances the second
column represents the masked image. As can be clearly seen from the results, PIN is the only
architecture that maintains the highest PSNR and SSIM values in both instances, indicating superior
recovery capabilities with minimal distortion and the highest structural similarity to the original
image. Additionally, it is the architecture that produced the most visually appealing reconstruction
in comparison with the ground truth.

When comparing the performance of various INRs, it is evident that WIRE exhibits signs of over-
fitting to the training data and has not generalized well. SIREN demonstrates commendable gener-
alization capabilities within the context of INRs, yet it is constrained by its need for highly specific
weight initialization and frequency parameters. In contrast, PIN operates without such stringent re-
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Figure 5: Image Inpainting Capabilities of PIN: Among the existing INRs, PIN stands out as the
top image inpainting performer, excelling not only in achieving the highest PSNR in both instances,
but also in generating the inpainting results most visually similar to the ground truth. PIN’s superior
metrics highlight its proficiency in restoring images with minimal distortion while preserving max-
imum structural information.

quirements and consistently delivers superior performance. Therefore, PIN is particularly effective
for image inpainting, producing visually appealing results even when reconstructing highly obscured
images. This underscores its robust generalization ability compared to existing compactly supported
INRs like WIRE and GAUSS, and sets a new benchmark that surpasses current state-of-the-art meth-
ods.

7.5 NEURAL RADIANCE FIELDS

The core area benefiting from INRs is NeRFs (Mildenhall et al., 2020). In NeRF, a scene is encoded
into an INR by feeding the viewer’s coordinates (x, y, z) and the viewing directions (θ, ϕ) into the
INR. The INR is tasked with predicting the corresponding location’s color and density. When the
INR is well-trained, it gains the ability to generate novel views from different spatial locations and
viewing angles, those are not included in the training data. This remarkable capability is achieved
by training a 3D implicit function using spatial coordinates (x, y, z) and viewing directions (θ, ϕ)
allowing for the synthesis of highly realistic images and scenes. For this experiment, we used a
vanilla NeRF architecture consisting of two fully connected blocks, each containing four layers, and
the drums dataset with 100 training images and 200 testing images. One of the obtained novel views
for each INR is presented in figure 6. PIN’s remarkable performance can be attributed to its optimal
energy concentration within a specified frequency band, distinguishing it from other methods and
reinforcing its superiority. Additional novel views are provided in the supplementary material.

Figure 6: Novel View Synthesis Capabilities of PIN: PIN achieves the highest PSNR in novel
views performance as compared to existing INRs. While existing INRs tend to produce blurry novel
views in feature-dense areas, PIN’s ability to preserve maximum energy in a given state allows it to
encode intricate details into its weights and biases, and produce novel views that exhibit the highest
similarity to the ground truth.

7.6 ABLATION STUDY

7.6.1 NETWORK HYPERPARAMETERS

An ablation study was conducted to evaluate the effectiveness of PINs with various hyperparameters
selected during the training environment. For this experiment, we used the child image shown in
figure 2. This hyperparameter tuning included the variation of PSNR with the number of hidden

9
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neurons, while keeping the number of hidden layers constant at 3 (shown in the left figure of fig-
ure 7). Additionally, the study examined the variation of PSNR with the number of hidden layers,
while maintaining the number of hidden neurons at 300 (shown in the middle figure of figure 7).
Lastly, the variation of PSNR with the learning rate was analyzed, with the number of hidden layers
kept at 3 and the number of hidden neurons at 300 (shown in the right figure of figure 7)

Figure 7: Hyperparameter Turning of PIN: PIN demonstrates a sharp linear increase in PSNR
with the addition of more hidden neurons and layers compared to existing INRs. Instead of be-
coming unstable with higher learning rates, PIN stabilizes its PSNR, maintaining nearly constant
performance.

In general, increasing the number of hidden neurons or hidden layers in an INR enhances its ca-
pacity due to the higher number of learnable parameters. As shown in the left and middle plots of
figure 7, PIN exhibits an approximately linear increase, with a higher gradient compared to other
INRs, in PSNR with the addition of more hidden neurons and hidden layers. However, as the learn-
ing rate increases, PIN demonstrates PSNR saturation effects instead of tending toward instability,
as illustrated in the right plot of figure 7.

7.7 THEORETICAL ANALYSIS, ABLATION STUDIES, AND ADDITIONAL EXPERIMENTS

In the appendix, we provide a comprehensive theoretical analysis of PIN’s forward propagation,
alongside a combined theoretical and experimental investigation into why existing baseline space-
frequency compact INRs fall short compared to PIN. This analysis helps to elucidate the superior
performance of PIN in capturing complex details. The appendix also includes the complete numer-
ical implementation of PIN, where we demonstrate its robustness to variations in parameters and
provide a detailed examination of how different weight initialization strategies impact its perfor-
mance. Furthermore, we showcase PIN’s learning curves and extensive experimental results to sup-
port the findings presented in the main sections. In addition to these results, the appendix features
further analysis of PIN’s capabilities through a set of additional experiments. These experiments
explore PIN’s ability to handle high-frequency encoding, perform effective image denoising, and
detect edges with precision.

8 CONCLUSION

Implicit Neural Representations (INRs) have emerged as a very promising framework in computer
vision and image processing, yet their performance is very sensitive on the choice of activation func-
tions. Empirical results indicate that well-localized activation functions with good space-frequency
concentration are more effective than sinusoidal functions which suffer from poor spatial decay.
For instance, current INRs often focus more on encoding intricate details into weights and biases
of the INR, and do not handle well smoother regions. Further, they underperform in reconstruct-
ing sparse or noisy data due to overfitting. To overcome these limitations, we propose the use of
PSWF as activation function for INRs. PSWFs maximize joint space-frequency domain concentra-
tion, a crucial feature for enhancing INR capabilities. Our numerical experiments demonstrate that
INRs with PSWF activations significantly improve expressivity and generalizability, boosting per-
formance across various tasks including image and 3D shape representation, novel view synthesis,
reconstruction from sparse or noisy measurements,and edge detection.
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