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ABSTRACT

Learning a survival prediction model can be viewed as regression with the added
complication of censoring. Each subject xi has a true event time Ei and a cen-
soring time Ci, yet we only observe Ti = min(Ei, Ci) and δi = 1(Ei ≤ Ci).
Many standard survival methods implicitly assume the E and C are independent,
conditioned on X: E ⊥ C | X, which is not always true. To produce effective
survival models, it would be useful to know this (in)dependency; however, this is
difficult to determine as, for each subject, we observe either Ei xor Ci, but never
both. To address this challenge, we introduce, for each t > 0, indicator variables
Ei,t = 1(Ei > t) ∈ {0, 1, ?}, where “?” represents unobserved values due to
censoring; with a similar definition for Ci,t. We use this set of {Ei,t, Ci,t} over
the set of instance i and various times t, to develop a nonparametric diagnostic
for testing whether E ⊥ C | X, based on the width of the Conditional Mutual
Information (CMI) uncertainty range between Ei,t and Ci,,t given Xi over the
unknown values “?”, defined as ∆It = Itmax − Itmin. Under independence, ∆It
follows a characteristic null distribution from random data completions. Depen-
dent censoring imposes structure, producing atypical ∆It values. To make this
computation feasible, we formulate the CMI bound computation as a decompos-
able integer program, which we solve exactly with a dynamic programming algo-
rithm of polynomial complexity. Combined with a permutation test, this yields
a scalable, assumption-free tool for detecting dependent censoring. To evaluate
the performance of the proposed method, we conducted experiments on synthetic
data where both the presence and strength of dependence could be controlled.

1 INTRODUCTION

Survival analysis provides a powerful framework for modeling time-to-event data across disciplines,
from estimating patient prognosis in clinical trials to predicting component failure in engineering
(Clark et al., 2003). A central challenge in this domain is handling right-censored data, where
the event of interest is not observed for all subjects due to study termination or loss to follow-up.
Standard survival models, including the ubiquitous Cox Proportional Hazards model (Cox, 1972),
and other modern models – such as MTLR (Yu et al., 2011), and Deepsurv (Katzman et al., 2018) –
rely on the critical assumption of independent censoring: conditional on a set of covariates X, the
true event time E is independent of the true censoring time C, formally E ⊥ C | X.

The independent-censoring assumption means censoring times carry no additional information about
event risk given the observed covariates. In practice, this can be violated: for example, in a cancer
trial, patients in worsening health may drop out to seek alternative treatment, creating a dependence
between early censoring and high risk of death. Such dependent censoring can severely bias model
estimates, often making treatments appear more effective than they truly are (Lillelund et al., 2025;
Gharari et al., 2023).

Despite its importance, it is very difficult to determine if the independent censoring assumption
holds in a given dataset. The fundamental difficulty is that, for any given subject, we only observe the
follow-up time T = min(E,C) and an event indicator δ = 1{E ≤ C}. It means the latent variables
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E and C are never simultaneously observed, making their conditional relationship impossible to
assess directly (Saı̈d et al., 2003).

1.1 EXISTING APPROACHES AND OUR CONTRIBUTIONS

Existing methods have sought to address this question, E ⊥ C | X?, from different perspectives.

Classical approaches rely on parametric or semi-parametric models. Tests based on the Cox
model, for instance, are conditional on the proportional hazards assumption (Lee & Wolfe, 1998).
More flexible joint modeling frameworks, such as shared frailty models or copulas, directly pa-
rameterize the dependence but require strong, untestable assumptions about marginal distributions
and the functional form of the dependence, risking misspecification (Rizopoulos, 2012). Non-
parametric tests relax these distributional assumptions (Sun & Lee, 2011). Rank-based procedures
can detect monotone dependence but miss more complex relationships (Lee & Wolfe, 1995), (Flan-
dre, 2022). Another approach, sensitivity analysis, aims to bound the impact of potential depen-
dence rather than test for its presence, serving as a tool for robust estimation rather than hypothesis
testing (Scharfstein et al., 1999).

This review highlights a critical gap in the literature: a lack of methods that are simultaneously (1)
non-parametric, (2) capable of detecting general forms of dependence, (3) specifically designed for
the censored data structure, and (4) framed as a principled hypothesis test.

Our Contributions. This paper introduces a novel framework to fill this gap by reframing the
problem: instead of measuring a single dependence value, we measure the structural constraints that
dependence imposes on the data. Our key contributions are:

1. A Theoretically Grounded Discretization. We introduce a discrete-time model, for eahch
t > 0, with indicator variables Et = 1(E > t) and Ct = 1(C > t) and prove (Propo-
sition 1) that the continuous-time independence assumption (E ⊥ C | X) is a neces-
sary condition for independence between discrete-time survival and censoring indicators
(Et ⊥ Ct | X). This result provides the theoretical license to use discrete information-
theoretic tools for inference dependence on the continuous process.

2. A Novel Information-Theoretic Test Statistic (∆I). We define our test statistic as the
width of the Conditional Mutual Information (CMI) uncertainty range. This measures how
dependence constrains the space of possible data completions. An outlier ∆I value (unusu-
ally narrow or wide) relative to its null distribution provides evidence against independence.

3. A General and Robust Test. Our use of CMI allows the detection of any form of statistical
dependence, making it more powerful than rank-based tests (Lee & Wolfe, 1995). By
embedding this in a stratified permutation framework, our test is non-parametric, avoiding
the strong assumptions of model-based approaches.

4. A Computationally Tractable Solution. We overcome the combinatorial challenge of
optimizing CMI over all imputations by formulating it as a decomposable integer program.
We solve this exactly and efficiently using a dynamic programming algorithm, making our
theoretically grounded test a practical diagnostic tool.

Collectively, these contributions provide the first assumption-free, statistically rigorous, and com-
putationally feasible framework for directly testing the independent censoring assumption in its full
generality.

2 BACKGROUND: SURVIVAL ANALYSIS AND INDEPENDENT CENSORING

Survival analysis models the time until an event occurs. The primary challenge is that the true event
time is not always observed due to right-censoring.

Definition 1 (The Time-to-Event Setting) Let E and C be latent, non-negative random variables
for the true event and censoring times for an instance, respectively. The observed data for each
instance is a tuple (T, δ,X), where X is a vector of covariates, and T = min(E,C) and δ =
1{E ≤ C} are observed time and event indicator, respectively. The indicator δ = 1 signifies an
observed event, while δ = 0 indicates the observation was right-censored.
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The distribution of the event time E is typically characterized by one of two mathematically-
equivalent functions.

Definition 2 (Survival and Hazard Functions) Given covariates X, the event process is described
by:

• The Survival Function, S(t|X) = P (E > t|X), which is the probability that the event
occurs after time t.

• The Hazard Function, λ(t|X) = lim∆t→0
P (t≤E<t+∆t|E≥t,X)

∆t , which represents the in-
stantaneous rate of event occurrence at time t, given survival up to t.

Canonical survival models, from the Kaplan-Meier estimator to the Cox proportional hazards model
(Cox, 1972), rely on the following critical, untestable assumption about the censoring mechanism.

Definition 3 (Independent Censoring) The event time E and censoring time C are independently
censored if they are conditionally independent given the covariates X:

E ⊥ C | X. (1)

This assumption posits that, conditional on covariates, the censoring mechanism provides no further
information about a subject’s risk of the event.

In practice, this assumption is often violated, leading to dependent censoring (E ̸⊥ C | X). For
instance, when measuring time until death for patients taking some treatment, a patient whose health
deteriorates may drop out of a clinical trial. Here, the censoring event (dropout) is directly correlated
with a higher event risk (e.g., mortality). Ignoring such dependence invalidates standard methods
and can lead to severely biased conclusions.

3 FROM CONTINUOUS PROCESSES TO DISCRETE-TIME REPRESENTATIONS

To test the continuous-time independence hypothesis, E ⊥ C | X, we translate the problem into a
discrete-time domain. This strategic shift is dually motivated. First, the continuous-time hypothesis
is fundamentally unidentifiable, as the latent event and censoring times are never jointly observed.
Second, this discretization enables the use of Conditional Mutual Information (CMI), which is nat-
urally defined and robustly estimated from the empirical counts of discrete variables. By mapping
the continuous survival process to a sequence of binary indicators, we can construct the contingency
tables necessary to apply our information-theoretic framework.

3.1 DISCRETE-TIME REPRESENTATION OF SURVIVAL DATA

To discretize the continuous process, we select an ordered set of time points T = {t1, t2, . . . , tK},
typically the unique event times in the dataset. At each time point tk ∈ T , we define two binary
random variables for each subject:

• Etk := 1{E > tk}, the survival status indicator. Etk = 1 if the subject has survived past
time tk.

• Ctk := 1{C > tk}, the censoring status indicator. Ctk = 1 if the subject has not been
censored by time tk.

A critical aspect of this representation is the induced missingness. After a subject is censored at time
C, their true event status Et for all t > C becomes unobserved. Similarly, once an event occurs at
time E, the subsequent censoring status Ct for t > E is not observed, as the subject is no longer in
the risk set. Table 1 and Fig. 1 illustrate this transformation, showing the discrete-time trajectories
for four subjects based on their observed event xor censoring times. As Subject A experiences the
event at t = 1.5: their [Et, Ct] transition from [1, 1] before t = 1.5, to become [0, ?] afterwards. For
Subject C, censored at t = 3, the survival status Et is known to be 1 up to that point but becomes
unobserved ? thereafter and Ct goes from 1 to 0.

3
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Table 1: Discretization of continuous survival data. The observed data (T, δ) generate a sequence
of discrete-time survival (Et) and censoring (Ct) indicators, which depend on the underlying latent
continuous times (E, C). ”?” denotes values that are unobserved due to a prior event or censoring.

Observed Data Latent Times t = 0 t = 1.5 t = 2.1 t = 3.0 t = 5.0

Sub. T δ E C E0 C0 E1.5 C1.5 E2.1 C2.1 E3 C3 E5 C5

A 1.5 1 1.5 ≥ 1.5 1 1 0 ? 0 ? 0 ? 0 ?
B 2.1 1 2.1 ≥ 2.1 1 1 1 1 0 ? 0 ? 0 ?
C 3.0 0 > 3.0 3.0 1 1 1 1 1 1 ? 0 ? 0
D 5.0 0 > 5.0 5.0 1 1 1 1 1 1 1 1 ? 0

Figure 1: Timeline visualization of survival data for four subjects. A single line represents each
subject’s status at each t > 0: ’At Risk’ (green: Et = 1, Ct = 1), ’Event Occurred earlier’ (red:
Et = 0. Ct =?), or ’Censored earlier’ (yellow: Et =?, Ct = 0). An event (δ = 1) is marked with a
filled circle, and censoring (δ = 0) is marked with an open circle.

At Risk (Et = 1, Ct = 1) Event (Et = 1, Ct =?) Censored (Et =?, Ct = 1)

Subject A

Subject B

Subject C

Subject D

Time0 1.5 2.1 3.0 5.0 7

3.2 EQUIVALENCE OF CONTINUOUS AND DISCRETE-TIME INDEPENDENT CENSORING

A crucial question is whether the independent censoring assumption from the continuous domain
translates to the discrete representation. We demonstrate that it does, which provides the theoretical
justification for our testing framework.

Proposition 1 Let E and C be continuous event and censoring times, and let X be a vector of
covariates. The continuous-time independent censoring assumption, HC

0 : E ⊥ C | X, implies the
discrete-time independent censoring assumption,

∀t > 0, HD
0 (t) : Et ⊥ Ct | X, (2)

where Et = 1{E > t} and Ct = 1{C > t}.

This proposition is the cornerstone of our testing methodology. Its contrapositive guarantees that if
there exist a t such that HD

0 (t) fails, then HC
0 fails. This insight transforms the testing problem:

we need only find a single, statistically significant instance of discrete dependence to reject the
global null hypothesis. Accordingly, our global test is designed to find the maximum deviation from
independence across a set of discrete time points, while correcting for the multiple comparisons
involved in such a search.

4 AN INFORMATION-THEORETIC FRAMEWORK FOR DETECTING
DEPENDENCE

Building on the equivalence between continuous and discrete-time independence, we now introduce
a non-parametric framework to test the hypothesis of independent censoring. Our approach is rooted
in information theory and tailored to handle the systemic censoring inherent in survival analysis data.
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4.1 QUANTIFYING DEPENDENCE WITH CONDITIONAL MUTUAL INFORMATION.

The core of our test is the CMI, a fundamental measure of the strength of dependence between two
random variables given a third. For a chosen time point t, we measure the dependence between the
survival status Et and the censoring status Ct conditioned on the covariates X. The CMI is defined,
for any fixed t, as:

I(Et;Ct | X) = Ep(Et,Ct,x)

[
log

p(Et, Ct | x)
p(Et | x)p(Ct | x)

]
. (3)

Intuitively, the CMI quantifies the reduction in uncertainty about a subject’s survival status at time
t if we know their censoring status, given that we have already accounted for the information in
their covariates X. The conditional independence hypothesis Et ⊥ Ct | X holds if and only if
I(Et;Ct | X) = 0. For discrete covariates X, we can estimate the CMI empirically from a dataset
of size n. The standard estimator is:

Î(Et;Ct | X) =
1

n

∑
x∈X

∑
et∈{0,1}

∑
ct∈{0,1}

N(et, ct,x) log

(
N(x)N(et, ct,x)

N(et,x)N(ct,x)

)
, (4)

where N(·) represents the empirical counts of observations. For instance, N(et, ct,x) is the number
of subjects with covariates x having survival status et and censoring status ct at time t, and N(x) is
the total number of subjects in that stratum. The stratum means the subgroup of the study population
defined by a specific covariate profile x. Formally, a stratum is the equivalence class of individuals
sharing the same covariate vector x.

4.1.1 CMI BOUNDS VIA OPTIMIZATION OVER FEASIBLE COMPLETIONS

Directly computing the empirical CMI from Equation 4 is impossible due to ambiguity from right-
censoring. At any time t, the full contingency table of counts is unobserved for two subgroups:
(1) subjects censored before t (meaning their survival status Et is unknown), and (2) subjects who
experienced an event before t (meaning their counterfactual censoring status Ct is unknown). Here,
in each case, we need to (implicitly) consider both possible assignments to the missing value (ei-
ther Et or Ct. If a dataset contains ℓ and m such subjects, this ambiguity creates a combinatorially
infeasible solution space of 2ℓ+m possible data completions, rendering a brute-force approach in-
tractable.

Optimization Framework. We circumvent this by reframing the task as an optimization problem:
finding the minimum and maximum CMI values over the space of all valid imputations. For each
time t, within each covariate stratum x, let ℓx and mx be the counts of subjects censored and with
an event before time t, respectively. We introduce integer decision variables: u10

x ∈ {0, 1, · · · , ℓx}
represents the number of the ℓx censored subjects imputed as “alive” (Et = 1, Ct = 0), and u01

x ∈
{0, 1, · · · ,mx} represents the number of the mx event subjects imputed as “uncensored” (Et =
0, Ct = 1). The remaining ambiguous subjects are assigned to the “dead and censored” (Et =
0, Ct = 0) category. These variables, along with the fully observed counts Nobs(s, d,x), define the
completed contingency table:

N(x) = Nobs(1, 1,x) + ℓx + mx , N(0, 0,x) = (ℓx − u10
x ) + (mx − u01

x )

N(1, 1,x) = Nobs(1, 1,x) , N(1, 0,x) = u10
x , N(0, 1,x) = u01

x .

Regarding to empirical definition of CMI (4), the problem of finding the CMI bounds, Itmin and
Itmax, reduces to solving the following nonlinear integer programs:

Itmin = minimize
{u10

x ,u01
x }x∈X

Î(Et;Ct | X) (5)

s.t. u10
x ∈ {0, 1, · · · , ℓx}, u01

x ∈ {0, 1, · · · ,mx} ∀x ∈ X .

5
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where Î(Et;Ct | x) =
∑

x∈X Îtx, and

Îtx =
1

n

[
u10
x log

(
N(x)u10

x(
Nobs(1, 1,x) + u10

x

)(
ℓx +mx − u01

x

))

+ u01
x log

(
N(x)u01

x(
(ℓx − u10

x ) +mx

)(
Nobs(1, 1,b) + u01

x

))

+ Nobs(1, 1,x) log

(
N(x)Nobs(1, 1,x)(

Nobs(1, 1,x) + u10
x

)(
Nobs(1, 1,x) + u01

x

))

+
(
(ℓx − u10

x ) + (mx − u01
x )
)
log

(
N(x)

(
(ℓx − u10

x ) + (mx − u01
x )
)(

(ℓx − u10
x ) +mx

)(
ℓx +mx − u01

x

))].
Itmax can be calculated in the same way as Itmin, by replacing ‘minimize’ with ‘maximize’ in 5 as
well.

Tractable Solution via Separability. Although each Equation 5 appears complex, it is critically
separable: the objective is a sum of stratum-specific terms, and the decision variables for one
stratum xi are independent of those for any other stratum xj . This property allows the global
optimization to be decomposed into a set of independent subproblems, one for each stratum:
min Ît =

∑
x∈X min{u10

x ,u01
x }

[
Îtx(u

10
x , u01

x )
]
. For each stratum, this amounts to a small integer

program over just two variables. Because ℓx and mx are typically small, the optimal imputation
can be found efficiently by enumerating all (ℓx + 1) × (mx + 1) points on the integer grid. This
stratum-wise optimization is exponentially faster than the naive approach, making the computation
of exact CMI bounds feasible even for large datasets.

4.2 THE MI UNCERTAINTY RANGE AND PERMUTATION TESTING

Our proposed test statistic is the MI uncertainty range, defined as ∆It = Itmax − Itmin, where

Itmax = max
{u10

x ,u01
x }x∈X

Î(Et;Ct | X) and Itmin = min
{u10

x ,u01
x }x∈X

Î(Et;Ct | X) (6)

for each t > 0. The central idea is that the true data-generating process—whether independent or
dependent—imposes a specific structure on the data, which in turn constrains the range of possible
CMI values achievable through imputation. The nature of this constraint provides the signal for our
test.

• Under Independent Censoring (Null Hypothesis): The relationship between event and
censoring times is unstructured and random (conditional on covariates). This generates a
“natural” or “baseline” distribution for the uncertainty range, ∆It, which we can charac-
terize empirically via permutation.

• Under Dependent Censoring (Alternative Hypothesis): A systematic relationship exists
between the event and censoring processes. This underlying structure is a non-random
signal that constrains the optimization process, producing a ∆It value that is an outlier
relative to the null distribution. This deviation can manifest as an unusually narrow range
(if the dependence is a strong signal that persists across all imputations) or an unusually
wide range (if the structure allows for extreme CMI values not achievable under random
permutations).

Therefore, a ∆It value that is an outlier in either direction constitutes evidence against the null
hypothesis. To determine if an observed range ∆Iobs

t is statistically significant, we must compare it
against a ”null world” where we know the independence assumption holds. We construct this null
distribution via a carefully designed permutation test.

6
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Constructing the Null Distribution via Stratified Permutation. The core question a hypothesis
test must answer is: ”Could a result like this have occurred by random chance?” To answer this for
our observed statistic, ∆Iobs

t , we need to generate an empirical null distribution—the distribution of
∆It values we would expect to see if the null hypothesis, H0 : E ⊥ C | X, were true.

We simulate this null world via permutation. The key insight is that if censoring and events are truly
independent conditional on covariates X, then within any stratum of subjects with the same X, the
observed outcome (event or censored) is effectively a random label. By randomly shuffling the event
indicators, δi, among subjects within each covariate stratum, we can create new, permuted datasets,
but that cannot perfectly simulate the null hypothesis. Therefore, we introduce a null distribution
process based on random survival forest (RSF) (Ishwaran et al., 2008), which is explained in the
next subsection. This procedure has two critical features:

1. It Breaks Dependence: The shuffling severs any potential true link between the event and
censoring processes that might be driven by a confounder (e.g., disease severity).

2. It Preserves Covariate Structure: The stratification is crucial. By shuffling only within
strata, we preserve the real, observed relationships between the covariates X and the out-
comes. For example, if older patients have more events, our permuted datasets will still
show that older patients have more events. We do not shuffle across strata, as this would
test the wrong (marginal) hypothesis and lead to an invalid null distribution.

By calculating ∆Ibt for thousands of such permuted datasets, we build a robust empirical distribution
of the test statistic under the null, providing the correct baseline for assessing the significance of our
observed result.

4.3 A NON-PARAMETRIC PERMUTATION TEST FOR DEPENDENT CENSORING

To formally test for the presence of dependent censoring, we propose a robust, non-parametric per-
mutation test sensitive to dependencies that may exist only within specific covariate subgroups or at
particular time intervals. The core of our test relies on the ∆It statistic, which is computed for each
covariate stratum s at a pre-defined set of time points {tk}Kk=1. To aggregate evidence, we employ
a two-stage procedure. First, we compute a stratum-level test statistic Λs by taking the maximum
∆Istk value across all time points. A stratum-specific p-value, ps, is then calculated from its permu-
tation distribution. Second, we combine these p-values from all strata using Fisher’s method (Fisher,
1925) to obtain a single, global test statistic F = −2

∑
s log ps. This hierarchical approach allows

the test to detect both strong, localized dependence in a single stratum and weaker but consistent
dependence across multiple strata.

The validity of this test hinges on a robust method for generating datasets under the null hypothesis
of conditional independence (E ⊥ C | X). We introduce a powerful, non-parametric method based
on the “impute-and-permute” paradigm, which leverages the flexibility of RSF. The objective is
to generate null datasets where the event and censoring processes are independent conditional on
covariates (E∗ ⊥ C∗ | X), while faithfully preserving the complex marginal relationships between
the covariates and the outcomes (P (E∗|X) ≈ P (E|X) and P (C∗|X) ≈ P (C|X)). The procedure
is detailed in Algorithm 1.

This null generation process is then embedded within our complete testing procedure, as detailed
in Algorithm 2. The final global p-value is determined by comparing the observed Fisher statistic
Fobs to its own null distribution, constructed by re-computing F for each permutation. Its primary
limitation is the potential for reduced performance in settings with very high-dimensional covariates
or sparse data within strata.

5 NUMERICAL EXPERIMENTS ON SYNTHETIC DATA

We evaluate our proposed test on synthetic data, where the ground truth is known, to assess its sta-
tistical power (detecting true dependence) and control of Type I error (avoiding false positives). We
utilize four standard generative models based on copula functions: Gaussian (Li, 2000), Frank (Gen-
est, 1986), Clayton (Clayton, 1978), and Gumbel (Gumbel, 1960), which allow precise control over
the censoring mechanism, thus ensuring a comprehensive evaluation across different dependence

7
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structures. To investigate the efficiency of the proposed method for detecting dependent censoring
induced by a confounding variable, a frailty data generation is applied as well. We consider a syn-
thetic dataset with four binary-value features and 1000 instances. For Algorithm 2, K = 9 quintiles
{0.1, 0.2, 0.3, 0.4, · · · , 0.8, 0.9} in each dataset are picked as time steps tk, and the number of per-
mutations is set to B = 200. For different values of dependence parameters, the p-value results for
the five data generation methods are reported in Table 2. A p-value close to zero indicates dependent
censoring. The detailed description of these generative models is provided in the Appendix.

Table 2: P-values across data generation methods with varying parameters using four binary covari-
ates.

Gaussian Copula (θ ∈ (−1, 1))

θ -0.7 -0.5 -0.3 0 0.3 0.35 0.5 0.7
P-value 0.005 0.005 0.25 0.96 0.14 0.04 0.005 0.005

Clayton Copula (θ ∈ [0,∞))

θ 0 0.25 0.8 1 2 3 4 5
P-value 0.85 0.61 0.018 0.025 0.005 0.005 0.005 0.005

Gumbel Copula (θ ∈ [1,∞))

θ 1 1.2 1.4 1.6 2 3 4 5
P-value 0.95 0.31 0.01 0.005 0.005 0.005 0.005 0.005

Frank Copula (θ ∈ (−∞,∞) \ {0})

θ -1 -0.5 -0.1 0.1 1 1.5 2 3
P-value 0.005 0.005 0.54 0.96 0.41 0.04 0.005 0.005

Frailty (αE = αC = α ∈ [0,∞))

α 0 1 1.5 1.7 2 3 4 5
P-value 0.98 0.84 0.56 0.19 0.03 0.005 0.005 0.005

The permutation testing framework in Section 4.3 assumes discrete covariates X to define strata for
both the permutation scheme and the CMI calculation. Since real datasets often contain continuous
variables (e.g., age, blood pressure), we address this by discretizing each continuous feature into
bins (e.g., quantiles or domain-informed intervals). The resulting discrete strata both enable strat-
ified permutation of censoring times and make the CMI-based statistic ∆I tractable, avoiding the
challenges of non-parametric estimation with continuous covariates.

Although discretization reduces covariate granularity, it provides a simple and effective solution
that balances theoretical soundness with practical usability. The number of bins serves as a key
hyperparameter, guided by dataset size and characteristics. To illustrate this idea, we repeated the
experiments using four continuous features that were binarized into two bins after data generation,
with results reported in Table 3.

5.1 DISCUSSION

The experiments on synthetic data confirm that our test reliably controls Type I error and has strong
power against dependence across diverse data-generating mechanisms. In both binary and contin-
uous covariate settings, the procedure yields large p-values under independence (e.g., θ = 0 for
Gaussian/Clayton/Frank, θ = 1 for Gumbel, α = 0 for frailty), demonstrating proper error control.

As dependence strengthens, p-values quickly approach zero, showing high sensitivity across all cop-
ulas and frailty models. For Gaussian copulas, both positive and negative correlations are detected,
while for Clayton and Gumbel, dependence is identified at relatively small parameter values. Frank
requires stronger dependence before rejection, and frailty shows a gradual decline in p-values, re-
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Table 3: P-values across data generation methods with varying parameters, using four continuous
covariates.

Gaussian Copula (θ ∈ (−1, 1))

θ -0.7 -0.5 -0.3 0 0.3 0.35 0.5 0.7
P-value 0.005 0.005 0.1 0.93 0.26 0.16 0.01 0.005

Clayton Copula (θ ∈ [0,∞))

θ 0 0.25 0.8 1 2 3 4 5
P-value 0.98 0.7 0.43 0.12 0.005 0.005 0.005 0.005

Gumbel Copula (θ ∈ [1,∞))

θ 1 1.2 1.4 1.6 2 3 4 5
P-value 0.89 0.35 0.03 0.005 0.005 0.005 0.005 0.005

Frank Copula (θ ∈ (−∞,∞) \ {0})

θ -1 -0.5 -0.1 0.1 1 1.5 2 3
P-value 0.005 0.005 0.4 0.98 0.3 0.005 0.005 0.005

Frailty (αE = αC = α ∈ [0,∞))

α 0 1 1.5 1.7 2 3 4 5
P-value 0.98 0.92 0.56 0.18 0.02 0.005 0.005 0.005

flecting latent-factor effects. Results with discretized continuous covariates (Table 3) mirror those
with binary covariates (Table 2), confirming that discretization maintains the test’s effectiveness.

Overall, the findings indicate that the proposed method achieves robust Type I error control and
strong power under a wide variety of dependence structures, supporting its use in practical survival
settings with both binary and continuous covariates.

6 CONCLUSION

This paper introduced a principled, non-parametric method to test the crucial independent censoring
assumption in survival analysis, a foundational yet often unverifiable prerequisite for many models.
Our core innovation is to leverage, rather than circumvent, the ambiguity inherent in censored data.
We defined a novel test statistic, the MI uncertainty range (∆It), based on the bounds of Condi-
tional Mutual Information over all valid data completions. To make this computationally feasible,
we developed a tractable algorithm that solves the underlying integer program exactly via a stratum-
wise decomposition. This statistic is embedded within a robust permutation test that uses a Random
Survival Forest-based “impute-and-permute” scheme to generate a valid null distribution. Extensive
experiments on synthetic data, using a wide range of copula and frailty models, confirmed that our
method effectively controls Type I error while demonstrating high statistical power to detect diverse
dependence structures. The test’s strong performance was maintained for both discrete and contin-
uous covariates handled via discretization. In conclusion, we provide practitioners with a scalable
and assumption-free diagnostic tool to validate a critical assumption in time-to-event analysis. This
work strengthens the credibility of survival models and promotes more robust and reliable scientific
findings.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

A fundamental property of conditional independence is its preservation under measurable transfor-
mations. If random variables U ⊥ V | Z, then for any measurable functions g and h, it follows that
g(U,Z) ⊥ h(V,Z) | Z (Durrett, 2019).

In our context, let U = E, V = C, and Z = X. The indicator functions g(e) = 1{e > t} and
h(c) = 1{c > t} are measurable functions for any fixed t. Applying this property, the assumption
E ⊥ C | X directly implies:

1{E > t} ⊥ 1{C > t} | X ∀ t > 0,

which is precisely the statement HD
0 (t). □

A.2 RANDOM SURVIVAL FOREST (RSF)

Random Survival Forests (RSF), introduced by Ishwaran et al. (2008), extend Breiman’s Random
Forests to right-censored survival data. RSF is a fully non-parametric ensemble learning method
that constructs multiple survival trees and aggregates them to obtain stable estimates of survival
functions.

Algorithmic Outline. Each survival tree in RSF is grown on a bootstrap sample of the original
data. At each node:

1. A random subset of candidate covariates is selected.

2. The optimal split is chosen to maximize survival difference between daughter nodes, commonly
using the log-rank splitting criterion.

The tree is grown until a stopping rule is met (e.g., minimum terminal node size). For each terminal
node, the cumulative hazard function (CHF) is estimated using the Nelson–Aalen estimator:

Ĥ(t) =
∑

j:tj≤t

dj
Yj

,

where dj is the number of events at time tj and Yj is the number at risk just prior to tj .

Ensemble Aggregation. The RSF ensemble survival estimate for an individual is obtained by
averaging the node-level CHFs across all trees:

ĤRSF(t | x) =
1

NT

NT∑
b=1

Ĥb(t | x),

where NT is the number of trees. The survival function is then

ŜRSF(t | x) = exp
(
−ĤRSF(t | x)

)
.

Key Properties.

• RSF does not assume proportional hazards or any specific parametric form of survival distribution.

• It can naturally handle high-dimensional covariates, mixed data types (continuous, categorical),
and complex nonlinear interactions.

• Variable importance measures and partial dependence plots can provide interpretable insights.

Limitations. RSF requires sufficiently large sample sizes for stable performance and may be com-
putationally intensive for large-scale data. Unlike Cox models, RSF does not provide explicit hazard
ratios, which can make direct clinical interpretation more challenging.
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Applications. RSF has been successfully applied in biomedical research, reliability analysis, and
large-scale survival prediction tasks, particularly where nonlinear effects and high-dimensional pre-
dictors are present.

A.3 SIMULATION OF SURVIVAL DATA USING COPULAS

To study dependent censoring, we generate synthetic survival datasets where the joint dependence
between latent event times E and censoring times C is introduced via copula functions. A copula
Cθ(u, v) is a bivariate distribution function on [0, 1]2 with uniform marginals, which allows us
to couple any two marginal survival distributions into a valid joint distribution with a controlled
dependence structure.

The simulation process involves two steps:

1. Sample a pair of dependent uniform random variables (U, V ) from a chosen copula Cθ.
2. Transform these uniform variables into event and censoring times using their respective

quantile functions (inverse transform sampling), i.e., E = F−1
E (U) and C = F−1

C (V ).

We employ four standard parametric copula families. Below, we present the theoretical definition
and the exact, well-established simulation algorithm used for each.

Gaussian Copula. The Gaussian copula is defined by the CDF of a bivariate standard normal
distribution with correlation coefficient ρ.

Cρ(u, v) = Φρ(Φ
−1(u),Φ−1(v)), ρ ∈ (−1, 1).

Simulation Algorithm: We generate a vector (Z1, Z2) from a bivariate standard normal distribution
with correlation ρ (typically via Cholesky decomposition of the correlation matrix) and then set
U = Φ(Z1) and V = Φ(Z2).

Clayton Copula. The Clayton copula is an Archimedean copula useful for modeling strong lower-
tail dependence (i.e., early events are strongly associated with early censoring).

Cθ(u, v) =
[
max{u−θ + v−θ − 1, 0}

]−1/θ
, θ ∈ (0,∞).

Simulation Algorithm (Marshall-Olkin): Generate a shared random variable W ∼ Gamma(1/θ, 1)
and two independent variables E1, E2 ∼ Exp(1). The dependent uniforms are then U = (1 +
E1/W )−1/θ and V = (1 + E2/W )−1/θ.

Frank Copula. The Frank copula is another Archimedean copula that allows for both positive and
negative dependence and exhibits symmetric tail dependence.

Cθ(u, v) = −
1

θ
log

(
1 +

(exp(−θu)− 1)(exp(−θv)− 1)

exp(−θ)− 1

)
, θ ∈ R \ {0}.

Simulation Algorithm: This exact algorithm uses a Log-Series distributed variable. Generate W ∼
LogSeries(1−exp(−θ)) and two independent variables E1, E2 ∼ Exp(1). The dependent uniforms
are then U = 1− exp(−E1/W ) and V = 1− exp(−E2/W ).

Gumbel Copula. The Gumbel copula is an Archimedean copula that models strong upper-tail
dependence (i.e., late events are strongly associated with late censoring).

Cθ(u, v) = exp
[
−
(
(− log u)θ + (− log v)θ

)1/θ]
, θ ∈ [1,∞).

Simulation Algorithm: The standard algorithm requires sampling from a positive stable distri-
bution. We generate a variable S from a stable distribution with characteristic exponent 1/θ,
skewness 1, scale (cos(π/(2θ)))θ, and location 0. Then, given two independent uniform vari-
ables U1, U2 ∼ Uniform(0, 1), the dependent uniforms are U = exp(−(− logU1)/S) and
V = exp(−(− logU2)/S). Our implementation relies on standard library functions for this pro-
cedure.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Fidelity of Simulation. While the theoretical CDFs are essential for mathematical analysis, the
simulation algorithms we employ are the standard, exact methods for generating random variates
from these distributions. For example, the Marshall-Olkin and Log-Series constructions are known
to yield random variables with distributions that are mathematically identical to the Clayton and
Frank copulas, respectively. This ensures that our synthetic data faithfully represents the desired
dependence structures, providing a valid basis for evaluating our test’s performance.

Data Generation via a Shared Frailty Model. This model induces dependence via an unobserved
latent variable, or ”frailty” Zi ∼ N (0, 1), that simultaneously influences the event and censoring
risks for each subject i. Given covariates Xi, the proportional hazards for the event time Ei and
censoring time Ci are:

λE(t|Xi, Zi) = λ0,E exp(Xiβ + αEZi )

λC(t|Xi, Zi) = λ0,C exp(Xiγ + αCZi )

The latent times Ei and Ci are sampled from exponential distributions with these rates, and the
observed data are Ti = min(Ei, Ci) and δi = 1{Ei ≤ Ci}. The censoring mechanism is controlled
by the frailty coefficients: setting αC = 0 ensures conditionally independent censoring (H0), as the
frailty no longer links the two processes. Conversely, setting both αE , αC ̸= 0 (typically with the
same sign) induces dependent censoring (H1), where the magnitude of the product αEαC governs
the dependence strength. The baseline hazard λ0,C is adjusted to achieve a target overall censoring
rate.

Algorithm 1 Null Distribution Generation via Non-Parametric Imputation

Require: Original data {(Ti, δi,Xi)}ni=1.
Ensure: A single null dataset {(T ∗

i , δ
∗
i )}ni=1.

1. Non-Parametric Modeling:
1: Train an event model ME (RSF) on the data to learn ŜE(t|X) = P̂ (E > t | X).
2: Train a censoring model MC (RSF) using an inverted indicator δ′ = 1− δ to learn ŜC(t|X) =

P̂ (C > t | X).
2. Conditional Imputation of Latent Times:

3: Initialize empty latent time vectors Efull,Cfull.
4: for each subject i = 1, . . . , n do
5: if δi = 1 then ▷ Subject experienced an event
6: Ei ← Ti.
7: Sample censoring time Ci ∼ P (C > t | C > Ti,Xi) using model MC .
8: else ▷ Subject was censored
9: Ci ← Ti.

10: Sample event time Ei ∼ P (E > t | E > Ti,Xi) using model ME .
11: end if
12: Add Ei to Efull and Ci to Cfull.
13: end for

3. Stratified Permutation:
14: Create Cperm by randomly shuffling the elements of Cfull within each stratum defined by the

unique values of covariates X.
4. Null Dataset Reconstruction:

15: for each subject i = 1, . . . , n do
16: T ∗

i ← min(Ei, C
perm
i ).

17: δ∗i ← 1{Ei ≤ Cperm
i }.

18: end for
19: return The null dataset {(T ∗

i , δ
∗
i )}ni=1.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs for polishing the text.
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Algorithm 2 Complete Dependent Censoring Test via Non-Parametric Imputation

Require: Data {(Ti, δi,Xi)}ni=1, time points {tk}Kk=1, number of permutations B.

Part 1: Compute Observed Statistics
1: for all stratum s do
2: Compute observed test statistics: ∆Istk for k = 1, . . . ,K using the original data.
3: Let Λs

obs ← maxk ∆Istk .
4: end for

Part 2: Generate Permutation Distribution
5: Fit RSF models ME and MC on the full dataset as described in Algorithm 1.
6: for b = 1, . . . , B do
7: Generate a null dataset {(T ∗(b)

i , δ
∗(b)
i )} using Algorithm 1.

8: for all stratum s do
9: On the b-th null dataset, compute Λ

s,(b)
perm ← maxk ∆I

s,(b)
tk

.
10: end for
11: end for

Part 3: Aggregate with Fisher’s Method
12: for all stratum s do
13: Calculate stratum p-value: ps ←

1+
∑B

b=1 1{Λs,(b)
perm ≥Λs

obs}
B+1 .

14: end for
15: Calculate observed Fisher statistic: Fobs ← −2

∑
s log(ps).

16: for b = 1, . . . , B do
17: for all stratum s do
18: Compute null p-value: p(b)s ←

1+
∑B

j=1 1{Λs,(j)
perm ≥Λs,(b)

perm }
B+1 .

19: end for
20: Calculate null Fisher statistic: F (b) ← −2

∑
s log(p

(b)
s ).

21: end for

Part 4: Calculate Final Global p-value
22: pglobal ←

1+
∑B

b=1 1{F (b)≥Fobs}
B+1 .

23: return pglobal.
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