
Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Youhe Jiang * 1 2 Fangcheng Fu * 3 Xiaozhe Yao * 4 Guoliang He * 1 Xupeng Miao 5 Ana Klimovic 4 Bin Cui 3

Binhang Yuan 2 Eiko Yoneki 1

Abstract

Recent advancements in Large Language Models
(LLMs) have led to increasingly diverse requests,
accompanied with varying resource (compute and
memory) demands to serve them. However, this
in turn degrades the cost-efficiency of LLM serv-
ing as common practices primarily rely on ho-
mogeneous GPU resources. In response to this
problem, this work conducts a thorough study
about serving LLMs over heterogeneous GPU re-
sources on cloud platforms. The rationale is that
different GPU types exhibit distinct compute and
memory characteristics, aligning well with the
divergent resource demands of diverse requests.
Particularly, through comprehensive benchmark-
ing, we discover that the cost-efficiency of LLM
serving can be substantially optimized by metic-
ulously determining GPU composition, deploy-
ment configurations, and workload assignments.
Subsequently, we design a scheduling algorithm
via mixed-integer linear programming, aiming at
deducing the most cost-efficient serving plan un-
der the constraints of price budget and real-time
GPU availability. Remarkably, our approach ef-
fectively outperforms homogeneous and heteroge-
neous baselines under a wide array of scenarios,
covering diverse workload traces, varying GPU
availablilities, and multi-model serving. This
casts new light on more accessible and efficient
LLM serving over heterogeneous cloud resources.

*Equal contribution 1Department of Computer Science, Univer-
sity of Cambridge, Cambridgeshire, UK 2Department of Computer
Science and Engineering, The Hong Kong University of Science
and Technology, Hong Kong, China 3Department of Computer
Science, Peking University, Beijing, China 4Department of Com-
puter Science, ETH Zurich, Zürich, Switzerland 5Department of
Computer Science, Purdue University, West Lafayette, Indiana,
US. Correspondence to: Binhang Yuan <biyuan@ust.hk>, Eiko
Yoneki <eiko.yoneki@cl.cam.ac.uk>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Time Slots
0

25
50
75

100

R
eq

. R
at

io
 (%

) 1-Month Traces

Time Slots
0

25
50
75

100
6-Hour Traces

Short In, Short Out
Short In, Long Out

Long In, Short Out
Long In, Long Out

Figure 1: The real-world workload traces from the Swiss
AI Center comprise over 500,000 traces collected over one
month. We categorize the workload types based on input
and output token lengths (longer than 512 and 128 are char-
acterized as long).

1. Introduction
Large Language Models (LLMs), including GPT-4 (Ope-
nAI, 2024), Gemini (Reid et al., 2024), Llama3 (Dubey
et al., 2024), Claude (Anthropic, 2024), Mixtral (Jiang et al.,
2024), and DeepSeek-V3 (Liu et al., 2024a), have demon-
strated unprecedented performance across a wide range of
real-world applications (GitHub, 2024; Jeon & Lee, 2023;
Peng et al., 2023), such as chatbots, education, and health-
care, profoundly impacting human lives. In this context,
enhancing the cost-efficiency of LLM serving is crucial for
democratizing access to these cutting-edge technologies.

Currently, predominant practices utilize homogeneous GPU
resources to deploy LLMs and serve the incoming re-
quests (Li et al., 2023; Kwon et al., 2023; Agrawal et al.,
2024b). However, with the broadening application domains,
serving LLMs is facing progressively varying request pat-
terns, driving the serving workloads dynamic and diverse—
a phenomenon referred to as workload heterogeneity (Sun
et al., 2024; Zhao et al., 2024b). This contradiction makes
the use of homogeneous GPU resources unsuitable.

To be specific, the requests to be served have varying input
and output token lengths, as exemplified by the real-world
LLM serving traces at the Swiss AI Center shown in Fig-
ure 1. Such differences can exhibit significantly divergent
resource (compute and memory) demands across different
types of workloads, owing to the distinct characteristics of
the two phases of inference— the prefill phase is compute-

1

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Table 1: GPU Specifications and Pricing

GPU Peak Memory Access Memory Price
Type FP16 FLOPS Bandwidth Limit (per GPU)
A6000 91 TFLOPS 960 GB/s 48 GB 0.83 $/h
A40 150 TFLOPS 696 GB/s 48 GB 0.55 $/h
L40 181 TFLOPS 864 GB/s 48 GB 0.83 $/h
A100 312 TFLOPS 1555 GB/s 80 GB 1.75 $/h
H100 1979 TFLOPS 3.35 TB/s 80 GB 2.99 $/h
4090 83 TFLOPS 1008 GB/s 24 GB 0.53 $/h

bounded as it processes input prompts in a single step, while
the decoding phase is memory-bounded as it generates sub-
sequent tokens step by step (Zhong et al., 2024; Patel et al.,
2024). Therefore, when using homogeneous GPU resources,
it is hard to fit the varying resource demands well.

On the contrary, the heterogeneity in resource demands
presents a unique opportunity to enhance the overall serving
efficiency by leveraging different GPU types. As shown
in Table 1, various GPU types offer diverse compute and
memory capabilities, making them well-suited for process-
ing different types of workloads. Motivated as such, we
try to explore two questions: Can serving LLMs over het-
erogeneous GPU resources achieve better cost-efficiency
than homogeneous GPU resources? If yes, how can we
enhance the cost-efficiency? To this end, this work makes
two technical contributions correspondingly.

The first contribution is a comprehensive benchmarking of
LLM serving over various GPU types, which offers a de-
tailed understanding of cost-efficiency with heterogeneous
GPU resources. Based on the benchmarking results, we
reveal three key factors that are vital to the cost-efficiency:

• GPU composition (i.e., the number and types of GPUs
that make up a heterogeneous cluster) is essential for opti-
mizing the cost-efficiency of LLM serving. Different GPU
types exhibit varying characteristics (e.g., computational
capabilities, memory bandwidths, and memory capaci-
ties), making them more suitable for distinct workloads
and model types. Given the varying types of incoming
workloads, we need to strategically optimize GPU com-
position to improve resource utilization, reduce latency,
and enhance overall serving performance.

• Deployment configurations (i.e., how many model repli-
cas to deploy and the parallelism strategy for each) are
necessary for maximizing overall system performance.
The optimal configurations is influenced by the model,
workload, and GPU type, so using a unique deployment
configuration for all replicas is impractical. Therefore, we
should adaptively optimize the deployment configurations
so that the system efficiency can be improved.

• Workload assignment (i.e., allocating incoming work-
loads to GPUs) becomes crucial as different replicas are
deployed with varying configurations (i.e., resources and

24-Hour Period
0

10

20

30

N
um

. o
f G

PU
s 4090

A40
A6000
L40
A100
H100

Figure 2: The number of different types of GPUs on Vast.ai
during a 24-hour period.

parallelisms) and different workloads have their preferable
resource needs. As a result, to improve resource utiliza-
tion, it necessitates assigning requests to more suitable
replicas while balancing the burden across all replicas.

The second contribution is to design a brand new LLM serv-
ing framework following the benchmarking, which aims at
maximizing the cost-efficiency of LLM serving over hetero-
geneous GPU resources in cloud platforms.

Given the three factors above, a straightforward approach
is to rent the most suitable GPUs for each workload type
and assign requests accordingly. Nevertheless, this is im-
practical for two reasons. For one thing, due to the high
demand for cloud GPUs, although cloud platforms (e.g.,
Vast.ai, RunPod, and AWS) offer a variety of GPU types,
they usually have limited quantities of each type. We present
the availability of different GPU types on Vast.ai over a 24-
hour period in Figure 2. For another, the user-defined price
budget is often constrained, making it impractical to always
allocate sufficient GPUs for each workload demand.

Consequently, we formulate a scheduling algorithm based
on mixed-integer linear programming (MILP), which takes
account of both real-time GPU availability on cloud
platforms and the user-defined price budget, while co-
optimizing how to rent GPUs from the available pool (GPU
composition), how to deploy the models over the rent GPUs
(deployment configuration), and how to dispatch the work-
loads among the model replicas (workload assignment). We
further incorporate practical heuristics and a binary search
mechanism, as well as extend our approach to the multi-
model scenario, improving scalability and solving efficiency
for large-scale clusters.

We empirically evaluate our framework by comparing it
with both homogeneous and heterogeneous baselines across
a variety of scenarios, covering diverse workload traces,
varying GPU availabilities, and multi-model serving. The
results demonstrate that, within the same price budget, our
approach can achieve up to 41% and on average 20% higher
throughput, or reduce the serving latency by up to 54% and
on average 20%.

2

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

2. Background
LLM inference phase. The inference process in LLMs
consists of two main phases: the prefill phase and the de-
coding phase. During the prefill phase, the model processes
the input prompt to compute the key-value (KV) cache and
generates the first token in a single step. In contrast, the
decoding phase uses the last generated token and the KV
cache as inputs to generate subsequent tokens in a token-by-
token manner. Generally, the prefill phase is compute-bound,
while the decoding phase is memory-bound.

Workload heterogeneity. LLMs are designed to support
a diverse range of applications, and the inference work-
loads associated with these applications often exhibit het-
erogeneity in input and output token lengths, which is
called workload heterogeneity. Different workload types ex-
hibit varying characteristics in terms of compute and mem-
ory demands. For example, requests from the WildGPT
dataset (Zhao et al.), with average input and output token
lengths of 496 and 510 respectively (classified as short input
and long output), typically require more memory resources
to handle the memory-bound decoding phase. Conversely,
requests from the Azure-Trace dataset (Patel et al., 2024;
Azure, 2024), with average input and output token lengths
of 2455 and 18 respectively (classified as long input and
short output), generally demand more compute resources to
manage the compute-bound prefill phase. Therefore, appro-
priately allocating resources based on workload demands is
critical for optimal performance.

Heterogeneous LLM serving. Recent research has ex-
plored various approaches for deploying LLM serving in
heterogeneous GPU environments to achieve cost-efficient
solutions (JIANG et al.; Miao et al., 2024; Griggs et al.,
2024; Zhao et al., 2024a; Mei et al., 2024; Borzunov et al.,
2023; Yan et al., 2024). HexGen introduces asymmetric
partitioning and advanced scheduling techniques to deploy
generative inference in decentralized and heterogeneous set-
tings. Me’lange frames GPU allocation as a cost-aware
bin-packing problem, optimizing cost efficiency for LLM
services by effectively leveraging heterogeneous GPU types.
Helix formulates the problem of heterogeneous GPU and
network connection optimization as a max-flow problem,
utilizing mixed-integer linear programming to determine
the optimal model deployment. However, existing works
typically optimize performance within a predefined hetero-
geneous cluster, and fail to consider GPU availability and
user-defined budget constraints on cloud platforms. In ad-
dition, they are generally unaware of the workload hetero-
geneity, and only consider uniform workload assignment.

LLM serving optimization. There are several related
works focusing on the optimization of LLM serving (Li
et al., 2023; Yu et al., 2022; Kwon et al., 2023). QLM (Patke
et al., 2024) focuses on SLO-aware serving and multi-

node optimizations by refining request ordering; SarathiS-
erve (Agrawal et al., 2024b) optimizes batching through
prefill chunking to mitigate interference between the pre-
fill and decoding stages; and Vidur (Agrawal et al., 2024a)
develops an accurate simulator for deployment tuning. In
contrast, our method is dedicated to achieving heteroge-
neous, cost-efficient serving in cloud environments.

3. Observation and Opportunity
Given a user with a specified budget estimation (in $/h) rent-
ing GPUs from the cloud for serving certain workload traces,
our objective is to deliver a comprehensive serving plan that
maximizes the cost-efficiency of the user’s serving system.
In this section, we first benchmark the cost-efficiency per-
formance of various workload types across different GPU
types, model types, and deployment configurations. Then,
we present our key observations and opportunities.

Benchmark settings. We subsample nine workload
types from the ShareGPT (Zheng et al.), WildGPT (Zhao
et al.), and Azure-Trace datasets (Patel et al., 2024).
These workloads are characterized by average input token
lengths of {2455, 824, 496} and output token lengths of
{510, 253, 18}. Each combination reflects distinct work-
load characteristics. For example, {2455, 18} (long input,
short output) represents compute-intensive workloads, while
{496, 510} (short input, long output) represents memory-
intensive workloads. Based on these workload types, we
evaluate two models, Llama3-8B and Llama3-70B, on six
commonly used cloud GPUs (A6000, A40, L40, A100,
H100, and 4090) with different deployment configurations.
The benchmarking metrics include request throughput per
unit cost (i.e., throughput divided by GPU cost) and the total
cost associated with various latency percentiles (e.g., p5,
p10, p15, . . . , p95, p100). The total cost for each latency
percentile is calculated by multiplying the latency time by
the GPU cost. These metrics serve as indicators of cost
efficiency. The GPU costs are demonstrated in Table 1.

Observation-1: Heterogeneous GPUs are well-suited for
managing model and workload diversity in LLM serving.
Figure 3 and Figure 11 present the benchmark results for the
Llama3-70B and Llama3-8B models across various GPU
types and workload types. The observations can be summa-
rized as follows: (i) The H100 and A100 GPUs (data center
GPUs) perform well on compute-intensive workloads with
the Llama3-70B model, as both GPUs have high computa-
tional power to handle intense computational tasks. (ii) The
A40, A6000, and L40 GPUs (workstation GPUs) excel in
memory-intensive workloads with the Llama3-70B model.
Workstation GPUs offer on average 1.2× higher memory
bandwidth and 1.8× greater memory capacity per unit price
than data center GPUs, making them more cost-efficient for
memory-intensive workloads that often underutilize H100

3

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

0E+00

1E-01

2E-01

3E-01

4E-01
Avg In: 2455, Out: 18

0E+00

5E-02

1E-01

2E-01

2E-01
Avg In: 2455, Out: 253

0E+00

3E-02

6E-02

1E-01

1E-01
Avg In: 2455, Out: 510

7E-03

3E-02

5E-02

8E-02

1E-01
Avg In: 2455, Out: 18

2E-02

7E-02

1E-01

2E-01

2E-01
Avg In: 2455, Out: 253

3E-02

1E-01

2E-01

3E-01

4E-01
Avg In: 2455, Out: 510

0E+00

5E-01

1E+00

2E+00

2E+00
Avg In: 496, Out: 18

0E+00

2E-01

4E-01

6E-01

8E-01
Avg In: 496, Out: 253

0E+00

1E-01

2E-01

3E-01

4E-01
Avg In: 496, Out: 510

5E-03

9E-03

1E-02

2E-02

2E-02
Avg In: 496, Out: 18

2E-02

3E-02

4E-02

5E-02

6E-02
Avg In: 496, Out: 253

3E-02

5E-02

7E-02

9E-02

1E-01
Avg In: 496, Out: 510

Different GPU Types
0E+00

3E-01

6E-01

9E-01

1E+00
Avg In: 824, Out: 18

Different GPU Types
0E+00

1E-01

3E-01

4E-01

5E-01
Avg In: 824, Out: 253

Different GPU Types
0E+00

8E-02

2E-01

2E-01

3E-01
Avg In: 824, Out: 510

P5-100 Latencies
6E-03

1E-02

2E-02

3E-02

3E-02
Avg In: 824, Out: 18

P5-100 Latencies
2E-02

4E-02

5E-02

7E-02

9E-02
Avg In: 824, Out: 253

P5-100 Latencies
3E-02

6E-02

1E-01

1E-01

2E-01
Avg In: 824, Out: 510

Th
ro

ug
hp

ut
 P

er
 D

ol
la

r (
re

q/
s)

To
ta

l P
ric

e
($

)

4090 A40 A6000 L40 A100 H100

Figure 3: Benchmarked results for Llama3-70B model with different GPU types on different workload types. The left
three columns represent the throughput results, x-axis represents different GPU types, y-axis represents throughput per unit
price (i.e., throughput divided by GPU cost). The right three columns represent the latency results, x-axis represents the
P5-100 latency results (P5-P100 Latencies means from left to right, the x sticks represent P5 Latency, P10 Latency, P15
Latency . . .), y-axis represents total price (i.e., each latency time multiplied by GPU cost). Results for Llama3-8B model are
demonstrated in Appendix A.

0E+00

9E-02

2E-01

3E-01

4E-01

4090-(1,8,1) 4090-(1,2,4) 4090-(1,4,2) 4090-(1,1,8)

0E+00

4E-02

8E-02

1E-01

2E-01

0E+00

2E-02

5E-02

7E-02

9E-02

0E+00

4E-01

9E-01

1E+00

2E+00

0E+00

1E-01

2E-01

3E-01

5E-01

0E+00

6E-02

1E-01

2E-01

2E-01

0E+00

3E-01

5E-01

8E-01

1E+00

0E+00

8E-02

2E-01

2E-01

3E-01

0E+00

4E-02

9E-02

1E-01

2E-01

0E+00

1E-01

2E-01

3E-01

5E-01

L40-(1,8,1) L40-(1,2,4) L40-(1,4,2) L40-(1,1,8) L40-(2,1,4) L40-(2,4,1) L40-(2,2,2)

0E+00

5E-02

1E-01

2E-01

2E-01

0E+00

3E-02

6E-02

1E-01

1E-01

0E+00

5E-01

9E-01

1E+00

2E+00

0E+00

2E-01

3E-01

5E-01

7E-01

0E+00

9E-02

2E-01

3E-01

4E-01

0E+00

3E-01

6E-01

9E-01

1E+00

0E+00

1E-01

2E-01

3E-01

4E-01

0E+00

6E-02

1E-01

2E-01

2E-01

Different Configs
 Avg In:2455, Out:18

0E+00

1E-01

2E-01

3E-01

4E-01

H100-(1,4,1) H100-(1,2,2) H100-(1,1,4) H100-(2,1,2) H100-(2,2,1)

Different Configs
 Avg In:2455, Out:253

0E+00

4E-02

9E-02

1E-01

2E-01

Different Configs
 Avg In:2455, Out:510

0E+00

4E-02

7E-02

1E-01

1E-01

Different Configs
 Avg In:496, Out:18

0E+00

5E-01

1E+00

2E+00

2E+00

Different Configs
 Avg In:496, Out:253

0E+00

1E-01

3E-01

4E-01

6E-01

Different Configs
 Avg In:496, Out:510

0E+00

1E-01

2E-01

3E-01

4E-01

Different Configs
 Avg In:824, Out:18

0E+00

3E-01

6E-01

9E-01

1E+00

Different Configs
 Avg In:824, Out:253

0E+00

1E-01

2E-01

3E-01

4E-01

Different Configs
 Avg In:824, Out:510

0E+00

8E-02

2E-01

2E-01

3E-01

Th
ro

ug
hp

ut
 P

er
 D

ol
la

r (
re

q/
s)

Figure 4: Throughput results for Llama3-70B model with different deployment configurations on different workloads. The
three-element array represents the DP, TP, and PP degrees. Full benchmarking results are listed in Appendix B.

and A100 GPUs due to memory constraints. (iii) The 4090
GPUs (consumer GPUs) deliver excellent performance with
the Llama3-8B model. As smaller models require signifi-
cantly less compute and memory, and the consumer GPUs
offer superior memory bandwidth per unit price, approxi-
mately 1.9× higher than that of the A100 and H100 GPUs.
Overall, our experimental results demonstrate that select-
ing the most appropriate GPU type for specific workloads
and models can enhance the cost-efficiency performance of
LLM serving by up to 2.27×. These findings underscore the
necessity of aligning GPU types with model and workload
demands to maximize both performance and cost-efficiency.

Observation-2: Optimal deployment configurations are
crucial for maximizing cost-efficiency across models,

workloads, and GPU types. Figure 4 presents the bench-
mark results of various deployment configurations across
different models, workloads, and GPU types. The obser-
vations can be summarized as follows: (i) Optimal con-
figurations vary by workload type for a given GPU type.
For instance, on H100 GPUs serving Llama3-70B, ten-
sor parallelism (TP) (Shoeybi et al., 2019) is most effec-
tive for compute- and memory-intensive workloads (e.g.,
{2455, 510}), while higher degree of data parallelism (DP,
i.e., model replication) performs better for less demanding
workloads (e.g., {496, 18}). (ii) Optimal configurations
vary by GPU type for a given workload type. For instance,
in compute-intensive workloads (e.g., {2455, 18}), the L40
GPUs achieve the best performance using pure pipeline par-

4

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

allelism (PP) (Huang et al., 2019), while the H100 GPUs
excel with a combination of DP and TP. (iii) Optimal con-
figurations also depend on model type. For instance, with
Llama3-8B models, DP consistently outperforms model
parallelism (i.e., TP and PP). Since the Llama3-8B model
has lower memory requirements and can run on a single
GPU without model parallelism, increasing the number of
model replicas (i.e., raising the DP degree) enhances the sys-
tem’s parallel processing capability, thereby improving cost
efficiency. Overall, our experimental results demonstrate
that selecting the most effective deployment configurations
can improve system performance by up to 2.61×. These
findings highlight the need for optimized deployment con-
figurations to maximize cost-efficiency in LLM serving.

Observation-3: The workload assignment should be co-
optimized with the heterogeneous GPU composition and
deployment configurations. Effective workload assign-
ment is critical for managing workload heterogeneity and
achieving optimal performance. It serves two key objectives:
(i) Directing requests to GPU types and deployment config-
urations that best match their resource demands to enhance
serving efficiency. As noted in observation-1 and -2, even
with an optimal GPU composition and deployment setup,
performance may degrade if workloads are assigned to un-
suitable GPUs or configurations. This misalignment can
lead to inefficiencies and reduced overall performance. (ii)
Balancing workloads across GPUs to prevent overloading
or underutilization, thereby maximizing resource utiliza-
tion. Workload balancing is essential for cost-efficient GPU
utilization. In some cases, achieving full GPU capacity
requires assigning workloads to suboptimal GPUs or config-
urations. While this may not be ideal for individual requests,
it ultimately improves overall system performance.

Constraints: Appropriate resource scheduling is crucial
under limited resources and budget constraints. Allo-
cating workloads to the most suitable GPUs is a straight-
forward strategy for cost-efficient LLM serving. However,
real-world deployments often face resource availability and
budget limitations: (i) On cloud service platforms, GPU
availability fluctuates, leading to shortages during peak pe-
riods. For instance, A40 availability on RunPod and Vast.ai
can range from 3 to 16 and 0 to 32, depending on the time.
(ii) Budget constraints may prevent users from selecting
the optimal GPU for each workload, necessitating compro-
mises in resource allocation. These constraints often force
workload assignments to suboptimal GPUs, reducing per-
formance and efficiency. To mitigate these challenges, an
effective scheduling algorithm is essential. It should ac-
count for the user’s budget constraints and real-time GPU
availability, enabling efficient and adaptive LLM serving
even under constrained conditions.

Opportunities: Optimization of heterogeneous GPU de-

ployment for cost-efficient LLM serving. Existing sys-
tems typically assume a homogeneous GPU cluster for
LLM serving or focus on optimizing performance within a
predefined heterogeneous cluster. However, adjusting the
heterogeneous GPU composition within the serving clus-
ter to align with specific workload demands offers a more
cost-efficient alternative. Based on prior observations, we
propose optimizing LLM serving by customizing the de-
ployment of heterogeneous GPU types to meet workload
requirements. This includes determining the optimal hetero-
geneous GPU composition (observation-1), selecting the
most effective deployment configurations (observation-2),
and implementing the most appropriate workload assign-
ment (observation-3). Ultimately, our aim is to deliver a
comprehensive LLM serving plan that meets user require-
ments, adapts to cloud environment constraints, and maxi-
mizes cost-efficiency (constraints).

4. Scheduling Algorithm
4.1. Problem Formulation

Given the LLMs to be served, a set of heterogeneous work-
loads, a user-defined budget, and GPU availability on the
cloud, we seek a cost-efficient serving plan comprising:
(1) GPU composition, i.e., selecting the type and num-
ber of GPUs to rent from the cloud while meeting budget
and resource requirements; (2) deployment configurations,
i.e., organizing the rented GPUs into serving groups, each
responsible for serving one model replica, and determin-
ing their parallelism strategies; and (3) workload assign-
ment, i.e., determining the allocation of incoming work-
loads across model replicas. Our objective is to minimize
the overall makespan for processing all incoming workloads.
The resulting plan must ensure that the user obtains the most
cost-efficient LLM serving solution under the specified bud-
getary and resource constraints.

4.2. Simple Example

Experiment setup. We begin by assuming three GPU types,
{t1, t2, t3}, each with two units available. The hourly rental
prices for these types are 4, 2, and 2 $/h, respectively. We
consider two workload types {w1, w2}, which arrive simul-
taneously with 80 total requests for w1 (λ1 = 80) and 20
total requests for w2 (λ2 = 20). We denote by Ct,w the
throughput (in requests per second) of GPU type t on work-
load w. If each GPU serves one model replica, the through-
puts are C1,1 = 1.0, C1,2 = 1.2, C2,1 = 0.9, C2,2 = 0.9,
C3,1 = 0.3, and C3,2 = 0.5. Note that C∼,1 and C∼,2

vary with model parallelism. In Cases 1 and 2, we assume
the workload is assigned to each GPU in proportion to its
processing rate, so the system-wide throughput for each
workload is the sum of individual-GPU rates. In Case 3, we
allow workload-aware assignment for further optimization.

5

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Case 1: GPU composition. We compare two compositions
under the same budget of 8 $/h, where each GPU serves one
model replica. Composition 1 consists of 1 × t1, 1 × t2,
and 1× t3, achieving a total throughput of (2.2, 2.6) rps on
(w1, w2), with a processing time of 44.05 s. Composition
2 consists of 1 × t1 and 2 × t2, achieving throughputs of
(2.8, 3.0) rps on (w1, w2), with a processing time of 35.24 s.
Thus, modifying the GPU composition within the same
budget results in a 20% speedup.

Case 2: Deployment configuration. Focusing on composi-
tion 2, we compare two ways to organize these three GPUs.
Configuration 1 assigns each GPU to serve a single model
replica, resulting in a processing time of 35.24 s. Config-
uration 2 applies TP to the two t2 GPUs, changing their
combined throughput to 2.4 rps on w1 and 1.5 rps on w2,
reducing the overall processing time to 30.94 s. Thus, modi-
fying the deployment configuration improves the processing
time by approximately 14%.

Case 3: Workload assignment. Finally, we retain the
same composition and TP-based configuration but optimize
workload assignment. Specifically, we assign 15% of w1

and 100% of w2 to the replica with t1, and 85% of w1 to the
replica with TP on 2× t2. With this assignment, the overall
completion time is reduced to 28.67 s. Thus, adjusting the
workload assignment results in an additional 8% reduction
in processing time.

This step-by-step example demonstrates the joint optimiza-
tion of GPU composition, deployment configuration, and
workload assignment for optimal performance. A detailed
processing time calculation for each case is in Appendix C.

4.3. MILP Formulation

In this section, we introduce a mixed-integer linear program-
ming (MILP) formulation to find a serving plan, i.e., GPU
composition, deployment configurations and workload as-
signment, that minimizes the overall processing time. An
overview of the symbols is shown in Table 2.

Let there be N types of GPUs, indexed by n ∈
{1, 2, . . . , N}. We denote the decision on how many GPUs
of each type to use (i.e., GPU composition) by a vector
D = [d1, d2, . . . , dN] where each dn ≥ 0 represents
the number of GPUs of the n-th type. These variables
are subject to availability constraints encoded by a vector
A = [a1, a2, . . . , aN], such that 0 ≤ dn ≤ an,∀n =
1, 2, . . . , N . Each GPU type n has price pn (e.g., 1.75 $/h
for A100, 2.99 $/h for H100), and memory limit mn (e.g.,
48 GB for L40, 80 GB for H100).

Configurations. We consider a set C of feasible configu-
rations (i.e., deployment configurations). Each config-
uration c ∈ C represents the serving plan for a single
model replica, which is characterized by (vc, sc, oc, hc,w):

Table 2: Symbols used in MILP.

Symbol Description

N number of GPU types
W number of workload types
C set of feasible configs
dn type n GPUs allocated
an maximum available type n GPUs
pn rental price of type n GPUs
mn memory limit of type n GPUs
B user-defined total price budget
vc GPU composition of config c
sc parallelism strategy of config c
oc price cost of config c
hc,w throughput of config c on workload w
xc,w assignment of workload w to config c
yc whether config c is used
T makespan of processing all workloads
fw total requests of workload w

(i) A vector vc = {dn(c)}Nn=1 indicating exactly how many
GPUs of each type n are used in configuration c. (ii) An
array sc = {t1, t2, . . . , tS} indicating the parallelism strat-
egy used in configuration c. The array length S repre-
sents the total number of pipeline stages, and the element
ts represents the TP degree of the s-th stage. The sum-
mation of all ts should be equal to the total GPU count
of configuration c, i.e.,

∑S
s=1 ts =

∑N
n=1 dn(c). (iii) A

cost oc =
∑N

n=1(dn(c) × pn) indicating the total price
required for configuration c. (iv) A throughput hc,w indi-
cating the rate at which configuration c process workload
type w, which is obtained through a one-time profiling 1.
By optimizing the configurations, we can obtain the GPU
composition and deployment configurations mentioned in
§4.1.

Workloads and assignment. Let there be W workload
types, indexed by w ∈ {1, 2, . . . ,W}. Each workload
w must be fully served (i.e., 100% coverage). We allow
fractional assignment: a fraction xc,w ∈ [0, 1] of work-
load w may be processed by configuration c. Concretely,∑

c∈C xc,w = 1,∀w = 1, 2, . . . ,W . We also introduce an
integer variable yc ∈ {0, 1, 2, . . . } indicating how many
copies of configuration c are chosen (activated). If yc = 0,
then xc,w must be zero for all w. By co-optimizing the
workload assignment (the fractions xc,w) with the activated
configurations (yc), we determine the final workload as-
signment as described in §4.1.

Budget and GPU constraints. A valid configuration set C
must also satisfy the following constraints: (i) the allocated
number of GPUs for each type must not exceed the available
number, i.e., 0 ≤

∑
c∈C(dn(c)×yc) ≤ an,∀n = 1, . . . , N ;

(ii) the total cost of all chosen configurations must be within

1The detailed procedure of the one-time profiling is demon-
strated in Appendix L.

6

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

the user-defined budget B, i.e.,
∑

c∈C(oc × yc) ≤ B.

Optimization objective. We define a makespan variable
T ≥ 0 to represent the overall completion time. For a con-
figuration c, if it is instantiated yc times and processes frac-
tions xc,w of workload w, each replica provides a through-
put of hc,w. Let fw be the total number of requests for
workload w. Consequently, the total effective throughput
for c is yc × hc,w, and the time required on c is given by
Tc =

∑W
w=1

xc,w·fw
yc·hc,w

. Since all chosen configurations run
in parallel, the system completes once the slowest configu-
ration finishes. Thus, we have Tc ≤ T for all c ∈ C. Our
optimization objective is to minimize T .

MILP formulation. The problem can be summarized as
the following Mixed-Integer Linear Program (MILP):

argminT (1)

s.t.
∑

c∈C
xc,w = 1, ∀w, (Assignment Constraint) (2)∑

w∈W

xc,w·fw
yc · hc,w

≤ T, ∀ c, (Makespan) (3)

xc,w ≤ yc, ∀ c, w, (Activation Coupling) (4)∑
c∈C

(
oc × yc

)
≤ B, (Budget Constraint) (5)∑

c∈C

(
dn(c)× yc

)
≤ an, ∀n, (GPU Avail.) (6)

yc ∈ {0, 1, 2, . . . }. (7)

This formulation determines which configurations are used
(yc) and how the workload fractions (xc,w) are distributed,
subject to memory limit, price budget, and GPU availability
constraints, in order to minimize the makespan T . Note
that dn(c) is an integer; we enumerate all feasible integer
combinations {dn(c)}Nn=1 in a precomputation step. In
contrast, xc,w is a continuous variable, and the solver relies
on branch-and-bound to systematically narrow the feasible
region and converge to an optimal fractional assignment.

Complexity analysis. The number of binary activation vari-
ables yc grows combinatorially with the number of feasible
configurations |C|. In this worst case |C| can be on the order
of

∏N
n=1(an + 1). Since MILP solvers (e.g., branch-and-

bound) have worst-case running time exponential in the
number of binary variables, the theoretical worst-case time
complexity scales as O

(
poly(|C|,W,N)× 2 |C|), where the

polynomial factor accounts for the overhead of processing
each node in the search tree (e.g., solving continuous relax-
ations of the MILP). As a result, the solution time escalates
rapidly with the number of candidate configurations.

Other constraints and heuristics. We introduce additional
constraints and heuristics to reduce the search space. Con-
cretely, we enforce a memory constraint to eliminate config-
urations with insufficient GPU memory, and a connectivity
constraint to exclude those involving disconnected GPUs.
Additionally, we refine the configuration search by restrict-
ing TP to single machines and enabling non-uniform PP

layer partitioning based on memory allocation. See Ap-
pendix D for details.

Binary search. To address the long computation times
associated with the MILP solver for large-scale problems,
we introduce a binary-search-on-T method to accelerate
the search process. Rather than directly minimizing the
makespan T , we iteratively check whether a valid serving
plan exists for different candidate values of T̂ , based on
reasonable lower and upper bounds. For a full explanation,
refer to Appendix F, and we evaluate the effectiveness of
this binary search method in §5.2.

Extension to multiple LLM serving. Our MILP formula-
tion can be easily adapted to scenarios involving multiple
LLMs, such as simultaneously serving both Llama3-8B and
Llama3-70B models. To accommodate this, we introduce
a model-type dimension to the decision variables and con-
straints. This ensures that workload assignments, memory
requirements, and other constraints are optimized for each
model type. The objective remains to minimize the overall
makespan T , while also taking into account GPU avail-
ability, budget constraints, and other constraints across all
model types. For a detailed explanation of the formulation,
please refer to Appendix E. We demonstrate the evaluation
of our method for multiple model serving in §5.2.

5. Experiments
5.1. Experimental Setup

Environments. Our experiments are conducted using two
types of data center servers H100 and A100, three types
of work station servers A40, RTX A6000 and L40, and
one type of consumer server RTX 4090. In data center
servers, GPUs are linked by NVLink (300 GB/s), while in
workstation/consumer servers, GPUs are linked by PCIe
(60 GB/s). Servers with inter-connection are connected via
Ethernet with a bandwidth of 5 Gb/s. All experiments are
conducted with vLLM (Kwon et al., 2023).

Baselines. We compare our method, which uses heteroge-
neous cloud resources, against various homogeneous setups:
• Heterogeneous setups: We rent GPUs from Vast.ai, a

cloud provider offering a range of GPU types. The rentals
are based on real-time GPU availability on the cloud.
For our experiments, we randomly selected four different
GPU availabilities (shown in Table 4 in Appendix H)
under varying price budgets of 15, 30, and 60 $/h.

• Homogeneous setups: We rent H100 GPUs (representa-
tive data center GPUs), RTX A6000 GPUs (workstation
GPUs), and RTX 4090 GPUs (consumer GPUs) under
different price budgets, with each GPU type representing
a homogeneous baseline. For example, a budget of 60 $/h
can rent up to 20 H100 GPUs. Note that we fine-tune the
deployment configurations and workload assignments us-

7

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

ing our scheduling algorithm to optimize the performance
of each homogeneous baseline.

Models and traces. Our evaluation is conducted on Llama3-
8B and Llama3-70B models. And we follow prior work to
generate workload traces based on real-world data. Our test-
ing traces are subsampled from three sources: real workload
traces collected over one month from the Swiss AI Center,
the WildChat dataset, and the production traces Azure-Trace.
Each trace comprises multiple workload types, with their
ratios shown in Table 5 in Appendix I.

Evaluation metrics. We focus on the overall system
throughput and vairous percentile latencies (i.e., p10, . . . ,
p90, p100). P90 latency represents the maximum response
time within which 90% of all requests are completed.

5.2. Experimental Results

End-to-end system performance. We evaluated our
method across various traces, cloud GPU availability scenar-
ios, price budgets, model types, and homogeneous baselines.
Experimental results in Figure 5 and Figure 6 show that our
method improves system throughput by up to 41% (25% on
average) while reducing percentile latencies by up to 54%
(20% on average). In traces 1 and 2, H100 (Homo) achieves
the best performance among all baselines. In our plan, the
GPU composition depends on the budget. With a high bud-
get (60 $/h), data center GPUs are preferred, making up
approximately 51% of our rented resources for request pro-
cessing. In contrast, with a low budget (15 $/h), workstation
GPUs are favored due to their lower cost. In trace 3, A6000
(Homo) demonstrates the highest performance among all
baselines. In this scenario, our plan primarily relies on work-
station GPUs, which constitute approximately 93% of the
rented resources for request processing. Additionally, as
shown in Figure 15 in Appendix J, the 4090 (Homo) delivers
the best performance among all baselines for the Llama3-8B
model. In this case, our plan prefers consumer GPUs, which
form the majority of our rented resources and handle 53%
of overall request processing.

Comparison with HexGen. We also compare our method
with the state-of-the-art heterogeneous serving framework,
HexGen (JIANG et al.). Since HexGen schedules workloads
based on a fixed GPU composition, we evaluate it using two
setups: (i) a uniform composition, where six GPU types
are evenly allocated within the budget, and (ii) the optimal
composition used by our method. As shown in Figure 7,
HexGen with a uniform composition suffers up to 35% and
on average 29% performance degradation due to suboptimal
GPU allocation. Even with the optimal composition, our
method outperforms HexGen by up to 18% and on average
14%, benefiting from workload-aware scheduling.

Compare with Helix. We conduct additional experiments

Trace 1, Budget 60$/h
0
8

16
24
32

25
%

19
%

19
%

Trace 1, Budget 30$/h
0
4
8

12
16

27
% 17
%

21
%

Trace 1, Budget 15$/h
0
2
4
6
8

28
%

27
%

23
%

Trace 2, Budget 60$/h
0
8

16
24
32

Th
ro

ug
hp

ut
 (r

eq
/s

)

27
%

23
%

18
%

Trace 2, Budget 30$/h
0
4
8

12
16

29
%

25
%

20
%

Trace 2, Budget 15$/h
0
2
4
6
8

30
%

26
%

21
%

Trace 3, Budget 60$/h
0
8

16
24
32

35
% 5%

31
%

Trace 3, Budget 30$/h
0
4
8

12
16

38
% 10

%
34

%

Trace 3, Budget 15$/h
0
2
4
6
8

41
% 14

%
37

%

Ours (Avail 1)
Ours (Avail 2)
Ours (Avail 3)

Ours (Avail 4)
RTX 4090 (Homo)

RTX A6000 (Homo)
H100 (Homo)

Figure 5: End-to-end throughput results on Llama3-70B
model with different setups. We further demonstrate the
Llama3-8B results in Appendix J.

P10:100 Latencies
Trace 1

15

30

45

60

La
te

nc
y

(s
)

P10:100 Latencies
Trace 2

10

25

40

55

P10:100 Latencies
Trace 3

12

32

52

72
Ours (Avail 4) RTX 4090 RTX A6000 H100

Figure 6: End-to-end latency results on Llama3-70B model
with different setups.

Trace 1, 30$/h0
4
8

12
16

26% 18%

Trace 2, 30$/h0
4
8

12
16

25% 14%

Trace 3, 30$/h0
4
8

12
16

35%
9%

Trace 1, 15$/h0
2
4
6
8

30% 16%

Trace 2, 15$/h0
2
4
6
8

27%
9%

Trace 3, 15$/h0
2
4
6
8

33%
17%

Th
ro

ug
hp

ut
 (r

eq
/s

)

HexGen HexGen (Optimal Composition) Ours (Avail 4)

Figure 7: Ours vs. HexGen. The first and second bars in
each picture represent HexGen using a uniform and optimal
GPU composition.

comparing our system with Helix (Mei et al., 2024). Specifi-
cally, we compare our method against Helix’s single-cluster
case (the optimal case reported in their paper) under a price
budget of $15 per hour on the AzureTrace dataset (i.e., trace
2). While Helix optimizes heterogeneous LLM serving us-
ing max-flow and MILP scheduling, our method explicitly
considers workload heterogeneity and GPU composition op-
timization, resulting in greater cost efficiency. Experimental

8

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Trace 1
Budget 30$/h

0
4
8

12
16

16
%

32
%

32
%

Trace 1
Budget 15$/h

0
2
4
6
8

27
%

25
%

34
%

Trace 2
Budget 30$/h

0
4
8

12
16

15
%

27
%

33
%

Trace 2
Budget 15$/h

0
2
4
6
8

21
%

32
%

30
%

Th
ro

ug
hp

ut
 (r

eq
/s

)

Uniform GPU Composition
Rule-based Request Assignment

Uniform Deployment Configuration
Ours (Avail 4)

Figure 8: Ablation study of Llama3-70B on traces 1 and 2.

results show that our system outperforms Helix by 25–35%.

Table 3: Performance comparison of Helix and our method.

Llama-30B Llama3-70B
Helix 8.49 req/s 5.72 req/s
Ours 11.43 req/s (35%↑) 7.13 req/s (25%↑)

Ablation studies. We assess the impact of each optimiza-
tion target in our scheduling algorithm by systematically
disabling them. Three baselines are considered: (i) Uniform
GPU composition: GPUs are rented uniformly across six
types within the given budget. This evaluates the perfor-
mance gains from optimized heterogeneous GPU compo-
sition. (ii) Uniform deployment configuration: Instead of
optimizing deployment per model replica, TP is uniformly
applied across all replicas. This measures the impact of
deployment configuration optimization. (iii) Rule-based
request assignment: Requests are assigned using a Round-
Robin strategy based on real trace arrivals, assessing the
benefit of heterogeneous-aware workload assignment. As
shown in Figure 8, disabling heterogeneous GPU compo-
sition reduces throughput by up to 27% (average: 20%),
deployment optimization by up to 34% (average: 33%), and
workload assignment by up to 32% (average: 29%). These
results highlight the necessity of each optimization for high-
performance LLM serving in heterogeneous environments.

Algorithm efficiency. We evaluate two strategy search
methods from §4: (i) MILP and (ii) binary search. As shown
in Figure 9, the left plot illustrates their scalability, while the
right plot depicts algorithm performance during the search
process. Compared to MILP, which exhaustively explores
all combinations of heterogeneous GPU compositions, de-
ployment configurations, and workload assignments, the
binary search method, enhanced with feasibility checks us-
ing knapsack approximation, achieves approximately a 4×
reduction in search time. This improvement comes with
only marginal differences in algorithm performance, with
deviations of less than 1%.

Multi-model extension. We further evaluate our system
in a multi-model serving scenario (discussed in §4.3), as-
suming that 80% of the requests are assigned to the Llama3-

4 8 16 24 32 48
Num. of GPUs

10
45
80

115

Se
ar

ch
 T

im
e

(s
)

MILP
Binary Search

0 40 80 120 160
Search Time (s)

9
12
15
18

M
ak

es
pa

n
(s

)

MILP
Binary Search

Figure 9: Algorithm scalability and efficiency.

Trace 1, Budget 60$/h
0

24
48
72
96

Th
ro

ug
hp

ut
 (r

eq
/s

)

26
% 17
%

20
%

Trace 1, Budget 30$/h
0

12
24
36
48

23
%

35
% 16

%

Ours (Avail 1) RTX 4090 RTX A6000 H100

Figure 10: End-to-end experiments on multiple model types
(Llama3-8B and Llama3-70B) with different setups.

8B model, while the remaining 20% are assigned to the
Llama3-70B model. As shown in Figure 10, our method
outperforms homogeneous baselines, achieving up to a 35%
(average: 23%) performance gain. In the 60 $/h case, our
scheduling algorithm allocates 70% of computing resources
to Llama3-70B and 30% to Llama3-8B. In the 30 $/h case,
the allocation shifts to 77% and 23%. Our algorithm bal-
ances resource allocation based on model demands, enabling
efficient multi-model serving in heterogeneous clusters.

System performance vs. price budget. We compare our
system with homogeneous baselines under different price
budgets. The performance gap narrows as the budget in-
creases due to cloud resource limits, which is reasonable
since we assume an unlimited number of GPUs for our
homogeneous baselines. See Appendix K for details.

Additional discussion and experiments. We provide fur-
ther discussion and experiments on online scheduling for
dynamic workloads, as well as on the trade-offs between
cost-efficiency and request latency, in Appendix M.

6. Conclusion
This paper aims to address the questions of why and how
heterogeneous cloud resources can be utilized for cost-
efficient LLM serving. Specifically, we benchmark the
cost-efficiency of LLM serving over heterogeneous GPUs,
following which, a novel scheduling algorithm is developed.
Experimental results demonstrate that our approach outper-
forms existing works substantially.

9

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgment
This work is supported by the HKUST startup grant R9895
from CSE; RGC-ECS project 26218024; RGC-NSFC
project CRS HKUST601/24. This work was supported as
part of the Swiss AI Initiative by a grant from the Swiss
National Supercomputing Centre (CSCS) on Alps.

References
Agrawal, A., Kedia, N., Mohan, J., Panwar, A., Kwatra, N.,

Gulavani, B. S., Ramjee, R., and Tumanov, A. Vidur:
A large-scale simulation framework for llm inference.
Proceedings of Machine Learning and Systems, 6:351–
366, 2024a.

Agrawal, A., Kedia, N., Panwar, A., Mohan, J., Kwatra,
N., Gulavani, B., Tumanov, A., and Ramjee, R. Taming
{Throughput-Latency} tradeoff in {LLM} inference with
{Sarathi-Serve}. In 18th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 24), pp.
117–134, 2024b.

Anthropic. The claude 3 model family: Opus, sonnet, haiku,
2024. URL https://www-cdn.anthropic.com
/de8ba9b01c9ab7cbabf5c33b80b7bbc6188
57627/Model_Card_Claude_3.pdf.

Azure. Azure public dataset, 2024. URL https://gith
ub.com/Azure/AzurePublicDataset.

Borzunov, A., Baranchuk, D., Dettmers, T., Riabinin, M.,
Belkada, Y., Chumachenko, A., Samygin, P., and Raffel,
C. Petals: Collaborative inference and fine-tuning of
large models. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume
3: System Demonstrations), pp. 558–568, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

GitHub. The world’s most widely adopted ai developer tool,
2024. URL https://github.com/features/
copilot.

Griggs, T., Liu, X., Yu, J., Kim, D., Chiang, W.-L., Che-
ung, A., and Stoica, I. M\’elange: Cost efficient large
language model serving by exploiting gpu heterogeneity.
arXiv preprint arXiv:2404.14527, 2024.

He, G. and Yoneki, E. Cuasmrl: Optimizing gpu sass
schedules via deep reinforcement learning. In Proceed-
ings of the 23rd ACM/IEEE International Symposium
on Code Generation and Optimization, CGO ’25, pp.
493–506, New York, NY, USA, 2025. Association for
Computing Machinery. ISBN 9798400712753. doi:
10.1145/3696443.3708943. URL https://doi.
org/10.1145/3696443.3708943.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In International Conference on
Learning Representations.

Hu, C., Huang, H., Xu, L., Chen, X., Xu, J., Chen, S., Feng,
H., Wang, C., Wang, S., Bao, Y., et al. Inference without
interference: Disaggregate llm inference for mixed down-
stream workloads. arXiv preprint arXiv:2401.11181,
2024.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

Jeon, J. and Lee, S. Large language models in education:
A focus on the complementary relationship between hu-
man teachers and chatgpt. Education and Information
Technologies, 28(12):15873–15892, 2023.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., Casas, D. d. l., Hanna,
E. B., Bressand, F., et al. Mixtral of experts. arXiv
preprint arXiv:2401.04088, 2024.

JIANG, Y., Yan, R., Yao, X., Zhou, Y., Chen, B., and Yuan,
B. Hexgen: Generative inference of large language model
over heterogeneous environment. In Forty-first Interna-
tional Conference on Machine Learning.

Jiang, Y., Fu, F., Yao, X., Wang, T., Cui, B., Klimovic, A.,
and Yoneki, E. Thunderserve: High-performance and
cost-efficient llm serving in cloud environments. arXiv
preprint arXiv:2502.09334, 2025a.

Jiang, Y., Yan, R., and Yuan, B. Hexgen-2: Disaggregated
generative inference of llms in heterogeneous environ-
ment. arXiv preprint arXiv:2502.07903, 2025b.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1145/3696443.3708943
https://doi.org/10.1145/3696443.3708943

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Li, H., Fu, F., Ge, H., Lin, S., Wang, X., Niu, J., Miao,
X., and Cui, B. Hetu v2: A general and scalable deep
learning system with hierarchical and heterogeneous sin-
gle program multiple data annotations. arXiv preprint
arXiv:2504.20490, 2025.

Li, Z., Zheng, L., Zhong, Y., Liu, V., Sheng, Y., Jin, X.,
Huang, Y., Chen, Z., Zhang, H., Gonzalez, J. E., et al.
{AlpaServe}: Statistical multiplexing with model paral-
lelism for deep learning serving. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pp. 663–679, 2023.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-
v3 technical report. arXiv preprint arXiv:2412.19437,
2024a.

Liu, Y., He, H., Han, T., Zhang, X., Liu, M., Tian, J., Zhang,
Y., Wang, J., Gao, X., Zhong, T., et al. Understanding
llms: A comprehensive overview from training to infer-
ence. arXiv preprint arXiv:2401.02038, 2024b.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., et al. Deja
vu: Contextual sparsity for efficient llms at inference time.
In International Conference on Machine Learning, pp.
22137–22176. PMLR, 2023.

Mei, Y., Zhuang, Y., Miao, X., Yang, J., Jia, Z., and Vinayak,
R. Helix: Distributed serving of large language models
via max-flow on heterogeneous gpus. arXiv preprint
arXiv:2406.01566, 2024.

Miao, X., Shi, C., Duan, J., Xi, X., Lin, D., Cui, B., and Jia,
Z. Spotserve: Serving generative large language models
on preemptible instances. In Proceedings of the 29th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume
2, pp. 1112–1127, 2024.

Oh, H., Kim, K., Kim, J., Kim, S., Lee, J., Chang, D.-s.,
and Seo, J. Exegpt: Constraint-aware resource schedul-
ing for llm inference. In Proceedings of the 29th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 2, pp. 369–384, 2024.

OpenAI. Openai gpt-4o, 2024. URL https://platfo
rm.openai.com/docs/models/gpt-4o.

Patel, P., Choukse, E., Zhang, C., Shah, A., Goiri, Í., Maleki,
S., and Bianchini, R. Splitwise: Efficient generative llm
inference using phase splitting. In 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architec-
ture (ISCA), pp. 118–132. IEEE, 2024.

Patke, A., Reddy, D., Jha, S., Qiu, H., Pinto, C.,
Narayanaswami, C., Kalbarczyk, Z., and Iyer, R. Queue
management for slo-oriented large language model serv-
ing. In Proceedings of the 2024 ACM Symposium on
Cloud Computing, pp. 18–35, 2024.

Peng, C., Yang, X., Chen, A., Smith, K. E., PourNejatian,
N., Costa, A. B., Martin, C., Flores, M. G., Zhang, Y.,
Magoc, T., et al. A study of generative large language
model for medical research and healthcare. NPJ digital
medicine, 6(1):210, 2023.

Peng, Y., Jiang, Y., Wang, C., and Yuan, B. Hexgen-text2sql:
Optimizing llm inference request scheduling for agentic
text-to-sql workflow. arXiv preprint arXiv:2505.05286,
2025.

Qiao, Y., Anzai, S., Yu, S., Ma, H., Wang, Y., Kim, M.,
and Xu, H. Conserve: Harvesting gpus for low-latency
and high-throughput large language model serving. arXiv
preprint arXiv:2410.01228, 2024.

Qin, R., Li, Z., He, W., Zhang, M., Wu, Y., Zheng, W., and
Xu, X. Mooncake: Kimi’s kvcache-centric architecture
for llm serving. arXiv preprint arXiv:2407.00079, 2024.

Reid, M., Savinov, N., Teplyashin, D., Lepikhin, D., Lilli-
crap, T., Alayrac, J.-b., Soricut, R., Lazaridou, A., Firat,
O., Schrittwieser, J., et al. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530, 2024.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Stojkovic, J., Zhang, C., Goiri, Í., Torrellas, J., and Choukse,
E. Dynamollm: Designing llm inference clusters for
performance and energy efficiency. arXiv preprint
arXiv:2408.00741, 2024.

Sun, B., Huang, Z., Zhao, H., Xiao, W., Zhang, X., Li, Y.,
and Lin, W. Llumnix: Dynamic scheduling for large
language model serving. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
24), pp. 173–191, 2024.

Wang, Y., Chen, Y., Li, Z., Kang, X., Tang, Z., He, X., Guo,
R., Wang, X., Wang, Q., Zhou, A. C., et al. Burstgpt:
A real-world workload dataset to optimize llm serving
systems. arXiv preprint arXiv:2401.17644, 2024a.

Wang, Y., Chen, Y., Li, Z., Tang, Z., Guo, R., Wang, X.,
Wang, Q., Zhou, A. C., and Chu, X. Towards efficient
and reliable llm serving: A real-world workload study.
arXiv preprint arXiv:2401.17644, 2024b.

11

https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Wu, B., Zhong, Y., Zhang, Z., Huang, G., Liu, X., and Jin,
X. Fast distributed inference serving for large language
models. arXiv preprint arXiv:2305.05920, 2023.

Yan, R., Jiang, Y., Tao, W., Nie, X., Cui, B., and Yuan,
B. Flashflex: Accommodating large language model
training over heterogeneous environment. arXiv preprint
arXiv:2409.01143, 2024.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Zhang, J., Huang, H., Zhang, P., Wei, J., Zhu, J., and Chen, J.
Sageattention2: Efficient attention with thorough outlier
smoothing and per-thread int4 quantization. In Interna-
tional Conference on Machine Learning (ICML), 2025a.

Zhang, J., Wei, J., Zhang, P., Xu, X., Huang, H., Wang, H.,
Jiang, K., Zhu, J., and Chen, J. Sageattention3: Microscal-
ing fp4 attention for inference and an exploration of 8-bit
training. arXiv preprint arXiv:2505.11594, 2025b.

Zhang, J., Wei, J., Zhang, P., Zhu, J., and Chen, J. Sageatten-
tion: Accurate 8-bit attention for plug-and-play inference
acceleration. In International Conference on Learning
Representations (ICLR), 2025c.

Zhang, J., Xiang, C., Huang, H., Wei, J., Xi, H., Zhu, J., and
Chen, J. Spargeattn: Accurate sparse attention accelerat-
ing any model inference. In International Conference on
Machine Learning (ICML), 2025d.

Zhang, J., Xu, X., Wei, J., Huang, H., Zhang, P., Xiang,
C., Zhu, J., and Chen, J. Sageattention2++: A more
efficient implementation of sageattention2. arXiv preprint
arXiv:2505.21136, 2025e.

Zhao, J., Wan, B., Peng, Y., Lin, H., and Wu, C. Llm-pq:
Serving llm on heterogeneous clusters with phase-aware
partition and adaptive quantization. the 29th ACM SIG-
PLAN Annual Sympo-sium Principles and Practice of Par-
allel Programming (PPoPP’24)(02/03/2024-06/03/2024,
Edinburgh), 2024a.

Zhao, W., Ren, X., Hessel, J., Cardie, C., Choi, Y., and Deng,
Y. Wildchat: 1m chatgpt interaction logs in the wild.
In The Twelfth International Conference on Learning
Representations.

Zhao, Y., Yang, S., Zhu, K., Zheng, L., Kasikci, B., Zhou,
Y., Xing, J., and Stoica, I. Blendserve: Optimizing offline
inference for auto-regressive large models with resource-
aware batching. arXiv preprint arXiv:2411.16102, 2024b.

Zheng, L., Chiang, W.-L., Sheng, Y., Li, T., Zhuang, S., Wu,
Z., Zhuang, Y., Li, Z., Lin, Z., Xing, E., et al. Lmsys-chat-
1m: A large-scale real-world llm conversation dataset.
In The Twelfth International Conference on Learning
Representations.

Zhong, Y., Liu, S., Chen, J., Hu, J., Zhu, Y., Liu, X., Jin, X.,
and Zhang, H. {DistServe}: Disaggregating prefill and
decoding for goodput-optimized large language model
serving. In 18th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 24), pp. 193–210,
2024.

Zhou, Z., Wei, X., Zhang, J., and Sun, G. {PetS}: A
unified framework for {Parameter-Efficient} transformers
serving. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pp. 489–504, 2022.

12

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

0E+00

1E+00

3E+00

4E+00

6E+00
Avg In: 2455, Out: 18

0E+00

6E-01

1E+00

2E+00

2E+00
Avg In: 2455, Out: 253

0E+00

4E-01

8E-01

1E+00

2E+00
Avg In: 2455, Out: 510

6E-04

5E-03

9E-03

1E-02

2E-02
Avg In: 2455, Out: 18

1E-03

8E-03

1E-02

2E-02

3E-02
Avg In: 2455, Out: 253

2E-03

1E-02

2E-02

3E-02

4E-02
Avg In: 2455, Out: 510

0E+00

7E+00

1E+01

2E+01

3E+01
Avg In: 496, Out: 18

0E+00

2E+00

5E+00

7E+00

9E+00
Avg In: 496, Out: 253

0E+00

1E+00

3E+00

4E+00

5E+00
Avg In: 496, Out: 510

5E-04

1E-03

2E-03

3E-03

4E-03
Avg In: 496, Out: 18

2E-03

3E-03

5E-03

7E-03

8E-03
Avg In: 496, Out: 253

3E-03

5E-03

8E-03

1E-02

1E-02
Avg In: 496, Out: 510

Different GPU Types
0E+00

5E+00

9E+00

1E+01

2E+01
Avg In: 824, Out: 18

Different GPU Types
0E+00

1E+00

3E+00

4E+00

6E+00
Avg In: 824, Out: 253

Different GPU Types
0E+00

8E-01

2E+00

2E+00

3E+00
Avg In: 824, Out: 510

P5-100 Latencies
5E-04

2E-03

3E-03

5E-03

6E-03
Avg In: 824, Out: 18

P5-100 Latencies
2E-03

4E-03

6E-03

9E-03

1E-02
Avg In: 824, Out: 253

P5-100 Latencies
3E-03

6E-03

1E-02

1E-02

2E-02
Avg In: 824, Out: 510

Th
ro

ug
hp

ut
 P

er
 D

ol
la

r (
re

q/
s)

To
ta

l P
ric

e
($

)

4090 A40 A6000 L40 A100 H100

Figure 11: Benchmarked results for Llama3-8B model with different GPU types on different workload types.

A. Benchmarking Results for Llama3-8B
We demonstrate the benchmark results for Llama3-8B model in Figure 11.

B. Benchmarking Results of Different Deployment Configurations for Remaining GPUs
We demonstrate the benchmark results for different deployment configurations in Figure 12 and Figure 13.

C. Simple Example
Experiment setup. We begin by assuming three GPU types, {t1, t2, t3}, each with two units available. The hourly
rental prices for these types are 4, 2, and 2 $/h, respectively. We consider two workload types {w1, w2}, which arrive
simultaneously with 80 total requests for w1 (λ1 = 80) and 20 total requests for w2 (λ2 = 20). We denote by Ct,w the
throughput (in requests per second) of GPU type t on workload w. If each GPU serves one model replica, the throughputs
are C1,1 = 1.0, C1,2 = 1.2, C2,1 = 0.9, C2,2 = 0.9, C3,1 = 0.3, and C3,2 = 0.5. Note that C∼,1 and C∼,2 vary with
model parallelism. In Cases 1 and 2, we assume the workload is assigned to each GPU in proportion to its processing rate,
so the system-wide throughput for each workload is the sum of individual-GPU rates. In Case 3, we allow workload-aware
assignment for further optimization.

Case 1: GPU composition. We compare two compositions under the same budget of 8 $/h, where each GPU is responsible
for serving one model replica. Composition 1 uses 1 × t1, 1 × t2, and 1 × t3. This setup achieves a total throughput of
(1.0+0.9+0.3) = 2.2 rps on w1 and (1.2+0.9+0.5) = 2.6 rps on w2, giving a processing time of

(
λ1/C∼,1+λ2/C∼,2

)
=(

80/2.2 + 20/2.6
)
≈ 44.05 s. Composition 2 uses 1× t1 and 2× t2, for throughputs of (1.0 + 0.9 + 0.9) = 2.8 rps on w1

and (1.2+ 0.9+ 0.9) = 3.0 rps on w2, so
(
80/2.8+ 20/3.0

)
≈ 35.24 s. In this case, changing the GPU composition under

the same price budget results in a 20% speedup.

Case 2: Deployment configuration. Focusing on composition 2, we compare two ways to organize these three GPUs.
Configuration 1 keeps all GPUs in a purely DP style (i.e., each GPU is responsible for serving one model replica),
summing up to 2.8 rps on w1 and 3.0 rps on w2, matching the 35.24 s above. Configuration 2 applies TP to the two t2
GPUs, which changes their combined rate, e.g., to 2.4 rps on w1 and 1.5 rps on w2. Together with the single t1 GPU
(1.0 rps on w1 and 1.2 rps on w2), the total throughput becomes (3.4, 2.7) rps for (w1, w2). The corresponding time(
80/3.4 + 20/2.7

)
≈ 30.94 s. In this case, changing the deployment configuration results in an improvement in the overall

processing time of roughly 14%.

Case 3: Workload assignment. Finally, we keep the same composition and TP-based configuration but allow workload-
aware assignment. Concretely, we assign:

Replica (t1): 15% of w1, 100% of w2,

Replica (TP on 2× t2): 85% of w1.

13

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Figure 12: Throughput and latency results for Llama3-70B model with different deployment configurations on different
workloads.

Under these fractions, t1 processes 12 requests of w1 at 1.0 rps and 20 requests of w2 at 1.2 rps, while the TP-based
replica handles 68 requests of w1 at 2.4 rps. By balancing the load and routing the workload to the preferable replica, i.e.,
the one with relatively higher throughput for a specific workload, we reduce the overall completion time from 30.94 s
to max(0.85λ1/C2,1, 0.15λ1/C1,1 + λ2/C1,1) = max(68/2.4, 12/1 + 20/1.2) = 28.67 s. In this case, changing the
workload assignment results in an additional improvement in the overall processing time of approximately 8%.

This step-by-step example (also illustrated in Figure 14) shows how all three factors—GPU composition, deployment
configuration, and workload assignment—must be jointly optimized to achieve the best performance.

D. Other Constraints and Heuristics
We enforce two additional constraints to minimize the overall search space and speed up the search process: (i) We perform
an early memory check on each configuration, which ensures that the sum of GPU memories in configuration c is sufficient
for a model replica, i.e.,

∑N
n=1(dn(c)×mn) ≥Mr, where Mr represents the least memory required for serving one model

replica (e.g., 140 GB for Llama3-70B model). Configurations that violate this constraint will be eliminated from further
evaluation; (ii) we enforce a connectivity constraint within each configuration. If certain GPUs lack interconnection (e.g.,
they are located in different data centers), those combinations do not appear in each configuration c. Additionally, we use
two heuristic methods to facilitate the deployment configuration search: (i) we only adopt TP within a single machine
containing multiple GPUs, as TP typically requires high intra-machine communication bandwidth (e.g., PCIe, NVLink) for
efficient deployment; (ii) we support non-uniform pipeline layer partitioning for PP, and determine the partition based on the
total memory allocated for each stage. For instance, if there are a total of 24 layers and the GPU memory allocated for each
stage is 1:2, then we allocate 8 and 16 layers to the first and second stages.

14

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Figure 13: Throughput and latency results for Llama3-70B model with different deployment configurations on different
workloads.

E. Extend to Multiple LLM serving
The previous MILP formulation assumes a single LLM serving with multiple model replicas. However, cloud services
typically involve multiple LLM serving with varying sizes, e.g., Llama3-8B and Llama3-70B models. To integrate multiple
LLM serving plan search into our MILP, we introduce the following extended MILP formulation.

Let there be M model types, indexed by m ∈ {1, 2, . . . ,M}, each type has its own memory requirement. The MILP
formulation can be extended to:

argminT (8)

s.t. ∀m :


∑

c∈Cm
xc,w,m = 1, ∀w ∈Wm,∑

w∈Wm

xc,w,m·fw,m

yc,m·hc,w,m
≤ T, ∀ c ∈ Cm,

xc,w,m ≤ yc,m, ∀ c ∈ Cm, ∀w ∈Wm,

(9)

∑M

m=1

∑
c∈Cm

(
oc,m × yc,m

)
≤ B, (10)∑M

m=1

∑
c∈Cm

(
dn(c,m)× yc,m

)
≤ an, ∀n, (11)

yc,m ∈ {0, 1, 2, . . . }. (12)

In this extended MILP formulation, we introduce an additional model-type dimension to every relevant variable and
constraint. Consequently, the problem now accommodates multiple model types (each with its own workload set, throughput
profiles, memory requirements, etc.) within a unified optimization framework. The objective remains the same—minimizing

15

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

R1

R2

R3

R1

R2

R3

R1

R2

R1

R2

45%

40%

15%

36%

32%

32%

30%

70%

Optimize
Composition
(Case 1)

Optimize
Configuration

(Case 2)

Optimize
Assignment
(Case 3)

Naïve
Serving Plan

Workload Type 1 Workload Type 2

GPU Type 1 GPU Type 2 GPU Type 3

Tensor Parallelism

46%

35%

19%

40%

30%

30%

44%

56%

15%

85%

100%

0%

Figure 14: Illustration of a simple example.

Algorithm 1 Binary Search on T

Input: T , T {initial bounds}
Input: τ {tolerance}
Output: Approximate minimal feasible makespan
while (T − T) > τ do
T̂ ← T+T

2

if FEASIBILITYCHECK(T̂) is true then
T ← T̂ {If feasible, try smaller T̂}

else
T ← T̂ {If infeasible, increase T̂}

end if
end while
return T

the overall makespan T—while jointly enforcing GPU availability, budget, and other constraints across all model types.
This ensures that the chosen configuration set and workload assignments meet the demands of every model type while
adhering to the total GPU and budget limits.

F. Binary Search
For large numbers of model, workload and GPU types, it might take hours for the MILP solver to provide a relatively
good solution. To expedite the search process, we incorporate the binary-search-on-T approach into our existing MILP
formulation. Specifically, we transform the previous “minimize T ” problem into a sequence of feasibility checks: for a
given candidate T̂ , we ask whether a valid serving plan exists that completes all workloads in at most T̂ , subject to budget
and GPU constraints. If yes, we can try smaller T̂ ; if no, we must increase T̂ .

Binary search. The lower bound of the makespan, T , is identified as the best possible time if infinite GPUs were available
with no budget limit (e.g., using the fastest configuration for each workload type). The upper bound, T , is the worst-case
scenario (e.g., using the slowest feasible configuration to serve all workloads). During the binary search loop, if the
difference between the lower and upper bounds exceeds a certain tolerance τ (e.g., one second), i.e., T −T ≥ τ , we calculate
T̂ = T+T

2 and check its feasibility. If a pair (xc,w, yc) or (xc,w,m, yc,m) (in the extended case) satisfies all constraints in
§4.3 or §4.3, with

∑
w∈W

xc,w

hc,w
≤ T̂ or

∑
w∈Wm

xc,w,m

hc,w,m
≤ T̂ , ∀c ∈ Cm, we update T ← T̂ . Otherwise, we update T ← T̂ .

When the loop concludes, the value of T (or T) represents the minimal feasible makespan within the specified tolerance.
Note that the feasibility check can be further approximated using a knapsack approximation, which makes the binary search
approach more efficient for handling large-scale MILP problems. We outline the binary search process in Algorithm 1.

Other optimizations for speeding up MILP. For extremely large-scale MILP problems (e.g., dozens of model and workload
types with hundreds of GPUs), we introduce several optimizations, such as pruning configurations, providing a good starting
point, and early stopping based on the lower bound, as detailed in Appendix G. The experimental results presented in §5

16

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Trace 1, Budget 30$/h
0

50

100

150

200

13
%

42
% 30

%

Trace 1, Budget 15$/h
0

25

50

75

100

7%

39
% 26

%

Trace 2, Budget 30$/h
0

50
100
150
200

14
%

40
% 25

%

Trace 2, Budget 15$/h
0

25
50
75

100

8%

37
% 25

%Th
ro

ug
hp

ut
 (r

eq
/s

)

Ours (Avail 2)
Ours (Avail 4)

RTX 4090 (Homo)
RTX A6000 (Homo)

H100 (Homo)

Figure 15: End-to-end experiments on Llama3-8B model with different setups.

5 10 15 20 25 30 35 40 45 50 55 60
Price Budgets ($/h)

0
150
300
450
600
750

M
ak

es
pa

n
(s

)

Ours (Avail 1)
RTX 4090 (Homo)

RTX 6000 (Homo)
H100 (Homo)

Figure 16: System performance v.s. price budget.

demonstrate the efficiency, effectiveness, and scalability of our scheduling algorithm.

G. Other Optimizations for Speeding up MILP
For large numbers of GPUs and model types, it might take hours for the MILP solver to provide a relatively good solution.
To expedite the search process, we introduce three optimizations to minimize the search space without sacrificing the
effectiveness of our scheduling results: (i) for each model type, we prune configurations that are clearly dominated. For
example, configurations with high degrees of model parallelism are retained for Llama3-70B, which requires substantial
memory for model serving, but are pruned for Llama3-8B to prevent excessive communication overhead; (ii) we pre-estimate
the resource requirements for each model type based on incoming workloads and their memory demands, and proportionally
allocate resources to provide a good starting point for the MILP solver, thereby expediting the search process; (iii) we
establish a theoretical lower bound for the makespan by analyzing the minimum possible processing time across all feasible
configurations, which enables the implementation of early stopping criteria during optimization, i.e., the search process
stops when it finds a solution that is very close to this lower bound. The minimum possible makespan occurs when all
workloads are assigned to the most efficient configuration without considering resource constraints.

H. Real Time GPU Availabilities
We randomly selected four real-time GPU availabilities on the cloud, as shown in Table 4.

I. Workload Type Ratios for Each Trace
We demonstrate the workload type ratios for the three traces in Table 5.

17

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

Table 4: Real time GPU availabilities on cloud platform.

GPU Avails 4090 A40 A6000 L40 A100 H100
Avail 1 16 12 8 12 6 8
Avail 2 32 8 16 16 7 12
Avail 3 32 16 8 8 32 8
Avail 4 24 24 24 16 4 8

Table 5: Workload type ratios for subsampled traces from the Swiss AI Center (Trace 1), Azure-Trace (Trace 2), and
WildGPT dataset (Trace 3). Workloads 1–9 correspond to the nine workload types shown in Figure 4 from left to right.

Workloads 1 2 3 4 5 6 7 8 9
Trace 1 (%) 33 7 8 7 27 6 6 3 3
Trace 2 (%) 22 5 5 21 5 5 19 6 12
Trace 3 (%) 4 1 4 3 20 27 1 25 15

J. End-to-end Experiment Results for Llama3-8B Model
The end-to-end experiments on Llama3-8B model with different setups are shown in Figure 15.

K. System Performance vs Price Budget
We further evaluate our system’s performance compared to homogeneous baselines under various price budgets. As shown
in Figure 16, as the price budgets increase (from 5 $/h to 60 $/h), the performance gap between our approach and the
homogeneous setups narrows from approximately 30% to 15%. This is primarily due to the limited availability of cloud
resources. In homogeneous baselines, we assume an unlimited number of GPUs, allowing performance to scale linearly
with the price budget. However, in cloud-based scenarios, resource restrictions prevent such linear scaling. When larger
price budgets are applied, unsuitable GPUs for the current workload may be rented if they are the only available options,
further limiting performance scalability.

Table 6: Performance of different configurations.

Diff Configs Real Estimated
H100 (2,4) 0.56 req/s 0.60 req/s
H100 (4,2) 0.44 req/s 0.47 req/s
H100 (4,2) (cross machine) 0.42 req/s 0.44 req/s
L40 (2,4) 0.42 req/s 0.46 req/s
L40 (4,2) 0.21 req/s 0.22 req/s
L40 (4,2) (cross machine) 0.18 req/s 0.19 req/s
H100+A100 (4,2) (cross machine) 0.48 req/s 0.52 req/s

L. One-Time Profiling
We employ a one-time profiling strategy that captures the following components. This approach is referred to the profiling
method used in Vidur (Agrawal et al., 2024a): (1) Inference prefilling latency: We profile the latency for a single transformer
layer across varying TP degrees, different workload types, and various GPU types; (2) inference decoding latency: We
profile the decoding latency for a single transformer layer under similar variations in TP degrees, workload types, and GPU
types; (3) pipeline communication latency: We measure the communication latency between different GPUs across various
workload types. Using these measurements, the per-request latency for any configuration is estimated by combining the
TP costs (both communication and computation) of all layers—which may be served by different GPUs and at varying TP
degrees—with the PP communication cost. Note that our heuristics, as discussed in Section 4.3 and Appendix D, largely
reduce the profiling space, e.g., TP is employed only intra-machine. When estimating throughput, the prefill and decoding

18

Demystifying Cost-Efficiency in LLM Serving over Heterogeneous GPUs

phases are treated separately: (1) The prefill phase is compute-bound, and its batched processing capacity is determined by
the sum of the individual latencies; (2) the decoding phase is memory-bound, with its batched processing capability defined
by a single latency value. This distinction has been validated in several studies (Zhong et al., 2024; Patel et al., 2024).

Table 6 demonstrates examples of our cost estimation under a long-input, short-output workload (i.e., workload 1 in Figure 4).
In Table 6, the notation (2,4) indicates that the TP degree is 2 and the PP degree is 4. The estimation errors range from 4% to
7%. Although the estimations are not perfectly accurate, they are sufficiently reliable for selecting the optimal configurations.

M. Discussion
Online replanning. Online scheduling for dynamic workloads is orthogonal to the approach presented in this work.
However, accommodating dynamic workloads could be achieved through the implementation of a replanning mechanism
analogous to the one proposed in DistServe (Zhong et al., 2024). Concretely, the system could (1) monitor the real-time
composition of incoming workloads, (2) track GPU resource availability within the cloud environment, and (3) upon
detecting a significant shift in workload distribution, (e.g., an increase in the proportion of certain workload types) the
scheduling algorithm could be executed again, incorporating recent historical data to produce an updated serving plan.

Table 7: Performance changes in workload and GPU drop.

Workload Change GPU Drop
Before 26.89 req/s 26.89 req/s
After 23.70 req/s (13%↓) 20.80 req/s (29%↓)
Replanning 29.61 req/s (25%↑) 22.85 req/s (10%↑)

As shown in Table 7, we test the workload surge in short output requests in AzureTrace dataset (i.e., trace 2) with a price
budget of $30 per hour. Before surge, the optimal GPU composition is {20%, 65%, 15%} for datacenter, workstation,
and consumer GPUs, achieving 26.89 req/s. After workload change, the throughput degrades to 23.7 req/s. In this case,
replanning (shifting allocation to {63%, 23%, 14%}) boosts throughput to 29.61 req/s. We also test the case when GPU
drop happens (4 H100s down), the throughput falls from 26.89 to 20.80 req/s. In this case, replanning raises throughput to
22.85 req/s.

Trade-offs between prioritizing cost-efficiency and request latency. Prioritizing cost-efficiency typically involves using
fewer resources (i.e., lower budgets), which can lead to slightly higher response latencies. In contrast, prioritizing latency
often requires utilizing more resources (i.e., incurring higher costs). We acknowledge that optimizing for cost efficiency
may result in a slight increase in latency. However, inference tasks typically do not require extremely low latency; meeting
a predefined latency threshold is usually sufficient. In resource-limited scenarios, where systems are naturally under-
provisioned, emphasizing throughput can also indirectly improve latency by reducing queuing delays. Our experimental
results in Figure 6 demonstrate that our method achieved the lowest P99 latency among all compared baselines.

19

