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ABSTRACT

Bilateral trade models the problem of facilitating trades between a seller and a
buyer having private valuations for the item being sold. In the online version of
the problem, the learner faces a new seller and buyer at each time step, and has
to post a price for each of the two parties without any knowledge of their valua-
tions. We consider a scenario where, at each time step, before posting prices the
learner observes a context vector containing information about the features of the
item for sale. The valuations of both the seller and the buyer follow an unknown
linear function of the context. In this setting, the learner could leverage previous
transactions in an attempt to estimate private valuations. We characterize the re-
gret regimes of different settings, taking as a baseline the best context-dependent
prices in hindsight. First, in the setting in which the learner has two-bit feedback
and strong budget balance constraints, we propose an algorithm with O(log T )
regret. Then, we study the same set-up with noisy valuations, providing a tight
Õ(T 2/3) regret upper bound. Finally, we show that loosening budget balance con-
straints allows the learner to operate under more restrictive feedback. Specifically,
we show how to address the one-bit, global budget balance setting through a re-
duction from the two-bit, strong budget balance setup. This established a fun-
damental trade-off between the quality of the feedback and the strictness of the
budget constraints.

1 INTRODUCTION

Bilateral trade models scenarios in which a seller and a buyer, both having a private valuation for
a good, are interested in trading it in order to maximize their respective utilities (Vickrey, 1961;
Myerson & Satterthwaite, 1983). We study the online bilateral trade problem introduced by Cesa-
Bianchi et al. (2021). At each time t, a new seller and buyer arrive, with private valuations st and
bt, respectively. The seller’s valuation st is the lowest price they are willing to accept for the item.
Analogously, the buyer’s valuation bt represents the highest price they are willing to pay for the
item. The learner, without any knowledge about the private valuations at the current time t, posts
two (possibly randomized) prices: pt to the seller and qt to the buyer. A trade happens when st ≤ pt
and qt ≤ bt, so both agents agree to trade. The gain from trade (GFT) for a pair of prices (p, q) at
time t is

GFTt(p, q) := I{st ≤ p}I{q ≤ bt}(bt − st). (1)

This represents the net utility gain generated by the trade. Following online bilateral trade litera-
ture (see, e.g., Cesa-Bianchi et al. (2021; 2023); Bernasconi et al. (2024)), we assume the learner
aims to maximize trade gain or equivalently minimize regret relative to the best hindsight policy.1
A key challenge in online bilateral trade is the inherently limited feedback: under two-bit feedback,
the learner receives feedback (I{st ≤ pt}, I{bt ≥ qt}), and under one-bit feedback the learner only
observes whether the trade occurred, that is I{st ≤ pt} · I{bt ≥ qt}. Both provide far less informa-

1We note that gain from trade and social welfare (i.e., the sum of the utilities of both agents if the trade
occurs, or the seller’s utility if it does not) result in the same notion of regret.
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tion than traditional bandit feedback, since the learner cannot even reconstruct the gain from trade
received for the prices it posted.

In the standard model of bilateral trade, the platform lacks information about the seller, buyer, or the
item being sold. However, this scenario is unrealistic in practice, where some information is usually
available to the learner. In contexts like online marketplaces, where products are often differentiated,
the learner can observe product features upfront and base pricing decisions on them, using past trade
data to estimate feature values and inform future pricing.

We introduce the feature-based online bilateral trade problem, in which the learner observes a fea-
ture vector xt ∈ Rd before posting prices for round t. Building on the traditional feature-based
dynamic pricing framework (see, e.g., Cohen et al. (2020); Javanmard (2017); Javanmard & Naz-
erzadeh (2019); Keskin & Zeevi (2014); Xu & Wang (2021)), we study the setting in which private
valuations are of the form x⊤

t θ + ξt, where θ ∈ Rd is an unknown vector denoting the importance
of each feature, and ξt is an i.i.d. noise term. Following the set-up of Cohen et al. (2020), feature
vectors xt are chosen adversarially by nature. This ensures that our solution is robust to scenarios
where features are correlated and where the set of relevant features evolves over time.

1.1 OUR CONTRIBUTIONS

In this paper, we introduce the feature-based online bilateral trade model, and characterize the regret
for various scenarios with adversarially generated feature vectors.

First, we focus on the scenario in which the learner has two-bit feedback and strong budget balance
constraints (the learner has to set the same price to the seller and to the buyer, i.e., pt = qt at
each round t). As a preliminary warm-up, we begin by considering the deterministic setup where,
at each t, the seller’s valuation is st = x⊤

t θ
s and the buyer’s valuation is bt = x⊤

t θ
b. We show

that in this case, it is possible to adapt techniques proposed by Cohen et al. (2020) in the context
of feature-based dynamic pricing. The main difference here is that we need to maintain separate
ellipsoidal uncertainty sets for the seller and the buyer, respectively. Our analysis yields a regret of
order O(log T ) (Proposition 1).

Two-bit, noisy valuations. Then, we consider the case of noisy valuations in which st = x⊤
t θ

s+ξst
and bt = x⊤

t θ
b + ξbt , where ξst and ξbt are i.i.d. noise terms independent from xt, with bounded

support and densities. We start by decomposing the expected gain-from-trade into components that
can be individually estimated using two-bit feedback (Lemma 1). Then, we describe an explore-
or-commit (EOC) algorithm with regret Õ(T 3/4) (Theorem 1) (this algorithm will be employed in
the subsequent reduction to the one-bit setting). Finally, we devise a SCOUTING BANDITS WITH
INFORMATION POOLING algorithm, which makes a more efficient use of the information collected
during the learning phase. This algorithms achieves a regret Õ(T 2/3)(Theorem 2), which is minimax
optimal up to poly-logarithmic factors and dependence on d. Indeed, there exists a matching Ω(T 2/3)
lower bound for the stochastic bilateral trade problem without features in the case of independent
valuations with bounded densities and support Cesa-Bianchi et al. (2021).

One-bit reduction. Finally, we provide a general black-box reduction that demonstrates how the
difficulty of maintaining a per-round budget balance can be traded for the ability to operate under
more demanding feedback conditions. In particular, given a two-bit explore-or-commit algorithm
guaranteeing strong budget balance and sublinear regret, we show that it is possible to construct a
no-regret algorithm that works under one-bit feedback, and is global budget balanced (Theorem 3).
The one-bit regret guarantees are dependent on a natural measure of the social welfare generated by
the market.

1.2 RELATED WORKS

Bilateral trade. In the offline setting, Myerson & Satterthwaite (1983) showed the existence of
instances where a fully efficient mechanism that satisfies incentive compatibility, individual ratio-
nality, and budget balance does not exist. Subsequent research focused on finding approximately
efficient mechanisms in the Bayesian setting Blumrosen & Dobzinski (2014); Kang et al. (2022);
McAfee (2008); Blumrosen & Mizrahi (2016); Brustle et al. (2017); Deng et al. (2022); Fei (2022).
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Online bilateral trade. Cesa-Bianchi et al. Cesa-Bianchi et al. (2021); Cesa-Bianchi et al. (2024)
study the case in which valuations are drawn i.i.d. from some fixed unknown distribution and the
learner has to enforce strong budget balance. They provide sublinear regret guarantees in the full-
feedback setting, and under partial feedback when valuations are i.i.d. samples from a smooth dis-
tribution, independently for the seller and the buyer. If the learner is only required to enforce weak
budget balance (i.e., pt ≤ qt for each t), then Azar et al. (2022) provide an algorithm achieving
a tight sublinear 2-regret when the sequence of valuation is generated by an oblivious adversary.
Cesa-Bianchi et al. (2023) show that sublinear regret can be achieved beyond the i.i.d. stochastic
setting under a σ-smooth adversary model. Bernasconi et al. (2024) show that sublinear regret can
be achieved in the fully adversarial setting if the learner enforces global budget balance constraints
(i.e., the constraint has to hold over the entire time horizon). A related setting to online bilateral
trade is online brokerage (Bolić et al., 2024). This model has some key structural differences from
the standard online bilateral trade framework by Cesa-Bianchi et al. (2021). For instance, traders
can act as both buyers and sellers depending on market conditions, and their valuations are i.i.d.
from the same unknown distribution. Bachoc et al. (2024) recently studied a contextual brokerage
model where traders’ valuations are zero-mean perturbations of a market price that is linear in the
feature vector.

Feature-based pricing. The one-dimensional version of the problem was introduced by Klein-
berg & Leighton (2003), while Amin et al. (2014) introduced the problem in the contextual, multi-
dimensional set-up under i.i.d. contexts. Cohen et al. (2020) study a model with adversarial contexts
for which they provide Õ(d2 log T ) regret guarantees in the noiseless setting, improving over the
Õ(
√
T ) guarantees obtainable with general-purpose contextual bandits algorithms Agarwal et al.

(2014). Moreover, they provide Õ(T 2/3) regret guarantees for scenarios with adversarial contexts
and additive noise generated from a known sub-Gaussian distribution. Further improvements in the
achievable rates were later provided by Lobel et al. (2018); Leme & Schneider (2018); Liu et al.
(2021). Further instantiations of the feature-based pricing model can be found in the survey of
Den Boer (2015).

2 PRELIMINARIES

For any k ≥ 1, we compactly denote the set {1, 2, . . . , k} as JkK. We denote by LJ(H) the Löwner-
John ellipsoid of a convex body H (i.e., the minimal volume ellipsoid that contains H). For a positive
definite matrix M ∈ Rd×d and x ∈ Rd, we denote

√
x⊤Mx by ∥x∥M. In our proof sketches, we

write AT ≲ BT if there exists a problem-dependent constant c such that AT ≤ cBT .

Learning protocol. At each round t, a new buyer and a seller arrive, characterized by private
valuations bt and st, respectively. After observing a feature vector xt ∈ Rd, the learner posts two
prices: pt to the seller and qt to the buyer. The trade happens if both agents accept the proposed
prices, that is st ≤ pt and qt ≤ bt. When the trade happens the learner is awarded the gain from
trade GFTt(pt, qt), defined as per Equation (1). Feature vectors xt are generated by an oblivious
adversary.

Valuations. We consider two models to describe how features impact on the seller’s and buyer’s
valuations. In the first setting, valuations are a deterministic function of the context. At each round
t ∈ JT K, the valuations of the seller and of the buyer are given by

st = x⊤
t θ

s and bt = x⊤
t θ

b, (2)

respectively, where θs, θb ∈ Rd are unknown to the learner. We assume that both the contexts xt

and the parameters θb and θs are bounded.
Assumption 1. There exist A,B ≥ 0 such that max(∥θs∥, ∥θb∥) ≤ A, and ∥xt∥ ≤ B.

In the second setting, we consider noisy valuations. At each round t ∈ JT K, the valuations are given
by

bt = x⊤
t θ

b + ξbt and st = x⊤
t θ

s + ξst , (3)
where ξbt and ξst are i.i.d. centered noise terms independent from the context xt, with densities f b

and fs, respectively. We denote by F s the c.d.f. of ξst , and by Db the demand function of ξbt : for all
x ∈ R, Db(x) := P

(
ξbt ≥ x

)
. We make the following assumption on the densities of ξst and ξbt .
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Algorithm 1 ELLIPSOIDPRICING FOR BILATERAL TRADE (EP-BT)
1: Input parameter ϵ > 0, bound A.
2: Initialize Ks

1 ,K
b
1 ← d-dimensional ball of radius A, Es

1 = LJ(Ks
1) and Eb

1 = LJ(Kb
1).

3: for t ∈ JT K do
4: Set st = minθ∈Es

t
x⊤
t θ and st = maxθ∈Es

t
x⊤
t θ and compute (bt, bt) analogously

5: if st < bt then post price pt = (st + bt)/2
6: else if st − st ≥ ϵ then
7: Post price pt = (st + st)/2
8: Update Ks

t+1 according to the seller’s feedback, set Es
t+1 = LJ(Ks

t+1)

9: else if bt − bt ≥ ϵ then
10: Post price pt = (bt + bt)/2

11: Update Kb
t+1 according to the seller’s feedback, set Eb

t+1 = LJ(Kb
t+1)

12: else post price pt = (st + bt)/2

Assumption 2. Both ξst and ξbt are supported in [−C,C], and have densities bounded by L.

We observe that under Assumption 1 and 2, the valuations of the seller and the buyer are bounded in
[−P, P ], where P := C +AB.2 The bounded densities assumption is standard in repeated bilateral
trade problems with stochastic valuations, and there exists linear regret lower bounds for the case in
which this assumption is lifted (Cesa-Bianchi et al., 2024).

Feedback models. After posting prices (pt, qt), the learner does not observe directly the GFT or the
valuations, but receives some feedback zt about the transaction. We focus on two feedback models:
(i) Two-bit feedback, where both the buyer and the seller reveal their willingness to accept the prices
offered by the learner (i.e., zt is composed by the two bits (I{st ≤ pt}, I{qt ≤ bt})); (ii) One-bit
feedback: the learner only observes whether the trade happened or not (i.e., zt = I{st ≤ pt} ·
I{qt ≤ bt}). Both feedback models have the desirable property of revealing minimal information
about agent’s private valuations.

Regret. Our objective is to develop dynamic policies that perform well in terms of minimizing
regret. In the deterministic setting, the worst-case regret for learning algorithm A is defined as

RT (A) := max
(θs,θb)∈[−A,A],x∈[−C,C]T

∑
t∈JT K

([
x⊤
t (θ

b − θs)
]+ − GFTt(pt, qt)

)
.

In the noisy model, we compare against a benchmark that maximizes the expected gain from trade.
Let EGFT(x, p, q) := E [GFTt(p, q) |xt = x]. The pseudo-regret for the noisy setting is defined as

RT (A) :=
∑
t∈JT K

max
(p,q)∈[−P,P ]2

p≤q

EGFT(xt, p, q)−
∑
t∈JT K

EGFT(xt, pt, qt).

A property that directly follows by definition is that, for any feature vector, there exists a pair of
identical prices that maximize the expected gain from trade. To simplify the notation, we omit the
argument q of GFTt and EGFT if the same price is posted to both agents.

3 WARM-UP: TWO-BIT FEEDBACK, STRONG BUDGET BALANCE, NO NOISE

In this section, we consider the simplest set-up in terms of the information available to the learner, by
focusing on the setting with two-bit feedback and deterministic valuations following Equation (2).
We adapt the ELLIPSOIDPRICING algorithm, originally proposed by Cohen et al. (2020) for feature-
based dynamic pricing, to our bilateral trade problem. The key distinction lies in managing separate
uncertainty sets for the seller and the buyer, while carefully setting prices consistent with both esti-
mations. In this set-up, we can update these uncertainty sets separately. Algorithm 1 describes the
main step of ELLIPSOIDPRICING FOR BILATERAL TRADE (EP-BT).
Proposition 1. Assume that the seller’s and buyer’s valuations follow Equation (2). Under Assump-
tion 1, Algorithm 1 with ϵ = ABd2/T has regret bounded by RT ≤ 10ABd2 log

(
20(d+ 1)Td−2

)
.

2For simplicity, we work within [−P, P ]. If non-negative prices are required, a translation suffices.
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Algorithm 2 ESTIMATION SUBROUTINES

1: procedure EST-PAR(T par) ▷Update estimate of parameters θb, θs
2: Draw price pt ∼ U([−P, P ]) and post (pt, pt)
3: V←

∑
l∈T par xlx

⊤
l + Id

4: θ̂s ← 2PV−1
∑

l∈T par

(
I{pl ≤ sl} − 1

2

)
xl

5: θ̂b ← 2PV−1
∑

l∈T par

(
I{pl ≤ bl} − 1

2

)
xl

6: procedure EST-INT(T int) ▷Update estimate of integrals I , J
7: Draw price pt ∼ U([−P, P ]) and post (pt, pt)
8: for k ∈ K do
9: Ĵk ← 2P

|T int|
∑

l∈T int I
{
sl ≤ pl ≤ kϵ+ x⊤

l θ̂
s
}
.

10: Îk ← 2P
|T int|

∑
l∈T int I

{
kϵ+ x⊤

l θ̂
b ≤ pl ≤ bl

}
11: procedure EST-F(T F

k , grid point k ∈ K) ▷Update estimate of F s

12: Post price pt = x⊤
t θ̂

s + kϵ. Then update F̂ k ←
∑

l∈T F
k
I {sl ≤ pl}/|T F

k |

13: procedure EST-D(T D
k , grid point k ∈ K) ▷Update estimate of Db

14: Post price pt = x⊤
t θ̂

b + kϵ. Then update D̂k ←
∑

l∈T D
k
I {bl ≥ pl}/|T D

k |

We observe that the algorithm explores only whenever the estimations are not precise enough. In
the proof (Appendix B), we show that this happens in at most O(log T ) rounds.

4 NOISY VALUATIONS WITH TWO-BIT FEEDBACK

In this section, we consider bilateral trade with two-bit feedback and noisy valuations. We introduce
key components that we exploit in the analysis, before integrating them into an explore-or-commit
framework which ensures a regret Õ(T 3/4). Finally, we show a careful re-design of the last phase of
the algorithm yields a tight regret upper bound of Õ(T 2/3).

We rely on the following decomposition lemma, which extends Lemma 1 of Cesa-Bianchi et al.
(2024) to contextual settings. The proof can be found in Appendix E.1.

Lemma 1. Under Assumptions 1 and 2, the expected gain from trade for x at price p is given by

EGFT(x, p) = I(δb)F s(δs) + J(δs)Db(δb), (4)

where δs := p− x⊤
t θ

s, δb := p− x⊤
t θ

b, I(δ) :=
∫ C

δ
Db(u)du, and J(δ) :=

∫ δ

−C
F s(u)du.

Lemma 1 emphasizes that the expected gain from trade for a price p depends on the pair of price
increments (δs, δb), or equivalently, on the pair (δs,∆t), where the difference in average valu-
ations ∆t is defined as ∆t := x⊤

t (θ
b − θs). This shows that items with the same ∆t have

the same optimal seller’s price increment δ∗t : if p = x⊤
t θ

s + δ∗t maximizes EGFT(xt, ·), and if
x⊤
t′ (θ

b − θs) = x⊤
t (θ

b − θs), then p′ = x⊤
t′ θ

s + δ∗t maximizes EGFT(xt′ , ·). However, know-
ing the optimal increment δ∗t for a specific ∆t is not sufficient to determine the optimal increment
for a different ∆t (see Appendix F). Thus, finding the optimal price increment across various ∆t

values might require us to precise estimate the reward function over a broad range of increments.
This is a notable departure from the non-contextual stochastic bilateral trade problem discussed
in Cesa-Bianchi et al. (2024), where precise estimation of the reward function around the optimal
price suffices. Since accurately estimating functions such as F s, Db, I , and J across a wide range
of arguments complicates the problem, the regret might be higher than the Õ(T 2/3) rate achieved
in Cesa-Bianchi et al. (2024). Surprisingly, we show that with careful coordination of the various
estimation procedures, the optimal rate for the non-contextual case can still be attained.
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Algorithm 3 EXPLORE-OR-COMMIT FOR BILATERAL TRADE (EOC-BT)

1: Input: parameter µ, length of estimation phases Tint, TFD, discretization error ϵ, confidence δ.
2: Initialize: K = ⌈2P/ϵ⌉+ 3, K ← J−K,KK, T par=T int=T F

k =T D
k =∅ for all k ∈ K, V = Id.

3: while t ≤ T do
4: if ∥xt∥V−1 > µ then T par ← T par ∪ {t}, EST-PAR(T par)
5: else if |T int| < Tint then T int ← T int ∪ {t}, EST-INT(T int)
6: else if for some k ∈ K, |T F

k | < TFD or |T D
k | < TFD then

7: if |T F
k | < TFD then T F

k ← T F
k ∪ {t}, EST-F(T F

k , k)
8: else if |T D

k | < TFD then T D
k ← T D

k ∪ {t}, EST-D(T D
k , k)

9: else ▷Exploitation phase
10: At ←

{
(k, k′) ∈ K2 : k′ =

⌊(
kϵ− x⊤

t

(
θ̂bt − θ̂st

))
ϵ−1
⌋}

11: Choose (kt, k
′
t) ∈ argmax(k,k′)∈At

F̂ k Îk
′
+ D̂k′

Ĵk and post price pt = x⊤
t θ̂

s + ktϵ

4.1 BUILDING BLOCKS: SUBROUTINES FOR LEARNING PARAMETERS

We first present the sub-routines to estimate the parameters θs and θb, and the functions F s, Db, I
and J used in the EGFT decomposition of Lemma 1. These sub-routines serve as the base compo-
nents for the subsequent algorithms.

The first sub-routine, EST-PAR, estimates the parameters θs and θb. It uses the fact that, if
pt ∼ U([−P, P ]), then 2P (I{pt ≤ st} − 1/2) is an unbiased estimate of x⊤

t θ
s (similarly for θb).

Then, we can rely on classical results to estimate the parameters (see Lattimore & Szepesvári (2020,
Chapter 19)). The second sub-routine, EST-INT, estimates the integrals I(δ) and J(δ) over a grid
of price increments {kϵ : k ∈ K}. The third and fourth sub-routines, EST-F and EST-D, provide
estimates of the c.d.f. F s and the demand function Db at kϵ for a given increment level k ∈ K,
respectively.

4.2 EXPLORE-OR-COMMIT FRAMEWORK

First, we consider a natural Explore-Or-Commit (EOC) algorithm which uses each round either
to compute estimates for the terms in Equation (4), or to greedily play the empirical best action.
This strategy is described in Algorithm 3. Our algorithm is not a standard Explore-Then-Commit
algorithm. Indeed, it resorts to the estimation subroutine EST-PAR (Line 4) whenever the estimation
is not “good enough” and not only in the first rounds. The other estimation subroutines are executed
until a certain number of updates is reached. We show that the number of necessary exploration
rounds is upper bounded by Õ(T 3/4). This will be useful in section Section 5 to handle one-bit
feedback. Finally, in Lines 10 and 11 the algorithm selects the best price increments according to
the current estimates (i.e., “commit” rounds), and posts price pt build accordingly to both agents.
Theorem Theorem 1 bounds the regret of EOC-BT. Its proof is postponed to Appendix C, where we
provide explicit bounds on T̃ and C̃.

Theorem 1. Set ϵ =
(

log(T )
T

)1/4
, δ =

(
T (74 + 32Pϵ−1)

)−1
, µ = ϵ

(
P
√
d log

(
1+B2T

δ

)
+ A

)−1
,

Tint = ⌈ 8P
2 log(1/δ)

ϵ2 ⌉, and TFD = ⌈ 2 log(1/δ)
ϵ2 ⌉. Then, under Assumptions 1 and 2, Algorithm 3

verifies
RT ≤ C̃T 3/4 log(T )1/4

with probability at least 1−T−1 when T ≥ T̃ , where T̃ and C̃ are constants depending respectively
on A, B, and C, and on A, B, C, and d.

Sketch of the proof. For some ϵ > 0 to be chosen later, let K = J−P/ϵ, P/ϵK. Using standard
arguments Abbasi-Yadkori et al. (2011); Carpentier et al. (2020), we can show that Õ(ϵ−2) samples
are sufficient for EST-PAR to ensure that, with high probability, for all t /∈ T par the errors |x⊤

t (θ
s −

θ̂st )| and |x⊤
t (θ

b − θ̂bt )| are smaller than ϵ. When this happens, classical concentration arguments
ensure that Õ(ϵ−2) samples are sufficient for EST-INT to estimate I(kϵ) and J(kϵ) with precision
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Algorithm 4 SCOUTING BANDIT WITH INFORMATION POOLING (SBIP)

1: Input: parameter µ > 0, length of scouting phase Tint, discretization size ϵ, confidence δ > 0.
2: Initialize: T par = T int = ∅, V = Id, K = ⌈2P/ϵ⌉+ 3, K = J−K,KK, ϵ̃ = (12PL+ 7)ϵ,
3: Nk,s = Nk,b = F̂ k = D̂k = 0 for all k ∈ K. Let β : N ∋ n 7→

√
2 log(δ−1)/n

4: while t ≤ T do
5: if ∥xt∥V−1 > µ then
6: T par ← T par ∪ {t}, EST-PAR(T par)
7: else if |T int| < Tint then
8: T int ← T int ∪ {t}, EST-INT(T int)
9: else ▷Run Successive Elimination

10: for (k, k′) ∈ At :=
{
(k, k′) ∈ K2 : k′ =

⌊(
x⊤
t

(
θ̂st − θ̂bt

)
+ kϵ

)
ϵ−1
⌋}

do

11: UCBt(k, k
′)← Îk

′
F̂ k
t + ĴkD̂k′

t + ϵ̃+ 2P
(
β(Nk,s) + β(Nk′,b)

)
12: LCBt(k, k

′)← Îk
′
F̂ k
t + ĴkD̂k′

t − ϵ̃− 2P
(
β(Nk,s) + β(Nk′,b)

)
13: Kt :=

{
(k, k′) ∈ At : UCBt(k, k

′) ≥ max(l,l′)∈At
LCBt(l, l

′)
}

14: Choose (kt, k
′
t) ∈ argmin(k,k′)∈Kt

min{Nk,s, Nk′,b} and post price pt = x⊤
t θ̂

s
t + ktϵ

15: Observe feedback and update:

F̂ kt ← Nkt,sF̂ kt + I {st ≤ pt}
Nkt,s + 1

and D̂k′
t ← Nk′

t,bD̂k′
t + I {bt ≥ pt}

Nk′
t,b + 1

,

16: Nkt,s ← Nkt,s + 1 and Nk′
t,b ← Nk′

t,b + 1

ϵ uniformly for k ∈ K. By contrast, Õ(|K|ϵ−2) samples are necessary for EST-F and EST-F to
estimate F s(kϵ) and Db(kϵ) with precision ϵ uniformly for k ∈ K. Thus, with high probability, after
Õ(|K|ϵ−2) rounds of exploration, the expected gain from trade for prices x⊤

t θ̂
s
t + kϵ is estimated

with precision O(ϵ) uniformly for k ∈ K. Now, Assumption 2 ensures that the reward function is
Lipschitz-continuous, so the discretization error is also O(ϵ). By choosing ϵ = T−1/4, we balance
the estimation and discretization errors with the regret of the exploration phase, thereby obtaining a
regret Õ(T 3/4).

4.3 CLOSING THE GAP: SCOUTING BANDITS WITH INFORMATION POOLING

The Õ(T 3/4) regret of the EOC strategy is mainly due to the cost of estimating the c.d.f. F s and
demand function Db. To bypass this costly estimation, an alternative approach is to first estimate θb,
θs, I , and J , then run independent scouting bandit algorithms (as described in Cesa-Bianchi et al.
(2024)) for each (rounded) value of ∆t = x⊤

t (θ
b − θs). As shown in Appendix H, this strategy also

achieves Õ(T 3/4) regret. This regret rate is higher than the rate Õ(T 2/3) achieved in non-contextual
stochastic bilateral trade. Surprisingly, by combining the strengths of both strategies, we achieve
a regret of Õ(T 2/3). This reveals that the contextual stochastic bilateral trade problem is no more
difficult, in terms of regret, than its non-contextual counterpart, although the comparison is against
a stronger benchmark.

To achieve this optimal regret rate, we design a scouting bandit strategy with information pooling
across different values of ∆t, presented in Algorithm 4. Information pooling is related to cross-
learning, developed for bandits with graph feedback Balseiro et al. (2019). In particular, after having
estimated x⊤

t θ
s, x⊤

t θ
b, I and J , we run a successive elimination algorithm for each value of ∆t.

Then, to estimate the reward of a price corresponding to increments δs and δb, we use the feedback
from rounds where these increments have been selected across all values of ∆t.
Theorem 2. Under Assumptions 1 and 2, Algorithm 4 with ϵ = (d2 log(T )2/T )1/3, δ =(
(38 + 16P

ϵ )(T + 1)2
)−1

, µ = ϵ
(
P
√

d log
(
1+B2T

δ

)
+A

)−1
, and Tint = ⌈ 8P

2 log(1/δ)
ϵ2 ⌉ verifies

RT ≤ C̃(d log(T )T )2/3

with probability at least 1−1/T when T ≥ T̃ , where T̃ and C̃ are constants depending respectively
on A, B, and C, and on A, B, C, and d.

7



Published as a conference paper at ICLR 2025

The regret rate of Algorithm 4 matches the lower bound Ω(T 2/3) established by Cesa-Bianchi et al.
(2021) for the simpler problem of non-contextual stochastic bilateral trade under similar assumptions
(i.e., independent valuations with bounded densities and support). Thus, aside from the constant C̃,
the dependence on the dimension d, and logarithmic factors, Algorithm 4 achieves minimax-optimal
regret. We outline the proof of this result below, with the full formal proof as well as bounds on T̃

and C̃ deferred to Appendix D.

Sketch of the proof. Let r(x, p) := maxp′ EGFT(x, p′) − EGFT(x, p), and Tpar = |T par|. The
regret is bounded by 2PTpar + 2PTint +

∑
t/∈T par∪T int r(xt, pt). The elliptical potential Lemma

(Carpentier et al., 2020) implies that Tpar ≲ d2 log(T )2ϵ−2, so Tpar + Tint ≲ d2 log(T )2ϵ−2.
By using concentration arguments and exploiting the Lipschitz continuity of the reward, we can
show that, for all t /∈ T par ∪ T int and (k, k′) ∈ At, [LCBt(k, k

′),UCBt(k, k
′)] is a valid confi-

dence interval for EGFT(xt, x
⊤
t θ̂

s + kϵ). Now, we want to show that r(xt, pt) ≲ Õ
(√

1/Nkt,s +√
1/Nk′

t,b + ϵ
)
. To prove this claim, we define (k∗t , k

′∗
t ) ∈ argmax(k,k′)∈At

EGFT(xt, x
⊤
t θ̂

s +

kϵ). The Lipschitz-continuity of the reward ensures that the discretization error is of or-
der O(ϵ). Moreover, [LCBt(kt, k

′
t),UCBt(kt, k

′
t)] and [LCBt(k

∗
t , k

′∗
t ),UCBt(k

∗
t , k

′∗
t )] are confi-

dence intervals for EGFT(xt, pt) and EGFT(xt, x
⊤
t θ̂

s + k∗t ϵ), respectively, and LCBt(k
∗
t , k

′∗
t ) ≤

UCBt(kt, k
′
t) by Line 13. Then, it holds that EGFT(xt, x

⊤
t θ̂

s + k∗t ϵ) − EGFT(xt, pt) is of order
UCBt(kt, k

′
t)−LCBt(kt, k

′
t)+UCBt(k

∗
t , k

′∗
t )−LCBt(k

∗
t , k

′∗
t ). Our choice of (kt, k′t) ensures that

min{Nkt,s, Nk′
t,b} ≤ min{Nk∗

t ,s, Nk
′∗
t ,s} (Line 14). Then, by definition of UCB and LCB, and

since the discretization is at most O(ϵ), we get r(xt, pt) ≲ Õ
(√

1/Nkt,s +
√

1/Nk′
t,b + ϵ

)
.

To bound the regret of the Successive Elimination phase, we consider separately the rounds (indexed
by T s

k ) where the bound is dominated by
√

1/Nk,s and kt = k, and the rounds (indexed by T b
k′)

where it is dominated by
√

1/Nk′,b and k′t = k′. Then, we decompose the regret of this phase
as
∑

t/∈T par∪T int r(xt, pt) =
∑

k∈K(
∑

t∈T s
k
r(xt, pt) +

∑
t∈T b

k
r(xt, pt)). Choosing ra = 2−a and

ra ≈ ϵ, we consider the decreasing sequence of intervals (ra)a≤a. The previous result implies that
if Nk,s ∈ [Õ(1/r2a), Õ(1/r2a+1)], then r(xt, pt) ≲ ra. Thus,∑

t∈T s
k

r(xt, pt) ≲ Õ

(
r21 +

∑
1≤a≤a−1

ra
(
r2a+1 − r2a

)
+ ra|T s

k |
)
.

This sum is of order Ts
kϵ+log(1/δ)/ϵ. We sum over (k, k′) ∈ K, and use the fact that

∑
k∈K Ts

k+Tb
k ≤

T while |K| ≈ ϵ−1, to conclude that RT = Õ(T 2/3).

5 TRADING OFF BUDGET BALANCE CONSTRAINTS FOR FEEDBACK

In this section, we show that it is possible to relax the budget balance constraints in order to handle
scenarios with limited feedback. In particular, we show that any EOC-like algorithm for two-bit
feedback (for instance, Algorithms 1 and 3) can be suitably adapted to handle settings with one-bit
feedback. To achieve this, we resort to the notion of global budget balance recently introduced by
Bernasconi et al. (2024) and we show that budget can be exploited to compensate for the lack of feed-
back. The notion of global budget balance requires the learner to be budget balanced only “overall”
(i.e., over the whole time horizon). In particular, let PROFITt(p, q) := I{st ≤ p}I{q ≤ bt}(q − p)
be the profit extracted by the learner at time t by posting prices (p, q). Then, the learning algorithm
is global budget balanced if the following inequality holds:

∑T
t=1 PROFIT(pt, qt) ≥ 0.

Given an EOC-like algorithm for the two-bit strong budget balance set-up, the idea is to simulate
its exploration rounds by doing separate updates for the seller and the buyer, each using a single
bit of feedback. In particular, each time in which the two-bit algorithm uses the seller’s feedback
I{st ≤ p}, the one-bit algorithm needs to actively collect that information by posting (p,−P ) in-
stead of (p, p). Notice that, even under one-bit feedback, if the learner posts price (p,−P ) it is able
to observe I{st ≤ p} since the buyer is always going to accept the trade. Analogously, when the
two-bit algorithm would employ I{bt ≥ p}, the one-bit algorithm has to collect that information by
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posting (P, p). For instance, instead of executing EST-PAR, the one-bit algorithm runs two explo-
ration phases: one in which it updates only θ̂s (Line 4 of EST-PAR) by posting (pt,−P ), and one in
which it updates only θ̂b by posting (P, pt′). The same happens for the other estimation subroutines.

The one-bit algorithm simulates finer-grained feedback by posting pairs of prices (P, p), (p,−P ),
resulting in a negative GFT. By enforcing global budget balance, we allow the learning algorithm to
set prices that are not budget balanced individually, as long as the overall budget balance is main-
tained. To do that, we add an initial “budget-collection” phase, allowing the algorithm to accumulate
enough profit for subsequent exploration rounds. In the following, we demonstrate how sufficient
profit can be accumulated during the budget-collection phase without incurring excessive regret rela-
tive to GFT. This allows us to provide sublinear regret guarantees under one-bit feedback, with rates
depending on some natural characteristics of the underlying market. This approach is specifically
suited for EOC-like algorithms, which require a limited number of learning rounds before starting
to set greedy prices without requiring further feedback. By contrast, algorithms such as Algorithm 4
rely on two-bit feedback in each round to continuously refine their estimates of D and F . Accumu-
lating sufficient budget to emulate two-bit feedback throughout the entire time horizon would yield
linear regret, rendering the reduction scheme inapplicable.

Collecting budget. Let B be the budget required by the one-bit algorithm to cover the rounds in
which it must post either (P, p) or (p,−P ) to collect information (the value of B will be set later).
Therefore, the budget collection phase ends as soon as

∑
t PROFIT(pt, qt) ≥ B. We denote by τ the

random variable indicating the last round of the budget-collection phase. Moreover, let T B := JτK
be the random set of rounds designated for budget collection. For each round t ∈ T B, the algorithm
samples a price pt uniformly from [−P, P ], and a value it uniformly from [0, log T ]. Then, it posts
a pair of prices (pt, qt), where qt = pt+2−it . We start by providing a lower bound to the per-round
expected profit obtained in this way.

Lemma 2. For each round t ∈ T B such that bt ≥ st, it holds: E[PROFITt(pt, qt)] ≥ (bt−st)
2

8P log T −
2
T ,

where the expectation is with respect to the choice of (pt, qt).

Our guarantees for the one-bit feedback case will depend on instance-dependent properties of the
market. We measure this by looking at the per-round GFT that be extracted on sufficiently long
windows of time.

Definition 1. Given a sequence of valuations {(st, bt)}Tt=1, α is defined as

α := min
t′≥log T

∑
t∈Jt′K

[bt − st]
+

t′
.

Intuitively, α measures how easily the learner can accumulate budget. The budget-collection phase
will have at least length of order log T since τ ≥ B/2P , and B = Ω(log T ) even in the setting without
noise. Then, we can show that the profit accumulated by time τ is at least a factor of 1/ log T of the
cumulative GFT up to that point, assuming all trades up to τ had occurred.

Lemma 3. For τ ≥ log T , it holds with probability at least 1− 1/T that∑
t∈JτK

PROFITt(pt, qt) ≥
α

8P log(T )

∑
t∈JτK

[bt − st]
+ −

√
4P 2 log(T )

∑
t∈JτK

[bt − st]+ − 2.

Now let A be a two-bit algorithm such that, with probability at least 1− 1/T , it requires at most T E

exploration rounds, and has regret for the commit phase of R(2 bit)
T . We set the overall budget to be

collected to
B = max

{
2048P 4α−2 log3 T, 2PT E}.3 (5)

The first argument is used in the following proof to establish an upper bound on concentration terms,
while the second accounts for the exploration costs over T E rounds. Then, the resulting one-bit
learning algorithm has the following guarantees.

3With probability at most 1/T , the budget B may be insufficient for T E exploration rounds. In this case, we
halt exploration and begin posting arbitrary strong budget-balanced prices.

9
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Theorem 3. Given the two-bit algorithm A, the corresponding one-bit learning algorithm satisfies
global budget balance and, with probability at least 1− 1/T , has regret

R
(1 bit)
T ≤ O

(
α−3T E log4 T

)
+R

(2)
T .

The guarantees above rely on the specific characteristics of the market, represented by the parameter
α. When α = Ω(1) the market is well-behaved, meaning that trade opportunities arise frequently
enough. This occurs, for example, when buyers are willing to pay more than the seller’s asking price,
even if only by a small margin. When α = Ω(1), the guarantees of Theorem 3 can be effectively
leveraged. For instance, under the set-up of Section 4, we can use Algorithm 3 as the two-bid
algorithm A. Then, B ≤ 4PT E = 4P ·2P (|T par

T+1|+Tint+2|K|TFD), which is of order Õ(P 4dT 3/4).
Therefore, the final regret bound in the noisy, one-bit setting with global budget balance is of order
Õ(T 3/4). A similar argument shows that in the noiseless setting of Section 3 the regret is of order
polylog(T ).

When the market is not well-behaved, we can still establish sublinear regret guarantees under one-bit
feedback and global budget balance. Indeed, through steps analogous to those of Lemma 3, we can
show that ∑

t∈JτK PROFITt(pt, qt) ≥ Ω

(
τ−1

(∑
t∈JτK([bt − st)]

+
)2)

− Õ(
√
T ).

Moreover, we can exploit the fact that we can decompose the one-bit regret as

R
(1 bit)
T ≤

∑
t∈JτK[bt − st]

+ +
√
16P 2τ log(T ) + 2T E +R

(2)
T (see proof of Theorem 3).

Then, if we take the budget B (or, equivalently, T E) to be log T , the expression above yields∑
t∈JτK[bt − st]

+ ≤ Õ(τ1/2T 1/4). In the worst case we have τ = T (i.e., the market does not

allow to collect enough budget), which yields a regret of order Õ(T 3/4) in the deterministic set-up
of Section 3. By setting B ≈ T 3/4 we achieve a regret of Õ(T 7/8) in the noisy set-up of Section 4.
Clearly, the rates are worse compared to the case where α = Ω(1), due to the difficulty in accumu-
lating sufficient budget to cover the cost of posting non-budget balanced prices.
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A BASIC FACTS ABOUT ELLIPSOIDS

An ellipsoid E with center c ∈ Rd and positive definite matrix M ∈ Rd×d is defined as

E(M, c) :=
{
x ∈ Rd : ∥x− c∥M−1 ≤ 1

}
.

Given an hyperplane H(a, c) := {x ∈ Rd : a⊤(x − c) ≤ 0}, the minimal volume ellipsoid
containing K = E(M, c) ∩H(a, c) can be computed in closed form as follows. The new center is

c′ = c− 1

d+ 1
· 1√

a⊤Ma
Ma,

and the new positive definite matrix is

M′ =
d2

d2 − 1

(
M− 2

d+ 1
· Maa⊤M

a⊤Ma

)
.

Then, the Löwner-John ellipsoid LJ(K) of the half ellipsoid K is the ellipsoid E(M′, c′).

Going from E(M, c) to E(M′, c′) the volume shrinks by the following amount:

vol(E(M′, c′)) ≤ e
−1/2dvol(E(M, c)).

An in-depth analysis of these results can be found in Grötschel et al. (1993).

B PROOF OF PROPOSITION 1

Before proving Proposition 1, we begin by provide a high-level view of Algorithm 1. This algorithm
maintains two ellipsoidal uncertainty sets Es

t and Eb
t (see Appendix A for some basic facts about

ellipsoids). The key idea is that, at each update, the volume of an uncertainty shrinks “fast enough”
to yield a good estimate of the true parameter in a small number of iterations. The problems of
computing the maximum and minimum possible valuations of the seller and buyer (Line 4) admit a
simple closed-form solution (see, e.g., , Grötschel et al. (1993, Chapter 3)).

At each round t, given the current uncertainty sets we compute the maximum and minimum possible
valuations of the seller for the current product as

st = minθ∈Es
t
x⊤
t θ and st = maxθ∈Es

t
x⊤
t θ. (6)

The maximum and minimum possible valuations of the buyer, denoted by bt and bt, are computed
analogously. All of these optimization problems admit a simple closed form solution (see, e.g., ,
Grötschel et al. (1993, Chapter 3)).

If the smallest possible valuation for the buyer bt is above the highest possible valuation for the seller
st (Line 5), the algorithm can post any price between these two values, ensuring that the trade will
occur. If st and st are far apart (Line 6), the algorithm performs a binary search step (a.k.a. “explore”
step), and posts a price pt which is halfway between the seller’s minimum and the maximum possible
valuations. Then, we update the seller’s uncertainty set as follows: if the seller accepts the sale, it
implies that x⊤

t θ
s ≤ pt, and we define the half-ellipsoid Ks

t+1 = Es
t ∩{θ : x⊤

t θ
s ≤ pt}. Otherwise,

we set Ks
t+1 = Es

t ∩ {θ : x⊤
t θ

s > pt}. Finally, we round this half-ellipsoid by replacing it by its
Löwner-John ellipsoid, i.e., the ellipsoid containing Ks

t+1 with the smallest volume. We proceed
similarly for the buyer (Line 9). If the highest and lowest possible valuations of both the buyer and
seller are close to each other, and the buyer’s minimum valuation is lower than the seller’s maximum
valuation, then the difference of valuations between the two parties is small, resulting in a negligible
gain from trade. Therefore, in this case, we can safely post an arbitrary price (Line 12).

Proposition 1. Assume that the seller’s and buyer’s valuations follow Equation (2). Under Assump-
tion 1, Algorithm 1 with ϵ = ABd2/T has regret bounded by RT ≤ 10ABd2 log

(
20(d+ 1)Td−2

)
.

Proof. The proof of Proposition 1 relies on the fact that when the algorithm updates Es
t or Eb

t , it
behaves as the ELLIPSOIDPRICING algorithm of Cohen et al. (2020). More precisely, we first note
that under Assumption 1, Es

1 and Eb
1 contain θs and θb, respectively. Moreover, straightforward
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induction shows that if Es
t contains θs, then Ks

t+1 also contains θs, and so does Es
t+1 (similar

reasoning applies to θb and Eb
t ).

This implies that for all rounds, st ≤ st ≤ st, and bt ≤ bt ≤ bt. In particular, if the condition in
Line 5 is verified, we have st ≤ pt ≤ bt, and so the instantaneous regret at that round is 0.

We also underline that Algorithm 1 only explores to estimate θs (Line 6) if the condition
max
θ∈Es

t

x⊤
t θ − min

θ∈Es
t

x⊤
t θ ≥ ϵ

is verified, or equivalently if

max
θ∈Es

t

x⊤
t

B
θ − min

θ∈Es
t

x⊤
t

B
θ ≥ ϵ

B
.

Since the normalized contexts x⊤
t

B are bounded in norm by 1 by Assumption 1, we can apply Lemma
1 by Cohen et al. (2020). This Lemma states that Algorithm 1 will execute the steps in Lines 7-8 at
most 2d2 log(20A(d+1)/ ϵ

B ) times, after which the condition in Line 6 will never be verified again.
A similar reasoning allows us to bound the number of exploration rounds for the buyer’s parameter
θb (Line 9). Therefore, the total number of exploration rounds is bounded by 2× 2d2 log(20A(d+
1)/ ϵ

B ). We notice that Assumption 1 also implies that the valuations are in [−AB,AB], and so the
instantaneous regret is bounded by 2AB. Thus, the regret of the exploration phase (Lines 6 and 9)
is bounded by 8ABd2 log(20A(d+ 1)/ ϵ

B ).

Finally, if the conditions on Lines 5, 6 and 9 are not verified, it implies that
bt − st ≤ bt − st

≤ bt + ϵ− st + ϵ

≤ 2ϵ.

Then, the instantaneous regret at that round is at most 2ϵ, and the total regret for these steps is at
most 2ϵT . Choosing ϵ = ABd2

T yields the result.

C PROOF OF THEOREM 1

In order to prove Theorem 1, we provide a more detailed version of the EXPLORE-OR-COMMIT
algorithm in Algorithm 5. Note that we adopt the convention 1/0 = +∞.

Before analyzing the EXPLORE-OR-COMMIT algorithm, we define the various quantities used
within it. Specifically, T par

t represents the set of indices from previous rounds that were dedicated to
estimating the parameters θs and θb (Line 8). We denote by θ̂st and θ̂bt the estimates for the param-
eters, and Vt is the corresponding empirical covariance matrix at the beginning of round t. The set
T int contains the indices of the rounds used to estimate the integrals I and J (Line 13). Moreover,
Îk is the estimate of I(kϵ), and Ĵk is the estimate of J(kϵ). The quantities F̂ k and D̂k represent our
estimates of F s(kϵ) and Db(kϵ), respectively.

We use the following lemma to bound the total duration of the parameter exploration phase (the
proof can be found in Appendix E.2).
Lemma 4. Almost surely, the length of exploration phase T par

T+1 is bounded as

|T par
T+1| ≤

d log
(
T+d
d

)
µ2

.

The following lemma provides bounds on the estimation errors for θs, θb, I , J , F s, and Db for the
values of µ, Tint, and TFD specified in Theorem 2. Let E be the event

E :=
{
∀k ∈ K, ∀t /∈ T par

T ∪ T int
∣∣∣x⊤

t (θ̂
b
t − θb)

∣∣∣ ≤ ϵ and∣∣∣x⊤
t (θ̂

s
t − θs)

∣∣∣ ≤ ϵ and∣∣∣Îk − I (kϵ)
∣∣∣ ≤ 2ϵ and∣∣∣Ĵk − J(kϵ)
∣∣∣ ≤ 2ϵ

}
.
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Algorithm 5 EXPLORE-OR-COMMIT (detailed version)

1: Input: parameter µ > 0, length of exploration phases Tint and TFD, discretization size ϵ, confi-
dence level δ.

2: Initialize: T par
1 = T int = ∅, θ̂s1 = 0d, θ̂b1 = 0d, V1 = Id, K = ⌈2P/ϵ⌉ + 3, K = J−K,KK,

T F
k = T D

k = ∅ for all k ∈ K, F̂ k = D̂k = 0 for all k ∈ K.

3: while t ≤ T do
4: if ∥xt∥V−1

t
> µ then ▷Estimate the parameters θb and θs

5: Draw pt ∼ U([−P, P ]) and post prices (pt, pt)
6: Update T par

t+1 ← T
par
t ∪ {t}

7: Update Vt+1 =

( ∑
l∈T par

t+1

xlx
⊤
l + Id

)−1

8: Update parameter estimates

θ̂st+1 = 2PVt+1

∑
l∈T par

t+1

(
I{pl ≤ sl} −

1

2

)
xl, θ̂bt+1 = 2PVt+1

∑
l∈T par

t+1

(
I{pl ≤ bl} −

1

2

)
xl

9: else if |T int| < Tint then ▷Estimate the integrals I and J
10: Draw pt ∼ U([−P, P ]) and post prices (pt, pt)
11: Update T int ← T int ∪ {t}
12: if |T int| = Tint then
13: Compute estimate of integrals I and J
14: for k ∈ K do

Îk =
2P

Tint

∑
l∈T int

I
{
kϵ+ x⊤

l θ̂
b ≤ pl ≤ bl

}
, Ĵk =

2P

Tint

∑
l∈T int

I
{
sl ≤ pl ≤ kϵ+ x⊤

l θ̂
s
}
.

15: else if for some k ∈ K, |T F
k | < TFD then ▷Estimate Fk

16: Set pt = x⊤
t θ̂

s + kϵ and post (pt, pt)
17: Update T F

k ← T F
k ∪ {t}

18: if |T F
k | = TFD then set

F̂ k = 2P
TFD

∑
l∈T F

k
I {sl ≤ pl}

19: else if for some k ∈ K, |T D
k | < TFD then ▷Estimate Fk

20: Set pt = x⊤
t θ̂

b + kϵ and post (pt, pt)
21: Update T D

k ← T D
k ∪ {t}

22: if |T D
k | = TFD then set

D̂k = 2P
TFD

∑
l∈T D

k
I {pl ≤ bl}

23: else ▷Post greedy price

24: set At =

{
(k, k′) ∈ K2 : k′ =

⌊
x⊤
t (θ̂

s
t−θ̂b

t)+kϵ

ϵ

⌋}
25: kt = argmaxk:∃k′,(k,k′)∈At

Îk
′
F̂ k + ĴkD̂k′

.
26: Set pt = x⊤

t θ̂
s
t + ktϵ and post (pt, pt)

15
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Let us define the exploitation (i.e., commit) phase as

T C := JT K \

(
T par
T ∪ T int

⋃
k∈K

(
T F
k ∪ T D

k

))
.

Moreover, let EEOC be the event

EEOC := E ∩
{
∀k ∈ K, ∀t ∈ T C,

∣∣∣F̂ k − F s(kϵ)
∣∣∣ ≤ (L+ 1)ϵ and

∣∣∣D̂k −Ds(kϵ)
∣∣∣ ≤ (L+ 1)ϵ

}
.

Then, we can lower bound the probability of event EEOC as follows (the proof is postponed to
Appendix E.3).

Lemma 5. For the choice µ = ϵ

(
P
√
d log

(
1+B2T

δ

)
+A

)−1

, Tint = 8P 2 log(1/δ)/ϵ2, and

TFD = 2 log(1/δ)ϵ−2, it holds that
P
(
EEOC) ≥ 1− 2δ − 8δ(2K + 1).

Note that the choice δ =
(
T (74 + 32Pϵ−1)

)−1
ensures that the event EEOC happens with probability

at least 1− T−1.

The following Lemma bounds the error for estimating the gain from trade of a price p = x⊤
t θ̂

s
t + kϵ

on the high-probability event EEOC (the proof is presented in Appendix E.4).
Lemma 6. On the event EEOC, for all t ∈ T C, and all (k, k′) ∈ At,∣∣∣Îk′

F̂ k + ĴkD̂k′
− EGFT(xt, x

⊤
t θ̂

s
t + kϵ)

∣∣∣ ≤ (10PL+ 4P + 7)ϵ.

Next, we bound the discretization error. Let us define
(k∗t , k

′∗
t ) ∈ argmax

(k,k′)∈At

EGFT(xt, x
⊤
t θ̂

s
t + kϵ).

Then, the following result holds (see Appendix E.5 for its proof).
Lemma 7. On the event EEOC, we have that∣∣∣∣max

p
EGFT(xt, p)− EGFT(xt, x

⊤
t θ̂

s
t + k∗t ϵ)

∣∣∣∣ ≤ 2LPϵ.

We are now ready to prove Theorem 1. For p ∈ R, x ∈ Rd, we define
∆(x, p) := max

p′
EGFT(x, p′)− EGFT(x, p).

We begin by decomposing the regret as

RT =
∑

t∈T par
T+1

∆(xt, pt) +
∑
t∈T int

∆(xt, pt)+

∑
k∈K

∑
t∈T F

k

∆(xt, pt) +
∑
t∈T D

k

∆(xt, pt)

+
∑
t∈T C

∆(xt, pt).

Using the fact that ∆(xt, pt) ≤ 2P , we obtain

RT ≤2P
(
|T par

T+1|+ Tint + 2|K|TFD)+ ∑
t∈T C

∆(xt, pt).

On the one hand, Lemma 4 implies that |T par
T+1| ≤

d log(T+d
d )

µ2 . For the choice µ =

ϵ

(
P
(
d log

(
1+B2T

δ

))1/2

+A

)−1

, Tint = 8P 2 log(1/δ)ϵ−2, and TFD = 2 log(1/δ)ϵ−2, this im-

plies that

RT ≤2Pd log

(
T + d

d

)(
P

√
d log

(
1 +B2T

δ

)
+A

)2

ϵ−2 + 16P 3 log(1/δ)ϵ−2+

8P

(
4P

ϵ
+ 9

)
log(1/δ)ϵ−2 +

∑
t∈T C

∆(xt, pt).
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Note that the first term is of order ϵ−3 when ϵ is small enough. On the other hand, on the event EEOC,
by Lemma 7 we have∑

t∈T C

∆(xt, pt)

=
∑
t∈T C

∆(xt, x
⊤
t θ̂

s
t + k∗t ϵ) +

∑
t∈T C

EGFT(xt, x
⊤
t θ̂

s
t + k∗t ϵ)− EGFT(xt, x

⊤
t θ̂

s
t + ktϵ)

≤ 2TLPϵ+
∑
t∈T C

(
EGFT(xt, x

⊤
t θ̂

s
t + k∗t ϵ)− EGFT(xt, x

⊤
t θ̂

s
t + ktϵ)

)
,

Moreover, our choice of kt ensures that for k′t such that (kt, k′t) ∈ At,

Îk
′
t F̂ kt + ĴktD̂k′

t ≥ Îk
′∗
t F̂ k∗

t + Ĵk∗
t D̂k

′∗
t .

By Lemma 6, this implies that, on event EEOC,

EGFT(xt, x
⊤
t θ̂

s
t + k∗t ϵ)− EGFT(xt, x

⊤
t θ̂

s
t + ktϵ) ≤ (20PL+ 8P + 14)ϵ.

Thus, on the event EEOC,

RT ≤2Pd log

(
T + d

d

)(
P

√
d log

(
1 +B2T

δ

)
+A

)2

ϵ−2 + 16P 3 log(1/δ)/ϵ2

+ 8P

(
P

ϵ
+ 3

)
log(1/δ)ϵ−2 + 2TLPϵ+ T (20PL+ 8P + 14)ϵ.

Substituting the values of ϵ and δ as per Theorem 1 and using Lemma 5 allows us to conclude the
proof. In particular, the result in Theorem 1 holds with C̃ = 22PL + 26P + 15, provided that
T ≥ 74 + 32P , that T ≥ 1 + B2, that T ≥ d, 5P 2d log(T ) ≥ 1, and that 160P 2d2 + 36P 3 ≤
T 1/4 log(T )5/4.

D PROOF OF THEOREM 2

D.1 DETAILED ALGORITHM

In order to prove Theorem 2, we provide a more detailed version of the SCOUTING BANDIT WITH
INFORMATION POOLING algorithm in Algorithm 6. Note that in Lines 16 an 17, we adopt the
convention 1/0 = +∞ when computing the upper- and lower- confidence bounds for increment
levels k, k′ that have not yet been selected.

Before analyzing the SBIP algorithm, we introduce the different quantities appearing in the algo-
rithm. In words, T par

t is the set of indices of the previous rounds that have been spent estimating
the parameters θs and θb at the beginning of round t. Similarly, θ̂st , θ̂bt , and Vt are the estimates
of the parameters and the corresponding empirical covariance matrix at the beginning of round t.
The set T int consists of the indices of the rounds used to estimate the integrals I and J . Moreover,
Îk estimates I(kϵ), and Ĵk estimates J(kϵ). The quantities F̂ k

t and D̂k
t represent our estimates of

F s(kϵ) and Db(kϵ) at the beginning of round t. Similarly, Ns,k
t (resp., N b,k

t ) counts the number of
rounds in the successive elimination phase where the increment pl − x⊤

l θ̂
s
l was equal to kϵ (resp.,

where the increment pl−x⊤
l θ̂

b
l was close to kϵ), and where we gained information on F s(kϵ) (resp.,

on Db(kϵ)). The setAt collects the pairs (k, k′) ∈ K such that x⊤
t θ̂

s
t +kϵ ≈ x⊤

t θ̂
b
t+k′ϵ is a possible

price (within [−P, P ]). Then, for (k, k′) ∈ At, the quantities UCBt(k, k
′) and LCBt(k, k

′) provide
upper and lower confidence bounds on the expected gain from trade corresponding to this price.

The third phase is a successive elimination phase: at each round, we consider a set of possible op-
timal prices, with corresponding upper confidence bound larger than the highest lower confidence
bound. This set is denoted by Kt. In order to ensure sufficient exploration of all potentially optimal
price increments (kϵ, k′ϵ) for (k, k′) ∈ Kt, we choose the price increment with the widest confi-
dence interval: this corresponds to choosing the pair (k, k′) ∈ Kt such that either Ns,k

t or N b,k′

t

17
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Algorithm 6 SCOUTING BANDITS WITH INFORMATION POOLING (SBIP) (detailed version)

1: Input: parameter µ > 0, length of scouting phase Tint, discretization size ϵ, confidence level δ.
2: Initialize: T par

1 = T int = ∅, θ̂s1 = 0d, θ̂b1 = 0d, V1 = Id, K = ⌈2P/ϵ⌉ + 3, K = J−K,KK,
T SE
s,k = T SE

b,k = ∅ for all k ∈ K, Ns,k
1 = N b,k

1 = 0 for all k ∈ K, F̂ k
1 = D̂k

1 = 0 for all k ∈ K.

3: while t ≤ T do
4: if ∥xt∥V−1

t
> µ then ▷Estimate the parameters θb and θs

5: Draw pt ∼ U([−P, P ]) and post (pt, pt)
6: Update T par

t+1 = T par
t ∪ {t}

7: Update Vt+1 =
(∑

l∈T par
t+1

xlx
⊤
l + Id

)−1

8: Update parameter estimates

θ̂st+1 = 2PVt+1

∑
l∈T par

t+1

(
I{pl ≤ sl} − 1

2

)
xl, θ̂bt+1 = 2PVt+1

∑
l∈T par

t+1

(
I{pl ≤ bl} − 1

2

)
xl

9: else if |T int| < Tint then ▷Estimate the integrals I and J
10: Draw pt ∼ U([−P, P ]) and post (pt, pt)
11: Update T int = T int ∪ {t}
12: if |T int| = Tint then
13: for k ∈ K do

Îk = 2P
Tint

∑
l∈T int I

{
kϵ+ x⊤

l θ̂
b ≤ pl ≤ bl

}
, Ĵk = 2P

Tint

∑
l∈T int I

{
sl ≤ pl ≤ kϵ+ x⊤

l θ̂
s
}

14: else ▷Run Successive Elimination
15: Set At =

{
(k, k′) ∈ K2 : k′ =

⌊
(x⊤

t (θ̂
s
t−θ̂b

t)+kϵ)/ϵ
⌋}

16: for (k, k′) ∈ At do

UCBt(k, k
′) = Îk

′
F̂ k
t + ĴkD̂k′

t + (12PL+7)ϵ+2P

(√
2 log(1/δ)/Ns,k

t +
√

2 log(1/δ)/Nb,k′
t

)
,

LCBt(k, k
′) = Îk

′
F̂ k
t + ĴkD̂k′

t − (12PL+ 7)ϵ− 2P

(√
2 log(1/δ)/Ns,k

t +
√

2 log(1/δ)/Nb,k′
t

)
17: Set Kt = {(k, k′) ∈ At : UCBt(k, k

′) ≥ max{LCBt(l, l
′) : (l, l′) ∈ At}}

18: Set kst = argmin
{
Ns,k

t : (k, k′) ∈ Kt

}
, and kbt = argmin

{
N b,k′

t : (k, k′) ∈ Kt

}
19: if Ns,ks

t
t ≤ N

b,kb
t

t then
20: kt = kst , and set k′t to be such that (kt, k′t) ∈ Kt

21: T SE
s,kt

= T SE
s,kt
∪ {t}

22: else
23: k′t = kbt , and set kt to be such that (kt, k′t) ∈ Kt

24: T SE
b,k′

t
= T SE

b,k′
t
∪ {t}

25: Set pt = x⊤
t θ̂

s
t + ktϵ and post (pt, pt)

26: Update F̂ kt
t+1 =

N
kt,s
t F̂

kt
t +I{st≤pt}

N
kt,s
t +1

, D̂k′
t

t+1 =
N

k′
t,b

t D̂
k′
t

t +I{bt≥pt}

N
k′
t,b

t +1

27: Update Nkt,s
t+1 = Nkt,s

t + 1, and N
k′
t,b

t+1 = N
k′
t,b

t + 1

28: Quantities that have not been updated during round t are kept the same for round t+ 1

18
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is the lowest of the set. We denote (kt, k
′
t) the pair of increments chosen in such way. In order to

analyze this phase, we store the indexes of the rounds where we chose this pair because Ns,kt

t was
the smallest in the set T SE

s,kt
. Analogously, the rounds where we chose this pair because N

b,k′
t

t was
the smallest are stored in the set T SE

b,k′
t
).

D.2 REGRET ANALYSIS

The beginning of the proof of Theorem 2 is similar to that of Theorem 1. As in the previous case,
we define the event

E :=
{
∀k ∈ K, ∀t /∈ T par

T+1 ∪ T
int,

∣∣∣x⊤
t (θ̂

b
t − θb)

∣∣∣ ≤ ϵ,
∣∣∣x⊤

t (θ̂
s
t − θs)

∣∣∣ ≤ ϵ,∣∣∣Îk − I (kϵ)
∣∣∣ ≤ 2ϵ,

∣∣∣Ĵk − J(kϵ)
∣∣∣ ≤ 2ϵ

}
.

Moreover, we define a new event ESBIP as

ESBIP := E
⋂{
∀k ∈ K, ∀t /∈ T par

T+1 ∪ T
int,

∣∣∣F̂ k
t − F s(kϵ)

∣∣∣ ≤√ 2 log(1/δ)

Ns,k
t

+ Lϵ,∣∣∣D̂k −Ds(kϵ)
∣∣∣ ≤√ 2 log(1/δ)

Nb,k
t

+ 2Lϵ
}
.

The following Lemma shows that the event ESBIP happens with large probability. The detailed proof
can be found in Appendix E.6.

Lemma 8. For the choice µ = ϵ

(
P
(
d log

(
1+B2T

δ

))1/2

+A

)−1

and Tint = 8P 2 log(1/δ)/ϵ2, it

holds that
P
(
ESBIP) ≥ 1− 2δ − 4δ(2K + 1)− 4δ(2K + 1)T.

Note that the choice δ =
(
T (38 + 16Pϵ−1 + 16Pϵ−1T + 36T )

)−1
ensures that the event ESBIP

happens with probability at least 1− T−1.

The following Lemma (whose proof is located in Appendix E.7) shows that the upper and lower
confidence bounds used in Algorithm 6 hold conditioned on the high-probability event ESBIP.
Lemma 9. Under the assumptions of Lemma 8 and conditioned on the event ESBIP, we have that for
all t /∈ T par

T+1 ∪ T int, and all (k, k′) ∈ At;

LCBt(k, k
′) ≤ EGFT(xt, x

⊤
t θ̂

s
t + kϵ) ≤ UCBt(k, k

′).

Moreover, it holds that (k∗t , k
′∗
t ) ∈ Kt, where we recall that

(k∗t , k
′∗
t ) ∈ argmax

(k,k′)∈At

EGFT(xt, x
⊤
t θ̂

s
t + kϵ).

Finally, we bound the number of times a sub-optimal price increment kϵ can be selected. For p ∈ R,
x ∈ Rd, recall that we defined

r(x, p) = max
p′

EGFT(x, p′)− EGFT(x, p).

Lemma 10. Conditioned on the event ESBIP, if t ∈ T SE
s,k , then the following condition holds

r(xt, pt) ≤ (50PL+ 28)ϵ+ 16P

√
2 log(1/δ)

Ns,k
t

.

Similarly, if t ∈ T SE
b,k′ , then the following condition holds

r(xt, pt) ≤ (50PL+ 28)ϵ+ 16P

√
2 log(1/δ)

N b,k′

t

.
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The proof for this result can be found in Appendix E.8.

We are now ready to bound the regret of SBIP. We begin by decomposing the regret as

RT =
∑

t∈T par
T+1

r(xt, pt) +
∑
t∈T int

r(xt, pt) +
∑

t/∈T par
T+1∪T int

r(xt, pt).

Since the gain from trade is bounded by 2P , this implies

RT ≤ 2P |T par
T+1|+ 2P |T int|+

∑
t/∈T par

T+1∪T int

r(xt, pt).

Then, using Lemma 4, by setting µ = ϵ

(
P
(
d log

(
1+B2T

δ

))1/2

+A

)−1

and Tint =

8P 2 log(1/δ)/ϵ2 we have

RT ≤ ϵ−2

2Pd log

(
T + d

d

)(
P

√
d log

(
1 +B2T

δ

)
+A

)2
+

16ϵ−2P 3 log(1/δ) +
∑

t/∈T par
T+1∪T int

r(xt, pt). (7)

To bound the third term (i.e., the regret of the successive elimination phase), we decompose it as∑
t/∈T par

T+1∪T int

r(xt, ptϵ) =
∑
k∈K

∑
t∈T SE

s,k

r(xt, pt) +
∑
k′∈K

∑
t∈T SE

b,k′

r(xt, pt).

For k ∈ K, let us partition T SE
s,k as follows. We denote by T SE

s,k = |T SE
s,k|, and we define t1, . . . , tT SE

s,k

the rounds where t ∈ T SE
s,k . More formally, we have t1 < t2 < ... < tT SE

s,k
, and {t1, ..., tT SE

s,k
} = T SE

s,k .
We define a = ⌊− log2 (2(50PL+ 28)ϵ)⌋, and for a ∈ J1, aK, we define

ta = 2 log(1/δ) · (32P2a)
2
.

With these notation, we have∑
t∈T SE

s,k

r(xt, pt) =
∑

i≤t1∧T SE
s,k

r(xti , pti)

+

a−1∑
a=1

∑
ta∧T SE

s,k<i≤ta+1∧T SE
s,k

r(xti , pti) +
∑

(ta+1)∧T SE
s,k≤i≤T SE

s,k

r(xti , pti).

For 1 ≤ a ≤ a, if ta ≤ i ≤ T SE
s,k, by definition of ta, we have

(50PL+ 28)ϵ ≤ 16P

√
2 log(1/δ)

Ns,k
ti

≤ 2−a

2
,

and Lemma 10 implies that, conditioned on the high-probability event ESBIP,

r(xti , pti) ≤ 2−a.

Using the fact that r(xt, pt) ≤ 2P , we obtain

∑
t∈T SE

s,k

r(xt, pt) ≤ 2P t1 +

a−1∑
a=1

2−a (ta+1 − ⌈ta⌉+ 1) + 2−a · T SE
s,k

≤ 2P t1 +

a−1∑
a=1

2−a (ta+1 − ta + 1) + 2−a · T SE
s,k.
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Then,
a−1∑
a=1

2−a (ta+1 − ta) = 6 log(1/δ) · (32P )
2
a−1∑
a=1

2a

= 6 log(1/δ) · (32P )
2
2a

≤ 3 log(1/δ) · (32P )
2

(50PL+ 28)ϵ

Moreover, we have that

2−a · T SE
s,k ≤ 2(50PL+ 28)ϵT SE

s,k.

Therefore,∑
t∈T SE

s,k

r(xt, pt) ≤ 4P log(1/δ) · (128P )
2
+

3 log(1/δ) · (32P )
2

(50PL+ 28)ϵ
+ 1 + 2(50PL+ 28)ϵT SE

s,k.

We proceed similarly to bound
∑

t∈T SE
b,k

r(xt, pt), and we obtain that

∑
t∈T SE

b,k

r(xt, pt) ≤ 4P log(1/δ) · (128P )
2
+

3 log(1/δ) · (32P )
2

(50PL+ 28)ϵ
+ 1 + 2(50PL+ 28)ϵT SE

b,k.

Summing over k ∈ K and k′ ∈ K, and using the fact that
∑

k∈K T SE
s,k + T SE

b,k ≤ T , we find

∑
t/∈T par

T+1∪T int

r(xt, ptϵ) ≤ 2|K|

(
4P log(1/δ)× (128P )

2
+

3 log(1/δ)× (32P )
2

(50PL+ 28)ϵ
+ 1

)
+ 2(50PL+ 28)ϵT. (8)

Combining Equations (7) and (8), we find that, conditioned on the event ESBIP,

RT ≤
2Pd log

(
T+d
d

)(
P
√
d log

(
1+B2T

δ

)
+A

)2

ϵ2
+

18P 3 log(1/δ)

ϵ2

+ 2|K|

(
4P log(1/δ)× (128P )

2
+

3 log(1/δ)× (32P )
2

(50PL+ 28)ϵ
+ 1

)
+ 2(50PL+ 28)ϵT.

By setting ϵ = (d2 log(T )2/T )
1
3 and δ =

(
(38 + 16Pϵ−1)(T + 1)2

)−1
, and using the definition of

K, we find that there exists a constant C̃ ′ depending on A, B C, and L such that with probability
1− 20T−2/3,

RT ≤ C̃ ′(d log(T )T )
2/3.

This concludes the proof of Theorem 2. Note that we can choose C̃ = 461P 3 + 100PL + 56, and
the result holds provided that T is large enough (namely, that T ≥ 2(38 + 16P ), that 10 ≤ P/ϵ,
that P 2 × 16

3 d log(T ) ≥ A, that P 3 log(T ) ≥ 1, that B2 + 1 ≤ T , and that (T/ log(T )2)1/3 ≥
3312/102× P 2).

E PROOFS OF AUXILIARY LEMMAS

E.1 PROOF OF LEMMA 1

Lemma 1. Under Assumptions 1 and 2, the expected gain from trade for x at price p is given by

EGFT(x, p) = I(δb)F s(δs) + J(δs)Db(δb), (4)

where δs := p− x⊤
t θ

s, δb := p− x⊤
t θ

b, I(δ) :=
∫ C

δ
Db(u)du, and J(δ) :=

∫ δ

−C
F s(u)du.
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Proof. The proof relies on the characterization of the gain from trade given by Lemma 4.1 in Cesa-
Bianchi et al. (2021). Recall that, under Assumption 1, we have ξst ∈ [−C,C], and ξbt ∈ [−C,C].
Then, denoting fs and f b the densities of ξst and ξbt , we have
EGFT(x, p)

=

∫
(s,b)∈[x⊤θs−C,x⊤θs+C]×[x⊤θb−C,x⊤θb+C]

(b− s)I{s ≤ p ≤ b}fb(x⊤θb − s)fs(x⊤θs − s) dsdb.

Let f̃ b : b 7→ f b(x⊤θb− s) and f̃s : s 7→ fs(x⊤θs− s) be the densities of st and bt conditionnally
on xt = x, and note that outside of [x⊤θb−C, x⊤θb+C]× [x⊤θs−C, x⊤θs+C], f̃s(s)f̃ b(b) = 0.
With these notation, we have

EGFT(x, p) =
∫
(s,b)∈[−P,P ]2

(b− s)I{s ≤ p ≤ b}f̃ b(b)f̃s(s) dsdb

=

∫
(s,b)∈[−P,p]×[p,P ]

(∫ b

−P

du−
∫ s

−P

du

)
f̃s(s)f̃ b(b) dsdb.

Thus,

EGFT(x, p) =
∫
[−P,P ]

(∫
(s,b)∈[−P,p]×[p∨u,P ]

f̃s(s)f̃ b(b) dsdb

)
du

−
∫
[−P,p]

(∫
(s,b)∈[u,p]×[p,P ]

f̃s(s)f̃ b(b) dsdb

)
du.

This yields

EGFT(x, p) =
∫
[−P,p]

(∫
(s,b)∈[−P,p]×[p,P ]

f̃s(s)f̃ b(b) dsdb

)
du

+

∫
[p,P ]

(∫
(s,b)∈[−P,p]×[u,P ]

f̃s(s)f̃ b(b) dsdb

)
du

−
∫
[−P,p]

(∫
(s,b)∈[u,p]×[p,P ]

f̃s(s)f̃ b(b) dsdb

)
du.

This, in turn, implies that

EGFT(x, p) =
∫
[−P,p]

(∫
(s,b)∈[−P,u]×[p,P ]

f̃s(s)f̃ b(b) dsdb

)
du

+

∫
[p,P ]

(∫
(s,b)∈[−P,p]×[u,P ]

f̃s(s)f̃ b(b) dsdb

)
du

=

∫
[p,P ]

f̃ b(b) dd

∫
[−P,p]

∫
[−P,u]

f̃s(s) dsdu

+

∫
[−P,p]

f̃s(s) ds

∫
[p,P ]

∫
[u,P ]

f̃ b(b) dbdu.

By using the change in variables ξs = s−x⊤θs, us = u−x⊤θs, ξb = b−x⊤θb, and ub = u−x⊤θb,
and the definition of f̃s and f̃ b, we get

EGFT(x, p) =
∫
[p−x⊤θb,P−x⊤θb]

f(ξb) dd

∫
[−P,p]

∫
[−P−x⊤θs,u−x⊤θs]

f(ξs) dξs du

+

∫
[−P−x⊤θs,p−x⊤θs]

f(ξs) dξs
∫
[p,P ]

∫
[u−x⊤θb,P−x⊤θb]

f(ξb) dξb du

=

∫
[p−x⊤θb,P−x⊤θb]

f(ξb) dξb
∫
[−P−x⊤θs,p−x⊤θs]

∫
[−P−x⊤θs,us]

f(ξs) dξs dus

+

∫
[−P−x⊤θs,p−x⊤θs]

f(ξs) dξs
∫
[p−x⊤θb,P−x⊤θb]

∫
[ub,P−x⊤θb]

f(ξb) dξb dub.
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Now, under Assumption 1, f b and fs are null outside of [−C,C]. Moreover, P − x⊤θb ≥ C and
−P − x⊤θs ≤ −C. Thus,

EGFT(x, p) =
∫
[p−x⊤θb,C]

f(ξb) dd

∫
[−C,p−x⊤θs]

∫
[−C,us]

f(ξs) dξs dus

+

∫
[−C,p−x⊤θs]

f(ξs) dξs
∫
[p−x⊤θb,C]

∫
[ub,C]

f(ξb) dξb dub

=Db(p− x⊤θb)

∫ p−x⊤θs

−C

F s(us) dus + F s(p− x⊤θs)

∫ C

p−x⊤θb

Db(ub) dub.

Using the definition of δs = p− x⊤θs and δb = p− x⊤θb, we obtain the desired result.

E.2 PROOF OF LEMMA 4

Lemma 4. Almost surely, the length of exploration phase T par
T+1 is bounded as

|T par
T+1| ≤

d log
(
T+d
d

)
µ2

.

Proof. The elliptical potential Lemma (see, e.g., Proposition 1 in Carpentier et al. (2020)) implies
that almost surely,

∑
t∈T par

T+1

∥xt∥(∑
l∈T par

t
xlx⊤

l +Id
)−1 ≤

√√√√|T par
T+1|d log

(
|T par

T+1|+ d

d

)
.

Since for all t ∈ T par
T+1, ∥xt∥(∑

l∈T par
t

xlx⊤
l +Id

)−1 ≥ µ, this implies that

|T par
T+1|µ ≤

√√√√|T par
T+1|d log

(
|T par

T+1|+ d

d

)
.

Now, almost surely, |T par
T+1| ≤ T . This implies in particular that

|T par
T+1| ≤

d log
(
T+d
d

)
µ2

,

which concludes the proof.

E.3 PROOF OF LEMMA 5

Lemma 5. For the choice µ = ϵ

(
P
√
d log

(
1+B2T

δ

)
+A

)−1

, Tint = 8P 2 log(1/δ)/ϵ2, and

TFD = 2 log(1/δ)ϵ−2, it holds that

P
(
EEOC) ≥ 1− 2δ − 8δ(2K + 1).

Proof. The Lemma is a consequence of the following two auxiliary results, bounding respectively
the error for estimating the parameters θs and θb, and the integrals I and J .

Lemma 11. Let E1 be the event :

E1 :=
{
∀t /∈ T par

T+1,
∣∣∣x⊤

t (θ̂
b
t − θb)

∣∣∣ ≤ ϵ and
∣∣∣x⊤

t (θ̂
s
t − θs)

∣∣∣ ≤ ϵ
}
.

Then, for the choice µ = ϵ

(
P
(
d log

(
1+B2T

δ

))1/2

+A

)−1

, we have P (E1) ≥ 1− 2δ.

The proof of the above lemma is deferred to Appendix E.9.
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Lemma 12. Let E2 be the event:

E2 :=
{
|T int| < Tint or ∀k ∈ K

∣∣∣Îk − I (kϵ)
∣∣∣ ≤ 2ϵ and

∣∣∣Ĵk − J(kϵ)
∣∣∣ ≤ 2ϵ

}
∩ E1.

Then, for the choice µ = ϵ

(
P
(
d log

(
1+B2T

δ

))1/2

+A

)−1

and Tint = 8P 2 log(1/δ)/ϵ2, we have

P (E2) ≥ 1− 2δ − 4δ(2K + 1).

The proof of the above lemma is deferred to Appendix E.10.

Next, we control the error |F̂ k − F s(kϵ)| uniformly for k ∈ K. The results for |D̂k − Db(kϵ)|
follow from similar arguments. To do so, we rely on the following well known result (for the sake
of completeness, we provide a proof in Appendix E.11).

Lemma 13. Let (yt)t≥1 be a sequence of random variables adapted for a filtration Ft, such that
yt − E [yt|Ft−1] ∈ [m,M ]. Assume that for t ∈ N∗, ιt ∈ {0, 1} is Ft−1-measurable, and define
Nt :=

∑
l≤t ιl, and µ̂t := N−1

t

∑
l≤t ιl(yl − E [yl|Fl−1]) if Nt ≥ 1. Then, for any t ∈ N∗ and

δ ∈ (0, 1),

P

Nt = 0 or |µ̂t| ≤ (M −m)

√
log(1/δ)

2Nt

 ≥ 1− 2tδ.

Moreover, for any t > 0 and δ ∈ (0, 1),

P

Nt = t and |µ̂t| ≥ (M −m)

√
log(1/δ)

2Nt

 ≤ 1− 2δ.

For t ≤ T , we define ιt := I
{
t ∈ T F

k

}
, yt := I {st ≤ pt}, and we observe that for Ft =

σ ((x1, . . . , xt+1, (I{s1 ≤ p1}, I{b1 ≤ p1}), . . . , (I{st ≤ pt}, I{bt ≤ pt})), ιt is Ft−1-measurable,
and yt is Ft adapted. Moreover,

ιtE [yt | Ft−1] = ιtP
(
x⊤
t θ

s + ξst ≤ x⊤
t θ̂

s
t + kϵ

)
= ιtF

s
(
x⊤
t

(
θ̂st − θs

)
+ kϵ

)
.

Using Lemma 13, we find that with probability 1− 2δ, either |T F
k | < TFD, or∣∣∣∣∣∣F̂ k

t −

∑
s≤t ιtF

s
(
x⊤
t

(
θ̂st − θs

)
+ kϵ

)
TFD

∣∣∣∣∣∣ ≤
√

2 log(1/δ)

TFD .

Moreover, on the event E1, for all t /∈ T par, |x⊤
t (θ̂

s
t −θs)| ≤ ϵ. Using the fact that F s is L-Lipschitz,

we find that ∣∣∣F s
(
x⊤
t

(
θ̂st − θs

)
+ kϵ

)
− F s (kϵ)

∣∣∣ ≤ Lϵ.

Thus, with probability 1− 2δ, either |T F
k | < TFD, or

∣∣∣F̂ k
t − F s(kϵ)

∣∣∣ ≤√2 log(1/δ)

TFD + Lϵ.

Using Lemma 11 and 12, along with a union bound over k ∈ K yields the desired result for the
choice TFD = 2 log(1/δ)ϵ−2.

24



Published as a conference paper at ICLR 2025

E.4 PROOF OF LEMMA 6

Lemma 6. On the event EEOC, for all t ∈ T C, and all (k, k′) ∈ At,∣∣∣Îk′
F̂ k + ĴkD̂k′

− EGFT(xt, x
⊤
t θ̂

s
t + kϵ)

∣∣∣ ≤ (10PL+ 4P + 7)ϵ.

Proof. The proof relies on the following result :

Lemma 14. On the event EETC, for all (k, k′) ∈ At, and p = x⊤
t θ̂

s
t + kϵ, we have∣∣∣EGFT(xt, p)−

(
Îk

′
F̂ k + ĴkD̂k′

)∣∣∣ ≤ 6PLϵ+ 3ϵ+ 2P
(
|∆̂F |+ |∆̂D|

)
+ |∆̂I|+ |∆̂J |

where we define ∆̂I = I(k′ϵ)− Îk
′
, ∆̂J = J(kϵ)− Ĵk, ∆̂F = F (kϵ)− F̂ k, ∆̂D = D(k′ϵ)− D̂k′

.

The proof of this intermediate result is in Appendix E.12.

To conclude the proof of Lemma 6, it remains to bound the gaps ∆̂F , ∆̂D, ∆̂I , and ∆̂J on the
event EETC. By definition of the event EETC, on this event ∆̂I ≤ 2ϵ, ∆̂D ≤ (L+ 1)ϵ, ∆̂J ≤ 2ϵ and
∆̂F ≤ (L+ 1)ϵ. Thus, on the event EETC,∣∣∣EGFT(xt, p)−

(
Îk

′
F̂ k + ĴkD̂k′

)∣∣∣ ≤ 6PLϵ+ 3ϵ+ 4P (L+ 1)ϵ+ 4ϵ.

This concludes the proof.

E.5 PROOF OF LEMMA 7

Lemma 7. On the event EEOC, we have that∣∣∣∣max
p

EGFT(xt, p)− EGFT(xt, x
⊤
t θ̂

s
t + k∗t ϵ)

∣∣∣∣ ≤ 2LPϵ.

Proof. By definition of At,

sup
p∈[−P,P ]

EGFT(xt, p) ≥ EGFT(xt, x
⊤
t θ̂

s
t + k∗t ϵ).

Since the mapping p 7→ EGFT(x, p) is continuous, we can define

p∗t ∈ argmax
p

EGFT(xt, p), k̃t =

⌊
p∗t − x⊤

t θ̂
s
t

ϵ

⌋
, and k̃′t =

x⊤
t

(
θ̂st − θ̂bt

)
+ k̃t

ϵ

 .

We now show that (k̃t, k̃′t) ∈ At. By Lemma 1, we have that p∗t −x⊤
t θ

s ≥ −C, and p∗t −x⊤
t θ

b ≤ C
(otherwise EGFT(xt, p

∗
t ) = 0). This implies that p∗t − x⊤

t θ
s ∈ [−2P, 2P ], and similarly that

p∗t − x⊤
t θ

b ∈ [−2P, 2P ].

On the one hand, on the event EETC,
∣∣∣x⊤

t

(
θs − θ̂st

)∣∣∣ ≤ ϵ, so p∗t −x⊤
t θ̂

s
t ∈ [−2P − ϵ, 2P + ϵ]. Thus,

k̃t ∈ K. On the other hand,

x⊤
t

(
θ̂st − θ̂bt

)
+ k̃tϵ =

(
x⊤
t θ̂

s
t + k̃tϵ− p∗t

)
+ (p∗t − x⊤

t θ
b) + x⊤

t

(
θb − θ̂bt

)
.

Then, on the event EETC,

x⊤
t

(
θ̂st − θ̂bt

)
+ k̃tϵ ∈ [−2P − 2ϵ, 2P + 2ϵ],

, so k′t ∈ [−2P − 3ϵ, 2P + 3ϵ]. Therefore, k̃′t ∈ K. This implies that (k̃t, k̃′t) ∈ At, so

EGFT(xt, x
⊤
t θ̂

s
t + k∗t ϵ) ≥ EGFT(xt, x

⊤
t θ̂

s
t + k̃tϵ).

Finally, Lemma 1 and Assumption 2 imply that the function p 7→ EGFT(xt, p) is 2LP -Lipschitz
continuous. This, in turn, implies that

EGFT(xt, p
∗
t )− EGFT(xt, x

⊤
t θ̂

s
t + k̃tϵ) ≤ 2LPϵ.

This proves the statement.
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E.6 PROOF OF LEMMA 8

Lemma 8. For the choice µ = ϵ

(
P
(
d log

(
1+B2T

δ

))1/2

+A

)−1

and Tint = 8P 2 log(1/δ)/ϵ2, it

holds that
P
(
ESBIP) ≥ 1− 2δ − 4δ(2K + 1)− 4δ(2K + 1)T.

Proof. The proof relies on Lemma 11 and 12. On top of these results, we have to control the
error |F̂ k

t − F s(kϵ)| uniformly for k ∈ K. To do so, we rely on Lemma 13. For t ≤ T ,
we define ιt = I

{
t /∈ T int ∪ T par

T+1 and kt = k
}

, yt = I {st ≤ pt}, and we note that for Ft =
σ ((x1, . . . , xt+1, (I{s1 ≤ p1}, I{b1 ≤ p1}), . . . , (I{st ≤ pt}, I{bt ≤ pt})), ιt is Ft−1-measurable,
and yt is Ft adapted. Moreover,

ιtE [yt | Ft−1] = ιtP
(
x⊤
t θ

s + ξst ≤ x⊤
t θ̂

s
t + kϵ

)
= ιtF

s
(
x⊤
t

(
θ̂st − θs

)
+ kϵ

)
.

Using Lemma 13, we find that with probability 1− 2δt, either Ns,k
t = 0 or∣∣∣∣∣∣F̂ k

t −

∑
s≤t ιtF

s
(
x⊤
t

(
θ̂st − θs

)
+ kϵ

)
Ns,k

t

∣∣∣∣∣∣ ≤
√

2 log(1/δ)

Ns,k
t

(where we recall that we adopt the convention 1/0 =∞). Moreover, on the event E1, for all t /∈ T par,
|x⊤

t (θ̂
s
t − θs)| ≤ ϵ. Since F s is L-Lipschitz, this implies

|F s
(
x⊤
t

(
θ̂st − θs

)
+ kϵ

)
− F s (kϵ) | ≤ Lϵ.

Thus, with probability 1− 2δt,∣∣∣F̂ k
t − F s(kϵ)

∣∣∣ ≤√2 log(1/δ)

Ns,k
t

+ Lϵ.

Using a union bound over k ∈ K and t /∈ T int ∪ T par
T+1 yields the desired result.

Next, we can bound |D̂k
t − Db(kϵ)| using similar arguments. In particular, we define ιt =

I
{
t /∈ T int ∪ T par

T+1 and k′t = k
}

, yt = I {bt ≥ pt} and note that

ιtE [yt | Ft−1] = ιtP
(
x⊤
t θ

b + ξbt ≥ x⊤
t θ̂

s
t + ktϵ

∣∣∣ Ft−1

)
= ιtD

b

(
x⊤
t

(
θ̂bt − θb

)
+ kϵ+ ϵ

(
x⊤
t θ̂

s
t − x⊤

t θ̂
b
t + ktϵ

ϵ
− k

))
.

By definition of At, we have that if ιt = 1, then
∣∣∣x⊤

t θ̂s
t−x⊤

t θ̂b
t+ktϵ

ϵ − k
∣∣∣ ≤ 1. Using the Lipschitz

continuity of Db, this implies that, conditioned on the event E1,

ιt
∣∣E [yt | Ft−1]−Db(kϵ)

∣∣ ≤ 2Lϵ.

The rest of the proof follows similarly.

E.7 PROOF OF LEMMA 9

Lemma 9. Under the assumptions of Lemma 8 and conditioned on the event ESBIP, we have that for
all t /∈ T par

T+1 ∪ T int, and all (k, k′) ∈ At;

LCBt(k, k
′) ≤ EGFT(xt, x

⊤
t θ̂

s
t + kϵ) ≤ UCBt(k, k

′).

Moreover, it holds that (k∗t , k
′∗
t ) ∈ Kt, where we recall that

(k∗t , k
′∗
t ) ∈ argmax

(k,k′)∈At

EGFT(xt, x
⊤
t θ̂

s
t + kϵ).
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Proof. Let us prove the first part of Lemma 9. By Lemma 14, and by definition of the event ESBIP,
we have for all (k, k′) ∈ At, and all t /∈ T par

T+1 ∪ T int,∣∣∣EGFT(xt, p)−
(
Îk

′
F̂ k + ĴkD̂k′

)∣∣∣
≤ 6PLϵ+ 3ϵ+ 2P

(√
2 log(1/δ)

Ns,k
t

+

√
2 log(1/δ)

N b,k′

t

+ 3Lϵ

)
+ 4ϵ

≤ (12PL+ 7)ϵ+ 2P

(√
2 log(1/δ)

Ns,k
t

+

√
2 log(1/δ)

N b,k′

t

)
.

This concludes the first part of Lemma 9. The second claim follows immediately by noticing that
by definition, (k∗t , k

′∗
t ) ∈ At, and that, for all (k, k′) ∈ At,

LCBt(k, k
′) ≤ EGFT(xt, x

⊤
t θ̂

s
t + kϵ) ≤ EGFT(xt, x

⊤
t θ̂

s
t + k∗t ϵ) ≤ UCBt(k

∗
t , k

′∗
t ).

This concludes the proof.

E.8 PROOF OF LEMMA 10

Lemma 10. Conditioned on the event ESBIP, if t ∈ T SE
s,k , then the following condition holds

r(xt, pt) ≤ (50PL+ 28)ϵ+ 16P

√
2 log(1/δ)

Ns,k
t

.

Similarly, if t ∈ T SE
b,k′ , then the following condition holds

r(xt, pt) ≤ (50PL+ 28)ϵ+ 16P

√
2 log(1/δ)

N b,k′

t

.

Proof. Assume that t ∈ T SE
s,k . Then, our choice of kt together with Lemma 9 ensures that, condi-

tioned on the event ESBIP,
UCBt(kt, k

′
t) ≥ LCBt(k

∗
t , k

′∗
t ).

This implies that

LCBt(kt, k
′
t) + (UCBt(kt, k

′
t)− LCBt(kt, k

′
t)) ≥

UCBt(k
∗
t , k

′∗
t ) + (LCBt(k

∗
t , k

′∗
t )− UCBt(k

∗
t , k

′∗
t )) .

Using again Lemma 9, this implies that

EGFT(xt, x
⊤
t θ̂

s + ktϵ) + (UCBt(kt, k
′
t)− LCBt(kt, k

′
t)) + (UCBt(k

∗
t , k

′∗
t )− LCBt(k

∗
t , k

′∗
t ))

≥ EGFT(xt, x
⊤
t θ̂

s + k∗t ϵ).

Thus,

EGFT(xt, x
⊤
t θ̂

s + k∗t ϵ)− EGFT(xt, x
⊤
t θ̂

s + ktϵ)

≤ (UCBt(kt, k
′
t)− LCBt(kt, k

′
t)) + (UCBt(k

∗
t , k

′∗
t )− LCBt(k

∗
t , k

′∗
t )) .

Then, conditioned on the event ESBIP,

UCBt(kt, k
′
t)− LCBt(kt, k

′
t) ≤ 2(12PL+ 7)ϵ+ 4P

(√
2 log(1/δ)

Ns,k
t

+

√
2 log(1/δ)

N b,k′

t

)
.

Since t ∈ T SE
s,k , we know that N b,k′

t
t ≥ Ns,kt

t . Then, we have that

UCBt(kt, k
′
t)− LCBt(kt, k

′
t) ≤ 2(12PL+ 7)ϵ+ 8P

√
2 log(1/δ)

Ns,k
t

.
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Similarly, since t ∈ T SE
s,k , we have that N b,k′∗

t
t ≥ Ns,kt

t , and N
s,k∗

t
t ≥ Ns,kt

t , so we also have

UCBt(k
∗
t , k

′∗
t )− LCBt(k

∗
t , k

′∗
t ) ≤ 2(12PL+ 7)ϵ+ 8P

√
2 log(1/δ)

Ns,k
t

.

Thus,

EGFT(xt, x
⊤
t θ̂

s + k∗t ϵ)− EGFT(xt, x
⊤
t θ̂

s + ktϵ) ≤ 4(12PL+ 7)ϵ+ 16P

√
2 log(1/δ)

Ns,k
t

.

By Lemma 7, this implies

r(xt, x
⊤
t θ̂

s + ktϵ) ≤ (50PL+ 28)ϵ+ 16P

√
2 log(1/δ)

Ns,k
t

.

The proof of the second claim follows from similar arguments.

E.9 PROOF OF LEMMA 11

Lemma 11. Let E1 be the event :

E1 :=
{
∀t /∈ T par

T+1,
∣∣∣x⊤

t (θ̂
b
t − θb)

∣∣∣ ≤ ϵ and
∣∣∣x⊤

t (θ̂
s
t − θs)

∣∣∣ ≤ ϵ
}
.

Then, for the choice µ = ϵ

(
P
(
d log

(
1+B2T

δ

))1/2

+A

)−1

, we have P (E1) ≥ 1− 2δ.

Proof. Let us prove the bound |x⊤
t (θ̂

s
t − θs)| ≤ ϵ with high probability; the bound on |x⊤

t (θ̂
b
t − θb)|

will follow from similar arguments.

We introduce the variables

x̃t := xtI
{
t ∈ T par

t+1

}
and ỹt := 2P I

{
t ∈ T par

t+1

}(
I {pt ≤ st} −

1

2

)
and the σ-algebraFt = σ ((x1, . . . , xt+1, (I{s1 ≤ p1}, I{b1 ≤ p1}), . . . , (I{st ≤ pt}, I{bt ≤ pt})) .
With these notation, we have that x̃t and {t ∈ T par

t+1} are Ft-measurable. Moreover,

E [ỹt|Ft−1] = I
{
t ∈ T par

t+1

}
·

(
2P

∫ P

−P

P [u ≤ st|Ft−1]
du

2P
− P

)

= I
{
t ∈ T par

t+1

}
·

(∫ P

−P

∫ C

−C

I
{
u ≤ x⊤

t θ
s + ξ

}
fs(ξ) dξ du− P

)

= I
{
t ∈ T par

t+1

}
·

(∫ C

−C

∫ ξ+x⊤
t θs

−P

dufs(ξ) dξ − P

)

= I
{
t ∈ T par

t+1

}
·

(
x⊤
t θ

s +

∫ C

−C

ξfs(ξ) dξ

)
= I

{
t ∈ T par

t+1

}
x⊤
t θ

s

where in the last equality we used that
∫ C

−C
ξfs(ξ) dξ = E [ξst ] = 0. Thus, conditionally on Ft−1,

ỹt − x̃⊤
t θ

s is centered and it belongs to [−P, P ], which implies that it is P -subgaussian. Now, for
all t ∈ {1, . . . , T}, we have

θ̂st = 2P

 ∑
l∈T par

T+1

xlx
⊤
l + Id

−1 ∑
s∈T par

T+1

(
I {pt ≥ st} −

1

2

)
xl

=

(∑
l<t

x̃lx̃
⊤
l + Id

)−1∑
l<t

ỹlx̃l.
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Using the fact that, for all t ≤ 1, ∥x̃t∥ ≤ B and ∥θs∥ ≤ A, and applying Theorem 2 by Abbasi-
Yadkori et al. (2011), we find that for all t ≥ 0, with probability 1− δ,

∥θ̂st − θs∥∑
s<t x̃lx̃⊤

l +Id ≤ P

√
d log

(
1 +B2T

δ

)
+A.

Note that our definitions of x̃t and ỹt ensure that

∥θ̂st − θs∥∑
s∈T par

T+1
xlx⊤

l +Id = ∥θ̂st − θs∥∑
s<t x̃lx̃⊤

l +Id .

Moreover, for all t,

|x⊤
t (θ̂

s
t − θs)| ≤ ∥x⊤

t ∥(∑
s∈T par

T+1
xlx⊤

l +Id
)−1 ∥θ̂st − θs∥(∑

s∈T par
T+1

xlx⊤
l +Id

).
In particular, if t /∈ T par

T+1, ∥x⊤
t ∥(∑

s∈T par
T+1

xlx⊤
l +Id

)−1 ≤ µ, so with probability 1− δ,

|x⊤
t (θ̂

s
t − θs)| ≤ µ

(
P

√
d log

(
1 +B2T

δ

)
+A

)
.

For the choice µ = ϵ

(
P
√
d log

(
1+B2T

δ

)
+A

)−1

, this implies that

|x⊤
t (θ̂

s
t − θs)| ≤ ϵ,

which concludes the proof.

E.10 PROOF OF LEMMA 12

Lemma 12. Let E2 be the event:

E2 :=
{
|T int| < Tint or ∀k ∈ K

∣∣∣Îk − I (kϵ)
∣∣∣ ≤ 2ϵ and

∣∣∣Ĵk − J(kϵ)
∣∣∣ ≤ 2ϵ

}
∩ E1.

Then, for the choice µ = ϵ

(
P
(
d log

(
1+B2T

δ

))1/2

+A

)−1

and Tint = 8P 2 log(1/δ)/ϵ2, we have

P (E2) ≥ 1− 2δ − 4δ(2K + 1).

Proof. We control the error
∣∣∣Îk − I (kϵ)

∣∣∣ uniformly for k ≤ K; the result for
∣∣∣Ĵk − J(kϵ)

∣∣∣ can be
proved analogously.

For k ≤ K, and t ≤ T , let us define ιt = I
{
t ∈ T int

}
, yt = 2P I

{
kϵ+ x⊤

t θ̂
b
t ≤ pl ≤ bt

}
and

note that for Ft = σ ((x1, . . . , xt+1, (I{s1 ≤ p1}, I{b1 ≤ p1}), . . . , (I{st ≤ pt}, I{bt ≤ pt})), ιt is
Ft−1-measurable, and yt is Ft-adapted. Moreover,

E [yt|Ft−1] = 2P P
[
kϵ+ x⊤

t θ̂
b
t ≤ pt ≤ bt | Ft−1

]
= 2P

∫ P

kϵ+x⊤
t θ̂b

t

∫ C

−C

I
{
x⊤
t θ

b + ξ ≥ u
}
f b(ξ) dξ

du

2P

=

∫ P

kϵ+x⊤
t θ̂b

t

Db
(
u− x⊤

t θ
b
)
du.

Using the change in variables u′ = u− x⊤
t θ

b, this implies that

E [yt|Ft−1] =

∫ P−x⊤
t θb

kϵ+x⊤
t θ̂b

t−x⊤
t θb

Db (u′) du′.
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Moreover, under Assumptions 1 and 2, P − x⊤
t θ

b ≥ C and, for u′ ∈ [C,P − x⊤
t θ

b], Db(u′) = 0.
Thus,

E [yt|Ft−1] =

∫ C

kϵ+x⊤
t θ̂b

t−x⊤
t θb

Db (u′) du′

= I(kϵ+ x⊤
t θ̂

b
t − x⊤

t θ
b).

Finally, note that yt − E [yt|Ft−1] is in [−2P, 2P ]. Then, using Lemma 13, we find that

P

|T int| = Tint and

∣∣∣∣∣∣Îk −
∑

t∈T int I
(
kϵ+ x⊤

t

(
θ̂bt − θb

))
Tint

∣∣∣∣∣∣ ≥ 4P

√
log(1/δ)

2Tint

 ≤ 2δ.

To conclude our proof, note that on the event E1, for all t ∈ T int, |x⊤
t (θ̂

b
t − θb)| ≤ ϵ, so with

probability 1− 2δ, either |T int| < Tint or∣∣∣I (kϵ+ x⊤
t

(
θ̂bt − θb

))
− I(kϵ)

∣∣∣ = ∣∣∣∣∣
∫ kϵ+x⊤

t (θ̂
b
t−θb)

kϵ

(
1− F b(λ)

)
dλ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ kϵ+x⊤

t (θ̂
b
t−θb)

kϵ

dλ

∣∣∣∣∣
≤
∣∣∣xt

(
θ̂bt − θb

)∣∣∣
≤ ϵ.

Using the same reasoning to control the error in estimating J , taking a union bound for k ∈ K, and
using Lemma 11, we find that on an event E2 ⊂ E1 of probability larger than 1− 2δ − 4δ(2K + 1),
either |T int| < Tint or ∣∣∣Îk − I(kϵ)

∣∣∣ ≤ 4P

√
log(1/δ)

2Tint + ϵ

and ∣∣∣Ĵk − J(kϵ)
∣∣∣ ≤ 4P

√
log(1/δ)

2Tint + ϵ

simultaneously for all k ∈ K. For the choice Tint = 8P 2 log(1/δ)/ϵ2, we obtain the desired result.

E.11 PROOF OF LEMMA 13

Lemma 13. Let (yt)t≥1 be a sequence of random variables adapted for a filtration Ft, such that
yt − E [yt|Ft−1] ∈ [m,M ]. Assume that for t ∈ N∗, ιt ∈ {0, 1} is Ft−1-measurable, and define
Nt :=

∑
l≤t ιl, and µ̂t := N−1

t

∑
l≤t ιl(yl − E [yl|Fl−1]) if Nt ≥ 1. Then, for any t ∈ N∗ and

δ ∈ (0, 1),

P

Nt = 0 or |µ̂t| ≤ (M −m)

√
log(1/δ)

2Nt

 ≥ 1− 2tδ.

Moreover, for any t > 0 and δ ∈ (0, 1),

P

Nt = t and |µ̂t| ≥ (M −m)

√
log(1/δ)

2Nt

 ≤ 1− 2δ.

Proof. Let us define Zt :=
∑

l≤t ιl(yl − E [yl|Fl−1]), and for all x ∈ R let Mt :=

exp
{
xZt − 1

8x
2(M −m)2Nt

}
. We begin by showing that Mt is a super-martingale. Indeed,
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we have that

E
[
exp{x ιt(yt − E [yt|Ft−1])}

∣∣∣ Ft−1

]
= E

[
ιt exp{x(yt − E [yt|Ft−1])}+ (1− ιt)

∣∣∣ Ft−1

]
≤ ιt exp

{
x2(M −m)2

8

}
+ (1− ιt)

≤ exp

{
x2(M −m)2ιt

8

}
,

where we use the fact that (yt − E [yt | Ft−1]) is bounded in [m,M ] together with the conditional
version of Hoeffding’s Lemma. Noticing that

Mt = Mt−1 exp

{
x ιt(yt − E [yt|Ft−1])−

x2(M −m)2ιt
8

}
,

this proves that Mt is a super-martingale, and so E [Mt] ≤ E [M0] = 1.

Now, for all ϵ > 0 and all l ∈ N, and all x > 0, by a Markov-Chernoff argument,

P (Zt ≥ ϵ and Nt = l) = P
(
I {Nt = l} exZt ≥ eϵx

)
≤ e−ϵxE

(
I {Nt = l} · exZt

)
= e−ϵx+

x2(M−m)2l
8 E

(
I {Nt = l} · exZt− x2(M−m)2l

8

)
.

Using the previous result, we have that

E
(
I {Nt = l} · exZt− x2(M−m)2l

8

)
= E

(
I {Nt = l} · exZt− x2(M−m)2Nt

8

)
≤ E

(
exZt− x2(M−m)2Nt

8

)
= E(Mt)

≤ E(M0) = 1.

This yields

P (Zt ≥ ϵ and Nt = l) ≤ e−ϵx+
x2(M−m)2l

8 .

In particular, for ϵ = (M −m)
√

l·log(1/δ)
2 and x = 4ϵ

l(M−m)2 ,

P

(
Zt ≥ (M −m)

√
l · log(1/δ)

2
and Nt = l

)
≤ δ.

This proves the first part of the Lemma. Summing over the values of l from 1 to t, we find that

P

(
Zt ≥ (M −m)

√
Nt log(1/δ)

2
and Nt ≥ 1

)
≤ tδ.

Similar arguments can be used to prove that

P

(
−Zt ≥ (M −m)

√
Nt log(1/δ)

2
and Nt ≥ 1

)
≤ tδ.

In order to conclude the proof we observe that Zt = µ̂tNt, we normalize by Nt, and observe that
adding the case Nt = 0 can only increase the probability.
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E.12 PROOF OF LEMMA 14

Lemma 14. On the event EETC, for all (k, k′) ∈ At, and p = x⊤
t θ̂

s
t + kϵ, we have∣∣∣EGFT(xt, p)−

(
Îk

′
F̂ k + ĴkD̂k′

)∣∣∣ ≤ 6PLϵ+ 3ϵ+ 2P
(
|∆̂F |+ |∆̂D|

)
+ |∆̂I|+ |∆̂J |

where we define ∆̂I = I(k′ϵ)− Îk
′
, ∆̂J = J(kϵ)− Ĵk, ∆̂F = F (kϵ)− F̂ k, ∆̂D = D(k′ϵ)− D̂k′

.

Proof. By Lemma 1, for any price p = x⊤
t θ̂

s
t +kϵ and k′ such that (k, k′) ∈ At, and δs = p−x⊤

t θ
s,

δb = p− x⊤
t θ

b, we have that

EGFT(xt, p) = I(δb)F s(δs) + J(δs)Db(δb).

Then,

EGFT(xt, p) =
(
I(k′ϵ) + I(δb)− I(k′ϵ)

)
(F s(kϵ) + F s(δs)− F s(kϵ))+

(J(kϵ) + J(δs)− J(kϵ))
(
Db(k′ϵ) +Db(δb)−Db(k′ϵ)

)
.

Moreover, by letting ∆I = I(δb) − I(k′ϵ), ∆F = F s(δs) − F s(kϵ), ∆J = J(δs) − J(kϵ) and
∆D = Db(δb)−Db(k′ϵ), this yields

EGFT(xt, p) =I(k′ϵ)F s(kϵ) + J(kϵ)Db(k′ϵ) + I(δb)∆F+

F s(kϵ)∆I + J(δs)∆D +Db(k′ϵ)∆J.

Since I and J are bounded by 2P , and F and D are bounded by 1, this implies that∣∣EGFT(xt, p)−
(
I(k′ϵ)F s(kϵ) + J(kϵ)Db(k′ϵ)

)∣∣ ≤ 2P |∆F |+ |∆I|+ 2P |∆D|+ |∆J |.

Now, let us introduce es = δs − kϵ, and eb = δb − k′ϵ. Then, we have

es =
(
x⊤
t θ̂

s
t + kϵ

)
−
(
kϵ+ x⊤

t θ
s
)

= x⊤
t (θ̂

s
t − θs).

On event EETC we have |es| ≤ ϵ. Since F is L-Lipschitz continuous, and ∆F = F s(kϵ + es) −
F s(kϵ), this implies |∆F | ≤ Lϵ. Similarly, J is 1-Lipschitz continuous, and ∆J = J(kϵ + es) −
J(kϵ), so |∆J | ≤ ϵ. Similarly,

eb =
(
x⊤
t θ̂

s
t + kϵ

)
−
(
x⊤
t θ

b + k′ϵ
)

=
(
x⊤
t (θ̂

s
t − θ̂bt ) + kϵ

)
− k′ϵ+ x⊤

t (θ̂
b
t − θb).

By definition of At, under the event EETC we have |eb| ≤ 2ϵ. Since D is L-Lipschitz continuous
and ∆D = Db(k′ϵ + eb) − Db(k′ϵ), |∆D| ≤ 2Lϵ. Similarly, I is 1-Lipschitz continuous, ∆I =
I(k′ϵ+ eb)− I(k′ϵ), so this implies that |∆I| ≤ 2ϵ. Putting everything together, we find that on the
event EETC, ∣∣EGFT(xt, p)−

(
I(k′ϵ)F s(kϵ) + J(kϵ)Db(k′ϵ)

)∣∣ ≤6PLϵ+ 3ϵ.

Similarly, denoting ∆̂I = I(k′ϵ) − Îk
′
, ∆̂D = D(k′ϵ) − D̂k′

, ∆̂J = J(kϵ) − Ĵk and ∆̂F =

F (kϵ)− F̂ k, we have∣∣∣I(k′ϵ)F s(kϵ) + J(kϵ)Db(k′ϵ)−
(
Îk

′
F̂ k + ĴkD̂k′

)∣∣∣ ≤ 2P |∆̂F |+ |∆̂I|+ 2P |∆̂D|+ |∆̂J |.

This concludes the proof.
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F MOTIVATING EXAMPLE

Lemma 1 emphasizes that the expected gain from trade at a given price p depends on the quantities
δs = p− x⊤

t θ
s and δb = p− x⊤

t θ
b. Remember that the difference in average valuations ∆ is given

by ∆ = x⊤
t θ

b − x⊤
t θ

s, and with this notation, δb = δs − ∆. Therefore, the expected gain from
trade can be rewritten as a function of the pair (δs,∆). As an immediate consequence, we see that
the optimal increment δs only depends on the difference in average valuations ∆: if p = x⊤θs + δs

maximizes EGFT(x, p), and if x′ is such that x′⊤θb−x′⊤θs = x⊤θb−x⊤θs, then p′ = x′⊤θs+ δs

maximizes EGFT(x′, p′).

On the other hand, the following example shows that there no explicit dependence of the optimal
price increment δs on the difference in average valuations ∆. In words, when ∆ is small, we
might prefer to choose an increment δs that leads to trade happening with lower probabilities but
corresponds to higher rewards. By contrast, as ∆ increases, similar values of the increment δs will
correspond to higher gains if the trade happens. Then, we might choose to post prices corresponding
to a smaller increment δs to increase the probability that the trade happens.

This reasoning demonstrates that knowing that an increment δs is optimal for a difference in average
valuations ∆ does not allow us to determine the optimal increment δ′ corresponding to a different
value ∆′ of the difference in average valuations. This implies that to precisely identify the optimal
price increment δs for all differences in average valuations ∆, it may be necessary to have accurate
estimates of the functions F s and I for a broad range of values of δs. Similar arguments can be
employed to argue that precise estimates of the value of Db and J for a wide range of values of
δb = ∆− δs might also be necessary.

To illustrate this phenomenon, we construct an example where different levels of ∆ lead to entirely
different choices of the optimal price increment δs. Specifically, we consider a scenario where, for
certain values of (s1, s2, s3) ∈ R3, (b1, b2, b3) ∈ R3, (α1, α2, α3) in the simplex, and θ > 0 (to be
defined later), the density fs (resp. f b) of the seller’s noise ξs (resp. buyer’s noise ξb) is given by:

fs(δ) =
I{x ∈ [s1, s1 + θ] ∪ [s2, s2 + θ] ∪ [s3, s3 + θ]}

3θ

f b(δ) =
α1I{x ∈ [b1, b1 + θ]}+ α2I{x ∈ [b2, b2 + θ]}+ α3I{x ∈ [b3, b3 + θ]}

θ
.

The setting in illustrated in figure 1.

We assume that (s1, s2, s3) and (b1, b2, b3) verify s1+θ < b1, b1+θ < s2, s2+θ < b2, b2+θ < s3,
and s3 + θ < b3. Then, it is straightforward to see that while ∆ > 0, and ∆ is small enough so that
b1 + θ+∆ < s2 and b2 + θ+∆ < s3, the optimal increment belongs to the set {δ1, δ2, δ3}, where
δ1, δ2, and δ3 belong respectively to [s1 + θ, b1], [s2 + θ, b2], and [s3 + θ, b3].

We also assume that α1 is much larger than α2, which in turn is much larger than α3. Then, the
increment δ1 is such that the trade happens with the highest probability: indeed, if δs = δb > b1,
the buyer rejects the trade with a high probability. For the same reasons, the probability of a trade
happening at an increment δ2 is much lower, and the probability of a trade happening at increment
δ3 is the lowest.

Finally, we assume that b3−s3 is much larger than b2−s2, which in turn is much larger than b1−s1.
Then, the gain from any trade happening at increment δ1 is small compared to the gain from trades
happening at increment δ2, which in turn is small compared to the gain from a trade happening at
increment δ3.

For some well-chosen values of the parameters specified below, when the average gain from trade
of the seller and the buyer are both zero (x⊤

t θ
s = x⊤

t θ
b = 0), the most profitable increment is δ3:

the probability of the trade happening is less likely, but when it occurs, it is more profitable.

Now, to obtain the probability of a price p = x⊤θs+δs being accepted by the buyer, it is sufficient to
translate the cumulative distribution function (c.d.f.) of ξb (represented in Figure 1) by the quantity
∆ = x⊤(θb − θs). In particular, when ∆ > 0 is small enough so that b1 + θ + ∆ < s2 and
b2 + θ + ∆ < s3, we observe that, on the one hand, the probability that the trade happens for the
increments δs ∈ δ1, δ2, δ3 remains unchanged; however, the corresponding gains if the trade occurs
all increase with ∆. For some well-chosen values of the parameters, if ∆ is positive but sufficiently
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Figure 1: Illustration for the c.d.f. fs and f b corresponding to the example described in Section F.
The c.d.f. fs is represented in red, the c.d.f. f b is represented in blue.

small, the expected gain from trade is maximized by δs = δ2. When ∆ is large, the expected gain
from trade is maximized by choosing δs = δ1: in other words, this choice of increment ensures
that the sale happens with the highest probability, and each sale leads to a reward of at least ∆. In
Figure 2, we plot the expected gain from trade for different values of ∆ as a function of δs. The
values chosen for the parameters are as follows: (s1, s2, s3) = (0, 2, 6), (b1, b2, b3) = (0.01, 3, 20),
(α1, α2, α3) = (0.85, 0.11, 0.04), and θ = 0.001. With these values, for ∆ = 0, the optimal
increment is δ3 = 10; for ∆ = 1, it is δ2 = 2.5; and for ∆ = 1.5, it is δ3 = 0.01.

Figure 2: Expected gain from trade for different values of increment δs and difference in average
valuations ∆.

G PROOFS OF SECTION 5

Lemma 2. For each round t ∈ T B such that bt ≥ st, it holds: E[PROFITt(pt, qt)] ≥ (bt−st)
2

8P log T −
2
T ,

where the expectation is with respect to the choice of (pt, qt).

Proof. To simplify notation, and since we focus on a single round t ∈ T B, we omit the explicit
dependence on t from pt, qt, it, st, and bt. We consider two cases. First, if b−s ≤ 2/T , the inequality
is immediately satisfied since the lhs is non-negative while the rhs is ≤ 0. Second, if b − s > 2/T ,
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let E be the event in which p ∈ [s, (s + b)/2]. Since p ∼ U([0, P ]) we have P(E) = (b − s)/2P .
Moreover, we have

P
(
i =

⌊
log

1

b− p

⌋
| A
)

=
1

log T
,

which is well defined since
p ≤ s+ b

2
≤ b− 1

T
.

Let E ′ denote the event in which i = ⌊log(1/(b− p))⌋. Under E and E ′ we get

q = p+ 2−i = p+ 2−⌊log(1/(b−p))⌋ ≥ p+ 2−(log(1/(b−p))+1) = p+
b− p

2
=

p+ b

2
.

Therefore, when b ≥ s+ 2/T ,

E[PROFIT(p, q)] = (q − p)
b− s

2P log T

≥
(
p+ b

2
− p

)
b− s

2P log T

≥ (b− s)2

8P log T
.

This concludes the proof.

Lemma 3. For τ ≥ log T , it holds with probability at least 1− 1/T that∑
t∈JτK

PROFITt(pt, qt) ≥
α

8P log(T )

∑
t∈JτK

[bt − st]
+ −

√
4P 2 log(T )

∑
t∈JτK

[bt − st]+ − 2.

Proof. First, we observe that given the sequence (bt, st)t∈JT K, and a time step τ , by Azuma-
Hoeffding inequality we have that, with probability at least 1− δ,∑

t∈JτK

PROFITt(pt, qt) ≥ E[PROFITt(p, q)]−
√
2 log(1/δ)

∑
t∈JτK

([bt − st]+)2.

Then, by applying a union bound, the above inequality holds simultaneously for all possible τ with
probability at least 1− δT . Then, by setting δ = T 2, with probability at least 1− 1/T , it holds:∑
t∈JτK

PROFITt(pt, qt)

≥
∑
t∈JτK

E[PROFITt(p, q)]−
√
4 log(T )

∑
t∈JτK

([bt − st]+)2

≥
∑
t∈JτK

(
([bt − st]

+)2

8P log T
− 2

T

)
−
√

4 log(1/δ)
∑
t∈JτK

([bt − st]+)2 (by Lemma 2)

≥
∑
t∈JτK

([bt − st]
+)2

8P log T
−
√
4 log(T )

∑
t∈JτK

([bt − st]+)2 − 2

= τ
∑
t∈JτK

1

τ

([bt − st]
+)2

8P log T
−
√
4 log(T )

∑
t∈JτK

([bt − st]+)2 − 2

≥ τ

8P log T

∑
t∈JτK

[bt − st]
+

τ

2

−
√

4 log(T )
∑
t∈JτK

([bt − st]+)2 − 2 (by Jensen’s Inequality)

≥ α

8P log(T )

∑
t∈JτK

[bt − st]
+ −

√
4 log(T )

∑
t∈JτK

([bt − st]+)2 − 2 (by Definition 1)

≥ α

8P log(T )

∑
t∈JτK

[bt − st]
+ −

√
4P 2 log(T )

∑
t∈JτK

[bt − st]+ − 2.
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This concludes the proof.

Theorem 3. Given the two-bit algorithm A, the corresponding one-bit learning algorithm satisfies
global budget balance and, with probability at least 1− 1/T , has regret

R
(1 bit)
T ≤ O

(
α−3T E log4 T

)
+R

(2)
T .

Proof. The one-bit algorithm is global budget balanced by construction (see choice of B).

Then, we condition the high probability regret bound on the following events:

• With probability 1 − 1/T the two-bit EOC algorithm guarantees a number of exploration
rounds smaller than |T E| and regret at most R(2)

T ;

• With probability 1− 1/T , it holds the inequality in Lemma 3

• By Azuma-Hoeffding, with probability at least 1− 1/T it holds

τ∑
t=1

max
p

EGFT(xt, p) ≤
τ∑

t=1

[bt − st]
+ +

√
16P 2τ log(T ).

Then, the regret can be bounded as follows

RT =

T∑
t=1

max
p

EGFT(xt, p)−
T∑

t=1

EGFT(xt, pt)

≤
τ∑

t=1

max
p

EGFT(xt, p) +

T∑
t=τ+1

(
max

p
EGFT(xt, p)− EGFT(xt, pt)

)

≤
τ∑

t=1

max
p

EGFT(xt, p) + 2T E +R
(2)
T

≤
τ∑

t=1

[bt − st]
+ +

√
16P 2τ log(T ) + 2T E +R

(2)
T

≤
τ∑

t=1

[bt − st]
+ + ατ + 2T E +R

(2)
T

≤ 2

τ∑
t=1

[bt − st]
+ + 2T E +R

(2)
T ,

where in the second-to-last inequality we use that, since τ ≥ B/2P , it holds that τ ≥
16P 2α−2 log T (by Equation (5)). The last inequality is by definition of α on the interval JτK.

Then, by Lemma 3 and since
∑τ

t=1[bt − st]
+ ≥

∑τ
t=1 PROFITt(pt, qt) ≥ 2048P 4α−2 log3 T , we

have ∑
t∈JτK

PROFITt(pt, qt) ≥
α

8P log(T )

∑
t∈JτK

[bt − st]
+ −

√
4P 2 log(T )

∑
t∈JτK

[bt − st]+ − 2

≥ α

8P log(T )

∑
t∈JτK

[bt − st]
+ −

√
8P 2 log(T )

∑
t∈JτK

[bt − st]+

≥ α

16P log(T )

∑
t∈JτK

[bt − st]
+.
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Then, since B ≤ 2048P 4α−2T E log3 T and
∑τ

t=1 PROFITt(pt, qt) ≤ B+2P , by substituting in the
expression above we obtain the desired bound on

∑
t∈JτK[bt − st]

+. In particular, we have

RT ≤ 2

τ∑
t=1

[bt − st]
+ + 2|T E|+R

(2)
T

≤ 32P log T

α

∑
t∈JτK

PROFITt(pt, qt) + 2T E +R
(2)
T

≤M
P 5 log4 T

α3
T E + 2T E +R

(2)
T ,

with M is a numeric constant independent on the problem instance.

H ALTERNATIVE ALGORITHM FOR NOISY VALUATIONS WITH TWO-BIT
FEEDBACK

The regret of Algorithm 3 is primarily driven by the estimation of the c.d.f. F s and demand function
Db uniformly over a grid of increments. We now present an alternative sub-optimal approach.
Specifically, to leverage the fact that the optimal increment δs only depends on the difference in
average valuations ∆t, we could first execute the sub-routines EST-PAR and EST-INT, yielding
estimates of x⊤

t θ
s, x⊤

t θ
b, I and J up to precision ϵ using Õ(ϵ−2) samples. Then, we could round

the value of ∆t on a grid of size ϵ−1, and run independent Scouting Bandit algorithms (as described
in Cesa-Bianchi et al. (2024)) for each of the ϵ−1 rounded values.

The grid size implies a discretization error of order O(ϵ). The highest regret occurs when each of
the ϵ−1 independent Scouting Bandit algorithms runs for the same number of rounds Tϵ = Tϵ. Each
algorithm incurs a regret Õ(T

2/3
ϵ ), so their combined regret is Õ(T

2/3
ϵ · ϵ−1) = Õ(T 2/3ϵ−1/3). For

ϵ = T−1/4, this strategy also results in a regret of order Õ(T 3/4).
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