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ABSTRACT

Autonomous vehicles require robust perception systems capable of operating in
diverse weather conditions, including snow, rain, fog, and storms. In this work,
we present a scalable and efficient approach for multi-weather classification in au-
tonomous driving, leveraging the WEDGE (WEather images by DALL-E GEner-
ation) dataset. Our study investigates three complementary techniques to enhance
classification performance and efficiency: Coreset Selection, Resolution Scaling,
and Model Compression via Adaptive Pruning and Quantization. Specifically, we
evaluate the impact of coreset selection methods (random and margin-based) at
varying data fractions (e.g., 1, 0.75, 0.5, 0.25, 0.1), assess model robustness un-
der low-resolution settings (224 × 224, 112 × 112, 56 × 56), and demonstrate
that adaptive pruning combined with 8-bit quantization can reduce model size by
up to 85% while maintaining competitive classification accuracy. Experimental
results validate the effectiveness of our integrated approach, providing a scalable
and robust solution for multi-weather classification. This work advances the fea-
sibility of deploying perception models in real-world autonomous driving systems
operating under adverse weather conditions and limited computational resources.

1 INTRODUCTION AND RELATED WORK

Autonomous driving systems rely heavily on computer vision to perceive their environment and
make real-time decisions Yurtsever et al. (2020). However, performance degradation under extreme
weather conditions such as rain, snow, fog, and storms poses significant challenges, impairing both
visibility and sensor readings Eigen et al. (2013); Marathe et al. (2022). While substantial progress
has been made in developing systems for ideal weather conditions, robustness under adverse weather
remains an open problem. The scarcity of diverse and annotated datasets for extreme weather con-
ditions intensifies the challenge, as collecting such data is both expensive and hazardous.

To address this challenge, synthetic data generation methods have become invaluable, providing a
feasible alternative to real-world data collection. Recent studies have explored synthetic datasets
such as WEDGE Marathe et al. (2023), that offer an alternative by simulating diverse weather con-
ditions, enabling the development of robust vision models. WEDGE, generated using a vision-
language model (VLM), consists of 3,360 images spanning 16 distinct weather conditions, provid-
ing a scalable resource for training and evaluating models. This dataset is particularly valuable for
classification tasks under diverse weather scenarios.

Weather conditions like rain, snow, and fog introduce considerable challenges for visual perception,
especially in tasks like classification and object detection Li et al. (2023); Mehra et al. (2020). While
these methods have shown promise, they often require extensive fine-tuning and may not generalize
effectively to out-of-distribution (OOD) data Filos et al. (2020). In contrast, our work leverages
WEDGE for scalable training and introduces coreset selection Lin et al. (2024), a method to reduce
the size of training data while maintaining generalization performance. This approach has received
limited attention in the context of multi-weather classification.

Efficient deployment of deep learning models in autonomous vehicles also requires addressing com-
putational and memory constraints Liu et al. (2021); Ople et al. (2022). Model compression tech-
niques such as pruning Su et al. (2024); Li et al. (2016); Liu et al. (2018) and quantization Jacob
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et al. (2018); Cui et al. (2022) have been widely adopted to address these challenges. Pruning
removes less important parameters, while quantization reduces the precision of weights and acti-
vations, significantly lowering storage and computation costs. Another critical factor in deploying
vision models is the impact of input resolution on performance Sun et al. (2020); Song & Chan-
draker (2014). Low-resolution images often degrade accuracy due to the loss of fine-grained details.
Previous studies Ding et al. (2023) have proposed methods to mitigate this impact.

Despite significant advances in weather condition robustness Almalioglu et al. (2022), coreset selec-
tion Lu et al. (2024); Verwimp et al. (2023), resolution scaling Wang et al. (2022), and model com-
pression Tukan et al. (2022), no prior work has integrated these techniques into a unified framework.
Our work fills this gap by combining these approaches into a scalable solution for multi-weather
classification, improving both accuracy and efficiency. Experimental results demonstrate the ef-
fectiveness of this approach for developing robust vision models suitable for autonomous driving.
The remainder of this paper is organized as follows: Section 2 details the methodology, Section 3
presents datasets and experimental setup, Section 4 presents experimental results, and Section 5
concludes the paper with future directions.

2 METHODOLOGY

We propose an efficient framework for multi-weather classification in autonomous driving, integrat-
ing coreset selection, resolution scaling, and model compression to optimize accuracy and compu-
tational efficiency.

Coreset Selection. To reduce training complexity while preserving classification accuracy, we em-
ploy coreset selection techniques to reduce the training dataset size Lee et al. (2024). Coreset se-
lection aims to identify a subset of the most informative samples from the original training set
D = {(xi, yi)}Ni=1, where xi represents the input sample and yi the corresponding label. The goal is
to minimize computational overhead by selecting a representative subset C ⊆ D such that the coreset
retains the model’s classification performance. This allows us to perform training on a significantly
smaller subset while ensuring that the resulting model’s performance is not substantially degraded.

Resolution Scaling. To assess model robustness across varying resolutions, images are resized to
224×224, 112×112, and 56×56 pixels. We analyze the trade-off between computational efficiency
and classification accuracy to determine the optimal resolution for real-time deployment.

Model Compression. We apply pruning and quantization to optimize model size and inference
speed. Extending Shinde (2024), we introduce Layer Importance Metric (LIM), incorporating the
Layer Parameter Ratio and Layer Sparsity Ratio to guide compression. Layers with a higher number
of parameters contribute more to the model size and thus are prioritized for compression. The
parameter ratio of layer i is computed as:

Pi =
Number of parameters in layer i

Total number of parameters in the model
(1)

The sparsity ratio of a layer, defined as the proportion of near-zero parameters relative to the total
number of parameters in the layer, reflects its contribution to the model’s representational capacity.
The layer sparsity ratio is computed as:

Si =
Number of near-zero parameters in layer i

Total number of parameters in layer i
(2)

The LIM for each layer is then computed as a weighted combination of these two factors:

LIMi = β · Pi + (1− β) · Si (3)

where β ∈ [0, 1] is a hyperparameter empirically determined to balance the impact of parameter ra-
tio and sparsity ratio on classification performance. Pruning. Adaptive layer-wise pruning removes
less important weights based on LIM, using a layer-specific threshold for structured weight reduc-
tion. Quantization. Post-pruning, weights are quantized to 8-bit precision, significantly reducing
memory and computation requirements for edge deployment. By combining coreset selection, res-
olution scaling, and model compression, our framework ensures scalable, efficient, and accurate
multi-weather classification for autonomous driving.
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3 DATASETS AND EXPERIMENTAL SETUP

Dataset: We conduct all experiments using the WEDGE dataset Marathe et al. (2023), a synthetic
dataset specifically designed for weather classification and object detection tasks in autonomous
driving. The dataset contains 3360 images representing 16 distinct weather conditions: snowing,
raining, dusty, foggy, sunny, lightning, cloudy, hurricane, night, summer, spring, winter, fall, tor-
nado, day, and windy. The dataset is split into 80% for training and 20% for testing, ensuring robust
evaluation and model generalization.

Experimental Setup: Configuration. All experiments were conducted on the Kaggle platform, uti-
lizing NVIDIA Tesla P100 and G4 GPUs to accelerate coreset selection, model training, and adap-
tive model compression. We used Python implementations with PyTorch to ensure reproducibility
and ease of deployment. We evaluate several CNN architectures for image classification, including
ResNet18 He et al. (2016) and EfficientNetB0. Models were trained with a learning rate of 0.001, a
batch size of 64, and for 25 epochs. To prevent exploding gradients, gradient clipping was applied
with a value of 1.0. A 3-epoch warm-up phase was used to stabilize training in its initial stages, and
early stopping was employed to terminate training if validation accuracy did not improve over three
consecutive epochs. The Adam optimizer was used for its robust convergence properties.

Coreset Selection Setup. To explore the effects of dataset size on both performance and computa-
tional cost, we evaluated various coreset selection strategies, including Random and Margin-based
methods, across dataset fractions of {1.0, 0.75, 0.5, 0.25, 0.1, 0.05}.

Resolution Scaling Setup. To identify the optimal resolution for the weather classification task, we
evaluated different image resolutions (224x224, 112x112, and 56x56) to assess their impact on both
model performance and computational efficiency.

Pruning Setup. Pruning experiments employed both standard pruning strategies and Layer-wise
Adaptive Pruning (LAP), with pruning levels ki = {2, 1.5, 1, 0.5}, representing pruning rates of
approximately 95%, 86%, 68%, and 38%, respectively. This setup allows us to investigate how
pruning impacts both performance and compression, particularly when combined with coreset se-
lection methods that reduce training data size.

Quantization Setup. Quantization experiments used fixed 8-bit precision for model quantization
post pruning. These were evaluated alongside coreset selection methods (Random and Margin-
based) across different dataset fractions on the ResNet18 architecture.

Evaluation Metrics: We assess both model performance and compression efficiency using the
following metrics. Accuracy denotes the percentage of correctly classified test images. Compression
Ratio quantifies compression effectiveness by measuring the reduction in model size, calculated as
the ratio of the original model size to the compressed model size.

4 RESULTS AND ANALYSIS

We evaluate the performance of our scalable multi-weather classification framework using classi-
fication accuracy (Acc.) and compression ratio (CR). Table 1 and Table 2 compare different im-
age resolutions (224x224, 112x112, 56x56), coreset selection strategies (Random and Margin), and
pruning levels (P levels), assessing both baseline and adaptive methods, including Layer Adaptive
Pruning (LAP) and LAP with 8-bit quantization (LAP + 8-bit Q).

Baseline Performance Across Models. At 224x224 resolution, EfficientNetB0 achieves the highest
accuracy of 77.83%, followed by ResNet18 at 75.60%. These models excel due to efficient param-
eter use and advanced architectures like compound scaling. ResNet18 perform well at 75.60%,
offering a balance between efficiency and performance.

Impact of Resolution Scaling. Reducing resolution from 224x224 to 112x112 causes a slight drop
in performance, with EfficientNetB0 experiencing a notable decline. However, lightweight models
like EfficientNetB0 maintain competitive results, with EfficientNetB0 at 73.21%. At 56x56, all
models show significant degradation, though EfficientNetB0 retain better accuracy (68.01%).

Effect of Coreset Selection Strategies. The Margin-based coreset selection outperforms Random
selection, especially at lower resolutions and smaller dataset fractions. For example, at 224x224
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Table 1: Performance Comparison of Multi-Weather Classification Across Models, Resolution Lev-
els, and Coreset Selection Methods (Ran. Random and Marg. Margin).

ResNet18 EfficientNetB0
Fraction 224x224 112x112 56x56 224x224 112x112 56x56

Ran. Marg. Ran. Marg. Ran. Marg. Ran. Marg. Ran. Marg. Ran. Marg.
1.00 75.60 - 73.21 - 64.88 - 77.83 - 73.21 - 68.01 -
0.75 73.51 72.62 68.01 69.49 62.50 62.95 76.93 75.74 72.92 69.05 63.10 63.69
0.50 70.83 70.98 68.45 64.58 61.76 60.57 73.36 71.88 71.43 69.64 60.27 63.54
0.25 65.48 65.33 61.46 61.46 54.46 55.21 68.90 68.60 64.73 63.54 54.02 55.51
0.10 53.72 56.10 48.81 46.58 42.26 46.58 59.97 59.08 53.57 54.76 43.75 41.82
0.05 38.54 42.71 33.48 36.01 32.44 25.89 45.68 47.47 40.18 44.20 29.17 33.04

Table 2: Comparison of Accuracy and Compression Ratio (CR) across resolutions, coreset methods,
and P levels on ResNet18 model.

Resolution 224x224 112x112 56x56
Coreset Random Margin Random Margin Random Margin
Method Acc. CR Acc. CR Acc. CR Acc. CR Acc. CR Acc. CR
P level 2 6.25% 21.3 6.25% 21.3 6.25% 21.2 6.25% 21.2 6.25% 20.8 6.25% 20.7

P level 1.5 6.55% 8.3 6.40% 8.3 7.74% 8.3 6.70% 8.3 6.70% 8.3 8.33% 8.3
P level 1 9.52% 3.5 15.92% 3.5 24.55% 3.5 27.53% 3.5 29.91% 3.6 21.13% 3.6

P level 0.5 69.64% 1.7 63.10% 1.7 69.49% 1.7 68.45% 1.7 64.43% 1.7 61.90% 1.7
Baseline 76.49% 1.0 74.55% 1.0 72.62% 1.0 71.88% 1.0 66.82% 1.0 64.29% 1.0

LAP 76.51% 1.2 74.40% 1.3 73.07% 1.5 70.09% 1.9 65.48% 1.4 63.84% 2.4
LAP + 8-bit Q 76.64% 5.5 74.11% 6.4 74.26% 8.3 72.02% 8.2 66.07% 6.7 65.48% 7.3

resolution with 10% dataset fraction, ResNet18 achieves 56.10% accuracy with Margin-based se-
lection, compared to 53.72% with Random. The Margin-based strategy helps preserve crucial in-
formation, improving model performance with fewer samples. EfficientNetB0 maintain 59.97%
accuracy at a 10% dataset fraction, showcasing their robustness even with reduced data.

Effect of Model Compression.

Pruning Levels (P levels). Increasing the pruning level (lowering P) enhances compression but
reduces accuracy. For example, at 224x224 resolution, accuracy drops from 76.49% (Baseline,
CR=1.0) to 6.25% at P level 2 (CR=21.3), highlighting the trade-off between compression and
accuracy. Performance of Pruning and 8-bit Quantization. The LAP and LAP + 8-bit Q meth-
ods improve compression without significant accuracy loss. At 224x224 resolution, LAP achieves
76.51% accuracy with a CR of 1.2, while LAP + 8-bit Q reaches a CR of 5.5 with 76.64% accuracy,
demonstrating their efficiency for resource-constrained applications. Impact of Resolution Scaling
on Compression. Reducing resolution from 224x224 to 56x56 enhances compression (e.g., P level
0.5, CR=1.7) but decreases accuracy (from 69.64% to 64.43%), suggesting that resolution scaling
affects accuracy more than model size. Effect of Coreset Selection on Compression. The Margin-
based coreset selection outperforms Random selection, achieving better accuracy (e.g., 68.45% vs.
67.49% at 112x112, P level 0.5) while maintaining the same CR. This improves performance by
focusing on more informative samples.

Overall, adaptive methods like LAP and LAP + 8-bit Q balance accuracy and compression effec-
tively, ideal for resource-limited environments. Resolution scaling and pruning provide flexible
trade-offs, making them suitable for autonomous driving models on edge devices.

5 CONCLUSION

We presented a scalable and efficient framework for multi-weather classification in autonomous
driving, incorporating margin-based coreset selection, resolution scaling, and model compression.
Our approach effectively reduces training data and model size, achieving up to compression 85%,
while maintaining competitive accuracy, making it suitable for edge deployment. Despite minor
performance drops with low-resolution inputs, the framework offers a favorable trade-off between
accuracy and efficiency. Future directions include adapting the model to dynamic environments
and exploring advanced compression techniques such as mixed precision quantization and dynamic
pruning for improved real-time performance.
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