
A Real-to-Sim-to-Real Approach to Robotic Manipulation
with VLM-Generated Iterative Keypoint Rewards

Shivansh Patel1∗, Xinchen Yin1∗, Wenlong Huang2, Shubham Garg3, Hooshang Nayyeri3,
Li Fei-Fei2, Svetlana Lazebnik1, Yunzhu Li4

Multi-Step Skill Chaining

Iterative Keypoint 
Reward

Diverse Task 
Specification

Multi-Step With 
Environment Feedback

RegraspShoe Reorient

Book Place

Book Push

Book Reorient

VLM Generated Iterative 
Keypoint Reward

Real2Sim Reconstruction 
& RL Training

Sim2Real Deployment

Disturbance RecoveryShoe Push

Shoe Place

Fig. 1: Iterative Keypoint Reward (IKER) is a visually grounded reward generated by Vision-Language Models (VLMs)
as task specification. The framework reconstructs the real-world scene in simulation, and the generated reward is used to
train RL policies. We evaluate our framework on diverse tasks in the real world and demonstrate several notable capabilities.

Abstract— Task specification for robotic manipulation in
open-world environments is challenging. Importantly, this pro-
cess requires flexible and adaptive objectives that align with
human intentions and can evolve through iterative feedback.
We introduce Iterative Keypoint Reward (IKER), a framework
that leverages VLMs to generate and refine visually grounded
reward functions serving as dynamic task specifications for
multi-step manipulation tasks. Given RGB-D observations and
free-form language instructions, IKER samples keypoints from
the scene and utilizes VLMs to generate Python-based reward
functions conditioned on these keypoints. These functions op-
erate on the spatial relationships between keypoints, enabling
precise SE(3) control and leveraging VLMs as proxies to
encode human priors about robotic behaviors. We reconstruct
real-world scenes in simulation and use the generated re-
wards to train RL policies, which are then deployed into the
real world—forming a real-to-sim-to-real loop. Our approach
demonstrates notable capabilities across diverse scenarios, in-
cluding both prehensile and non-prehensile tasks, showcasing
multi-step task execution, spontaneous error recovery, and
on-the-fly strategy adjustments. The results highlight IKER’s
effectiveness in enabling robots to perform multi-step tasks
in dynamic environments through iterative reward shaping.

*indicates equal contribution. 1University of Illinois at Urbana-
Champaign, 2Stanford University, 3Amazon, 4Columbia University

Project Page: https://iker-robot.github.io/

I. INTRODUCTION

Task specification is a critical capability for robots op-
erating in unstructured, open-world environments, where
predefined, rigid instructions are insufficient to capture the
complexity of real-world interactions. In such settings, task
specifications must not only define an optimizable objective
but also incorporate human priors about the robot’s intended
behaviors. This process often evolves iteratively, as humans
refine the objective by observing the robot’s execution and
making adjustments. For example, in practical RL deploy-
ments, reward functions used to guide the robot’s actions
are shaped through multiple iterations, with humans revising
them based on the outcomes observed during training. This
iterative shaping encodes human expectations and behavioral
biases, aligning the robot’s behavior more closely with real-
world needs. For instance, in multi-stage tasks, the reward
function can be designed to encourage intermediate steps
that mirror human strategies, such as regrasping an object to
enable a feasible grasp.

https://iker-robot.github.io/


Recent works have demonstrated that vision-language
models (VLMs) encode rich world knowledge through pre-
training on Internet-scale data [1–8]. Prior works have ex-
plored various task specifications using LLMs and VLMs [9–
12], but typically operate on predefined objects or envi-
ronments which are challenging to deploy in open-world
scenarios. Additionally, much of this prior work focuses
on tasks like positional rearrangement, where the primary
challenge lies in specifying only coarse-grained positional
information (e.g., object location) [8–11, 13], rather than
handling more complex, dynamic tasks (e.g., non-prehensile
object pushing). Given these limitations, a natural question
arises: How can we effectively ground the visual understand-
ing of VLMs to open-world tasks that require more nuanced
control and adaptability? We identify three key challenges
for VLMs: 1) Fine-grained SE(3) pose control, requiring
precise manipulation of objects in 3D space; 2) Human-like
behavioral priors, enabling VLMs to break down complex,
multi-step tasks similarly to how humans approach them;
and 3) Iterative reward shaping, where VLMs refine their
predictions through embodied feedback—the environment
changes as a result of the robot’s actions.

In this work, we introduce Iterative Keypoint Re-
ward (IKER), a framework that enables Vision-Language
Models (VLMs) to generate and refine visually-grounded
reward functions, which serve as task specifications for
open-world manipulation tasks. Rather than relying on rigid,
predefined instructions, our approach allows VLMs to dy-
namically synthesize task objectives based on real-time ob-
servations and language inputs. Specifically, given an RGB-
D observation and a free-form language instruction, we first
sample keypoints in the scene. Then, leveraging the visual
code-generation capabilities of VLMs, we generate Python-
based reward functions conditioned on these sampled key-
points. These reward functions, which operate on the spatial
relationships between keypoints, define the desired outcomes
of the manipulation task, thus acting as flexible and adaptable
task specifications. Building upon recent work [14], we make
the crucial observation that keypoints capture rich geometric
structures inherent to many manipulation tasks. Multiple
keypoints can collectively encode the full SE(3) rotations of
objects. By using keypoint-based rewards to specify tasks,
we enable VLMs to leverage their rich understanding of
the world to generate reward functions that reflect human
strategies for manipulation. This means the robot is guided
to perform actions in ways that humans naturally would,
ensuring that the task objectives align closely with human
expectations and approaches. For example, in a task re-
quiring regrasping, the reward function can be designed
to guide intermediate actions that mirror human problem-
solving approaches, such as repositioning objects to facilitate
a successful grasp. Furthermore, through iterative refinement
based on embodied feedback, VLMs can continuously update
and improve the task specification, ensuring that the robot’s
behavior remains adaptive to the complexities of real-world
environments. In this way, reward functions in our framework
effectively serve as evolving task specifications.

A key advantage of our approach is its ability to bridge
the gap between simulation and reality while maintaining
flexible, visually grounded task specifications. We first trans-
fer the 3D meshes of real-world objects into a simulation.
Since the reward function depends on VLMs, which per-
form better on real-world data than simulation data, we
generate the reward using real-world observations to ensure
contextually grounded task specifications. Then we transfer
it to a simulated environment for policy training. This
approach leverages the precision of VLMS for real-world
observations, while utilizing the scalability of simulation
for training. Once optimized, the policy is deployed back
into the real world. This real-to-sim-to-real loop enables
seamless adaptation from simulation to physical execution.
Leveraging this framework, we demonstrate the efficacy of
IKER across diverse scenarios involving real-world objects
like shoes and books, spanning both prehensile tasks—such
as grasping and placing shoes on racks—and non-prehensile
tasks like pushing or sliding books to designated locations.
We perform quantitative and qualitative evaluations to assess
the system’s ability to autonomously perform complex, long-
horizon tasks. The results showcase human-like capabilities,
including multi-step chaining, spontaneous error recovery
and updating strategies on-the-fly.

In summary, our contributions are as follows:
• We introduce a visually grounded reward representation

IKER, that serves as flexible task specification, enabling
robots to tackle complex open-world tasks.

• We demonstrate that IKER possesses the unique advan-
tage of incorporating human-like behavioral priors and
an iterative reward shaping process.

• We integrate IKER with a real-to-sim-to-real framework
to perform both prehensile and non-prehensile tasks,
which is robust in challenging long-horizon tasks.

II. RELATED WORK

VLMs in Robotics. VLMs have appeared as a prominent
tool in robotics [9–11, 15–25]. Broadly, existing work in this
space can be categorized into two groups: (1) those that
leverage VLMs for task specification [11, 15–17], and (2)
those that focus on low-level control [16, 18, 19, 26]. Our
work aligns with the former, emphasizing task specification.

Several studies have explored task specification by decom-
posing complex tasks into actionable steps. For example, Ahn
et al. [15] proposes a method to break down long-horizon
tasks into subtasks using LLMs. Belkhale et al. [27] intro-
duces language motions as intermediaries between high-level
instructions and robotic actions, enabling the policy to learn
shared low-level structures. Building on this, Rana et al. [26]
extends task decomposition to expansive environments like
floor plans. Other works, such as [28], employ LLMs to
generate task targets that guide RL agents in achieving long-
horizon tasks. Unlike most of these works, which require
pre-defined models or prior knowledge of the environment
and objects, our approach reconstructs the 3D meshes of the
scene and objects from RGB-D observations. By not relying



Make space and place 
the shoes on rack.

Vision 
Language 

Model 
(VLM)

Real2Sim

def interaction_data(keypoints):
object_to_interact = ...
grasp_mode = ...
final_keypoint_coordinates = ...
...

Sim2Real

Keypoints & execution history

RL Training

𝑡

VLM Generated 
Reward Function

(a) Iterative Keypoint Reward Generation (b) Real2Sim2Real Policy Learning (c) Multi-Step Planning

RGBD Observation

Fig. 2: Framework Overview. We first obtain keypoints in the scene. These, combined with a human command and execution
history, are processed by a Vision-Language Model (VLM) to generate code that defines the reward function to move the
box (a). We transfer the scene into simulation, and the reward function is used to train a policy, which is subsequently
executed in the real world (b). This process is repeated across multiple steps to enable long-horizon task execution (c).

on pre-existing models, we increase the adaptability of our
approach to unseen scenarios.

In addition to task decomposition, alternative task speci-
fication methods such as affordances and value maps have
been investigated. For instance, Huang et al. [17] generates
3D affordance and constraint maps as objective functions
for motion planners, while [14] introduces visually grounded
representations for constraints. Likewise, Lit et al. [11]
leverages VLMs to predict point-based affordances for zero-
shot manipulation tasks. Moreover, Zhoe et al. [29] integrates
VLMs into model predictive control by sampling candidate
action sequences and using VLMs to generate video predic-
tions, which are then evaluated to determine optimal actions.

Similar to our work, some approaches explore task spec-
ification through reward function generation. Works such
as [30–32] employ LLMs to generate reward functions
that train robotic policies, but their practical applicability
is often limited. In contrast, we demonstrate the practical
applicability and robustness of our method by successfully
addressing challenging manipulation tasks in real-world set-
tings, underscoring its effectiveness in multi-step tasks.

Real-Sim-Real. Real-to-sim has gained significant attention
for its ability to facilitate efficient agent training. Once a
scene is transferred to simulation, it can be used for a wide
range of tasks, including RL training. Several approaches fo-
cus on reconstructing rigid bodies for use in simulation [33–
35]. For instance, Kappler et al. [33] introduced a method
for reconstructing rigid objects to facilitate grasping. Some
works rather focus on reconstructing articulated objects [36–
40]. Huang et al.[36] presented methods for reconstructing
the occluded shapes of articulated objects. Jiang et al. [40]
introduced a framework, DITTO, to generate digital twins of
articulated objects from real-world interactions. In our work,
we utilize BundleSDF [41] to generate object meshes that
are transferred to the simulation.

Sim-to-real transfers have shown great performance in a
variety of skills, including tabletop manipulation [42, 43],

mobile manipulation [44, 45], dynamic manipulation [46],
dexterous manipulation [47, 48], and locomotion [49, 50].
However, directly deploying learned policies to physical
robots cannot guarantee successful performance due to sim-
to-real gap. To bridge sim-to-real gap, researchers has devel-
oped many techniques, such as system identification [51–54],
domain adaptation [55–57], and domain randomization [49,
58–60]. In our work, we use domain randomization as it
does not require any interaction data from real-world during
training. It relies entirely on simulation and makes policies
robust by exposing them to a wide variety of randomized
conditions within simulation. Recently, Torne et al. [61]
propose RialTo, a complete real-to-sim-to-real loop system.

III. METHOD

Herein we first formally define Iterative Keypoint Reward
(IKER) and discuss how they are automatically synthesized
and refined by VLMs by continuously taking in environ-
mental feedback. Then we discuss how IKER serves as a
versatile task specification that bridges simulation and reality
for manipulation. Our method overview is shown in Figure 2.

A. Iterative Keypoint Reward (IKER)

Given RGB-D observation of the environment and an
open-vocabulary language instruction I for a multi-step task,
our objective is to obtain N policies πN

i=1 that complete the
task. Importantly, the number of policies N is not predefined
and can adapt dynamically based on the environment and
task progression. For example, Figure 2 considers a multi-
step shoe-placing task where the robot first needs to clear
space on a rack before sequentially placing and aligning two
shoes side by side. In this scenario, the first policy, π1, must
be learned to move a shoe box to make room for the shoes.
In this work, we focus on the task specification challenge of
how one can automatically formulate the reward functions
required to train the policies (e.g., in RL framework).

For step i, we denote the RGB observation as Oi. We
assume a set of K keypoints kKj=1 is given (discussed later in



Sec. III-B), each specifying a 3D position in the task space.
Using the keypoints, we aim to obtain a reward function,
termed IKER, that maps keypoint positions to a scalar reward
f (i) : RK×3 → R. To automatically generate f (i), we use
a VLM, GPT-4o [1], to write f (i) as a Python function
which may contain arithmetic operations on the keypoints.
In order for the VLM to refer to the keypoints, we use visual
prompting by overlaying the keypoints on the observation Oi

with numerical marks {1, . . . ,K} as shown in Figure 2.
Notably, the reward generation process is conditioned on

all previous interactions to allow the VLM to either create
a new reward function that progresses to the next stage of
the task or refine previous ones in case of failures. Namely,
the context Ci provided to the VLM at step i includes the
original instruction, the RGB observations from previous
steps, and the current observation:

Ci =
{
I,O1, f

(1), . . . , Oi−1, f
(i−1), Oi

}
.

B. Transferring real-world scene to simulation

After formulating the reward function, we transfer the real-
world scene within the workspace boundary to simulation.
Poses of manipulable objects are estimated using Founda-
tionPose [62], which allows us to position the corresponding
object meshes in the simulation. For example, the shoe box
and shoes depicted in Figure 2 are manipulable objects.
FoundationPose requires CAD models of the objects, which
we generate using BundleSDF [41]. This process involves
capturing a video of the object from a set of angles to create a
3D model. For static workspace elements, like the workspace
table and shoe rack in Figure 2, we capture a point cloud
which is used to create the meshes in the simulation.

We leverage the generated meshes to identify candidate
keypoints. For manipulable objects like shoes and books,
keypoints are positioned at the object’s extremities along
its axes and are defined with respect to the corresponding
object’s center. Keypoints that are too close in the image
projection are removed. Conversely, for static objects like
shoe racks, which serve as environment, we uniformly dis-
tribute keypoints across their surfaces.

C. Train policy in Simulation

We directly control the robot in the end-effector space,
which has six degrees of freedom: three prismatic joints for
movement along the x, y, and z axes, and three revolute
joints for rotation. The gripper fingers remain closed by
default, opening only when grasping objects. In simulation,
we employ a heuristics-based grasp for faster training.

State Space: The state space for our policy captures
the essential information to execute the task. The input is
a vector st consisting of the gripper’s end-effector pose
(pe,qe) ∈ R7, the pose of object currently being manip-
ulated (po,qo) ∈ R7, a set of object keypoints Ko =
{ko1 , . . . ,kon} ∈ R3n, and their corresponding target po-
sitions Kt = {kt1 , . . . ,ktn} ∈ R3n. Kt is derived from
the reward function f generated by the VLM. Rotations
qe and qo are represented as quaternions. This state space

st = (pe,qe,po,qo,Ko,Kt) captures essential information
on objects of interest as well as the goal of the policy.

Action Space: The action space is defined relative to the
gripper’s current position and orientation. The policy outputs
actions at = (∆pe,∆re), where ∆pe ∈ R3 and ∆re ∈ R3

specifies the changes in translation and rotation respectively.
Domain Randomization: Recognizing the challenges in-

herent in transferring policies between simulation and the
real world, we employ domain randomization to bridge the
real-to-sim-to-real gaps. Domain randomization is applied
to object properties like friction, mass, center of mass,
restitution, compliance, and geometry. We further randomize
the object position, the gripper location, as well as the grasp
within a range. We found these to be especially crucial for
non-prehensile tasks like pushing.

D. Deploy Trained Policy in Real-World

The trained RL policy πi is then deployed directly in the
real-world. Since the policy outputs end-effector pose, we
employ inverse kinematics to compute the joint angles at
each timestep. The RL policy operates at 10Hz frequency,
producing action commands that are then clipped to ensure
the end effector remains within the workspace limits. For
keypoint tracking, we utilize FoundationPose [62] to estimate
the object’s pose. These pose estimates are subsequently used
to compute the keypoint locations that are defined relative to
the objects. We use AnyGrasp [63] to detect grasps in the
real-world. The VLM predicts the object to interact with, and
the optimal grasp is selected from AnyGrasp detection using
back and top views of the object.

IV. EXPERIMENTS AND ANALYSIS

We aim to answer the following research questions: (1)
Why is Iterative Keypoint Reward (IKER) a versatile re-
ward representation for training diverse manipulation skills,
specifically in the context of harnessing the world knowledge
from VLMs? And can we construct a pipeline leveraging
IKER for real-to-sim-to-real transfer? (2) Leveraging task-
level feedback for replanning, can the pipeline perform multi-
step tasks in dynamic environments?

A. Metrics and Baselines

We compare to a human-annotated variant of IKER, where
reward functions are human-specified, allowing evaluation
without VLM influence.

We also compare our method with using object pose
(represented by coordinates for position and quaternions
for orientation) as the state representation, which is the
conventional approach in RL training [64–68]. In the pose
automatic method, the VLM generates a function f that maps
the initial poses of the objects to their final poses.

We evaluate our approach across four scenarios: Shoe
Place, Shoe Push, Book Push, and Book Reorient. In Shoe
Place, the robot picks a shoe from the ground and places it on
a rack. In Shoe Push, it pushes one shoe to form a matching
pair. In Book Push, it aligns or pushes a book to the table’s
edge, and in Book Reorient, it repositions a book on a shelf.



Task Annotated (Human labeled reward) Automatic (VLM-generated reward)

Simulation Real-World Simulation Real-World

IKER (Ours) Pose IKER (Ours) Pose IKER (Ours) Pose IKER (Ours) Pose

Shoe Place 0.945 0.938 0.8 0.9 0.778 0.353 0.7 0.3
Shoe Push 0.871 0.850 0.7 0.7 0.716 0.289 0.6 0.2
Stowing Push 0.901 0.914 0.8 0.7 0.679 0.374 0.6 0.3
Stowing Reorient 0.848 0.859 0.8 0.7 0.858 0.265 0.7 0.2

TABLE I: Performance of IKER in simulation and real-world. IKER, which makes use of visual keypoints, significantly
outperforms the conventional pose-based approach, especially when using VLMs to automatically generate reward functions.

Each scenario has 10 start/end configurations. In simulation,
we report success rates averaged over 128 environments, with
trials considered successful if the average keypoint distance
to target is within 5 cm.

B. Simulation Environment, Real-World System and Experi-
ment Objects

Fig. 3: Experiment objects. We experiment with 5 shoe
pairs and 2 shoe racks for tasks involving shoe scenarios.
We experiment with 9 different books for stowing tasks.

We use IsaacGym [69] to train our policies. In real-world,
we conduct experiments on XArm7 with four stationary
RealSense cameras. These cameras capture the point clouds,
which are used to construct the simulation environment and
to provide data for AnyGrasp to predict grasp. Additionally,
a wrist-mounted camera is used to capture images, which
are then used to query the VLM. Figure 3 shows the objects
used in our experiments.

C. Policy Training with Iterative Keypoint Reward

Iterative Keypoint Reward offers a flexible and effective
way to represent rewards for training manipulation policies
using RL. To validate this, we conduct experiments com-
paring RL training with keypoints and object pose. Our
experiments span four representative tasks, with quantitative
results summarized in Table I.

In the annotated method, success rates for shoe placement
using IKER and object pose are 0.945 and 0.938, respec-
tively. A similar trend is seen in the shoe push, stowing
push, and reorient tasks, where performance differences are
minimal. These results suggest that IKER effectively captures
diverse behaviors, comparable to object poses, making it a
promising alternative for RL policy training.

In the automated method, IKER significantly outperforms
object pose representations. For example, in shoe placement,

IKER achieves a 0.7 success rate, while object poses reach
only 0.3. Similar results are seen across other tasks. Object
pose success is limited to simpler scenarios with no pose
changes, as VLMs struggle with rotations in SO(3) space.
In contrast, keypoints simplify the challenge by requiring
VLMs to reason only in Cartesian space, eliminating the
need to handle object poses in SE(3) space.

As shown in Table I, there is a slight reduction in success
rate from simulation to the real world. For shoe placement,
IKER achieves success of 0.945 in simulation and 0.8 in the
real world. For shoe push, the success rate drops from 0.871
to 0.850. These results suggest that domain randomization
techniques in Section III-C help bridge the sim-to-real gap,
but factors like inaccuracies in environment reconstruction,
real-world perception errors, and the inability to simulate
extreme object dynamics still affect performance.

D. Iterative Replanning for Multi-Step Tasks

We demonstrate the robot’s iterative chaining ability with
a task involving three sequential actions: pushing a shoe
box to create space, then placing a pair of shoes on a rack.
Failure in any task leads to failure in the next. This task is
more challenging for the VLM, using around 16 keypoints
compared to 8 in earlier tasks due to background elements.
We test 10 different start and end configurations, iterating
through each to assess overall performance.

We compare our method with VoxPoser [17], which
employs LLMs to generate code that produces potential
fields for motion planning. VoxPoser serves as an ideal
baseline because it excels at synthesizing motion plans for a
diverse range of manipulation tasks from free-form language
instructions. Notably, their plans are open-loop and lack
feedback to the VLM for refining specifications at each
step. To adapt it to our tasks, we enhanced VoxPoser with
two major modifications: (1) VoxPoser used OWL-ViT to
find object bounding boxes, but it struggled to distinguish
between left and right shoes, so we provided ground-truth
object locations. (2) We gave VoxPoser the entire plan, as the
original planner struggled with multi-step tasks. This gave
VoxPoser an advantage over our method due to access to
privileged information.

Figure 5 shows the iterative chaining results. Across the
three tasks, our method consistently outperformed VoxPoser.
In the first task, we succeeded 6 out of 10 times compared
to VoxPoser’s 5 successes. For the second task, we had 2
successes while VoxPoser had 1. In the final task, our method
succeeded once, whereas VoxPoser failed in all attempts.
VoxPoser’s failures can be attributed to several factors, such



Ro
bu

st
ne

ss
 T

o 
Di

st
ur

ba
nc

es
Ad

ju
st

m
en

ts
 

To
 P

la
n

Pr
op

os
e 

N
ew

 
Pl

an

Human: Place shoes on rack Places right shoe on rack Places left shoe on rack, little far Adjusts left shoe Task done!

Task done!Pushes book to the sideHuman: Stow book to shelf Grasps and stows book to shelfFails grasp! Replan!

Human: Place shoes on rack Places right shoe on rack Task done!Places right then left shoe on rackHuman disturbance

Fig. 4: Scenarios demonstrating capabilities of our framework. The framework is robust to disturbances and can adapt
in response to unexpected events. Additionally, it can propose new plans when the original ones become infeasible.

Fig. 5: Multi-Step Task Chaining Comparison with Vox-
Poser. Our framework outperforms VoxPoser at every step
of the task sequence.

as pushing the shoe box either too far or not far enough,
failed grasping attempts, collisions with the environment
during object manipulation, or improper placement of the
shoes—resulting in both shoes being stacked on top of each
other and subsequently falling.

E. Robustness, Adjusting Plans, and Re-Planning

Unlike previous works that rely on open-loop plans, our
approach leverages closed-loop plans, enabling adjustments
during execution. This feature gives rise to several capabili-
ties, as demonstrated in Figure 4.

In the first scenario, a human interrupts the robot while
it is in the process of placing shoes on the ground. The
framework demonstrates resilience by recovering from the
interruption. The robot re-grasps the shoe and successfully
completes the task by placing both shoes on the rack.

In the second scenario, when the robot attempts to place
the left shoe, it detects that the shoe is not positioned close
enough to the right shoe. To address this, the VLM predicts
a corrective action, suggesting that the robot push the left

shoe closer to the right shoe to form a proper pair.
In the third scenario, the robot is tasked with stowing

a book on a shelf. However, the initial grasp attempt fails
because the book is too large to be handled effectively. In
response, the VLM predicts an alternative strategy to com-
plete the task, adjusting the approach to ensure successful
placement.

V. CONCLUSION AND LIMITATIONS

In this work, we introduced Iterative Keypoint Reward
(IKER), a framework that leverages VLMs to generate vi-
sually grounded reward functions for robotic manipulation
in open-world environments. By using keypoints from RGB-
D observations, our approach enables precise SE(3) control
and integrates priors from VLMs without relying on rigid
instructions. IKER bridges simulation and real-world exe-
cution through a real-to-sim-to-real loop, training policies in
simulation and deploying them in physical environments. Ex-
periments across diverse tasks demonstrate the framework’s
ability to handle complex, long-horizon challenges with
adaptive strategies and error recovery. This work represents
a step toward more intelligent and flexible robots capable of
operating effectively in dynamic, real-world settings.

Despite these advancements, our approach has certain lim-
itations. We use a simplified version of real-to-sim transfer,
which may not fully capture the complexities of real-world
environments. A more comprehensive system identification
might be necessary for more precise manipulation. Addition-
ally, while our framework reconstructs multiple objects in the
environment, our current implementation does not account
for tasks involving complicated multi-object interactions,
limiting our evaluation primarily to single-object manip-
ulation at each stage. Lastly, even with GPU-accelerated



simulation, the current simulators require approximately 5
minutes of training per task, which can be time-consuming
for some applications.

VI. ACKNOWLEDGEMENTS

We thank Aditya Prakash, Arjun Gupta, Binghao Huang,
Hanxiao Jiang, Kaifeng Zhang, Unnat Jain, and members of
UIUC Vision and Robotics Labs for fruitful discussions. This
work does not relate to the positions of Shubham Garg and
Hooshang Nayyeri at Amazon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies,
either expressed or implied, of the sponsors.

REFERENCES

[1] OpenAI, “Gpt-4 technical report,” arXiv, 2023.
[2] A. Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit,

M. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke et al., “Socratic models:
Composing zero-shot multimodal reasoning with language,” arXiv
preprint arXiv:2204.00598, 2022.

[3] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger,
and I. Sutskever, “Learning transferable visual models from
natural language supervision,” 2021. [Online]. Available: https:
//arxiv.org/abs/2103.00020

[4] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. V. Le,
Y. Sung, Z. Li, and T. Duerig, “Scaling up visual and vision-language
representation learning with noisy text supervision,” 2021. [Online].
Available: https://arxiv.org/abs/2102.05918

[5] J. Li, D. Li, C. Xiong, and S. Hoi, “Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and
generation,” in International conference on machine learning. PMLR,
2022, pp. 12 888–12 900.

[6] J. Li, D. Li, S. Savarese, and S. Hoi, “Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language
models,” 2023. [Online]. Available: https://arxiv.org/abs/2301.12597

[7] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson,
K. Lenc, A. Mensch, K. Millican, M. Reynolds, R. Ring,
E. Rutherford, S. Cabi, T. Han, Z. Gong, S. Samangooei,
M. Monteiro, J. Menick, S. Borgeaud, A. Brock, A. Nematzadeh,
S. Sharifzadeh, M. Binkowski, R. Barreira, O. Vinyals, A. Zisserman,
and K. Simonyan, “Flamingo: a visual language model for few-shot
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2204.14198

[8] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and
Y. Wu, “Coca: Contrastive captioners are image-text foundation
models,” 2022. [Online]. Available: https://arxiv.org/abs/2205.01917

[9] S. Nasiriany, F. Xia, W. Yu, T. Xiao, J. Liang, I. Dasgupta,
A. Xie, D. Driess, A. Wahid, Z. Xu et al., “Pivot: Iterative visual
prompting elicits actionable knowledge for vlms,” arXiv preprint
arXiv:2402.07872, 2024.

[10] H. Huang, F. Lin, Y. Hu, S. Wang, and Y. Gao, “Copa: General robotic
manipulation through spatial constraints of parts with foundation
models,” arXiv preprint arXiv:2403.08248, 2024.

[11] F. Liu, K. Fang, P. Abbeel, and S. Levine, “Moka: Open-vocabulary
robotic manipulation through mark-based visual prompting,” arXiv
preprint arXiv:2403.03174, 2024.

[12] D. Venuto, S. N. Islam, M. Klissarov, D. Precup, S. Yang, and
A. Anand, “Code as reward: Empowering reinforcement learning with
vlms,” arXiv preprint arXiv:2402.04764, 2024.

[13] W. Yuan, J. Duan, V. Blukis, W. Pumacay, R. Krishna, A. Mu-
rali, A. Mousavian, and D. Fox, “Robopoint: A vision-language
model for spatial affordance prediction for robotics,” arXiv preprint
arXiv:2406.10721, 2024.

[14] W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei, “Rekep:
Spatio-temporal reasoning of relational keypoint constraints for robotic
manipulation,” arXiv preprint arXiv:2409.01652, 2024.

[15] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman et al., “Do as i
can, not as i say: Grounding language in robotic affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[16] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for
embodied control,” in arXiv preprint arXiv:2209.07753, 2022.

[17] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei, “Voxposer:
Composable 3d value maps for robotic manipulation with language
models,” arXiv preprint arXiv:2307.05973, 2023.

[18] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[19] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[20] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, T. Kreiman, C. Xu et al., “Octo: An open-source
generalist robot policy,” arXiv preprint arXiv:2405.12213, 2024.

[21] S. Huang, Z. Jiang, H. Dong, Y. Qiao, P. Gao, and H. Li, “Instruct2act:
Mapping multi-modality instructions to robotic actions with large
language model,” arXiv preprint arXiv:2305.11176, 2023.

[22] M. Xu, P. Huang, W. Yu, S. Liu, X. Zhang, Y. Niu, T. Zhang, F. Xia,
J. Tan, and D. Zhao, “Creative robot tool use with large language
models,” arXiv preprint arXiv:2310.13065, 2023.

[23] H. Zhou, M. Ding, W. Peng, M. Tomizuka, L. Shao, and C. Gan,
“Generalizable long-horizon manipulations with large language mod-
els,” arXiv preprint arXiv:2310.02264, 2023.

[24] N. Di Palo and E. Johns, “Keypoint action tokens enable in-context
imitation learning in robotics,” arXiv preprint arXiv:2403.19578, 2024.

[25] F. Zeng, W. Gan, Y. Wang, N. Liu, and P. S. Yu, “Large language
models for robotics: A survey,” arXiv preprint arXiv:2311.07226,
2023.

[26] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suen-
derhauf, “Sayplan: Grounding large language models using 3d scene
graphs for scalable task planning,” arXiv preprint arXiv:2307.06135,
2023.

[27] S. Belkhale, T. Ding, T. Xiao, P. Sermanet, Q. Vuong, J. Tompson,
Y. Chebotar, D. Dwibedi, and D. Sadigh, “Rt-h: Action hierarchies
using language,” in https://arxiv.org/abs/2403.01823, 2024.

[28] M. Dalal, T. Chiruvolu, D. Chaplot, and R. Salakhutdinov, “Plan-seq-
learn: Language model guided rl for solving long horizon robotics
tasks,” arXiv preprint arXiv:2405.01534, 2024.

[29] W. Zhao, J. Chen, Z. Meng, D. Mao, R. Song, and W. Zhang, “Vlmpc:
Vision-language model predictive control for robotic manipulation,” in
Robotics: Science and Systems, 2024.

[30] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik et al., “Language to
rewards for robotic skill synthesis,” arXiv preprint arXiv:2306.08647,
2023.

[31] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman,
Y. Zhu, L. Fan, and A. Anandkumar, “Eureka: Human-level reward
design via coding large language models,” arXiv preprint arXiv: Arxiv-
2310.12931, 2023.

[32] Y. J. Ma, W. Liang, H.-J. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani,
and D. Jayaraman, “Dreureka: Language model guided sim-to-real
transfer,” 2024. [Online]. Available: https://arxiv.org/abs/2406.01967

[33] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes,
M. Wüthrich, V. Berenz, S. Schaal, N. Ratliff, and J. Bohg, “Real-
time perception meets reactive motion generation,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1864–1871, 2018.

[34] B. Wen, W. Lian, K. Bekris, and S. Schaal, “Catgrasp: Learning
category-level task-relevant grasping in clutter from simulation,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 6401–6408.

[35] ——, “You only demonstrate once: Category-level manipulation from
single visual demonstration,” arXiv preprint arXiv:2201.12716, 2022.

[36] X. Huang, I. Walker, and S. Birchfield, “Occlusion-aware recon-
struction and manipulation of 3d articulated objects,” in 2012 IEEE
international conference on robotics and automation. IEEE, 2012,
pp. 1365–1371.

[37] X. Li, H. Wang, L. Yi, L. J. Guibas, A. L. Abbott, and S. Song,
“Category-level articulated object pose estimation,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 3706–3715.

[38] X. Wang, B. Zhou, Y. Shi, X. Chen, Q. Zhao, and K. Xu,
“Shape2motion: Joint analysis of motion parts and attributes from 3d

https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2102.05918
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2406.01967


shapes,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 8876–8884.

[39] J. Mu, W. Qiu, A. Kortylewski, A. Yuille, N. Vasconcelos, and
X. Wang, “A-sdf: Learning disentangled signed distance functions for
articulated shape representation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 13 001–
13 011.

[40] Z. Jiang, C.-C. Hsu, and Y. Zhu, “Ditto: Building digital twins of
articulated objects from interaction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
5616–5626.

[41] B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Muller, A. Evans, D. Fox,
J. Kautz, and S. Birchfield, “Bundlesdf: Neural 6-dof tracking and 3d
reconstruction of unknown objects,” CVPR, 2023.

[42] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” arXiv preprint arXiv: Arxiv-
2109.12098, 2021.

[43] Y. Jiang, C. Wang, R. Zhang, J. Wu, and L. Fei-Fei, “Transic:
Sim-to-real policy transfer by learning from online correction,” 2024.
[Online]. Available: https://arxiv.org/abs/2405.10315

[44] J. Gu, D. S. Chaplot, H. Su, and J. Malik, “Multi-skill mobile
manipulation for object rearrangement,” arXiv preprint arXiv: Arxiv-
2209.02778, 2022.

[45] S. Yenamandra, A. Ramachandran, K. Yadav, A. Wang, M. Khanna,
T. Gervet, T.-Y. Yang, V. Jain, A. W. Clegg, J. Turner, Z. Kira,
M. Savva, A. Chang, D. S. Chaplot, D. Batra, R. Mottaghi, Y. Bisk,
and C. Paxton, “Homerobot: Open-vocabulary mobile manipulation,”
arXiv preprint arXiv: Arxiv-2306.11565, 2023.

[46] B. Huang, Y. Chen, T. Wang, Y. Qin, Y. Yang, N. Atanasov, and
X. Wang, “Dynamic handover: Throw and catch with bimanual hands,”
arXiv preprint arXiv:2309.05655, 2023.

[47] Y. Chen, C. Wang, L. Fei-Fei, and C. K. Liu, “Sequential dexterity:
Chaining dexterous policies for long-horizon manipulation,” arXiv
preprint arXiv:2309.00987, 2023.

[48] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang, “Dexpoint:
Generalizable point cloud reinforcement learning for sim-to-
real dexterous manipulation,” 2022. [Online]. Available: https:
//arxiv.org/abs/2211.09423

[49] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: rapid
motor adaptation for legged robots,” in Robotics: Science and
Systems XVII, Virtual Event, July 12-16, 2021, D. A. Shell,
M. Toussaint, and M. A. Hsieh, Eds., 2021. [Online]. Available:
https://doi.org/10.15607/RSS.2021.XVII.011

[50] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi, “Agile but
safe: Learning collision-free high-speed legged locomotion,” 2024.
[Online]. Available: https://arxiv.org/abs/2401.17583

[51] K. J. Åström and P. Eykhoff, “System identification—a survey,”
Automatica, vol. 7, no. 2, pp. 123–162, 1971.

[52] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv: Arxiv-1804.10332, 2018.

[53] P. Chang and T. Padir, “Sim2real2sim: Bridging the gap between
simulation and real-world in flexible object manipulation,” arXiv
preprint arXiv: Arxiv-2002.02538, 2020.

[54] V. Lim, H. Huang, L. Y. Chen, J. Wang, J. Ichnowski, D. Seita,
M. Laskey, and K. Goldberg, “Planar robot casting with real2sim2real
self-supervised learning,” arXiv preprint arXiv: Arxiv-2111.04814,
2021.

[55] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE international conference on robotics and automation
(ICRA). IEEE, 2018, pp. 4243–4250.

[56] K. Arndt, M. Hazara, A. Ghadirzadeh, and V. Kyrki, “Meta
reinforcement learning for sim-to-real domain adaptation,” 2019.
[Online]. Available: https://arxiv.org/abs/1909.12906

[57] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari,
“Rl-cyclegan: Reinforcement learning aware simulation-to-real,” 2020.
[Online]. Available: https://arxiv.org/abs/2006.09001

[58] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin,
B. McGrew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas,
J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,
W. Zaremba, and L. Zhang, “Solving rubik’s cube with a robot hand,”
arXiv preprint arXiv: Arxiv-1910.07113, 2019.

[59] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

[60] R. Antonova, F. Ramos, R. Possas, and D. Fox, “Bayessimig: Scalable
parameter inference for adaptive domain randomization with isaac-
gym,” arXiv preprint arXiv:2107.04527, 2021.

[61] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta,
and P. Agrawal, “Reconciling reality through simulation: A real-
to-sim-to-real approach for robust manipulation,” arXiv preprint
arXiv:2403.03949, 2024.

[62] B. Wen, W. Yang, J. Kautz, and S. Birchfield, “Foundationpose:
Unified 6d pose estimation and tracking of novel objects,” arXiv
preprint arXiv:2312.08344, 2023.

[63] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie,
and C. Lu, “Anygrasp: Robust and efficient grasp perception in spatial
and temporal domains,” IEEE Transactions on Robotics, 2023.

[64] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[65] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Ve-
cerik, T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller, “Data-
efficient deep reinforcement learning for dexterous manipulation,”
arXiv preprint arXiv:1704.03073, 2017.

[66] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot,
N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller, “Leveraging
demonstrations for deep reinforcement learning on robotics problems
with sparse rewards,” arXiv preprint arXiv:1707.08817, 2017.

[67] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[68] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik, “In-hand object
rotation via rapid motor adaptation,” in Conference on Robot Learning.
PMLR, 2023, pp. 1722–1732.

[69] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” 2021.

https://arxiv.org/abs/2405.10315
https://arxiv.org/abs/2211.09423
https://arxiv.org/abs/2211.09423
https://doi.org/10.15607/RSS.2021.XVII.011
https://arxiv.org/abs/2401.17583
https://arxiv.org/abs/1909.12906
https://arxiv.org/abs/2006.09001

	Introduction
	Related Work
	Method
	Iterative Keypoint Reward (IKER)
	Transferring real-world scene to simulation
	Train policy in Simulation
	Deploy Trained Policy in Real-World

	Experiments and Analysis
	Metrics and Baselines
	Simulation Environment, Real-World System and Experiment Objects
	Policy Training with Iterative Keypoint Reward
	Iterative Replanning for Multi-Step Tasks
	Robustness, Adjusting Plans, and Re-Planning

	Conclusion and Limitations
	Acknowledgements
	References

