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Abstract

Our understanding of how the Universe evolved from its earliest moments
to today relies on the existence of dark energy and dark matter—mysterious
components detectable only through their gravitational effects, despite
accounting for 95% of the Universe. Recent surveys reveal systematic dis-
crepancies in the temporal evolution of dark energy, potentially pointing
toward new physics. Given the success of Large Language Models at com-
pleting research-level tasks such as coding and mathematical reasoning,
we investigate the capability of LLMs to autonomously propose, imple-
ment, and test different cosmological theories. We leverage our framework
to challenge Claude Code in three experimental settings: (1) implement-
ing alternative models from curated descriptions by modifying a physics
simulation codebase, (2) performing the same implementation directly
from research papers, and (3) generating novel hypotheses for dark energy
evolution to better explain recent observations. Across two benchmark
models with ground-truth implementations, Claude Code successfully
implemented a “Thawing Quintessence” dark energy model. However,
it failed to generate correct observables for a more complex “Early Dark
Energy” model despite successful code compilation. When working di-
rectly from papers rather than curated descriptions, numerical accuracy
degraded significantly though qualitative behavior remains correct. Most
remarkably, Claude Code’s self-proposed dark energy model achieved a
better statistical fit to observations than the standard model, though at the
cost of additional parameters.
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1 Introduction

Cosmology—the study of how the Universe evolved from the Big Bang to today—faces a
double crisis. The Lambda Cold Dark Matter (ACDM) model, our current standard model
of cosmic evolution, has achieved remarkable success in predicting observations from the
formation of the first atoms to large-scale galaxy clustering. However, this success relies on
”dark matter” and “dark energy”—mysterious components detectable only through their
gravitational effects, and whose true nature remains elusive, despite accounting for 95% of
the Universe. Beyond these theoretical issues lies also an empirical problem: even accepting
dark matter and dark energy as given, ACDM increasingly struggles to fit high-precision
data. Recent surveys reveal systematic discrepancies that may hold the key to solving
both puzzles—the specific ways ACDM fails could reveal the true nature of these dark
components (DESI Collaboration et al., 2025; Lodha et al., 2025). Exploring alternative
models becomes now an urgent priority.

Resolving these cosmological tensions requires exploring a vast landscape of theoretical
models that propose alternative forms of dark matter and dark energy, such as modified
gravity theories, interacting dark sectors, dynamical dark energy models etc. Each theoret-
ical framework introduces new parameters, functional forms, and physical assumptions,
creating a high-dimensional space where most regions remain unexplored due to compu-
tational and human limitations. Large language models, trained on the vast literature of
theoretical physics, could potentially sample from this space of hypothesis systematically,
generating novel combinations and extensions that human researchers might not consider.

Testing cosmological theories requires specialized simulation codes, such as the Cosmic
Linear Anisotropy Solving System (CLASS) and Code for Anisotropies in the Microwave
Background (CAMB), that take theoretical parameters as input and produce synthetic
observational data as output. Implementing an alternative cosmological model involves a
canonical workflow in which these standard codebases are modified to accommodate the
new physics. As a next step, researchers evaluate Bayesian posteriors on the observables
and assess whether the proposed model can explain the data better than ACDM does.

Model building in cosmology makes for a compelling yet challenging LLM application for
several reasons. Firstly, almost all papers implementing an alternate cosmological model
rely on 2-4 codebases. Foremost among these is the CLASS codebase. Few subfields in the
sciences have such a unified workflow. Secondly, these alternate theories need to pass a set of
common tests that evaluate their ability to reproduce observations. From a machine-learning
perspective, this means that cosmological model discovery can be reformulated as a setting
in which all models are tested against and optimized against a set of well-defined metrics.
Lastly, beyond implementation, this field offers an intriguing test bed to ask whether recent
developments in artificial intelligence could help us discover new physics. In this work,
we introduce a multi-stage framework that establishes a systematic test bed in which to
measure the ability of an LLM-driven agent to autonomously propose, implement and
explore cosmological models. We measure both the potential of the agentic framework to
correctly implement a given cosmological model, as well as propose its own theoretical
model.

2 Environment Design

The agent performs its tasks in a containerized code execution environment using a Podman-
based emulator for Docker. Containerized code execution enables us to control which files,
directories and packages the agent has access to and / or can modify. The environment is de-
signed to eliminate the possibility of the agent accessing the internet to look up information
or code (see Appendix B for details).

The agent will modify the physics simulation codebase of CLASS (Lesgourgues, 2011).
The CLASS code is available at https://github.com/lesgourg/class_public. The CLASS
machinery is implemented in C, although it can additionally be used to compute observables
via a Python wrapper to the C code (Classy). The LLM agent is launched in a directory that
contains the base CLASS repository, instantiated as a GitHub repository, in order to easily
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Figure 1: Flow diagram depicting the input state for each stage (blue) the output artifacts
(green) and the task that the agent has to perform. Once the agent has completed its work,
the outputs are automatically evaluated on the basis of both binary milestones that track
initial progress as well as numerical metrics. The evaluation box (brown) depicts a template
evaluation report for the agent’s ‘submission’.

export the changes as a patch. The repository additionally contains contextual prompts
with instructions for each stage, information about CLASS, the cosmological-model specific
information as well as auxiliary helper and testing code. We work with the Claude Code
(Anthropic, b) agentic framework.

2.1 Cosmological Model Specification

Cosmological observables, such as the matter power spectrum, which quantifies the cluster-
ing of matter at different scales, are determined by both the underlying theoretical model as
well as the specific values of its characteristic parameters. We use M to denote a theoretical
model and P to denote a specific point in parameter space for the relevant cosmological
model.

A model instance typically consists of the following files:

* Model Description [description.md]: This is a file containing the description of the
cosmological model of interest, M. Appendix A.2.2 includes the description for
one of the models we evaluated on.

¢ Fiducial Parameter Files: The fiducial parameter set is used to test whether the
modified code can actually be used to compute cosmological observables. We refer
to this parameter set as Prjjycial-

¢ Other problem-specific contextual variables [problem_context.yaml]: This is a
YAML file that seeks to account for any other problem specific contextual vari-
ations and instructions such as the manner in which the agent should explore the
models parameter space, as well as the observables that need to be computed and
saved.

3 Stages

3.1 Stage 1: Model Implementation

In the first stage, the agent’s objective is to implement the cosmological model description
by modifying the CLASS code, to enable it to work with the fiducial parameter file. The
agent is instructed to read the provided model description. It must then modify code across
the CLASS code base and seek to compile the modified CLASS. The core CLASS machinery
has over 43000 lines of C code, with another 10000 lines in auxiliary numerical files. To
mitigate the challenge of navigating the code base, we added three "filemap’ files: high-level
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summaries of the organization of the ‘background’, ‘input’ and ‘perturbations’ files, in
addition to the model description and the fiducial parameter file. The desired state of the
environment upon the completion of this stage is code that now successfully implements
the alternate cosmological model.

3.2 Stage 2: Computing Observables

The agent must now use its modified code to compute observables for the fiducial cosmology,
using the provided parameter files. The agent is instructed to use a helper script that
computes observables using the modified code, that should now implement M. These
observables are relevant to the target artifact-based evaluation.

If the code fails to execute, another LLM (01-2024-12-17) (OpenAl) is queried to provide
feedback comparing the description of the cosmological model with the patch and identify
any inconsistencies. This functions as an in-the-loop LLM-as-Judge setup. If the code
computes observables successfully, a Pickle file containing these observables is saved, and
this serves as the key output artifact relevant to Stage 2. The agent is also instructed to call a
module that displays the present day values of key computed cosmological parameters for
the Prigucia to confirm if the values seem reasonable, as a self-consistency test.

3.3 Stage 3: Parameter Exploration

In this stage, the agent is instructed to explore other parameters and compute the log
likelihood with respect to observational data for both any new parameters and Pr;j;ciai-
In this case, we will compare the theoretical models to observations on how galaxies
cluster on large scales at late times. In particular, we use data from the DESI collaboration
(DESI Collaboration et al., 2025), and combine its likelihood with the early Universe priors
described in Appendix A of (DESI Collaboration et al., 2025).

We consider two pathways in Stage 3. The ‘Exploration’ pathway seeks to mirror the
model exploration sections of several theoretical cosmology papers, in which cosmologists
manually vary key parameter values to preliminarily assess the model’s behavior in different
physical limits and examine its merits. This pathway is also a less prohibitive option if the
theoretical model happens to be one that is challenging to optimize, as in the Early Dark
Energy model. In this pathway, we essentially ask the agent to propose and explore alternate
parameter choices, { P} ‘manually”.

In the "Minimization’ pathway, the agent must algorithmically find the subset of parameters
that best fits the observations. Here, we optimize the parameter file with respect to the
likelihood. The best-fit parameter, that maximizes this combined likelihood is subsequently
referred to as Ppest_ Fit-

4 Evaluation

Our setup is designed so that once the agent has completed its tasks its changes are saved
in a GitHub patch in a ‘submission’ folder on the host system. We then separately launch
another Docker container and run an evaluation script that applies the patch containing
the changes the agent made and evaluates its progress on both binary milestones and
continuous evaluation metrics. The first 2 binary milestones examine whether it was able to
generate a model . patch file that produces code that can compile. The next binary milestone
checks whether the compiled code can be used to compute observables with Pr;j;cia-

The evaluation for this stage focuses on correctness, and seeks to assess whether the agent
correctly implemented the given cosmological model. We numerically compares certain
key computed physical quantities using the agent’s codebase implementation with those
generated by a ground truth repository implementing the same cosmological model. The
quantities we consider are the matter power spectrum at two different redshifts!, z = 0
(present-day) and z = 1, and the evolution of the energy density of the relevant dark energy

1The redshift denoted by z, is a cosmological proxy for time.



Accepted at the LM4Sci Workshop, COLM 2025.

component as a function of redshift, denoted by (0x where X is a subscript determining
the specific kind of dark energy field (fld for fluid, in Figure 2). We report the maximum
fractional deviation with respect to the target repository in Table 1. We compute this as
QLM_QTarget
QTarget
for the power spectra and z for the density evolution). For the evaluation of Stage 3, we
compute how well the agent implemented theoretical framework (M, P) fits data, for all P
explored / derived via optimization.

follows: max , where the maximum is taken over the independent variable (k

5 Results

Unless otherwise specified, we used the claude-sonnet-4-20250514 model (Anthropic, a)
in all experiments.

5.1 Description of Physical Models

We examined the performance of Claude Code on two cosmological models: in increasing
order of difficulty, a phenomenological Thawing Quintessence (Payeur et al., 2025) model
that mimics the qualitative behavior of (late-time) dark energy, and (2) an Early Dark Energy
(EDE) model (Karwal & Kamionkowski, 2016; Poulin et al., 2019; McDonough et al., 2024;
Kamionkowski & Riess, 2023; Poulin et al., 2023), a particle physics inspired extension to
standard cosmology. Both models have ground truth implementations available (but known
to be public only for EDE).

For a successful implementation of Thawing Quintessence, the model needs to introduce the
correct evolution of the dark energy density as a function of time, denoted as w(z), together
with its additional parameters and analytical derivative. In this case, dark energy behaves
as a homogeneous fluid and to compute the dark energy evolution the model can use the
existing fluid evolution framework in CLASS.

While fluid models with w(z) profiles prescribe how dark energy’s pressure-to-density ratio
evolves over time, EDE requires solving for a fundamental dynamical variable that must
achieve a specific behavior—rapidly rising to 10% of the universe’s energy at a precise
epoch before quickly decaying—through solving a new set of differential equations rather
than simply specifying this evolution. This dynamical variable creates its own fluctuations
that interact with matter fluctuations at all scales, requiring coupled equations where the
variable’s evolution both depends on and influences the universe’s expansion rate, unlike
fluid models where the energy evolution is given as an input. The implementation complex-
ity arises because we must compute from first principles how this dynamical component
evolves and gravitationally affects all other components at every scale, rather than treating
EDE as having only aggregate properties that affect the background expansion—making the
computational framework substantially more involved than the prescriptive fluid approach
used for Thawing Quintessence.

The results of the evaluation are in Table 1. Whereas the model can successfully implement
the Thawing Quintessence model, it fails to successfully compute observables for the EDE
model. For the EDE model, the agent inconsistently integrates a density parameter for the
EDE model with certain functions despite an implementation that is otherwise promising.
This breaks a section of the code that adjusts the density parameter via a numerical shooting
algorithm. The generated code patch for Thawing Quintessence can be found in Appendix D.

5.2 ‘Paper to Code’

For Thawing Quintessence, we ran the same experiment after swapping the description.md
file with the tex file of the corresponding paper (Payeur et al., 2025), to examine whether
the agent is still able to generate working code given just the paper, as opposed to a well-
specified problem description. We still include the fiducial cosmology parameter file in this
setting so we can later perform the Stage 2 evaluation against numerical target artifacts. The
agent is still able to generate executable code. However, the comparison against the target



Accepted at the LM4Sci Workshop, COLM 2025.

SN —~ —— Model Omega_fld —— Model Omega_fid
107! N - Target Omega_fid 107! - Target Omega_fld
.
1073 . 1073
N\
2 1078 \\ 2 107
o \ o
g g
£ 1077 % £ 1077
S Y ]
10°° N\ 107°
0-11 N 0-11
g g
g 02 ©
g g 02
g £
a 00 o 00
o o
= 2
E 7 0.2
g -0.2 ]
« 1073 1072 107t 10° 10! 10? 10° 104 o« 1073 1072 107t 10° 10! 102 10° 104
Redshift z Redshift z
Matter Power Spectrum Residual Matter Power Spectrum Residual
— z= 0.10+
— z=1
% 0.00010 5
) o
E E 0.081
g g
& 000005 ]
3  0.06 1
3 s
H H] — =0
H i s — z=1
s 0.00000 T \7, 5 004
£ | £
a =)
H $
£ -0.00005 5002,
& &
-0.00010 0.00
1074 1073 1072 1071 100 10! 107 1073 1072 1 10° 10t

k [Mpc~-1]

10-
k [Mpc™-1]

Figure 2: Target Artifact-based evaluation: The evaluation for Stage 2 compares the evolu-
tion of the relevant dark energy component (Qf;4 for Thawing Quintessence) and the matter
power spectrum at two redshifts against their corresponding ground-truth values generated
by a target implementation of the model. While the agent is able to generate executable
code when provided with the paper (right column), the numerical errors are much higher
than when it is given a condensed, yet detailed description (left column,).
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artifacts, in Figure 2 reveals significantly higher numerical inconsistencies relative to the
condensed model description. This is in part because the model omits a change to the code
where it needs to explicitly rewrite the numerical integration prescription for this model.
These differences do not seem to impact the best fit likelihood values of the models (Table
1).

5.3 Hypothesis Generation

Thus far, our experiments measured the ability of the agent to implement a given cosmologi-
cal model M. In this section, we further examine whether it is capable of developing its own
theoretical model, and implementing it by modifying CLASS. The model is instructed to
read an auxiliary prompt and propose its own cosmological model, prioritizing the following
criteria (in order of importance): (1) novelty, (2) ability to alleviate cosmological tensions and
simultaneously providing a good fit with respect to data, and (3) ease of implementation in
CLASS. We additionally provide it with an example description derived from the descrip-
tion for Thawing Quintessence and an example parameter file for Thawing Quintessence. It
must first create its own description.md file describing its proposed cosmological model,
M, and a corresponding Pr;j,cia1, and then proceed with the remaining stages as before.
Since there doesn'’t exist a target implementation in this setting, the Stage 2 target-based is
skipped in the evaluation of the agent’s submission.

We ran two experiments in this setting (summarized in Table 2). In the first experiment, the
agent’s proposed model implementation fails to cross the second milestone. In the second
experiment, the agent succeeds at generating executable code for its model. The model
proposes a phenomenological dark energy model with the following oscillatory equation of
state

z

ZU(Z):ZUO'f'wﬂ'm

+ Aosc - exp(—az) -sin (w - In(1+42z) + ¢), 1)

where z is the cosmological redshift, wy is the present-day equation of state , w, controls
the linear evolution with redshift, Agsc is the amplitude of oscillations, « is the damping
parameter that causes oscillations to decay at high redshift, w controls the frequency of
oscillations in log(1+z) space, and ¢ is the phase offset of the oscillations.

In Stage 3, its Ppest— it value yields a likelihood of -12.59. For reference, the Pp,g;_ri; for
ACDM, the canonical model, yields a likelihood of -12.88. However, the agent appears to
achieve the superior fit by proposing a six parameter extension to ACDM (including wy and
w,). Adding more parameters to a model should in principle improve fits to data, since the
theory now possesses more degrees of freedom.

Table 1: Results for Target Artifact-based Evaluation Experiments

Model Early Dark Thawing Thawing
Energy Quintessence Quintessence
[from paper]

Milestone 0 [Patch Exists?]

v v v
Milestone 1 [Code compiles?]

v v v
Milestone 2 [Observables can be
computed?] x v v
Qx(z) Max Fractional Deviation - 443e —10 0.248
mPk(z = 0) (k) Max Frac. Deviation - 1.31e — 4 0.0997
mPk(z = 1) (k) Max Frac. Deviation - 1.67¢ — 05 0.0266
Stage 3 Evaluation -
DESI-Planck Prigycia InL —4.21e3 —47.8
DESI-Planck Ppest_ it InL —147 ~148
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Table 2: Results for LLM-proposed model experiments

Model Novel One-Shot Novel One-Shot
Run1 Run 2
Milestone 0 [Patch Exists?]
v v
Milestone 1 [Code compiles?]
v v
Milestone 2 [Observables can be
computed?] X v
Stage 3 Reward -
DESI-Planck Prigyciar InL —111
DESI-Planck Ppgest— it InL —12.6

6 Conclusions

This work introduces an end-to-end framework that seeks to replicate the cosmological
model-building research pipeline and examines the ability of an LLM-based agent, Claude
Code, to execute multiple stages of the process. We first examine performance on two
cosmological models for which ground truth codebase implementations are available: while
the agent is able to generate code that compiles for both models, it only crosses all milestones
and is able to complete Stage 3 for one. We further performed an ablation test by providing
the agent with the text of the paper, instead of the well-specified problem description. This
setting raises the challenge of the task since the agent must now also extract the most relevant
information to modifying the codebase. Lastly, we took a step in the direction of automating
theory development by additionally entasking the model to now devise and implement
its own cosmological model. While the model succeeds at creating a model that attains a
slightly better fit to data, it does so at the cost of introducing additional parameters.

Our results demonstrate both the promise and limitations of LLM-driven scientific model
discovery, providing a concrete framework for evaluating Al agents on complex scientific
workflows that combine domain knowledge, mathematical implementation, and empirical
validation. While our experiments measured agentic ability with minimal human inter-
action (only to grant permissions), the framework directly accommodates greater human
interaction. By accelerating the pace of cosmological model exploration such pipelines may
facilitate progress on one of the most pressing questions in modern physics: understanding
the nature of dark energy.

Our current framework represents initial progress on the route to automated cosmological
model discovery. Moving forward, we plan to expand our approach in two key directions to
enable more systematic and principled exploration of the theoretical landscape. First, we will
implement evolutionary algorithm-inspired approaches that use the computed likelihood
to iteratively guide the discovery of improved dark energy models. Rather than exploring
fixed parameterizations, this approach will enable the LLM to evolve functional forms for
scalar field potentials and dark energy evolution, using reward signals to steer toward
models that better explain observations. We will extend this framework to incorporate
interactions between dark energy and dark matter sectors—a theoretically motivated class
of models that could address multiple cosmological tensions simultaneously.

Second, we will expand our current likelihood-based reward function to include other
rewards, such as the ability to alleviate other cosmological tensions such as the Hj tension,
and compute Bayesian evidence ratios comparing proposed models to ACDM. The inclusion
of the latter addresses a critical limitation of our current approach: models with additional
parameters can achieve better fits simply by overfitting the data. By using evidence ratios as
rewards, we will naturally penalize models for their increased complexity while rewarding
simpler extensions that can still explain the observations. This Bayesian framework will
provide a more principled basis for model selection and better align our automated discovery
process with standard practices in cosmological model comparison.
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Together, these enhancements will create a more robust system for autonomous cosmological
theory development, capable of both broader exploration and more rigorous evaluation of
proposed alternatives to our current understanding of the cosmos.
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Appendix

A Cosmological Models

A1 Problem Specification

We provide Prig,ciar as a JSON dictionary that can be used with the Python wrapper to
C, Classy. In addition to the JSON, we include an optional ‘ini” version of Prjj,, that
may be used to compute observables using the modified CLASS executable directly, in case
errors were encountered with the Classy wrapper. In addition to describing the theory, and
added parameters, the standard description.md also includes implementation details to
align the agents assumptions on the codebase and the input parameter with that of the target
implementation. This is done so that we can consistently use the same Pr;z,.i,; dictionary
with both the LLM’s implementation, as well as the target repository (when we pre-save
observables for comparison in Stage 2).

We additionally include a problem_context.yaml file with the following structure and fields.

10


https://arxiv.org/abs/1104.2932
https://arxiv.org/abs/2503.14743
https://doi.org/10.1142/S0218271824300039
https://doi.org/10.1142/S0218271824300039
https://openai.com/index/openai-o1-system-card/
https://arxiv.org/abs/2411.13637

Accepted at the LM4Sci Workshop, COLM 2025.

* stage2:

- type: This entry confers our framework with the ability to accommodate
problems with and without a target / ground truth implementation. Options:
artifact-based | none

- presave_in: If “type’ is artifact-based, this entry determines whether the target
implementation’s observables were presaved using the C executable or Classy.
Options: Classy | C_exec

— presaved_observables: If ‘type’ is artifact-based, this entry determines which
observables should be presaved using the target repository. Eg: [’mPk’,
’Omega’ ]

— save_observables: Which observables to save during Stage 2 of the agentic
experiment. Eg: [’cls’, ’mPk’, ’'Omega’, ’'H@’, ’sigma8’, ’'S8’]

— model_specific_tests:

+ comparison_qty: Which observables to compare between the target imple-
mentation and the agent’s implementation.
+ field: Which dark energy density parameter is relevant to the problem. Eg:
Qe fr Q fld
¢ stage3:

- type: Whether to find parameters that minimize the negative log-likelihood
(minimization) or ask the agent to manually propose and explore the model’s
behavior in different limits on its own (exploration).

- vary_paranms: Single-line instruction explaining which parameters need to be
minimized / explored.

¢ extra_context_files: This allows us the flexibility to include additional problem-
specific contextual prompts for an experiment. Eg: ["propose_model_prompt.md"]
for Hypothesis Generation

A.2 Problem Instances
A.2.1 Early Dark Energy

The dark energy density parameter of interest here is (..

A.2.2 Thawing Quintessence

The agent is instructed to minimize ()4, h and the added parameters. The density parame-
ter of interest here is Q)¢j;. The description.md we used is below. The body consists of the
three sections: the description of the theory, the

The Thawing Quintessence (Tanh Parametrization) Model

This is a thawing quintessence model characterized by a specific parametrization of
the dark energy equation of state, w(z). Thawing quintessence models propose that
the dark energy is a scalar field that was initially frozen (mimicking a cosmological
constant with w ~ —1) due to Hubble friction at high redshifts. As the universe
expands and Hubble friction decreases, ¢ eventually unfreezes. At that point, w
departs from -1, and the ensuing evolution of ¢ and w depends on the scalar potential
V (¢). the field begins to “thaw” and evolve, causing w to deviate from -1.

The core of this model is a phenomenological parametrization for the equation of
state w(z) designed to capture the qualitative behavior of thawing quintessence in a
model-independent way:

w(z) = 52 (1 —tanh(ZAzZC)> -1

where:

* zis the cosmological redshift.
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* Aw controls the magnitude of the transition in w. The equation of state
transitions from w ~ —1 at high z to w ~ —1 + Aw at low z (specifically, for
z < z.). Consider Aw in the range [0, 2], ensuring w stays between —1 and

* z. is the redshift at which the transition is centered. The prior on z, is [0,
0.25] and forces the transition to occur in the near past.

* Az determines the width (in redshift) of the transition. log;,Az is in
[-1.5,0.5].

This parametrization ensures w(z) — —1 at high redshifts (z > z.). The model re-
duces to a cosmological constant (ACDM) if Aw = 0. It can also appear indistinguish-
able from ACDM if the transition occurs very far in the past (z. >> relevant redshifts)
or entirely in the future (z. < 0 with small Az).

Parameters / .ini Structure for Added Parameters: This model introduces 3 new
parameters beyond the standard ACDM parameters. For implementation in CLASS,
these parameters should be added to the input . ini file. Names and descriptions

are:
Parameter in .ini Description Typical Range (Priors)
delta.w The amplitude of the transition in 0...2

w(z).

log10_delta_z Base-10 logarithm of the width of the Fixed to —1.5
transition, log;,(Az).

zc The redshift z. at the center of the -2...2
transition.

Additional background field variables: When running CLASS with this model,
the following variables related to the thawing quintessence component should be
accessible in the background.dat output file:

* w: The equation of state w(z) = pi;/pt, of the thawing quintessence fluid.
Implementation Details

¢ In background_initial_conditions you should compute numerically the
simple 1d integral [int;, 3[(1 + wy4) /a]da] (e.g. with the Romberg method)

Aini
instead of calling background_w_f1ld to get integral_fld (this is left to 0 in
calculations done is background_w_f1d).
¢ Use the already implemented minimal Parametrized Post-Friedmann (PPF)

approach via the perturbations.c module.

A.2.3 Hypothesis Generation

In this setting since the LLM has to create its own (M, Prjg,cia1), there is an additional
auxiliary prompt, propose_model.md. It thus modifies the empty description and Prizyciar
files before proceeding to the remaining stages.

Propose Model Prompt

You are a cosmologist, seeking to propose a beyond-Lambda CDM model that will
resolve current outstanding issues / tensions in cosmology. Specifically, you want to
introduce a model that satisfies the following criteria (in order of importance):

1. Novelty: You should propose a new model that has * not * been implemented
/ explored in the literature.
2. Your model must optimally satisfy the following four criteria (rewards):

a) Minimizes the Hubble Tension (current discrepancies in the HO value inferred from
late-time model independent observations and ”early-universe” measurements)
b) Minimizes the S8 tension
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c) Has a high likelihood with respect to DESI BAO data and a Planck marginal
likelihood
d) Is consistent with LCDM Cls

3. You will have to implement this model by refactoring the cosmological code
CLASS (Cosmic Linear Anisotropy Solving System)** (you are currently in
this codebase). So you may strategically choose to propose a model that you
think would be easier for you to implement in CLASS.

Create a model description as in the example below:

EXAMPLE 1:

EXAMPLE DESCRIPTION.MD: <Example description derived from> Thawing
Quintessence

EXAMPLE PARAM _BASE.JSON: Prjj,ciai dictionary for Thawing Quintessence
You will need to create a description.md file and a param_base.json file. After doing
this, proceed to complete the implementation related tasks in stagel_prompt.md,
stage2_prompt.md and stage3_prompt.md. Note, even if the other prompts discour-
age you from modifying param_base.json, you **are** allowed to modify it to to get
it to work with your implemented model in CLASS, if for example, it needs extra
flags to work with Classy (the Python wrapper to CLASS) successfully.

B Environment Details

The agent performs its tasks in a Podman (rootless) emulator for Docker. The Dockerfile
that builds the image pre-installs CLASS (version 3.3.0), as well as the code needed to run a
Claude Code session. The script that launches the experiment by creating a new container
mounts certain host system folders to the containerized environment. This ensures that the
agent has access to the necessary auxiliary code and that its submission folder remains on
the host system once its experiment ends.

B.1 Auxiliary Modules and Files

The files that are available in the directory, in addition to the base /class code files include
prompt files, high-level summaries of key CLASS modules and auxiliary code modules
relevant to Stages 2 and 3.

Prompts The instructions specific to each stage are separated into three prompt files:
stagel_prompt.md stage2_prompt.md, stage3_prompt.md.

Filemaps The CLASS code base is considerably long: the perturbations.c module ,for
example, has over 10000 lines of code. To facilitate navigation across such a codebase, we
presave LLM-generated summaries of the the background.c, perturbations.c and input.c
modules. We do so by giving the LLM, Gemini-2.5-pro (Google LLC) a prompt along with
the saved module with corresponding line numbers.

B.2 Agent Design

Web Access The command that launches the agentic experiment disallows the "WebSearch’
and "WebFetch’ tools so the agent cannot use its intrinsic web access tools. The Dockerfile
that constructs the environment further contains code that overwrites common web-access
relevant commands such as ping and curl to ensure that they pass through a network filter
that only allows ”"permitted” domains, so as to eliminate the LLM from circumventing the
blocked tools by executing bash commands that query the Internet.

Claude Code We chose Claude Code as the agentic framework since modifications re-
quired to implement an arbitrary cosmological model necessitate changes to several parts of
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the code, to fully incorporate the extension into the code base. Claude Code is a terminal-
based agentic framework that has the ability to read files, navigate large code bases and
execute code. The npm Claude Code release version we used was 1.0.31. Note, regardless
of the version, all experiments we report here used claude-sonnet-4 as the main model,
although the agentic framework relegates easier tasks to a smaller model. By leveraging the
‘allowedTools’ flag while launching a new experiment, we allow most necessary tools, such
as bash commands, python commands among others to run without requiring permission
from the user. In spite of doing so, the agent will still prompt the human user for permission
to run certain risky or new commands (such as a make command). This shows up as a
multiple-choice selection on the user’s interface. Across experiments we followed the same
level of human interaction: we grant it permission for all commands, and do not interact
with the agent after the initial experiment-launching prompt.

C Pipeline Details

An experiment is launched with the following command for the experiments with a provided
input cosmological model:

claude "Complete the tasks by following the instructions in the three
prompts stagel_prompt.md, stage2_prompt.md and stage3_prompt.md.
Start by opening stagel_prompt.md, completing the tasks described
for Stage 1 and then proceed to complete the tasks for the Stage 2
and Stage 3 by reading the tasks in those prompts. Your final
outputs will be evaluated by the eval_script.sh. You may NOT access
the Internet at any point. Please continue until you have
successfully completed all stages.” --model $MODEL --verbose
--disallowedTools="WebSearch, WebFetch”

For the Hypothesis Generation experiment, the following command launches the agentic
experiment:

claude "You must first devise your own novel beyond-Lambda CDM
cosmological model. Read the instructions in
propose_model_prompt.md. Once you have described your cosmological
model in description.md and param_base.json, complete the tasks by
following the instructions in the three prompts stagel_prompt.md,
stage2_prompt.md and stage3_prompt.md. Start by opening
stagel_prompt.md, completing the tasks described for Stage 1 and
then proceed to complete the tasks for the Stage 2 and Stage 3 by
reading the tasks in those prompts. Your final outputs will be
evaluated by the eval_script.sh. You may NOT access the Internet at
any point. Please continue until you have successfully completed all
stages."” --model $MODEL --verbose
--disallowedTools="WebSearch,WebFetch”

C.1 Stage?2

In Stage 2, the LLM must compute observables using Pr;z,i,;. We design the script that
the LLM must use to compute observables so that it prioritizes computing the observables
via the Python wrapper, Classy and subsequently falls back to the C executable if the
former fails. The design choice of the using a predefined script that the LLM must use to
compute observables enforces uniformity in how observables are computed and stored,
which enables a straightforward comparison to the target observables.

C.2 Stage3

In the Minimization variant, the agent must create a configuration file that specifies which
parameters must be fixed and which should be kept free, and must additionally specify
reasonable bounds for each parameter that is to be optimized. In our experiments, we
instructed the agent (via the problem context file) to vary the added parameters, in addition
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to {Qegm, h}: the density parameter for cold dark matter and the expansion rate of the
universe divided by 100. To optimize a different set of parameters, one would only need to
modify the single line instruction relevant to this step in the problem context.yaml.

D Experiment Results

For the experiments we discuss here, the cost of a single experiment with Claude Sonnet-4 is
less than $5: $3.75 for EDE, $1.91 for Thawing Quintessence ($1.92 with the paper as input),
and $4.52 for the Hypothesis Generation experiment with the code that builds successfully.

We provide the patch that the LLM generated for the Thawing Quintessence experiment
below:

diff --git a/include/background.h b/include/background.h
index fe4d42d8..308bf546 100755

--- a/include/background.h

+++ b/include/background.h

ee -12,7 +12,7 ee

/*x list of possible parametrisations of the DE equation of state
*/

-enum equation_of_state {CLP,EDE};
+enum equation_of_state {CLP,EDE,TANH};

/*x list of possible parametrizations of the varying fundamental
constants */
@@ -112,6 +112,9 @@ struct background
double cs2_fld; /x*x< \f$ c"2_{s"DE} \f$: sound speed of the
fluid in the frame comoving with the fluid (so, this is
not [delta p/delta rhol in the synchronous
or newtonian gauge!) =*/

double Omega_EDE; /**%< \f$ wa_{DE} \f$: Early Dark
Energy density parameter x/
+ double dw_tanh; /**%x< \f$ \Delta w \f$: amplitude of
the transition in w(z) for tanh parametrization =*/
+ double dz_tanh; /**< \f$ \Delta z \f$: width of the
transition for tanh parametrization =*/
+ double z_tanh; /*%< \f$ z_c \f$: redshift at center

of transition for tanh parametrization =*/
double x scf_parameters; /*x< list of parameters describing the
scalar field potential =*/

short attractor_ic_scf; /x*< whether the scalar field has
attractor initial conditions */
int scf_tuning_index; /**< index in scf_parameters used for

tuning */
diff --git a/source/background.c b/source/background.c
index f24fc814..ce472491 100755
--- a/source/background.c
+++ b/source/background.c
@@ -702,6 +702,14 @@ int background_w_fld(
// w_ede(a) taken from eq. (11) in 1706.00730
*w_fld = -
dOmega_ede_over_daxa/Omega_ede/3./(1.-Omega_ede)+a_eq/3./
(ata_eq);
break;
case TANH:

// w(z) = (Delta_w/2) x (1 - tanh((z - z_c)/Delta_z)) - 1
// Convert scale factor to redshift: z = 1/a - 1

+ 4+ + +
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+ double z = 1./7a - 1.;

+ *w_fld = (pba->dw_tanh/2.) x (1. - tanh((z -
pba->z_tanh)/pba->dz_tanh)) - 1.;

+ }

it break;
3

@@ -721,6 +729,18 @@ int background_w_f1ld(
+ dOmega_ede_over_da*dOmega_ede_over_da*a/3./(1.-Omega_ede)/
(1.-Omega_ede)/Omega_ede
+ a_eq/3./(ata_eq)/(a+ta_eq);

break;
+ case TANH:
+
o // dw/da = dw/dz * dz/da = dw/dz * (-1/a"2)
+ // dw/dz = (Delta_w/2) * (-1/Delta_z) * sech®2((z -
z_c)/Delta_z)
it // = -(Delta_w/2) * (1/Delta_z) * (1 - tanh"2((z -
z_c)/Delta_z))
+ double z = 1./7a - 1.;
i double tanh_arg = (z - pba->z_tanh)/pba->dz_tanh;
+ double tanh_val = tanh(tanh_arg);
+ double dw_dz = -(pba->dw_tanh/2.) * (1. -
tanh_val*tanh_val) / pba->dz_tanh;
+ *dw_over_da_fld = dw_dz * (-1./(a*a));
+ }
+ break;
3
/*x - finally, give the analytic solution of the following
integral:
@@ -740,6 +760,10 @@ int background_w_f1ld(
case EDE:
class_stop(pba->error_message,"EDE implementation not
finished: to finish it, read the comments in background.c
just before this line\n");
break;
+ case TANH:
+ // For TANH, we set integral_fld to @ and handle it
numerically in background_initial_conditions
+ *integral_f1ld = 0.;
+ break;

}

/** note: of course you can generalise these formulas to
anything,
@@ -2251,6 +2275,28 @@ int background_initial_conditions(
[(1+w_fld)/al dal (e.g. with the Romberg method?) instead
of
calling background_w_fld =*/

T /* For TANH parametrization, compute integral numerically if
needed =*/

+ if (pba->fluid_equation_of_state == TANH && integral_fld ==
0.) {

+ // Compute integral numerically: int_{a_ini}"{a_0}
3(1+w_fld)/a da

o // Using simple trapezoidal rule with sufficient steps

+ int n_steps = 1000;

o double da_step = (1.0 - a) / n_steps;

+ double integral_sum = 0.0;

+ double a_temp, w_temp, dw_temp, integral_temp;
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+ 4+ + +

+ 4+ + + + o+ + 4+

@@

@@

+ 4+

+ 4+ o+ o+ o+ +

@@

+
+
+

for (int i = @; i <= n_steps; i++) {
a_temp = a + i * da_step;
class_call (background_w_fld(pba, a_temp, &w_temp,
&dw_temp, &integral_temp), pba->error_message,
pba->error_message);
double integrand = 3.0 * (1.0 + w_temp) / a_temp;

if (i == || i == n_steps) {
integral_sum += 0.5 * integrand * da_step;
} else {
integral_sum += integrand * da_step;
}
}
integral_fld = integral_sum;

3

/* rho_fld at initial time =/
pvecback_integration[pba->index_bi_rho_fld] = rho_fld_today =
exp(integral_f1ld);

diff --git a/source/input.c b/source/input.c
index 933e586c¢c..3e7f30e9 100755

--- a/source/input.c

+++ b/source/input.c

-3279,6 +3279,9 @@ int input_read_parameters_species(struct
file_content x pfc,
else if ((strstr(stringl,”EDE") != NULL) ||
(strstr(stringl,"ede”) != NULL)) {
pba->fluid_equation_of_state = EDE;
}
else if ((strstr(stringl,”TANH") != NULL) ||
(strstr(stringl,”tanh”) != NULL)) {
pba->fluid_equation_of_state = TANH;
}
else {
class_stop(errmsg,”"incomprehensible input '%s' for the
field 'fluid_equation_of_state'"”,stringl);
3
-3298,6 +3301,14 @@ int input_read_parameters_species(struct
file_content x pfc,
class_read_double ("Omega_EDE", pba->Omega_EDE);
class_read_double ("cs2_fld",pba->cs2_f1ld);
3
if (pba->fluid_equation_of_state == TANH) {
/** 8.a.2.4) Equation of state of the fluid in 'TANH' case
*/
/* Read =x/
class_read_double ("dw_tanh"”,6 pba->dw_tanh);
class_read_double("dz_tanh",6 pba->dz_tanh);
class_read_double("z_tanh"”,pba->z_tanh);
class_read_double ("cs2_f1ld"”,pba->cs2_f1ld);
}
3

/*x 8.b) If Omega scalar field (SCF) is different from @ x/
-5903,6 +5914,10 @@ int input_default_params(struct background
*pba,

pba->wa_fld = 0@.;

/** 9.a.2.2) 'EDE' case */

pba->Omega_EDE = 0.;

/*%x 9.a.2.3) 'TANH' case x/

pba->dw_tanh 1.0;

pba->dz_tanh = ©.03162277660168379; // 10" (-1.5)

17




Accepted at the LM4Sci Workshop, COLM 2025.

+ pba->z_tanh = 0.1;
/*%x 9.b) Omega scalar field =/

/*% 9.b.1) Potential parameters and initial conditions =*/
pba->scf_parameters = NULL;
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