
UCS-SQL: Uniting Content and Structure for Enhanced Semantic Bridging
In Text-to-SQL

Anonymous ACL submission

Abstract

With the rapid advancement of large language001
models (LLMs), recent researchers have in-002
creasingly focused on the superior capabilities003
of LLMs in text/code understanding and gener-004
ation to tackle text-to-SQL tasks. Traditional005
approaches adopt schema linking to first elimi-006
nate redundant tables and columns and prompt007
LLMs for SQL generation. However, they of-008
ten struggle with accurately identifying corre-009
sponding tables and columns, due to discrep-010
ancies in naming conventions between natural011
language questions (NL) and database schemas.012
Besides, existing methods overlook the chal-013
lenge of effectively transforming structure in-014
formation from NL into SQL. To address these015
limitations, we introduce UCS-SQL, a novel016
text-to-SQL framework, uniting both content017
and structure pipes to bridge the gap between018
NL and SQL. Specifically, the content pipe fo-019
cuses on identifying key content within the orig-020
inal content, while the structure pipe is dedi-021
cated to transforming the linguistic structure022
from NL to SQL. Additionally, we strategically023
selects few-shot examples by considering both024
the SQL Skeleton and Question Expression025
(SS-QE selection method), thus providing tar-026
geted examples for SQL generation. Experi-027
mental results on BIRD and Spider demonstrate028
the effectiveness of our UCS-SQL framework.029

1 Introduction030

Text-to-SQL is the task of translating natural lan-031

guage queries into SQL statements, which has032

garnered extensive research attention and practi-033

cal application in database querying (Qin et al.,034

2022; Sun et al., 2023). Based on the represen-035

tations encoded by BERT-style pre-trained mod-036

els, abstract syntax trees (Wu et al., 2023; Guo037

et al., 2019; Wang et al., 2020) and predefined038

query sketches (He et al., 2019) are implemented039

for query decoding. Further, some works extract040

generalized question-to-SQL patterns by training041

+ Schema
Linking

+ LLM
Generation

Question

SQL Query

+ Prompt
Engineering

+ In-context
Learning

Content Dimension

St
ru

ct
u

re
 D

im
e

n
si

o
n

SQL Skeleton

SQL
Identifiers

Functions

Entities

Integrated Generation

Integrated
Generation

Figure 1: Traditional pipelines directly generate SQL
query from NL question. We decompose text-to-SQL
task into content and structure dimensions, enabling key
content extraction and linguistic structure transforma-
tion to collaboratively enhance SQL generation.

encoder-decoder models on text-to-SQL corpora 042

(Hui et al., 2022; Li et al., 2023a,b; Zheng et al., 043

2022; Gao et al., 2024a). Inspired by the pow- 044

erful capabilities of large language model (LLM) 045

in handling complex reasoning (Wei et al., 2022; 046

Yao et al., 2023), the recent studies have achieved 047

promising results by developing prompt engineer- 048

ing for LLMs (Dong et al., 2023; Pourreza and 049

Rafiei, 2023; Gao et al., 2024a). For example, im- 050

plementing schema linking to eliminate redundant 051

information, followed by guiding LLMs to generate 052

SQL queries through in-context learning processes. 053

The forefront researches adhere to the retrieve- 054

then-generate paradigm. MCS-SQL (Lee et al., 055

2024) exploits LLMs’ extensive sample libraries 056

for schema linking and employs multiple prompts 057

to elicit diverse LLM responses. RSL-SQL (Cao 058

et al., 2024) integrates bidirectional schema link- 059

ing, contextual information augmentation, binary 060

selection strategy, and multi-turn self-correction to 061

achieve state-of-the-art performance. However, the 062

traditional retrieve-then-generate pipeline in text- 063

to-SQL tasks still confronts two challenges. (1) Ex- 064

isting methods struggle with precise schema link- 065

ing and identifier selection (e.g., column and table 066

1

Extract

Question Stage SQL StageTransitional Stage

Question

+ Evidence
+ Foreign Keys

Induction

Filling

Natural language Structured Query Language

Original Content Key Content

Deduction

Reference

Content
Information

Identifiers
SQL

Identifiers

Functions
SQL

Skeleton
Structure Pipe

Content Pipe

Structure
Information

SQL Query

Pre-filtered
Schema + Schema

 Linking

Bi-filtered
Schema

Schema

User

Database

Figure 2: The framework of UCS-SQL, which consists of three stages uniting content and structure pipe. In question
stage, LLM extracts content and structure information from the original question. Transitional stage facilitates the
deduction from information to derive the candidate identifiers and functions. In SQL stage, they are combined to
form the final query.

names) due to terminological mismatches between067

colloquial questions and schema identifiers. (2)068

Moreover, they seldom address the extraction and069

transformation of structural information from the070

natural language (NL) question to the SQL query,071

while bridging the gap of different linguistic struc-072

tures is crucial for effective query generation. To073

address the aforementioned challenges, we plan to074

propose a more comprehensive deductive approach075

for in-context learning, emphasizing both content076

and structural dimensions. Specifically, in the con-077

tent dimension, we deduce SQL identifiers step by078

step, thereby transforming the original content into079

key content. In the structure dimension, we derive080

the SQL skeleton from the question, facilitating081

the linguistic structure from NL to SQL. Figure 1082

demonstrates the integration of question compre-083

hension and SQL query generation from content084

and structure pipes.085

In this paper, we introduce UCS-SQL1, a three-086

stage text-to-SQL framework that integrates con-087

tent and structure pipes to enhance semantic bridg-088

ing. The content pipe extracts key information from089

the raw question, while the structure pipe converts090

NL into SQL syntax. Figure 2 illustrates the UCS-091

SQL framework. In the question stage, a LLM092

extracts content and structure information from the093

raw question. Then in the transitional stage, we094

prompt the LLM to transform them into SQL iden-095

tifiers and functions. The content pipe integrates096

evidence and foreign keys to refine content infor-097

mation and performs bi-directional schema link-098

ing to identify relevant schema identifiers, while099

1https://anonymous.4open.science/r/UCS-9CBE

the structure pipe infers SQL functions based on 100

the extracted structure information. Finally, in the 101

SQL stage, we construct a SQL skeleton using 102

the inferred functions and fill it with the identi- 103

fied identifiers to generate the final query. Addi- 104

tionally, we develop an SS-QE algorithm to select 105

few-shot examples for the LLM, considering simi- 106

larities in both SQL skeletons and question expres- 107

sions. Comprehensive evaluations on the BIRD and 108

Spider datasets demonstrate that UCS-SQL outper- 109

forms several baselines in terms of Valid Efficiency 110

Score (VES) and Execution Accuracy (EX) across 111

different difficulty levels. It achieves top-2 perfor- 112

mance on all evaluation metrics on BIRD and top-3 113

performance on Spider. 114

To summarize, our contributions are as follows: 115

• We propose UCS-SQL, a three-stage text-to- 116

SQL framework that unites content and struc- 117

ture pipes to respectively extract key content 118

and transform linguistic structure, thereby col- 119

laboratively enhancing SQL query generation. 120

• We introduce SS-QE algorithm to select few- 121

shot examples, which utilizes the structure 122

information from UCS-SQL and takes into 123

account the similarities in both SQL structure 124

and question expression. 125

• Empirical evaluations indicate that UCS-SQL 126

framework attains 3nd place in all evaluation 127

metrics on BIRD and Spider. Ablation exper- 128

iments demonstrate that all three stages and 129

both pipes in the UCS-SQL are crucial for 130

performance enhancement. 131

2

https://anonymous.4open.science/r/UCS-9CBE

2 Problem Definition132

Text-to-SQL is the task of converting a natural lan-133

guage question Q into a correct SQL query Y . The134

database can be represented as D = {T1, T2...Tm},135

m is the number of tables in the database. For136

T = {C1, C2...Cn}, Ci refers to columns in ta-137

ble T , n is the number of columns in the table.138

When dealing with complex database values, we139

can use external knowledge evidence K to sup-140

port our model understand the inner relationship141

between question and database. The process could142

be formulated as follows:143

Y = f (Q,D,K| θ) (1)144

where f(·|θ) represent a model with parameters θ.145

3 UCS-SQL146

3.1 Overview147

We introduce UCS-SQL, a parallel text-to-SQL148

framework that integrates content and structure149

pipes to enhance semantic bridging. As illustrated150

in Figure 2, the framework comprises three stages:151

question, transitional, and SQL stages. (1) In the152

question stage, we prompt an LLM to extract con-153

tent information and structure information from the154

original question. (2) The transitional stage acts as155

a bridge between the question and SQL stages. We156

combine the content information with the database157

schema to obtain candidate identifiers in the con-158

tent pipeline and deduce SQL functions from the159

structure information in the structure pipeline. (3)160

In the SQL stage, we first generate an SQL skele-161

ton based on the inferred SQL functions and the162

original question. Then, we fill the skeleton with163

the candidate identifiers to produce the final SQL164

query. Besides, a novel approach is proposed for se-165

lecting few-shot examples, considering similarities166

in both SQL structure and question expression. The167

following section provides a detailed introduction168

to UCS-SQL and the example selection method.169

3.2 Stage 1: Question Stage170

First, we perform pre-processing on the database171

schema prior by decomposing the original database172

into smaller sub-databases using the selector (Wang173

et al., 2023) to minimize interference from irrele-174

vant tables and columns. Additionally, we main-175

tain column descriptions for each column in the176

pre-filtered schema.177

The question stage is designed to extract key178

content and structure from the original question.179

[What] is the [gender] of [the youngest] [client] who opened account in [the lowest]
[[average] salary] branch?

[gender] [client] [average salary] [the youngest] [the lowest] [average]

Pre-filtered Database Schema

Information Extraction

Question

account_id frequency … data

… … … …
account

district_id A4 … A11

… … … …
district

√

√

… … … …

… … … …

Original Database schema

Content Information Structure Information

Figure 3: The question stage of UCS-SQL. The original
database is pre-processed to filter out irrelevant tables
and columns. Terms representing content and structure
information are extracted from the raw question.

Specifically, we employ LLMs to identify signif- 180

icant content information (e.g., table names and 181

column names) and structure information from the 182

target question to facilitate SQL generation. In 183

the subsequent operations, UCS-SQL proceeds via 184

two parallel pipes, respectively handling SQL gen- 185

eration at the content and structure levels. Fig- 186

ure 3 illustrates the process of the question stage. 187

We prompt the LLM to identify content informa- 188

tion and structure information based on the origi- 189

nal phrase of the question, which we highlight in 190

red and blue colors. These identified elements are 191

extracted and integrated to advance both parallel 192

pipelines to the next stage. It is important to note 193

that the LLM may identify the same word as both 194

content and structure information, such as the word 195

“average” shown in Figure 3. This dual identifica- 196

tion aligns with our objective at the question stage, 197

retaining sufficient relevant information. Further 198

reasoning and selection will be conducted in subse- 199

quent stages. 200

3.3 Stage 2: Transitional Stage 201

The transitional stage is designed to transform the 202

original information extracted from the question 203

into SQL language elements. Figure 4 illustrates 204

the process of this stage. 205

In the content pipe, we first integrate the content 206

information with evidence to convert colloquial 207

phrases into schema-compatible identifiers. Sub- 208

sequently, we perform foreign key expansion to 209

augment the candidate set of potential identifiers 210

for SQL generation. Specifically, we prompt the 211

LLM to identify relevant foreign keys and incorpo- 212

rate the corresponding identifiers into the candidate 213

set. Next, we conduct bi-directional schema linking 214

by combining the schema with the candidate set, 215

3

Induction+ Evidence

+ Foreign Keys

[gender] [client] [average salary]

Content Information

Evidence Combination

Structure Information

[the youngest] [the lowest] [average]

Foreign keys Combination

Identifiers

- Tables:
[cilent],
[district]

- Columns:
[gender], [birth_date]
[A11], [district_id]

Functions

- Functions:
[ORDER BY], [ASC], [DECS], [AVG]

account_id frequency … data

… … … …district_id A4 … A11

… … … …

account_id frequency … data

… … … …district_id A4 … A11

… … … …

Bi-directional
Schema Linking

Bi-filtered Schema

Pre-filtered Database Schema

…

…

Figure 4: The transitional stage of UCS-SQL. Candidate
identifiers and functions are obtained in the content
and structure pipes. Bi-directional schema linking is
performed with reference to the identifiers, yielding the
bi-filtered schema.

which both deduces potential identifiers and filters216

out irrelevant columns from the schema. We match217

the content information with schema identifiers: if218

a close match with a table or column name is found,219

the corresponding identifier is retained. In cases220

where no direct match exists, the LLM searches for221

the most similar expression among column descrip-222

tions and retains the associated identifiers. Through223

careful analysis and deduction, we obtain a refined224

set of identifiers. For instance, the final identifiers225

reveal that column “A4” is irrelevant to the ques-226

tion, so we remove “A4” from the schema to arrive227

at the bi-filtered database schema.228

In the structure pipe, we use the LLM to induce229

SQL functions based on the structure information230

extracted during the question stage. As shown in231

Figure 4, phrases such as “the youngest” and “the232

lowest” suggest the potential use of SQL functions233

like “ORDER BY”, “ASC”, and “DESC” while234

“average” implies the “AVG” function. In summary,235

we distill these insights into a final set of functions.236

3.4 Stage 3: SQL Stage237

In the SQL stage, we first create the SQL skeleton238

by referring to the candidate functions derived from239

the structure pipe. Subsequently, we integrate the240

identifiers from the content pipe with the bi-filtered241

schema to fill the generated skeleton. As a result,242

by unifying the structure and content pipes, we243

ultimately produce the final SQL query.244

In Figure 5, we prompt the LLM to generate245

an SQL skeleton based on the constraints, ques-246

tion context, and all available structure information,247

with particular emphasis on the candidate functions248

from the structure pipeline. The LLM selects func-249

tions such as “ORDER BY”, “ASC”, and “DESC”250

SELECT [column_name] FROM [table_name]
… ORDER BY … [column_name] ASC, …

SELECT T1.`gender` FROM client AS T1
 INNER JOIN district AS T2 ON T1.`district_id` = T2.`district_id`
 ORDER BY T2.`A11` ASC, T1.`birth_date` DESC LIMIT 1

SQL skeleton filling

Identifiers

- Tables:
[cilent],
[district]

- Columns:
[gender], [birth_date]
[A11], [district_id]

Functions

- Functions:
[ORDER BY], [ASC], [DECS], [AVG]

SQL skeleton generation

account_id frequency … data

… … … …district_id A4 … A11

… … … …

Bi-filtered Schema

Deduction

SQL Query

Figure 5: The SQL stage of UCS-SQL. The SQL skele-
ton is inferred from functions. The final SQL query is
constructed by incorporating the identifiers into the SQL
skeleton. The bi-filtered schema serves as a secondary
reference to address cases where the identifiers are not
correctly extracted.

to form the SQL skeleton. Next, we fill the skeleton 251

using the identifiers from the content pipeline, fo- 252

cusing on the recommended identifiers. The LLM 253

identifies “client” and “district” as table names and 254

“gender”, “birth_date”, “A11”, and “district_id” as 255

column names to complete the final SQL query. 256

3.5 SS-QE Example Selection 257

We propose a novel SS-QE few-shot example se- 258

lection approach, which consider the similarities 259

in both SQL structure and question expression. 260

We present the detailed algorithm of our selection 261

method in Algorithm 1. We first extract final identi- 262

fiers and final functions from all the question qi in 263

our training set Q following the process of question 264

stage and transitional stage. Fi is the set of final 265

functions, Ii is the set of final identifiers, while ci 266

is the complexity of qi, which we define as the sum 267

of final identifiers and final functions: 268

ci = |Ii|+ |Fi| (2) 269

First, we evaluate the similarity between qi and q in 270

terms of SQL structure, using Fi and ci as our basis. 271

Specifically, samples with a larger intersection in 272

their final functions and closer complexity values 273

are considered to have a higher degree of SQL 274

structure similarity. To filter these samples, we 275

establish thresholds θ1 and θ2. Subsequently, we 276

add each sample that satisfies these criteria to the 277

set S1, continuing this process until S1 contains 278

2k samples. Next, we further utilize LLM to pick 279

top-k examples from S1 based on their similarity 280

with q in question expression, Figure 6 shows the 281

selection prompt in detail. As the result, we obtain 282

4

Algorithm 1: SS-QE Example selection
Input :All the questions Q in training set,

target question q, the number of
few-shot k, threshold θ1 & θ2

Output :Top-k questions S
1 S1 ← ∅;
2 I, F ← LLMInformationExtraction(q);
3 c← |I|+ |F |;
4 foreach qi in Q do
5 Ii, Fi ←

LLMInformationExtraction(qi);
6 ci ← |Ii|+ |Fi|;
7 if (F ∩ Fi ≥ θ1) ∧ (|c− ci| < θ2) then
8 Add qi in S1;
9 end

10 if |S1| = 2k then
11 break;
12 end
13 end
14 S ←

LLMSimilarQuestionExpression(q, k, S1);
15 return S;

k-shot examples that have similar SQL structure283

and question expression.284

4 Experimental Settings285

4.1 Datasets286

BIRD (Li et al., 2023c) represents a cross-domain287

dataset that examines the impact of extensive288

database contents on text-to-SQL parsing. Spider289

(Yu et al., 2018) is a large-scale complex and cross-290

domain semantic parsing and text-to-SQL dataset.291

We report the statistics of datasets in appendix A.292

4.2 Evaluation Metrics293

Following BIRD (Li et al., 2023c), we utilize exe-294

cution accuracy (EX) and valid efficiency score295

(VES) to evaluate text-to-SQL models. EX (Li296

et al., 2023c) is defined as the proportion of ques-297

tions in the evaluation set for which the execution298

results of both the predicted and ground-truth in-299

quiries are identical. VES (Li et al., 2023c) is300

designed to measure the efficiency of valid SQLs301

generated by models.302

4.3 Baselines303

DIN-SQL(Pourreza and Rafiei, 2023) and304

MAC-SQL(Wang et al., 2023) breaks down305

intricate queries into manageable sub-tasks.306

Similar Question Expression Selection Prompt

Select three questions that are closest in question phrasing to the target

question from the source questions and return the list which is contain the

three questions ids. Format of the returned list is as follows:

[3, 672, 19]

target question: {question}

source questions: {[source_questions]}

returned list: {result_ids}

Figure 6: The prompt for selecting examples having
similar question expression with target questions.

E-SQL(Caferoglu and Ulusoy, 2024) and 307

CHESS(Talaei et al., 2024) seek to bridge the 308

divide between natural language queries and 309

database architectures. SQL-PaLM(Sun et al., 310

2023) and SuperSQL(Li et al., 2024a) utilize 311

distinct prompting and fine-tuning methods 312

for adapting large language models (LLMs) in 313

SQL generation. TA-SQL(Qu et al., 2024) and 314

CodeS(Li et al., 2024b) introduce strategies 315

to reduce hallucinations in LLM-based SQL 316

generation. DAIL-SQL(Gao et al., 2024a) is 317

designed to tackle complex database environments. 318

Additionally, methods based on multi-stage strate- 319

gies are included, such as DTS-SQL(Pourreza and 320

Rafiei, 2024) that employs two-stage fine-tuning, 321

MAG-SQL(Xie et al., 2024) that adopts a multi- 322

agent generative approach, and MCS-SQL(Lee 323

et al., 2024) that utilizes multiple prompts and 324

multiple-choice selection. MSc-SQL(Gorti et al., 325

2024) narrows the performance gap of smaller 326

open-source models by sampling and comparing 327

multiple SQL query results. RSL-SQL(Cao 328

et al., 2024) achieve robust schema linking that 329

maximize the benefits. CHASE-SQL (Pourreza 330

et al., 2024) propose multiple chain-of-thought 331

prompting methods and an online synthetic 332

example generation technique. XiYan-SQL (Gao 333

et al., 2024b) integrates the ICL approach to 334

maximize the generation of high-quality and 335

diverse SQL candidates. 336

5 Results and Analysis 337

5.1 Overall Results 338

The overall results of all the baselines and our pro- 339

posed UCS-SQL on BIRD and Spider are shown 340

in Table 1 and Table 2. The experiment results in- 341

dicate that our proposed UCS-SQL achieves better 342

performance than several competitive baselines on 343

the two datasets. 344

5

Method Model
EX

VES
simple moderate challenging total

DIN-SQL GPT-4 - - - 50.72 58.79
DAIL-SQL GPT-4 - - - 54.76 56.08
DTS-SQL DeepSeek-7B - - - 55.80 -
TA-SQL GPT-4 63.14 48.60 36.11 56.19 -
Codes Codes-15B - - - 58.47 59.87
SuperSQL GPT-4 66.90 46.50 43.80 58.50 61.99
MAC-SQL GPT-4 65.73 52.69 40.28 59.39 66.39
MAG-SQL GPT-4 - - - 61.08 -
SQL-Palm PaLM2 68.92 52.07 47.89 61.93 -
MCS-SQL GPT-4 70.40 53.10 51.40 63.36 64.80
CHESS Proprietary - - - 65.00 -
E-SQL GPT-4o - - - 65.58 -
MSc-SQL GPT-4o 72.00 58.00 49.00 65.60 -
RSL-SQL GPT-4o 74.38 57.11 53.79 67.21 70.32
CHASE-SQL Gemini 1.5 - - - 73.01 -
XiYan-SQL - - - - 73.34 -
UCS-SQL DeepSeek 73.67 57.59 56.11 67.23 70.49
UCS-SQL GPT-4o 77.42 61.52 58.93 70.95 73.10

Table 1: EX and VES on dev set of BIRD. UCS-SQL achieves top two performances in both VES and EX across
datasetes of varying difficulty levels.

Method Model EX (dev) EX (test)
DIN-SQL GPT-4 82.8 85.3
DAIL-SQL GPT-4 84.4 86.6
DTS-SQL DeepSeek-7B 85.5 84.4
TA-SQL GPT-4 85.0 -
MAC-SQL GPT-4 86.8 82.8
MAG-SQL GPT-4 85.3 85.6
MCS-SQL GPT-4 89.5 89.6
CHESS Openllms - 87.2
MSc-SQL GPT-4o - 84.7
RSL-SQL GPT-4o - 87.9
CHASE-SQL Gemini 1.5 - 87.6
XiYan-SQL - - 89.6
UCS-SQL DeepSeek 86.5 87.7
UCS-SQL GPT-4o 87.3 88.0

Table 2: UCS-SQL achieves top three performances in
EX on dev and test set of Spider.

In Table 1, we report the performance of UCS-345

SQL and other competitive baselines on develop-346

ment set of BIRD. These recent methods have347

their own distinct characteristics and utilize dif-348

ferent LLM models, such as GPT-4, GPT-4o, and349

DeepSeek. Experiments show that our proposed350

UCS-SQL method almost outperforms the first351

twelve baselines by at least 5.37% on EX and by352

at least 6.71% on VES, only slightly trailing the353

concurrent work RSL-SQL. In addition, UCS-SQL354

performs better than RSL-SQL on samples of mod-355

erate and challenging difficulty, which indicates356

that UCS-SQL can address problems more specif-357

ically when dealing with samples of higher com- 358

plexity. On the other hand, Table 2 shows the exe- 359

cution accuracy of UCS-SQL and other baselines 360

on Spider. Our proposed UCS-SQL achieves ex- 361

cellent results of 87.3% and 88.0% on dev and test 362

sets, surpassing the vast majority of baselines. In 363

conclusion, UCS-SQL respectively achieves top-3 364

results in VES and EX across different difficulty 365

on BIRD and Spider datasets, and ranked first on 366

high-difficulty data, demonstrating the method’s 367

high efficiency in handling complex examples and 368

its generalizability across different scenarios. 369

5.2 Ablation Study 370

To evaluate the contributions of different compo- 371

nents in UCS-SQL, we conducted a series of ab- 372

lation studies using the BIRD dataset, which is a 373

large-scale dataset with complex database struc- 374

tures. The experiments were divided into three 375

groups: (1) assessing the roles of the content pipe 376

and structure pipe, (2) analyzing the contributions 377

of the three stages, and (3) comparing the effective- 378

ness of the SS-QE example selection method. The 379

results are summarized in Table 3. 380

Group 1: Content Pipe vs. Structure Pipe 381

Removing either the content pipe or the structure 382

pipe from the framework led to a decrease in execu- 383

tion accuracy across datasets of varying difficulty, 384

6

Method
EX

simple moderate challenging total

Content & Structure Pipes Dimension (fixed 2-shot)
w/o content pipe 71.81 56.98 52.48 65.58(↓ 1.24)
w/o structure pipe 72.45 56.54 51.77 65.78(↓ 1.04)
w/ both pipes 72.24 60.25 52.48 66.82

Three Stages Dimension (fixed 2-shot)
w/o question & transitional stage 72.13 55.24 49.66 65.00(↓ 1.82)
w/o transitional stage 71.59 58.07 51.07 65.65(↓ 1.17)
w/o SQL stage 71.70 57.42 50.66 65.39(↓ 1.43)
w/ three stages 72.24 60.25 52.48 66.82

Few-shot Example Selection
0-shot 69.45 55.89 46.14 63.24(↓ 7.71)
2-shot (fixed) 72.24 60.25 52.48 66.82(↓ 4.13)
2-shot (SS-QE) 73.99 60.81 54.89 68.28(↓ 2.67)
5-shot (SS-QE) 77.42 61.52 58.93 70.95

Table 3: Ablation study on dev set of BIRD. The three groups of experiments respectively compare the impact of
two pipes, three stages, and different few-shot example selections on UCS-SQL.

with respective drops of 1.24% and 1.04%. The385

results indicate that integrating both content and386

structure information is crucial for guiding LLMs387

to generate SQL queries effectively.388

Group 2: Contributions of the Three Stages389

The ablation studies also examined the necessity of390

the three stages in UCS-SQL. Removing the transi-391

tional stage or the SQL stage resulted in a decrease392

in execution accuracy by 1.17% and 1.43%, respec-393

tively. Additionally, removing the question stage394

further reduced performance by 0.65%. These find-395

ings demonstrate that each stage plays a vital role396

in the overall performance of the framework.397

Group 3: SS-QE Example Selection Method398

The effectiveness of the SS-QE example selection399

method was evaluated by comparing the execution400

accuracy of 0-shot, fixed 2-shot, SS-QE-selected401

2-shot, and SS-QE-selected 5-shot scenarios. The402

results showed a progressive improvement in per-403

formance, with a 1.46% increase from fixed 2-shot404

to SS-QE-selected 2-shot and an additional 2.67%405

improvement when increasing the number of shots406

from 2 to 5. This indicates that the SS-QE method407

effectively selects guiding examples that enhance408

the overall performance of the framework.409

The ablation studies demonstrate that both pipes410

and all three stages in the UCS-SQL framework411

are essential for performance enhancement. This412

validates the rationality of integrating content and413

structure dimensions in a multi-stage framework414

for SQL generation. Additionally, the SS-QE ex-415

ample selection method further leverages the frame-416

work’s capabilities by selecting few-shot examples417

that match the target question’s function and com- 418

plexity, thereby improving the overall performance. 419

6 Discussion 420

6.1 Effect of bi-filtered schema 421

This section examines the impact of bi-filtered 422

schemas generated through the bi-directional 423

schema linking process, using the BIRD dataset 424

due to its large scale and complexity. We define 425

the schema column count as the total number of 426

columns across all tables in a schema. Figure 7 il- 427

lustrates the schema column counts for each sample 428

in the BIRD dev set. The "Overall column counts” 429

represent raw database schemas, which consist of 430

11 distinct databases. The "Gold column counts” 431

reflect columns used as identifiers in gold SQL 432

queries, setting the performance limits for schema 433

linking. The "Pre-filtered column counts” denote 434

schemas filtered using the method described ear- 435

lier, while the "Bi-filtered column counts” represent 436

our bi-filtered schemas. The pre-filtered schemas 437

show inconsistent filtering effectiveness, with a 438

significant gap compared to gold schemas. In con- 439

trast, bi-filtered schemas achieve substantial filter- 440

ing, closely approximating gold schemas in terms 441

of column counts. 442

To further evaluate the effectiveness of bi-filtered 443

schemas, we calculated precision, recall, and F1 444

score using gold schemas as the standard. Ta- 445

ble 4 presents the evaluation results. Pre-filtered 446

schemas have high recall across datasets but poor 447

precision and F1 score (13.26% and 23.31%, re- 448

7

Figure 7: The schema column counts on dev set of
BIRD. The bi-filtered column counts have significantly
decreased compared to the pre-filtered column counts,
and are slightly higher than the gold column counts.

Metric (%)
UCS-SQL

simple moderate challenging total

Pre-filtered Schema
Precision 11.23 15.78 20.56 13.26

Recall 97.33 95.11 96.19 96.42
F1 score 20.14 27.07 33.87 23.31

Bi-filtered Schema
Precision 59.71 73.81 78.90 65.83

Recall 89.14 84.09 85.44 86.93
F1 score 71.51 78.62 82.04 74.92

Table 4: Evaluation of pre-filtered schema and bi-
filtered schema on dev of BIRD.

spectively). In contrast, bi-filtered schemas achieve449

a recall of 86.93%, slightly lower than pre-filtered450

schemas, but with significantly higher precision451

(65.83%) and F1 score (74.92%).452

Bi-filtered schemas effectively eliminate irrele-453

vant columns, closely matching gold schemas in454

column counts. The high precision, recall, and455

F1 score demonstrate the superior performance of456

bi-directional schema linking.457

6.2 Effect of SS-QE method458

This study further examines the impact of the SS-459

QE selection method using the BIRD dataset. The460

DAIL Selection method, as reported in (Gao et al.,461

2024a), is a leading selection technique that pre-462

generates SQL queries and selects examples based463

on high similarity between masked questions and464

masked predicted SQL. We conducted experiments465

on UCS-SQL using both DAIL and SS-QE meth-466

ods in a 5-shot setting. Table 5 shows that the467

SS-QE method outperforms DAIL.468

To explore the underlying reasons, we analyzed469

the selected examples. As shown in Figure 8,470

the DAIL method slightly outperforms SS-QE in471

Figure 8: The evaluation statistics of UCS-SQL using
DIAL or SS-QE selection method on dev of BIRD.

UCS-SQL (5-shot)
EX

simple moderate challenging total

w/DAILS 75.74 60.94 53.07 69.21
w/SS −QE 77.42 61.52 58.93 70.95

Table 5: EX results of UCS-SQL with two example
selection method on dev of BIRD.

average masked question cosine similarity and 472

masked query cosine similarity. However, the SS- 473

QE method exhibits significantly higher function 474

precision and recall. These results indicate that 475

SS-QE more accurately identifies examples with 476

analogous functions to the target sample, making 477

it more suitable for guiding SQL query generation. 478

Moreover, examples with similar complexity and 479

consistent functions provide a broader selection 480

pool compared to those based solely on high SQL 481

skeleton similarity. Even when the sequence or 482

placement of functions varies, they still offer guid- 483

ing significance, which would likely be overlooked 484

by similarity-based selection alone. 485

7 Conclusion 486

In this paper, we propose UCS-SQL, a three-stage 487

text-to-SQL framework integrating a content pipe 488

for key content extraction and a structure pipe for 489

linguistic structure transformation. Through the 490

three stages of UCL-SQL, the content and struc- 491

ture pipes jointly accomplish the generation from 492

NL question to SQL query. Then, we introduce 493

the SS-QE example selection method, which se- 494

lects appropriate few-shot examples for target ques- 495

tions by taking into account the similarities in both 496

SQL structure and question expression. The exper- 497

imental results on the BIRD and Spider datasets 498

demonstrate that UCS-SQL achieves superior per- 499

formance in EX and VES, and substantiate the ef- 500

fectiveness of both the content and structure pipes. 501

The integration of content and structure pipes will 502

guide future research to jointly consider the text-to- 503

SQL generation process from both dimensions. 504

8

Limitations505

UCS-SQL is a pipeline based approach, it will be506

subjected to cascading error effect. An intelligent507

bakctracking approach to reflect and correct the508

intermediate stage outputs can make the system509

more robust, which we will design in the future510

work.511

Ethics Statement512

In this work, all of the datasets, models, code and513

related documents are not associated with any ethi-514

cal concerns.515

References516

Hasan Alp Caferoglu and Özgür Ulusoy. 2024. E-SQL:517
direct schema linking via question enrichment in text-518
to-sql. CoRR, abs/2409.16751.519

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin520
Zhang, Wei Chen, and Xiang Bai. 2024. RSL-521
SQL: robust schema linking in text-to-sql generation.522
CoRR, abs/2411.00073.523

Shuaichen Chang and Eric Fosler-Lussier. 2023. How524
to prompt llms for text-to-sql: A study in zero-shot,525
single-domain, and cross-domain settings. CoRR,526
abs/2305.11853.527

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,528
Yunjun Gao, Lu Chen, Jinshu Lin, and Dongfang Lou.529
2023. C3: zero-shot text-to-sql with chatgpt. CoRR,530
abs/2307.07306.531

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,532
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024a.533
Text-to-sql empowered by large language models:534
A benchmark evaluation. Proc. VLDB Endow.,535
17(5):1132–1145.536

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin537
Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao Hong,538
Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li.539
2024b. Xiyan-sql: A multi-generator ensemble540
framework for text-to-sql. CoRR, abs/2411.08599.541

Satya Krishna Gorti, Ilan Gofman, Zhaoyan Liu, Ji-542
apeng Wu, Noël Vouitsis, Guangwei Yu, Jesse C.543
Cresswell, and Rasa Hosseinzadeh. 2024. Msc-sql:544
Multi-sample critiquing small language models for545
text-to-sql translation. CoRR, abs/2410.12916.546

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-547
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-548
wards complex text-to-sql in cross-domain database549
with intermediate representation. In Proceedings of550
the 57th Conference of the Association for Compu-551
tational Linguistics, ACL 2019, Florence, Italy, July552
28- August 2, 2019, Volume 1: Long Papers, pages553
4524–4535. Association for Computational Linguis-554
tics.555

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and 556
Weizhu Chen. 2019. X-SQL: reinforce schema repre- 557
sentation with context. CoRR, abs/1908.08113. 558

Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin, 559
Yanyang Li, Bowen Li, Jian Sun, and Yongbin Li. 560
2022. S2sql: Injecting syntax to question-schema 561
interaction graph encoder for text-to-sql parsers. In 562
Findings of the Association for Computational Lin- 563
guistics: ACL 2022, Dublin, Ireland, May 22-27, 564
2022, pages 1254–1262. Association for Computa- 565
tional Linguistics. 566

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and 567
Heesoo Park. 2024. MCS-SQL: leveraging multiple 568
prompts and multiple-choice selection for text-to-sql 569
generation. CoRR, abs/2405.07467. 570

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, 571
and Nan Tang. 2024a. The dawn of natural language 572
to SQL: are we fully ready? [experiment, analysis 573
& benchmark]. Proc. VLDB Endow., 17(11):3318– 574
3331. 575

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 576
2023a. RESDSQL: decoupling schema linking and 577
skeleton parsing for text-to-sql. In Thirty-Seventh 578
AAAI Conference on Artificial Intelligence, AAAI 579
2023, Thirty-Fifth Conference on Innovative Applica- 580
tions of Artificial Intelligence, IAAI 2023, Thirteenth 581
Symposium on Educational Advances in Artificial In- 582
telligence, EAAI 2023, Washington, DC, USA, Febru- 583
ary 7-14, 2023, pages 13067–13075. AAAI Press. 584

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi- 585
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan, 586
Cuiping Li, and Hong Chen. 2024b. Codes: Towards 587
building open-source language models for text-to-sql. 588
Proc. ACM Manag. Data, 2(3):127. 589

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, 590
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo 591
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing pre- 592
trained transformers with graph-aware layers for text- 593
to-sql parsing. In Thirty-Seventh AAAI Conference 594
on Artificial Intelligence, AAAI 2023, Thirty-Fifth 595
Conference on Innovative Applications of Artificial 596
Intelligence, IAAI 2023, Thirteenth Symposium on 597
Educational Advances in Artificial Intelligence, EAAI 598
2023, Washington, DC, USA, February 7-14, 2023, 599
pages 13076–13084. AAAI Press. 600

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, 601
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng, 602
Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang 603
Li, Kevin Chen-Chuan Chang, Fei Huang, Reynold 604
Cheng, and Yongbin Li. 2023c. Can LLM already 605
serve as A database interface? A big bench for large- 606
scale database grounded text-to-sqls. In Advances in 607
Neural Information Processing Systems 36: Annual 608
Conference on Neural Information Processing Sys- 609
tems 2023, NeurIPS 2023, New Orleans, LA, USA, 610
December 10 - 16, 2023. 611

OpenAI. 2023. GPT-4 technical report. CoRR, 612
abs/2303.08774. 613

9

https://doi.org/10.48550/ARXIV.2409.16751
https://doi.org/10.48550/ARXIV.2409.16751
https://doi.org/10.48550/ARXIV.2409.16751
https://doi.org/10.48550/ARXIV.2409.16751
https://doi.org/10.48550/ARXIV.2409.16751
https://doi.org/10.48550/ARXIV.2411.00073
https://doi.org/10.48550/ARXIV.2411.00073
https://doi.org/10.48550/ARXIV.2411.00073
https://doi.org/10.48550/ARXIV.2410.12916
https://doi.org/10.48550/ARXIV.2410.12916
https://doi.org/10.48550/ARXIV.2410.12916
https://doi.org/10.48550/ARXIV.2410.12916
https://doi.org/10.48550/ARXIV.2410.12916
https://doi.org/10.48550/ARXIV.2405.07467
https://doi.org/10.48550/ARXIV.2405.07467
https://doi.org/10.48550/ARXIV.2405.07467
https://doi.org/10.48550/ARXIV.2405.07467
https://doi.org/10.48550/ARXIV.2405.07467
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,614
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok615
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and616
Sercan Ö. Arik. 2024. CHASE-SQL: multi-path rea-617
soning and preference optimized candidate selection618
in text-to-sql. CoRR, abs/2410.01943.619

Mohammadreza Pourreza and Davood Rafiei. 2023.620
DIN-SQL: decomposed in-context learning of text-621
to-sql with self-correction. In Advances in Neural622
Information Processing Systems 36: Annual Confer-623
ence on Neural Information Processing Systems 2023,624
NeurIPS 2023, New Orleans, LA, USA, December 10625
- 16, 2023.626

Mohammadreza Pourreza and Davood Rafiei. 2024.627
DTS-SQL: decomposed text-to-sql with small large628
language models. In Findings of the Association for629
Computational Linguistics: EMNLP 2024, Miami,630
Florida, USA, November 12-16, 2024, pages 8212–631
8220. Association for Computational Linguistics.632

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,633
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,634
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022.635
A survey on text-to-sql parsing: Concepts, methods,636
and future directions. CoRR, abs/2208.13629.637

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,638
Chenhao Ma, and Reynold Cheng. 2024. Before639
generation, align it! A novel and effective strategy640
for mitigating hallucinations in text-to-sql generation.641
In Findings of the Association for Computational642
Linguistics, ACL 2024, Bangkok, Thailand and vir-643
tual meeting, August 11-16, 2024, pages 5456–5471.644
Association for Computational Linguistics.645

Ruoxi Sun, Sercan Ö. Arik, Hootan Nakhost, Hanjun646
Dai, Rajarishi Sinha, Pengcheng Yin, and Tomas Pfis-647
ter. 2023. Sql-palm: Improved large language model648
adaptation for text-to-sql. CoRR, abs/2306.00739.649

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,650
and Huan Sun. 2023. Exploring chain of thought651
style prompting for text-to-sql. In Proceedings of the652
2023 Conference on Empirical Methods in Natural653
Language Processing, EMNLP 2023, Singapore, De-654
cember 6-10, 2023, pages 5376–5393. Association655
for Computational Linguistics.656

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen657
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.658
CHESS: contextual harnessing for efficient SQL syn-659
thesis. CoRR, abs/2405.16755.660

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier661
Martinet, Marie-Anne Lachaux, Timothée Lacroix,662
Baptiste Rozière, Naman Goyal, Eric Hambro,663
Faisal Azhar, et al. 2023. LLaMA: Open and ef-664
ficient foundation language models. arXiv preprint665
arXiv:2302.13971.666

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr667
Polozov, and Matthew Richardson. 2020. RAT-SQL:668
relation-aware schema encoding and linking for text-669
to-sql parsers. In Proceedings of the 58th Annual670

Meeting of the Association for Computational Lin- 671
guistics, ACL 2020, Online, July 5-10, 2020, pages 672
7567–7578. Association for Computational Linguis- 673
tics. 674

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, 675
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun 676
Li. 2023. MAC-SQL: A multi-agent collaborative 677
framework for text-to-sql. CoRR, abs/2312.11242. 678

Zihan Wang, Xinzhang Liu, Shixuan Liu, Yitong Yao, 679
Yuyao Huang, Zhongjiang He, Xuelong Li, Yongx- 680
iang Li, Zhonghao Che, Zhaoxi Zhang, Yan Wang, 681
Xin Wang, Luwen Pu, Huihan Xu, Ruiyu Fang, 682
Yu Zhao, Jie Zhang, Xiaomeng Huang, Zhilong Lu, 683
Jiaxin Peng, Wenjun Zheng, Shiquan Wang, Bingkai 684
Yang, Xuewei He, Zhuoru Jiang, Qiyi Xie, Yanhan 685
Zhang, Zhongqiu Li, Lingling Shi, Weiwei Fu, Yin 686
Zhang, Zilu Huang, Sishi Xiong, Yuxiang Zhang, 687
Chao Wang, and Shuangyong Song. 2024. Telechat 688
technical report. CoRR, abs/2401.03804. 689

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 690
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, 691
and Denny Zhou. 2022. Chain-of-thought prompting 692
elicits reasoning in large language models. In Ad- 693
vances in Neural Information Processing Systems 35: 694
Annual Conference on Neural Information Process- 695
ing Systems 2022, NeurIPS 2022, New Orleans, LA, 696
USA, November 28 - December 9, 2022. 697

Hefeng Wu, Yandong Chen, Lingbo Liu, Tianshui Chen, 698
Keze Wang, and Liang Lin. 2023. Sqlnet: Scale- 699
modulated query and localization network for few- 700
shot class-agnostic counting. CoRR, abs/2311.10011. 701

Wenxuan Xie, Gaochen Wu, and Bowen Zhou. 2024. 702
MAG-SQL: multi-agent generative approach with 703
soft schema linking and iterative sub-sql refinement 704
for text-to-sql. CoRR, abs/2408.07930. 705

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 706
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 707
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech- 708
nical report. arXiv preprint arXiv:2412.15115. 709

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 710
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023. 711
React: Synergizing reasoning and acting in language 712
models. In The Eleventh International Conference 713
on Learning Representations, ICLR 2023, Kigali, 714
Rwanda, May 1-5, 2023. 715

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 716
Dongxu Wang, Zifan Li, James Ma, Irene Li, 717
Qingning Yao, Shanelle Roman, Zilin Zhang, and 718
Dragomir R. Radev. 2018. Spider: A large-scale 719
human-labeled dataset for complex and cross-domain 720
semantic parsing and text-to-sql task. In Proceed- 721
ings of the 2018 Conference on Empirical Methods 722
in Natural Language Processing, Brussels, Belgium, 723
October 31 - November 4, 2018, pages 3911–3921. 724
Association for Computational Linguistics. 725

Yanzhao Zheng, Haibin Wang, Baohua Dong, Xingjun 726
Wang, and Changshan Li. 2022. HIE-SQL: history 727

10

https://aclanthology.org/2024.findings-emnlp.481
https://aclanthology.org/2024.findings-emnlp.481
https://aclanthology.org/2024.findings-emnlp.481
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.324
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.324
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.324
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.324
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.324
https://doi.org/10.48550/ARXIV.2306.00739
https://doi.org/10.48550/ARXIV.2306.00739
https://doi.org/10.48550/ARXIV.2306.00739
https://doi.org/10.48550/ARXIV.2405.16755
https://doi.org/10.48550/ARXIV.2405.16755
https://doi.org/10.48550/ARXIV.2405.16755
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.48550/ARXIV.2408.07930
https://doi.org/10.48550/ARXIV.2408.07930
https://doi.org/10.48550/ARXIV.2408.07930
https://doi.org/10.48550/ARXIV.2408.07930
https://doi.org/10.48550/ARXIV.2408.07930

information enhanced network for context-dependent728
text-to-sql semantic parsing. In Findings of the As-729
sociation for Computational Linguistics: ACL 2022,730
Dublin, Ireland, May 22-27, 2022, pages 2997–3007.731
Association for Computational Linguistics.732

A Statistics of datasets.733

Table 6 shows the statistics of two datasets.734

B Implementation Details735

We use a single Tesla V100 GPU with 32 GiBs of736

memory on a server to restore intermediate data737

and execute SS-QE example selection algorithm,738

the retrieving time is about 3∼6 seconds for each739

sample. All the experiments utilize GPT-4-Turbo,740

the context window is 128000, the temperature is741

set to 0.1. We enable five threads to run UCS-SQL742

(approximately 200∼500 samples for each accord-743

ing to the size of dataset), it costs about 4∼6 hours744

to generate all results. The token consumption of745

2-shot UCS-SQL on dev set for BIRD and Spider746

are approximately 5.29 million and 3.47 million747

in input, 0.9 and 0.5 million in output. We use all-748

MiniLM-L6-v2 model to get sentence embedding749

and calculate cosine similarity in the discussion. In750

SS-QE selection method, we set {θ1, θ2} to {2,3}.751

C Related Work752

Large language models (LLMs) have demonstrated753

significant advancements in various natural lan-754

guage processing (NLP) tasks (Wang et al., 2024;755

Touvron et al., 2023; OpenAI, 2023; Yang et al.,756

2024). Some researchers have leveraged LLMs in757

text-to-SQL tasks to further enhance performance.758

A critical aspect of this approach is the design and759

utilization of prompts, which directly influence the760

accuracy of SQL generation by guiding LLMs ef-761

fectively. For example, some methods (Tai et al.,762

2023) try to improve the inference capabilities of763

LLMs using chain-of-thought prompting, includ-764

ing both the original chain-of-thought prompt and765

the least-to-most prompt. Further, a comprehensive766

analysis (Chang and Fosler-Lussier, 2023) of the767

impact of prompt construction across various set-768

tings in text-to-SQL tasks is studied. DAIL-SQL769

(Gao et al., 2024a) considers both questions and770

SQL queries to select few-shot examples, adopts771

an example organization strategy to balance qual-772

ity and quantity, and utilizes code representation773

prompting for question representation. Besides,774

C3-SQL (Dong et al., 2023) and DIN-SQL (Pour- 775

reza and Rafiei, 2023) have introduced innovative 776

frameworks for database simplification, query de- 777

composition, and prompt engineering. 778

Researchers introduce schema linking to identify 779

the database tables and columns associated with 780

natural language queries and have proposed com- 781

plex and integrated prompting engineering meth- 782

ods. MAC-SQL (Wang et al., 2023; Lee et al., 783

2024) centered on multi-agent collaboration can 784

be utilized for more intricate data scenarios and 785

a broader spectrum of error types for detection 786

and correction. TA-SQL (Qu et al., 2024) and 787

CodeS (Li et al., 2024b) introduce strategies to 788

mitigate hallucinations in LLM-based SQL gener- 789

ation. CHESS (Talaei et al., 2024) enables more 790

accurate schema linking by retrieving relevant in- 791

formation from database catalogs and database val- 792

ues. Another approach, MAG-SQL (Xie et al., 793

2024) features a multi-agent generative approach 794

with soft schema linking and iterative Sub-SQL 795

refinement. MSc-SQL (Gorti et al., 2024) miti- 796

gates the performance gap of smaller open-source 797

models by sampling and comparing multiple SQL 798

query results. RSL-SQL combines bidirectional 799

schema linking, contextual information augmenta- 800

tion, binary selection strategy, and multiturn self- 801

correction to achieve an efficient framework. But 802

previous works are difficult to accurately retrieve 803

the correct identifiers content from the schema and 804

often overlook the understanding and reasoning of 805

structure hints during SQL generation. 806

D Case Study 807

In this section, we elucidate the UCS-SQL frame- 808

work through a detailed examination of an in- 809

context learning prompt, as depicted in Figure 9. 810

The process commences with the extraction of both 811

content and structural information from the original 812

question. 813

Within the content pipe, the LLM discerns that 814

the natural language phrase “average salary” cor- 815

responds to the schema identifier “A11”. Conse- 816

quently, “average salary” is mapped to “A11”. Ad- 817

ditionally, the mention of “Later birthdate” prompts 818

its provisional inclusion in the candidate set. Subse- 819

quently, we engage in the Foreign Keys Combina- 820

tion phase. Since “A11” is associated with the “dis- 821

trict” table and “gender” with the “client” table, a 822

foreign key linking these two tables is essential for 823

SQL query generation. This necessitates the inclu- 824

11

Datasets Train Dev Test DB Table/DB Row/DB

BIRD 9,428 1,534 1,789 95 7.3 549k
Spider 8,659 1,034 2,147 200 5.1 2k

Table 6: The statistics of BIRD and Spider datasets.

The following attribute values may be table or column names:

[gender], [client], [average salary]
The following words imply part of SQL structure:

[the youngest] [the lowest] [average]

Question
What is the gender of the youngest client who

opened account in the lowest average salary branch?

Table: account

[(account_id, the id of the account.),

(district_id, location of branch.),

(frequency, frequency of the acount.),

(date, the creation date of the account.)]

Table: district

[(district_id, location of branch.),

(A4, number of inhabitants.),

(A11, average salary.)]

Pre-filtered Database schema

Content Information Structure Information

Evidence Combination
Combined with 【Evidence】：
[Later birthdate] refers to [younger age]

[A11] refers to [average salary]

The following attributes may be table or column names:

[gender], [client], [average salary] → [A11]

+ [Later birthdate]

According to structure information, SQL may involve functions:

[the youngest] → [ORDER BY], [ASC], [DECS]

[the lowest] → [ORDER BY],

 [ASC], [DECS]

[average] → [AVG]

Function Induction

Final Functions
- Functions:

[ORDER BY], [ASC], [DECS], [AVG]

SQL Skeleton Generation
Considering constraints, generate the skeleton of SQL refer to the

recommendation functions in ‘Final Function’：
SELECT T1.[column_name]

 FROM [table_name] AS T1

 INNER JOIN [table_name] AS T2

 ON T1.[column_name] = T2.[column_name]

 ORDER BY T2.[column_name] ASC, T1.[column_name] DESC LIMIT 1

Foreign keys Combination

Combined with 【Foreign keys】, the final 'content information' :

[gender], [cilent], [Later birthdate], [A11]

+ [district]

+ [district_id]

Bi-directional Schema Linking

(1) Combine the results above with 【Database schema】,

【Evidence】and 【Foreign keys】, duduce the possible final

identifiers according to schema.

(2) Consider 【Question】 and the 【final identifiers】, keep all

primary keys, we can filter out the irrelevant columns from schema.

Final Identifiers

We can known from the schema that [Later birthdate] imply

column name [birth_date] in table [cilent].

- Tables:

[cilent], [district]

- Columns:

[gender], [birth_date], [A11], [district_id]

Bi-filtered Database schema

Table: account

[(account_id, the id of the account.),

(district_id, location of branch.),

(frequency, frequency of the acount.),

(date, the creation date of the account.)]

Table: district

[(district_id, location of branch.),

(A4, number of inhabitants.),

(A11, average salary.)]

SQL Skeleton Filling

Fill the SQL skeleton, replace [table_name] and [column_name]

refer to the recommendation identifiers in ‘Final identifiers’ ：
SELECT T1.`gender`

 FROM client AS T1

 INNER JOIN district AS T2

 ON T1.`district_id` = T2.`district_id`

 ORDER BY T2.`A11` ASC, T1.`birth_date` DESC LIMIT 1

Content Pipe Structure PipeICL Prompt

Table: district …

Table: district …

Evidence
Later birthdate refers to younger age;

A11 refers to average salary

Foreign keys
account.`district_id` = district.`district_id`

client.`district_id` = district.`district_id`

Figure 9: Detailed prompt design for UCL-SQL. The left column displays the original question and database
information. Content and structure information are extracted from the question to activate the content and structure
pipes. Identifiers and SQL skeletons are generated at the end of each pipe and combined to form the final SQL
query.

sion of “district” and “district_id” from the equiv-825

alence “client.‘district_id‘ = district.‘district_id‘”826

into our candidate set. Advancing to the Bi-827

directional schema linking phase, we identify “gen-828

der”, “A11”, and “client” within the schema. The829

schema’s description of “birth_data” (birth date)830

is recognized as the closest match to “Later birth-831

date”, leading the LLM to select “birth_data” as832

a substitute. Ultimately, the final identifiers con-833

sist of the tables “client” and “district”, and the834

columns “gender”, “birth_date”, “A11”, and “dis-835

trict_id”. Thereafter, the LLM integrates these final836

identifiers, refining the pre-filtered schema by elim-837

inating the redundant column “A4”, obtaining the838

bi-filtered schema.839

In the structure pipe, the LLM initially infers can-840

didate functions “ORDER BY”, “ASC”, “DESC”,841

and “AVG” from the structure information “the842

youngest”, “the lowest” and “average”. Integrat- 843

ing these with the query and constraints, the LLM 844

constructs the SQL skeleton. Ultimately, with refer- 845

ence to the bi-filtered schema, the LLM populates 846

the SQL skeleton with the candidate table names 847

and column names from the content pipe, thereby 848

completing the final SQL query. 849

12

	Introduction
	Problem Definition
	UCS-SQL
	Overview
	Stage 1: Question Stage
	Stage 2: Transitional Stage
	Stage 3: SQL Stage
	SS-QE Example Selection

	Experimental Settings
	Datasets
	Evaluation Metrics
	Baselines

	Results and Analysis
	Overall Results
	Ablation Study

	Discussion
	Effect of bi-filtered schema
	Effect of SS-QE method

	Conclusion
	Statistics of datasets.
	Implementation Details
	Related Work
	Case Study

