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ABSTRACT

Deep multimodal learning has shown remarkable success by leveraging contrastive
learning to capture explicit one-to-one relations across modalities. However, real-
world data often exhibits shared relations beyond simple pairwise associations. We
propose M3CoL, a Multimodal Mixup Contrastive Learning approach to capture
nuanced shared relations inherent in multimodal data. Our key contribution is a
Mixup-based contrastive loss that learns robust representations by aligning mixed
samples from one modality with their corresponding samples from other modalities
thereby capturing shared relations between them. For multimodal classification
tasks, we introduce a framework that integrates a fusion module with unimodal
prediction modules for auxiliary supervision during training, complemented by
our proposed Mixup-based contrastive loss. Through extensive experiments on
diverse datasets (N24News, ROSMAP, BRCA, and Food-101), we demonstrate
that M3CoL effectively captures shared multimodal relations and generalizes
across domains. It outperforms state-of-the-art methods on N24News, ROSMAP,
and BRCA, while achieving comparable performance on Food-101. Our work
highlights the significance of learning shared relations for robust multimodal
learning, opening up promising avenues for future research.

1 INTRODUCTION

The way we perceive the world is shaped by various modalities, such as language, vision, audio,
and more. In the era of abundant and accessible multimodal data, it is increasingly crucial to
equip artificial intelligence with multimodal capabilities (Baltrušaitis et al., 2018). At the heart of
advancements in multimodal learning is contrastive learning, which maximizes similarity for positive
pairs and minimizes it for negative pairs, making it practical for multimodal representation learning.
CLIP (Radford et al., 2021) is a prominent example that employs contrastive learning to understand
the direct link between paired modalities and seamlessly maps images and text into a shared space for
cross-modal understanding, which can be later utilized for tasks such as retrieval and classification.
However, traditional contrastive learning methods often overlook shared relationships between
samples across different modalities, which can result in the learning of representations that are not
fully optimized for capturing the underlying connections between diverse data modalities. These
methods primarily focus on distinguishing between positive and negative pairs of samples, typically
treating each instance as an independent entity. They tend to disregard the rich, shared relational
information that could exist between samples within and across modalities. This limited focus can
prevent the model from leveraging valuable contextual information, such as semantic similarities or
complementary patterns, which can enhance robust representation learning. Consequently, this can
lead to suboptimal performance in downstream tasks that require optimized shared representations,
such as image-text alignment, cross-modal retrieval, or multimodal fusion tasks.

As shown in the left panel of Figure 1, classical contrastive learning approach assumes perfect
one-to-one relations between modalities, which is rare in real-world data. For example, shared
elements in images or text can relate even across separate samples, as illustrated by the elements
like “tomato sauce” and “basil” in Figure 1. Our approach, illustrated in the right panel of Figure 1,
goes beyond simple pairwise alignment by capturing shared relationships across mixed samples. By
creating newer data points through convex combinations of data points our method more effectively
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Figure 1: Comparison of traditional contrastive and our proposed M3Co loss. M(1)
i and M(2)

i denote
representations of the i-th sample from modalities 1 and 2, respectively. Traditional contrastive loss
(left panel) aligns corresponding sample representations across modalities. M3Co (right panel) mixes
the i-th and j-th samples from modality 1 and enforces the representations of this mixture to align
with the representations of the corresponding i-th and j-th samples from modality 2, and vice versa.
For the text modality, we mix the text embeddings, while we mix the raw inputs for other modalities.
Similarity (Sim) represents type of alignment enforced between the embeddings for all modalities.

models complex shared relationships, such as imperfect bijections (Liang et al., 2022a), enhancing
multimodal classification performance.

Our approach builds upon the success of data augmentation techniques such as Mixup (Zhang et al.,
2017) and their variants (Yun et al., 2019; Cubuk et al., 2019; Hendrycks et al., 2019), which have
proven beneficial for enhancing learned feature spaces, improving both robustness and performance.
Mixup trains models on synthetic data created through convex combinations of two datapoint-label
pairs (Chapelle et al., 2000). These techniques are particularly valuable in low sample settings, as
they help prevent overfitting and the learning of ineffective shortcuts (Chen et al., 2020; Robinson
et al., 2021), common in contrastive learning. Building on the success of recent Mixup strategies
(Shen et al., 2022; Thulasidasan et al., 2019; Verma et al., 2019) and MixCo (Kim et al., 2020),
we introduce M3Co, a novel approach that significantly adapts and enhances contrastive learning
principles to complex multimodal settings. M3Co modifies the CLIP loss to effectively handle
multimodal scenarios, addressing the problem of instance discrimination, where models overly
focus on distinguishing individual instances instead of capturing relationships between modalities.
By leveraging convex combinations of data for contrastive learning, M3Co eliminates instance
discrimination and enhances robust representation learning by capturing shared relations. These
combinations serve as structured noise and treated as positive pairs with their corresponding samples
from other modalities. Our experimental results demonstrate enhanced ability to capture shared
relations enabling improvements in performance and generalization across a range of multimodal
classification tasks.

Our key contributions are summarized as follows:

• We propose M3Co, a multimodal contrastive loss (Eq. 8) that utilizes mixed samples to
effectively capture shared relationships across different modalities. By going beyond
traditional pairwise alignment methods, M3Co makes representations more consistent with
the complex, intertwined relationships usually observed in real-world data.

• We introduce a multimodal learning framework (Figure 2) consisting of unimodal prediction
modules, a fusion module, and a novel Mixup-based contrastive loss. Our proposed method
is modality-agnostic, allowing for flexible application across various types of data, and
continuously updates the representations necessary for accurate and consistent predictions.

• We demonstrate the effectiveness of our methodology by evaluating it on four public
multimodal classification benchmark datasets from different domains: two image-text
datasets, N24News and Food-101, and two medical datasets, ROSMAP and BRCA (Table 1,
2, 3). Our approach outperforms baseline models, especially on smaller datasets.
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2 METHODOLOGY

Pipeline Overview: Figure 2 depicts our framework, which comprises of three components: uni-
modal prediction modules, a fusion module, and a Mixup-based contrastive loss. We obtain latent
representations (using learnable modality specific encoders f (1) and f (2)) of individual modalities
and fuse them (denoted by concatenation symbol ’+’) to generate a joint multimodal representation,
which is optimized using a supervised objective (through classifier 3). The unimodal prediction
modules provide additional supervision during training (via classifier 1 and 2). These strategies
enable deeper integration of modalities and allow the models to compensate for the weaknesses of
one modality with the strengths of another. The Mixup-based contrastive loss (denoted by LM3Co)
continuously updates the representations by capturing shared relations inherent in the multimodal
data. This comprehensive approach enhances the understanding of multimodal data, improving
accuracy and model robustness.

Figure 2: Architecture of our proposed M3CoL model. Samples from modality 1 (x(1)
i , x(1)

j ) and

modality 2 (x(2)
i , x(2)

k ), along with their respective mixed data x̃
(1)
i,j and x̃

(2)
i,k , are fed into encoders

f (1) and f (2) to generate embeddings. Unimodal embeddings p(1)
i and p

(2)
i are processed through

classifier 1 and 2 to produce predictions ŷ(1)
i and ŷ

(2)
i for training supervision only. The unimodal

embeddings p(1)
i and p

(2)
i are concatenated and processed through classifier 3 to yield ŷfinal, utilized

during training and inference. Additionally, unimodal embeddings p(1)
i , p(1)

j , p(2)
i , p(2)

k , and mixed

embeddings p̃(1)
i,j and p̃

(2)
i,k are utilized by our contrastive loss LM3Co for shared alignment.

Multimodal Mixup Contrastive Learning: Given a batch of N multimodal samples, let x(1)
i and

x
(2)
i denote the i-th samples for the first and second modalities, respectively. The modality encoders,

f (1) and f (2), generate the corresponding embeddings p(1)
i and p

(2)
i :

p
(1)
i = f (1)(x

(1)
i ), p

(2)
i = f (2)(x

(2)
i ) (1)

We generate a mixture, x̃(1)
i,j , of the samples x

(1)
i and x

(1)
j by taking their convex combination.

Similarly, we generate a mixture, x̃(2)
i,k , using the convex combination of the samples x(2)

i and x
(2)
k

(Eq. 2). In the case of text modality, instead of directly mixing the raw inputs, we mix the text
embeddings (Guo et al., 2019). The mixing indices j, k are drawn arbitrarily, without replacement,
from [1, N ], for both the modalities. We mix both the modalities using a factor λ ∼ Beta(α, α).
Based on the findings of (Zhang et al., 2017), which demonstrated enhanced performance for α values
between 0.1 and 0.4, we chose α = 0.15 after experimenting with several values in this range. The
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mixtures are fed through the respective encoders to obtain the embeddings: p̃(1)
i,j , and p̃

(2)
i,k (Eq. 3).

x̃
(1)
i,j = λi · x(1)

i + (1− λi) · x(1)
j , x̃

(2)
i,k = λi · x(2)

i + (1− λi) · x(2)
k (2)

p̃
(1)
i = p̃

(1)
i,j = f (1)(x̃

(1)
i,j ), p̃

(2)
i = p̃

(2)
i,k = f (2)(x̃

(2)
i,k ) (3)

The unidirectional contrastive loss (Sohn, 2016; Chen et al., 2020; Oord et al., 2018; Wu et al., 2018;
Zhang et al., 2022) over p(2) is conventionally defined as:

Lsim-conv(p
(1),p(2)) = − 1

N

N∑
i=1

log
exp

(
p
(1)
i · p(2)

i /τ
)

N∑
j=1

exp
(
p
(1)
i · p(2)

j /τ
) (4)

where · indicates dot product and τ is a temperature hyperparameter. While this formulation is needed
for computing similarity among aligned samples from different modalities, our loss handles both
aligned and non-aligned samples, as this enables to learn a better representation space. To achieve
this, we define the unidirectional multimodal contrastive loss between p

(1)
i and p

(2)
m over p(2) as:

Lsim(p
(1)
i ,p(2);m) = − log

exp
(
p
(1)
i · p(2)

m /τ
)

N∑
j=1

exp
(
p
(1)
i · p(2)

j /τ
) (5)

where p(1) and p(2) are L2 normalized, τ is a temperature hyperparameter, and m is a sample index in
[1, N ]. Although the unidirectional multimodal contrastive loss (Eq. 5) can learn indirect relations, it
is insufficient for learning shared semi-positive relations between modalities. Therefore, we introduce
a Mixup-based contrastive loss to capture these relations that promotes generalized learning, as this
process is more nuanced than simply discriminating positives from negatives. Now, we make our loss
bidirectional to encourage improved alignment in the shared representation space and efficient use
of training data (Radford et al., 2021; Oord et al., 2018; Sohn, 2016). We define this bidirectional
Mixup contrastive loss M3Co for each modality (Eq. 6, 7) and the total M3Co loss (Eq. 8) as:

L(1)
M3Co =

1

N

N∑
i=1

[
λi · Lsim(p̃

(1)
i,j ,p

(2); i) + (1− λi) · Lsim(p̃
(1)
i,j ,p

(2); j)
]

+
1

N

N∑
i=1

{
λi · Lsim(p

(2)
i , p̃(1); i) + (1− λi) · Lsim(p

(2)
j , p̃(1); i)

}
(6)

L(2)
M3Co =

1

N

N∑
i=1

[
λi · Lsim(p̃

(2)
i,k ,p

(1); i) + (1− λi) · Lsim(p̃
(2)
i,k ,p

(1); k)
]

+
1

N

N∑
i=1

{
λi · Lsim(p

(1)
i , p̃(2); i) + (1− λi) · Lsim(p

(1)
k , p̃(2); i)

}
(7)

L(1,2)
M3Co =

1

2

(
L(1)

M3Co + L(2)
M3Co

)
(8)

where p(1), p̃(1), p(2), and p̃(2) are L2 normalized. Note that the parts of the loss functions in Eq. (6,
7) inside curly parantheses make them bidirectional. Mixup-based methods enhance generalization
by capturing clean patterns in the early training stages but can eventually overfit to noise if continued
for larger number of epochs (Liu et al., 2023; Yu et al., 2021; Golatkar et al., 2019). To address
this, we implement a schedule that transitions from the Mixup-based M3Co loss to a non-Mixup
multimodal contrastive loss. We design this transition so that the non-Mixup loss retains the ability to
learn shared or indirect relationships between modalities. By using a bidirectional SoftClip-based
loss (Gao et al., 2024; Sohn, 2016; Chen et al., 2020), we relax the rigid one-to-one correspondence,
allowing the model to capture many-to-many relations (Gao et al., 2024; 2022). The bidirectional
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MultiSoftClip loss for each modality (Eq. 9, 10) and its combination (Eq. 11) is:

L(1)
MultiSClip =

1

N

N∑
i=1

N∑
l=1

[
exp

(
p
(1)
i · p(1)

l /τ
)

N∑
t=1

exp
(
p
(1)
i · p(1)

t /τ
) ·

(
Lsim(p

(2)
i ,p(1); l) + Lsim(p

(1)
l ,p(2); i)

)]

(9)

L(2)
MultiSClip =

1

N

N∑
i=1

N∑
l=1

[
exp

(
p
(2)
i · p(2)

l /τ
)

N∑
t=1

exp
(
p
(2)
i · p(2)

t /τ
) ·

(
Lsim(p

(1)
i ,p(2); l) + Lsim(p

(2)
l ,p(1); i)

)]

(10)

L(1,2)
MultiSClip =

1

2

(
L(1)

MultiSClip + L(2)
MultiSClip

)
(11)

where p(1) and p(2) are L2 normalized. The M3Co and MultiSClip losses for M modalities is:

LM3Co =

M∑
i=1

M∑
j>i

L(i,j)
M3Co (12)

LMultiSClip =

M∑
i=1

M∑
j>i

L(i,j)
MultiSClip (13)

Unimodal Predictions and Fusion: The encoders produce latent representations for each of the M
modalities, serving as inputs to individual classifiers that generate modality-specific predictions ŷ(m).
These representations are used for modality-specific supervision only during training. The unimodal
prediction task involves minimizing the cross-entropy loss LCE between these predictions and the
corresponding ground truth labels (y), for each modality. The unimodal cross-entropy loss is:

LCE-Uni =

M∑
m=1

LCE(y, ŷ
(m)) (14)

We merge the unimodal latent representations by concatenating them and pass the combined represen-
tation to the output classifier. These predictions serve as the final outputs ŷf used during inference.
The multimodal prediction process aims to minimize the cross-entropy loss between ŷf and the
corresponding labels. The multimodal cross-entropy loss is:

LCE-Multi = LCE(y, ŷf ) (15)

Combined Learning Objective: Our overall loss objective utilizes a schedule to combine our
M3Co and MultiSClip loss functions weighted by a hyperparamater β, along with the unimodal
and multimodal cross-entropy losses. We use M3Co for the first one-third (Liu et al., 2023) part of
training, and then transition to MultiSClip as over-training with a Mixup-based loss can potentially
harm generalization. The end-to-end loss is defined as:

LTotal = β · LM3Co | MultiSClip + LCE-Uni + LCE-Multi (16)

3 EXPERIMENTS

Datasets. We evaluate our approach on four diverse publicly available multimodal classification
datasets: N24News (Wang et al., 2022), Food-101 (Wang et al., 2015), ROSMAP (Wang et al.,
2021a), and BRCA (Wang et al., 2021a). N24News and Food-101 are both bimodal image-text
classification datasets. Food-101 is a food classification dataset, where each sample is linked
with a recipe description gathered from web pages and an associated image. N24News is a news
classification dataset consisting of four text types (Abstract, Caption, Heading, and Body) along
with the corresponding images. Following other works (Zou et al., 2023), we use the first three text
types for our experiments. ROSMAP and BRCA are publicly available multimodal medical datasets,
each containing three modalities: DNA methylation, miRNA expression, and mRNA expression.
ROSMAP is an Alzeihmer’s diagnosis dataset, while BRCA is used for breast invasive carcinoma
PAM50 subtype classification. Appendix A.2 provides information about the train-val-test splits.
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Evaluation Metrics. The evaluation metric used for N24News and Food-101 is classification
accuracy (ACC). For BRCA, we report accuracy (ACC), macro-averaged F1 score (MF1), and
weighted F1 score (WF1). For ROSMAP, we use accuracy (ACC), area under the ROC curve (AUC),
and F1 score (F1) as the evaluation metrics.

Implementation Details. We use a ViT (pre-trained on the ImageNet-21k dataset) (Dosovitskiy
et al., 2020) as the image encoder for N24News and Food-101. For N24News, the text encoder is
a pretrained BERT/RoBERTa (Devlin et al., 2018; Zhuang et al., 2021), while we use a pretrained
BERT as the text encoder for Food-101. The classifiers for the above two datasets are three layer
MLPs with ReLU activations. For ROSMAP and BRCA, which are small datasets, we use two layer
MLPs as feature encoders for each modality, and two layer MLPs with ReLU activations as classifiers.
The hyperparameter settings and all other details are given in Appendix A.1.

Baselines. We compare our method with various multimodal classification approaches (Van De Wiel
et al., 2016; Wang et al., 2021a; Han et al., 2020; Abavisani et al., 2020; Han et al., 2022; Zou et al.,
2023; Liang et al., 2022b; Kiela et al., 2019; 2018; Wang et al., 2022; Vielzeuf et al., 2018; Arevalo
et al., 2017; Li et al., 2019; Huang et al., 2020; Kim et al., 2021; Narayana et al., 2019; Liu et al.,
2021; Hong et al., 2020; Huang et al., 2021; Singh et al., 2019; Wang et al., 2024). Some methods
(Kiela et al., 2019; Vielzeuf et al., 2018; Arevalo et al., 2017) focus on integrating global features
from individual modality-specific backbones to enhance classification. Others (Li et al., 2019; Kim
et al., 2021; Huang et al., 2020; Narayana et al., 2019) use sophisticated pre-trained architectures
fine-tuned for specific tasks. UniS-MMC (Zou et al., 2023), the previous state-of-the-art on Food-
101 and N24News, uses contrastive learning to align features across modalities with supervision
from unimodal predictions. Similarly, Dynamics (Han et al., 2022), the previous state-of-the-art
on ROSMAP and BRCA, applies a dynamic multimodal classification strategy. On Food-101 and
N24News, we compare against baseline unimodal networks (ViT and BERT/RoBERTa) and our
UniConcat baseline, where pre-trained image and text encoders are fine-tuned independently, and the
unimodal representations are simply concatenated for classification. These are typical baselines used
in multimodal classification tasks. Detailed baseline descriptions are discussed in Appendix A.8.

4 RESULTS

4.1 COMPARISON WITH BASELINES

The results are reported as the average and standard deviation over three runs on Food-101/N24News,
and five runs on ROSMAP/BRCA. The best score is highlighted in bold, while the second-best
score is underlined. The classification accuracy on N24News and Food-101 are displayed in Table 1
and 3 respectively. In the result tables, ALI denotes alignment (indicating if the method employs
a contrastive component), while AGG specifies whether aggregation is early (combining unimodal
feature) or late fusion (combining unimodal decisions).

The experimental results from Table 1, 2, 3, reveal the following findings: (i) M3CoL consistently
outperforms all SOTA methods across all text sources on N24News when using the same encoders,
beats SOTA on all evaluation metrics on ROSMAP and BRCA, and also achieves competitive
results on Food-101; (ii) contrastive-based methods with any form of alignment demonstrate superior
performance compared to other multimodal methods; (iii) our proposed M3CoL method, which
employs a contrastive-based approach with shared alignment, improves over the traditional contrastive-
based models and the latest SOTA multimodal methods. We visualize the unimodal and combined
representation distribution of our proposed method using UMAP plots in Figure 7 in Appendix A.6.

4.2 ANALYSIS OF OUR METHOD

Effect of Vanilla Mixup. Mixup involves two main components: the random convex combination
of raw inputs and the corresponding convex combination of one-hot label encodings. To assess the
performance of our M3CoL method in comparison to this Mixup strategy, we conduct experiments on
Food-101 and N24News (text source: abstract). We remove the contrastive loss from our framework
(Eq. 16) while keeping the rest of the modules unchanged. Table 4 shows that the Mixup technique
underperforms relative to our proposed M3CoL approach (refer test accuracy plots illustrated in
Figure 6a). The observed accuracy gap can be attributed to excessive noise introduced by label
mixing, and the lack of a contrastive approach with an alignment component. This indicates that the
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Method Fusion Backbone ACC ↑
AGG ALI Image Text Headline Caption Abstract

Image-only - - ViT - 54.1 (no text source used)

Text-only - - - BERT 72.1 72.7 78.3
UniConcat Early ✗ ViT BERT 78.6 76.8 80.8
UniS-MMC Early ✓ ViT BERT 80.3 77.5 83.2
M3CoL (Ours) Early ✓ ViT BERT 80.8±0.05

78.0±0.03
83.8±0.06

Text-only - - - RoBERTa 71.8 72.9 79.7
UniConcat Early ✗ ViT RoBERTa 78.9 77.9 83.5
N24News Early ✗ ViT RoBERTa 79.41 77.45 83.33
UniS-MMC Early ✓ ViT RoBERTa 80.3 78.1 84.2
M3CoL (Ours) Early ✓ ViT RoBERTa 80.9±0.19

79.2±0.08
84.7±0.03

Table 1: Accuracy (ACC) on N24News on three text sources. AGG denotes early/late modality fusion,
ALI indicates presence/absence of alignment. Our method consistently outperforms SOTA across all
text sources and backbone combinations. Baseline details are provided in Appendix A.8.

Method Fusion ROSMAP BRCA
AGG ALI ACC ↑ F1 ↑ AUC ↑ ACC ↑ WF1 ↑ MF1 ↑

GRidge Early ✗ 76.0 76.9 84.1 74.5 72.6 65.6
BPLSDA Early ✗ 74.2 75.5 83.0 64.2 53.4 36.9
BSPLSDA Early ✗ 75.3 76.4 83.8 63.9 52.2 35.1
MOGONET Late ✗ 81.5 82.1 87.4 82.9 82.5 77.4
TMC Late ✗ 82.5 82.3 88.5 84.2 84.4 80.6
CF Early ✗ 78.4 78.8 88.0 81.5 81.5 77.1
GMU Early ✗ 77.6 78.4 86.9 80.0 79.8 74.6
MOSEGCN Early ✗ 83.0 82.7 83.2 86.7 86.8 81.1
DYNAMICS Early ✗ 85.7 86.3 91.1 87.7 88.0 84.5

M3CoL (Ours) Early ✓ 88.7±0.94
88.5±0.94

92.6±0.59
88.4±0.57

89.0±0.42
86.2±0.54

Table 2: Comparison of Accuracy (ACC), Area Under the Curve (AUC), F1 score (F1) on ROSMAP,
and Accuracy (ACC), Weighted F1 score (WF1), and Micro F1 score (MF1) on BRCA datasets.
AGG denotes early/late modality fusion, ALI indicates presence/absence of alignment. Our method
significantly outperforms SOTA across all metrics. Baseline details are provided in Appendix A.8.

vanilla Mixup strategy introduces additional noise which impairs the model’s ability to learn effective
representations, while our M3CoL framework benefits from the structured contrastive approach.

Effect of Loss & Unimodality Supervision. To assess the necessity of each component in the
framework, we investigate several design choices: (i) the framework’s performance without the
supervision of unimodal modules during training, and (ii) the performance differences between
using only MultiSClip and only M3Co loss during end-to-end training. The M3CoL (No Unimodal
Supervision) result indicates that excluding the unimodal prediction module results in a decline in
performance as shown in Table 4 and Figure 6a, highlighting its importance as it allows the model
to compensate for the weaknesses of one modality with the strengths of another. Additionally, the
M3Co loss (only M3Co) outperforms the MultiSClip loss (only MultiSClip) by learning more robust
representations through Mixup-based techniques, which prevent trivial discrimination of positive
pairs. Furthermore, using an individual contrastive alignment approach (only M3Co) throughout the
entire training process without transitioning to the MultiSClip loss results in suboptimal outcomes.
This can be attributed to the risk of over-training with Mixup-based loss, which may negatively
impact generalization. This demonstrates the necessity of the transition of the contrastive loss during
training (0.33 M3Co + 0.67 MultiSClip). Figure 6b displays the accuracy plots on the N24News
dataset, for these losses.

Visualization of Attention Heatmaps. The attention heatmaps generated using the embeddings
from our trained M3CoL model in Figure 3 and 4 highlight image regions most relevant to the input
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Method Fusion Backbone ACC ↑
AGG ALI Image Text

Image-only - - ViT - 73.1
Text-only - - - BERT 86.8
UniConcat Early ✗ ViT BERT 93.7

MCCE Early ✗ DenseNet BERT 91.3
CentralNet Early ✗ LeNet5 LeNet5 91.5
GMU Early ✗ RNN VGG 90.6
ELS-MMC Early ✗ ResNet-152 BOW features 90.8
MMBT Early ✗ ResNet-152 BERT 91.7
HUSE Early ✓ Graph-RISE BERT 92.3
VisualBERT ✗ ✓ FasterRCNN+BERT BERT 92.3
PixelBERT Early ✓ ResNet BERT 92.6
ViLT Early ✓ ViT BERT 92.9
CMA-CLIP Early ✓ ViT BERT 93.1
ME Early ✗ DenseNet BERT 94.7
UniS-MMC Early ✓ ViT BERT 94.7
M3CoL (Ours) Early ✓ ViT BERT 94.3±0.04

Table 3: Accuracy (ACC) comparison on Food-101. AGG denotes early/late modality fusion, ALI
indicates presence/absence of alignment. Baseline details are provided in Appendix A.8.

Method ACC ↑
ROSMAP BRCA Food-101 N24News

Mixup 84.13±0.74 84.52±0.46 93.14±0.02 81.57±0.24

M3CoL (No Unimodal Supervision) 85.14±0.85 86.93±0.52 94.12±0.02 84.26±0.11

M3CoL (only MultiSClip) 86.84±0.34 87.38±0.41 94.23±0.01 84.06±0.18

M3CoL (only M3Co) 87.42±0.63
87.74±0.42

94.24±0.12
84.57±0.08

M3CoL (0.33 M3Co + 0.67 MultiSClip) 88.67±0.94
88.38±0.57

94.27±0.04
84.72±0.03

Table 4: Accuracy (ACC) on ROSMAP, BRCA, N24News, and Food-101 datasets under different
settings of our method. For N24News, source: abstract and encoder: RoBERTa.

word. We generate text embeddings for class label words and corresponding image patch embeddings,
computing attention scores as their dot product. This visualization aids in understanding the model’s
focus, decision-making process, and association between class labels and specific image regions.
Importantly, it also indicates the correctness of the learned multimodal representations, revealing the
model’s ability to learn shared relations amongst different modalities, and ground visual concepts to
semantically meaningful regions.

(a) Image (b) Ice cream (c) Cream (d) Ice (e) Image (f) Falafel (g) Salad (h) Rice

Figure 3: Text-guided visual grounding with varying input prompts. (a, e) Original images. (b-d)
Attention heatmaps for “ice cream” class. (f-h) Heatmaps for “falafel” class. Ice cream example: (b)
“Ice cream”: Concentrated focus on ice cream, (c) “Cream”: Maintained but diffused focus, (d) “Ice”:
Dispersed attention. Falafel example: (f) “Falafel”: Localized focus on falafel, (g) “Salad”: Attention
shift to salad component, (h) “Rice”: Minimal attention (absent in image). Warmer colors indicate
higher attention scores.
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(a) Risotto (b) Mixup (c) No Unim (d) MultiSClip (e) M3Co (f) M3CoL

Figure 4: Text-guided visual grounding with ablated model variations. (a) Original image. (b-f)
Attention heatmaps generated using text embedding (class name: “Risotto”) and patch embeddings
for different variations of the model. Our proposed M3CoL model (f) demonstrates superior attention
localization compared to ablated versions (b-e), corroborating the quantitative results presented in
Table 4. Warmer colors indicate higher attention scores. (Here, No Unim: No Unimodal Supervision)

Figure 5: N24News - Confidence scores
when tested on random inputs.

Testing on Random Data and Single-Corrupt Modal-
ities. To showcase the benefits of our framework over
traditional contrastive methods, we evaluate the impact of
incorporating Mixup-based contrastive loss (M3Co) dur-
ing training, highlighting its improvements over standard
approaches. It is well-established that deep networks tend
to exhibit overconfidence, particularly when making pre-
dictions on random or adversarial inputs (Hendrycks &
Gimpel, 2016). Previous research has demonstrated that
Mixup can mitigate this issue, and our goal is to validate
its effectiveness in this context (Thulasidasan et al., 2019). We evaluate the confidence scores
produced using M3CoL (0.33 M3Co + 0.67 MultiSClip) loss in comparison to only MultiSClip
loss when predicting on random noise images and text encoder outputs. Our results show that the
model trained with M3CoL exhibits lower confidence in its predictions when both modalities are
replaced with random inputs. This demonstrates that incorporating M3CoL enhances the reliability
of predictions, especially in the presence of corrupted or random inputs.

Method Modality Corrupted

Image Text

MutliSClip 76.06 46.91
M3CoL 77.24 47.94

Table 5: N24News - Accuracy when
tested on data with one corrupt modality.

To evaluate the robustness of our approach, we conduct
experiments where one input modality was corrupted
with random noise. Table 5 compares the performance
of M3CoL (0.33 M3Co + 0.67 MultiSClip) against only
MultiSClip under these conditions. Our M3CoL method
demonstrates superior robustness to modality corruption,
consistently outperforming MultiSClip. For image corrup-
tion, we substituted the original images with random noise
sampled from a Gaussian distribution, parameterized to match the mean and variance of the training
set. Similarly, for text corruption, we replaced the original text embeddings with random outputs
from the text encoder, again following a Gaussian distribution with statistics matching the training
data. For both the above experiments, we use the N24News dataset, with the abstract as the text
source and a RoBERTa-based text encoder.

Error Analysis. To evaluate the efficacy of our multimodal approach in integrating and leveraging
image and text features, we performed a comprehensive error analysis, comparing it with image-only
(ViT) and text-only (RoBERTa) models using the N24News dataset (refer Table 9 in Appendix A.5).
The analysis reveals that our method excels when both modalities are correctly classified (42.71:0.03
correct-to-incorrect ratio). This demonstrates that our model can learn valuable insights from the
fusion of image and text features, which may not be discovered when processing them separately. In
cases where only one modality is correctly classified, our model effectively leverages the accurate
modality (27.77+8.11=35.88):(1.29+3.25=4.54) correct-to-incorrect ratio. This demonstrates our
method’s robustness and its ability to outperform unimodal approaches.

5 RELATED WORK

Contrastive Learning. Contrastive learning has driven significant progress in unimodal and multi-
modal representation learning by distinguishing between similar (positive) and dissimilar (negative)
pairs. In multimodal contexts, cross-modal contrastive techniques align representations from different
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modalities (Radford et al., 2021; Jia et al., 2021; Kamath et al., 2021), with approaches like CrossCLR
(Zolfaghari et al., 2021) and GMC (Poklukar et al., 2022) focusing on global and modality-specific
representations. Contrastive learning approaches for paired image-text data, such as CLIP (Radford
et al., 2021), ALIGN (Jia et al., 2021), and BASIC (Pham et al., 2023), have demonstrated remarkable
success across diverse vision-language tasks. Subsequent works have aimed to enhance the efficacy
and data efficiency of CLIP training, incorporating self-supervised techniques (SLIP (Mu et al., 2022),
DeCLIP (Li et al., 2021)) and fine-grained alignment (FILIP (Li et al., 2023)). The CLIP framework
relies on data augmentations to prevent overfitting and the learning of ineffective shortcuts (Chen
et al., 2020; Robinson et al., 2021), a common practice in contrastive learning.

Unimodal and Multimodal Data Augmentation. Data augmentation has been integral to the
success of deep learning, especially for small training sets. In computer vision, techniques have
evolved from basic transformations to advanced methods like Cutout (DeVries & Taylor, 2017),
Mixup (Zhang et al., 2017), CutMix (Yun et al., 2019), and automated approaches (Cubuk et al.,
2019; 2020). NLP augmentation includes paraphrasing, token replacement (Zhang et al., 2015; Jiao
et al., 2019), and noise injection (Yan et al., 2019). Multimodal data augmentation, primarily focused
on vision-text tasks, has seen limited exploration, with approaches including back-translation for
visual question answering (Tang et al., 2020), text generation from images (Wang et al., 2021b), and
external knowledge querying for cross-modal retrieval (Gur et al., 2021). MixGen (Hao et al., 2023)
generates new image-text pairs through image interpolation and text concatenation. In contrast, our
proposed augmentation technique focusing on the early training phase is fully automatic, applicable
to arbitrary modalities, and designed to leverage inherent shared relations in multimodal data.

Relation to Mixup. Mixup (Zhang et al., 2017), a pivotal regularization strategy, enhances model
robustness and generalization by generating synthetic samples through convex combinations of
existing data points. Originally introduced for computer vision, it has been adapted to NLP by
applying the technique to text embeddings (Guo et al., 2019). Our proposed augmentation differs
from Mixup in several key aspects: it is designed for multi-modal data, takes inputs from different
modalities, and does not rely on one-hot label encodings. By extending the Mixup paradigm to
complex, multi-modal scenarios and focusing on the early training phase, our method broadens its
applicability while leveraging inherent shared relations in multimodal data.

6 CONCLUSION

Aligning representations across modalities presents significant challenges due to the complex, often
non-bijective relationships in real-world multimodal data (Liang et al., 2022a). These relationships
can involve many-to-many mappings or even lack clear associations, as exemplified by linguistic
ambiguities and synonymy in vision-language tasks. We propose M3Co, a novel contrastive-based
alignment method that captures shared relations beyond explicit pairwise associations by aligning
mixed samples from one modality with corresponding samples from others. Our approach incor-
porates Mixup-based contrastive learning, introducing controlled noise that mirrors the inherent
variability in multimodal data, thus enhancing robustness and generalizability. The M3Co loss,
combined with an architecture leveraging unimodal and fusion modules, enables continuous updating
of representations necessary for accurate predictions and deeper integration of modalities. Our
method generalizes across diverse domains, including image-text, high-dimensional multi-omics,
and data with more than two modalities. Experiments on four public multimodal classification
datasets demonstrate the effectiveness of our approach in learning robust representations that surpass
traditional multimodal alignment techniques.

M3CoL demonstrates promising results, yet faces optimization challenges due to the inherent
limitations of multimodal frameworks, particularly extended training times on large-scale datasets
like Food-101. The method’s modality-agnostic nature and effective use of Mixup augmentation
suggest its potential adaptability to various multimodal tasks, especially where data augmentation
and learning real-world inter-modal relationships are crucial. Our method can easily be adapted to
multimodal tasks such as visual question answering and information retrieval. These advancements
will likely broaden M3CoL’s impact in multimodal research.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

The models were trained on either an NVIDIA RTX A6000 or an NVIDIA A100-SXM4-80GB
GPU. The results are reported as the average and standard deviation over three runs on Food-101
and N24News, and five runs on ROSMAP and BRCA. We use a grid search on the validation set to
search for optimal hyperparameters. The temperature parameter for the M3Co and MultiSClip losses
is set to 0.1. The corresponding loss coefficient β is 0.1 to keep the loss value in the same range as
the other losses. We use the Adam optimizer (Kingma & Ba, 2014) for all datasets. For Food-101
and N24News, the learning rate scheduler is ReduceLROnPlateau with validation accuracy as the
monitored metric, lr factor of 0.2, and lr patience of 2. For ROSMAP and BRCA, we use the StepLR
scheduler with a step size of 250. For Food-101 and N24News, the maximum token length of the text
input for the BERT/RoBERTa encoders is 512. Other hyperparameter details are provided in Table 6.

Hyperparameter N24News Food-101 ROSMAP BRCA
Embedding dimension 768 768 1000 768
Classifier dimension 256 256 1000 768
Learning rate 10−4 10−4 5 · 10−3 5 · 10−3

Weight decay 10−4 10−4 10−3 10−3

Batch size 32 32 - -
Batch gradient 128 128 - -
Dropout (classifier) 0 0 0.5 0.5
Epochs 50 50 500 500

Table 6: Experimental hyperparameter values for our proposed model across all the four datasets.

Code. The code is attached as a zip file. Upon acceptance, the code and checkpoints will be made
publicly available on GitHub.

A.2 DATASET INFORMATION AND SPLITS

The datasets used in our experiments can be downloaded from the following sources: Food-
101 from https://visiir.isir.upmc.fr, N24News from https://github.com/
billywzh717/N24News, and BRCA and ROSMAP from https://github.com/txWang/
MOGONET.

To ensure a fair comparison with previous works, we adopt the default split method detailed in Table
7. As the Food-101 dataset does not include a validation set, we partition 5,000 samples from the
training set to create one, which is conistent with other baselines.

Dataset Modalities Modality Types Train Validation Test Classes
Food-101 2 Image, text 60101 5000 21695 101
N24News 2 Image, text 48988 6123 6124 24
ROSMAP 3 mRNA, miRNA, DNA 245 - 106 2
BRCA 3 mRNA, miRNA, DNA 612 - 263 5

Table 7: Statistics for the four datasets: Food-101, N24News, ROSMAP, and BRCA. Note: miRNA
stands for microRNA, and mRNA stands for messenger RNA.

A.3 ANALYSIS UNDER DIFFERENT MODEL VARIATIONS

In addition to the ACC scores presented in Table 4, we also report the performance of other metrics,
where available, on the ROSMAP and BRCA datasets under various settings of our method, as shown
in Table 8. This thorough evaluation supports our conclusion that each component of our framework
is crucial for achieving optimal overall performance.
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Method ROSMAP BRCA
F1 ↑ AUC ↑ WF1 ↑ MF1 ↑

Mixup 84.45±0.48 88.73±0.53 84.66±0.48 82.88±0.38

M3CoL (No Unimodal Supervision) 86.27±0.39 90.20±0.82 86.92±0.36 85.08±0.37

M3CoL (only MultiSClip) 86.76±0.58 90.75±0.49 87.41±0.47 85.48±0.35

M3CoL (only M3Co) 87.54±0.62
91.41±0.54

88.06±0.41
85.82±0.34

M3CoL (0.33 M3Co + 0.67 MultiSClip) 88.51±0.94
92.62±0.59

89.02±0.42
86.20±0.54

Table 8: Comparison of F1 score (F1), Area Under the Curve (AUC) on ROSMAP, and Weighted F1
score (WF1), Micro F1 score (MF1) on BRCA, under different settings of our method.

A.4 ABLATION STUDIES ON THE N24NEWS DATASET

The accuracy plots for the N24News dataset (text source: abstract, text encoder: RoBERTa) are
used to compare our method and its variants. Our proposed M3CoL approach outperforms the
Mixup technique, as shown in Figure 6a. Ablating the unimodal supervision in M3CoL leads to
a performance decline, indicating the importance of the unimodal prediction module, as shown in
Figure 6a. Furthermore, the M3Co loss achieves better results than the MultiSClip loss. Training
solely with either the M3Co loss or the MultiSClip loss alignment approach yields suboptimal
performance when compared to their strategic combination, as shown in Figure 6b. The quantitative
results are given in Table 4.

(a) Comparison of M3CoL and its variants using Mixup
and No Unimodal Supervision.

(b) Comparison of M3CoL and its variants using only
M3Co and only MultiSoftClip loss.

Figure 6: Test accuracy plots showing comparison of M3CoL and its variants on the N24News dataset
(text source: abstract, text encoder: RoBERTa).

A.5 ERROR ANALYSIS

We provide an in-depth error analysis on the N24News dataset in Section 4.2. As shown in Table 9,
our method excels not only when both modalities are correctly classified but also demonstrates strong
performance even when both are misclassified, indicating effective feature fusion. Additionally, it
successfully leverages information when only one modality is classified correctly. This analysis
demonstrates our method’s robustness and highlights its superiority over unimodal approaches.

A.6 UMAP PLOTS

We generate UMAP plots on embeddings derived from the N24News and Food-101 datasets to
visualize the clustering performance of our M3CoL model. For each dataset, we randomly select
10 classes and generate the corresponding embeddings from the image encoder, text encoder, and
their concatenated multimodal representatio, using our trained M3CoL model. Figure 7 shows that
the image embeddings depict less distinct clusters, indicating less effective inter-cluster separation
compared to the text encoder embeddings. The concatenated embeddings, however, result in the
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Unimodal Prediction Multimodal Prediction %

Text Image Correct Incorrect
True True 42.71 0.03
True False 27.77 1.29
False True 8.11 3.25
False False 2.31 14.53

Table 9: Error analysis on N24News with text encoder RoBERTa and text source "headline". True
and False denote the correctness of the unimodal predictions. Multimodal Prediction % shows the
resulting test set ratio of the final predictions.

best-defined clusters, suggesting that the final multimodal representations preserve and potentially
enhance class-distinguishing features. These observations align with our quantitative results presented
in Table 1 and 3.

(a) Image Embeddings (b) Text Embeddings (c) Concatenated Embeddings

(d) Image Embeddings (e) Text Embeddings (f) Concatenated Embeddings

Figure 7: UMAP plots of embeddings from the N24News (source: abstract and encoder: RoBERTa)
and Food-101 datasets. We generate UMAP plots for the representations generated by the image
encoder, text encoder, and their concatenated multimodal representations, using our trained M3CoL
model. Concatenated embeddings exhibit superior clustering, while text embeddings outperform
image embeddings. Consistent patterns across datasets demonstrate M3CoL’s effectiveness in fusing
multimodal information and enhancing semantic representations.

A.7 ADDITIONAL VISUALIZATION ATTENTION HEATMAPS

Following Section 4.2, we generate heatmaps using class embeddings and patch embeddings for
some more examples in Food-101. These are depicted in Figure 8.

A.8 BASELINE DETAILS

The baselines used in our comparsions are described in details as follows:

• GRidge (Van De Wiel et al., 2016) dynamically incorporates multimodal data to adjust
regularization penalties, improving predictive accuracy in genomic classification scenarios.

• BPLSDA (Block partial least squares discriminant analysis) (Singh et al., 2019) analyzes
multimodal data in latent space and BSPLSDA (Block sparse partial least squares discrimi-
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(a) Risotto (b) Mac and cheese

(c) Beignet (d) Cannoli

(e) French toast (f) Ice cream

(g) Tuna tartare (h) Falafel

Figure 8: Attention heatmaps demonstrating text-guided visual grounding for samples in the Food-101
dataset. Warmer colors indicate higher attention scores.

nant analysis) (Singh et al., 2019) adds sparsity constraints to BPLSDA to extract relevant
features.

• MOGONET (Wang et al., 2021a) integrates GCNs with a View Correlation Discovery
Network (VCDN) to process multi-omics data. The initial predictions from each omics-
specific GCN are consolidated using the VCDN, which identifies and leverages cross-omics
label correlations to improve prediction accuracy.

• CF (Concatenation of Final Multimodal Representations) (Hong et al., 2020; Huang et al.,
2021) creates representations by combining late stage representations of multiple modalities.

• TMC (Han et al., 2020) enhances decision-making by dynamically integrating multiple
views based on confidence levels, for robust and reliable fusion.

• MCCE (Abavisani et al., 2020) uses DenseNet and BERT for feature extraction then
applying stochastic transitions between multi-modal embeddings during training to enhance
generalization and to handle sparse data effectively.

• Dynamics (Han et al., 2022) presents an approach for trustworthy multi-modal classification,
specifically designed for high-stakes environments like medical diagnosis. The model
dynamically assesses both feature-level and modality-level informativeness, using a sparse
gating mechanism to filter and integrate the most relevant features and modalities per sample.

• UniS-MMC (Zou et al., 2023) uses a contrastive learning approach that relies on making
unimodal predictions, evaluating the agreement or discrepancy between these predictions
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and the ground truth, and using this insight to align feature vectors across various modalities
through a contrastive loss.

• ME (Liang et al., 2022b) leverages cross-modal information by transforming features
between modalities. It achieves this by integrating a Multimodal Information Injection
Plug-in (MI2P) with pre-trained models, enabling them to process image-text pairs without
structural modifications.

• MMBT (Kiela et al., 2019) leverages the strengths of pre-trained text and image encoders,
effectively combining them within a BERT-like framework by mapping image embeddings
into the textual token space.

• ELS-MMC (Kiela et al., 2018) investigates various multimodal fusion techniques for
integrating discrete (text) and continuous (visual) modalities to enhance classification tasks
in a resource-efficient manner.

• N24News (Wang et al., 2022) presents a novel dataset from The New York Times with text
and image data across 24 categories. It utilizes a multitask multimodal strategy, employing
ViT for image processing and RoBERTa for text analysis, with features concatenated for
final classification.

• CentralNet (Vielzeuf et al., 2018) uses separate convolutional networks for each modality,
linked via a central network that generates a unified feature representation and also applies
multi-task learning to refine and regulate these features.

• GMU (Arevalo et al., 2017) employs multiplicative gates that dynamically adjust the
influence of each modality on its activation thereby deriving a sophisticated intermediate
representation tailored for specific applications.

• VisualBERT (Li et al., 2019) employs a series of transformer layers to align textual elements
and corresponding image regions through self-attention mechanisms.

• PixelBert (Huang et al., 2020) directly aligns image pixels with textual descriptions using a
deep multi-modal transformer and establishes a direct semantic connection at the pixel and
text level.

• ViLT (Kim et al., 2021) implements a BERT-like transformer model that processes visual
data in a convolution-free manner, similar to textual data, thereby simplifying input feature
extraction and reducing computational demands.

• HUSE (Narayana et al., 2019) constructs a shared latent space that aligns image and text
embeddings based on their semantic similarity, enhancing cross-modal representation.

• CMA-CLIP (Liu et al., 2021) enhances CLIP (Radford et al., 2021) by integrating two
cross-modality attention mechanisms: sequence-wise and modality-wise attention. These
attention modules refine the relationships between image patches and text tokens, allowing
the model to focus on relevant modalities for specific tasks.

• MOSEGCN (Wang et al., 2024) utilizes transformer multi-head self-attention and Simi-
larity Network Fusion (SNF) to learn correlations within and among different omics. This
information is then fed into a self-ensembling Graph Convolutional Network (SEGCN) for
semi-supervised training and testing.

A.9 USE OF GENERATIVE AI MODELS

In this work, we use the following generative AI model:

• Gemini 1.0 Pro (Team et al., 2023) to generate food item images and captions as displayed
in Figure 1, which serve as sample representations from the Food-101 dataset.
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