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ABSTRACT

We study neural contextual bandits, a general class of contextual bandits, where
each context-action pair is associated with a raw feature vector, but the specific re-
ward generating function is unknown. We propose a novel learning algorithm that
transforms the raw feature vector using the last hidden layer of a deep ReLU neu-
ral network (deep representation learning), and uses an upper confidence bound
(UCB) approach to explore in the last linear layer (shallow exploration). We prove
that under standard assumptions, our proposed algorithm achieves Õ(

√
T ) finite-

time regret, where T is the learning time horizon. Compared with existing neural
contextual bandit algorithms, our approach is computationally much more effi-
cient since it only needs to explore in the last layer of the deep neural network.

1 INTRODUCTION

Multi-armed bandits (MAB) (Auer et al., 2002; Audibert et al., 2009; Lattimore & Szepesvári, 2020)
are a class of online decision-making problems where an agent needs to learn to maximize its ex-
pected cumulative reward by repeatedly interacting with a partially known environment. Following
a bandit algorithm (also called a strategy or policy), in each round, the agent adaptively chooses
an arm, and then receives a reward associated with that arm. Since only the reward of the chosen
arm will be observed (bandit information feedback), a good bandit algorithm has to deal with the
exploration-exploitation dilemma: trade-off between pulling the best arm based on existing knowl-
edge/history data (exploitation) and trying the arms that have not been fully explored (exploration).

In many real-world applications, the agent will also be able to access detailed contexts associated
with the arms. For example, when a company wants to choose an advertisement to present to a user,
the recommendation will be much more accurate if the company takes into consideration the con-
tents, specifications, and other features of the advertisements in the arm set as well as the profile of
the user. To encode the contextual information, contextual bandit models and algorithms have been
developed, and widely studied both in theory and in practice (Dani et al., 2008; Rusmevichientong &
Tsitsiklis, 2010; Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011). Most existing contex-
tual bandit algorithms assume that the expected reward of an arm at a context is a linear function in
a known context-action feature vector, which leads to many useful algorithms such as LinUCB (Chu
et al., 2011), OFUL (Abbasi-Yadkori et al., 2011), etc. The representation power of the linear model
can be limited in applications such as marketing, social networking, clinical studies, etc., where the
rewards are usually counts or binary variables. The linear contextual bandit problem has also been
extended to richer classes of parametric bandits such as the generalized linear bandits (Filippi et al.,
2010; Li et al., 2017) and kernelised bandits (Valko et al., 2013; Chowdhury & Gopalan, 2017).

With the prevalence of deep neural networks (DNNs) and their phenomenal performances in many
machine learning tasks (LeCun et al., 2015; Goodfellow et al., 2016), there has emerged a line
of work that employs DNNs to increase the representation power of contextual bandit algorithms
(Allesiardo et al., 2014; Riquelme et al., 2018; Collier & Llorens, 2018; Zahavy & Mannor, 2019;
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Zhou et al., 2020; Deshmukh et al., 2020; Zhang et al., 2020). The problems they solve are usually
referred to as neural contextual bandits. For example, Zhou et al. (2020) developed the NeuralUCB
algorithm, which can be viewed as a natural extension of LinUCB (Chu et al., 2011; Abbasi-Yadkori
et al., 2011), where they use the output of a deep neural network with the feature vector as input
to approximate the reward. Zhang et al. (2020) adapted neural networks in Thompson Sampling
(Thompson, 1933; Chapelle & Li, 2011; Russo et al., 2018) for both exploration and exploitation
and proposed NeuralTS . For a fixed time horizon T , it has been proved that both NeuralUCB
and NeuralTS achieve a O(d̃

√
T ) regret bound, where d̃ is the effective dimension of a neural

tangent kernel matrix which can potentially scale with O(TK) for K-armed bandits. This high
complexity is mainly due to that the exploration is performed over the entire huge neural network
parameter space, which is inefficient and even infeasible when the number of neurons is large. A
more realistic and efficient way of learning neural contextual bandits may be to just explore different
arms using the last layer as the exploration parameter. More specifically, Riquelme et al. (2018)
provided an extensive empirical study of benchmark algorithms for contextual-bandits through the
lens of Thompson Sampling, which suggests decoupling representation learning and uncertainty
estimation improves performance.

In this paper, we show that the decoupling of representation learning and the exploration can be
theoretically validated. We study a new neural contextual bandit algorithm, which learns a map-
ping to transform the raw features associated with each context-action pair using a deep neural
network (deep representation), and then performs an upper confidence bound (UCB)-type explo-
ration over the linear output layer of the network (shallow exploration). We prove a sublinear regret
of the proposed algorithm by exploiting the UCB exploration techniques in linear contextual ban-
dits (Abbasi-Yadkori et al., 2011) and the analysis of deep overparameterized neural networks using
neural tangent kernels (Jacot et al., 2018). Our theory confirms the empirically observed effective-
ness of decoupling the deep representation learning and the UCB exploration in contextual bandits
(Riquelme et al., 2018; Zahavy & Mannor, 2019).

Contributions we summarize the main contributions of this paper as follows.

• We propose a contextual bandit algorithm, Neural-LinUCB, for solving a general class of con-
textual bandit problems without knowing the specific reward generating function. The proposed
algorithm learns a deep representation to transform the raw feature vectors and performs UCB-
type exploration in the last layer of the neural network, which we refer to as deep representation
and shallow exploration. Compared with LinUCB (Li et al., 2010; Chu et al., 2011) and neural
bandits such as NeuralUCB (Zhou et al., 2020) and NeuralTS (Zhang et al., 2020), our algo-
rithm enjoys the best of two worlds: strong expressiveness due to the deep representation and
computational efficiency due to the shallow exploration.

• Despite the usage of a DNN as the feature mapping, we prove a Õ(
√
T ) regret for the proposed

Neural-LinUCB algorithm, which matches the regret bound of linear contextual bandits (Chu
et al., 2011; Abbasi-Yadkori et al., 2011). To the best of our knowledge, this is the first work
that theoretically shows the convergence of bandits algorithms under the scheme of deep repre-
sentation and shallow exploration. It is notable that a similar scheme called Neural-Linear was
proposed by Riquelme et al. (2018) for Thompson sampling algorithms, and they empirically
showed that decoupling representation learning and uncertainty estimation improves the perfor-
mance. Our work confirms this observation from a theoretical perspective.

• We conduct experiments on contextual bandit problems based on real-world datasets, demon-
strating a better performance and computational efficiency of Neural-LinUCB over LinUCB and
existing neural bandits algorithms such as NeuralUCB, which well aligns with our theory.

1.1 ADDITIONAL RELATED WORK

There is a line of related work to ours on the recent advance in the optimization and generalization
analysis of deep neural networks. In particular, Jacot et al. (2018) first introduced the neural tangent
kernel (NTK) to characterize the training dynamics of network outputs in the infinite width limit.
From the notion of NTK, a fruitful line of research emerged and showed that loss functions of deep
neural networks trained by (stochastic) gradient descent can converge to the global minimum (Du
et al., 2019b; Allen-Zhu et al., 2019b; Du et al., 2019a; Zou et al., 2018; Zou & Gu, 2019). The
generalization bounds for overparameterized deep neural networks are also established in Arora
et al. (2019a;b); Allen-Zhu et al. (2019a); Cao & Gu (2019a;b). Recently, the NTK based analysis
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is also extended to the study of sequential decision problems including bandits (Zhou et al., 2020;
Zhang et al., 2020), and reinforcement learning algorithms (Cai et al., 2019; Liu et al., 2019; Wang
et al., 2020; Xu & Gu, 2020).

Our algorithm is also different from Langford & Zhang (2008); Agarwal et al. (2014) which reduce
the bandit problem to supervised learning. Moreover, their algorithms need to access an oracle that
returns the optimal policy in a policy class given a sequence of context and reward vectors, whose
regret depends on the VC-dimension of the policy class.

Notation We use [k] to denote a set {1, . . . , k}, k ∈ N+. ‖x‖2 =
√

x>x is the Euclidean norm
of a vector x ∈ Rd. For a matrix W ∈ Rm×n, we denote by ‖W‖2 and ‖W‖F its operator norm
and Frobenius norm respectively. For a semi-definite matrix A ∈ Rd×d and a vector x ∈ Rd, we
denote the Mahalanobis norm as ‖x‖A =

√
x>Ax. Throughout this paper, we reserve the notations

{Ci}i=0,1,... to represent absolute positive constants that are independent of problem parameters
such as dimension, sample size, iteration number, step size, network length and so on. The specific
values of {Ci}i=0,1,... can be different in different context. For a parameter of interest T and a
function f(T ), we use notations such asO(f(T )) and Ω(f(T )) to hide constant factors and Õ(f(T ))
to hide constant and logarithmic dependence of T .

2 PRELIMINARIES

In this section, we provide the background of contextual bandits and deep neural networks.

2.1 LINEAR CONTEXTUAL BANDITS

A contextual bandit is characterized by a tuple (S,A, r), where S is the context (state) space, A is
the arm (action) space, and r encodes the unknown reward generating function at all context-arm
pairs. A learning agent, who knows S and A but does not know the true reward r (values bounded
in (0, 1) for simplicity), needs to interact with the contextual bandit for T rounds. At each round
t = 1, . . . , T , the agent first observes a context st ∈ S chosen by the environment; then it needs to
adaptively select an arm at ∈ A based on its past observations; finally it receives a reward

r̂t(xs,at) = r(xs,at) + ξt, (2.1)

where xs,a ∈ Rd is a known feature vector for context-arm pair (s, a) ∈ S ×A, and ξt is a random
noise with zero mean. The agent’s objective is to maximize its expected total reward over these T
rounds, which is equivalent to minimizing the pseudo regret (Audibert et al., 2009):

RT = E
[ T∑
t=1

(
r̂(xst,a∗t )− r̂(xst,at)

)]
, (2.2)

where a∗t ∈ argmaxa∈A{r(xst,a) = E[r̂(xst,a)]}. To simplify the exposition, we use xt,a to denote
xst,a since it only depends on the round index t in most bandit problems, and we assume A = [K].

In linear contextual bandits, the reward function in (2.1) is assumed to have a linear structure
r(xs,a) = x>s,aθ

∗ for some unknown weight vector θ∗ ∈ Rd. One provably sample efficient al-
gorithm for linear contextual bandits is Linear Upper Confidence Bound (LinUCB) (Chu et al.,
2011) or Optimism in the Face of Uncertainty Linear bandit algorithm (OFUL) (Abbasi-Yadkori
et al., 2011). Specifically, at each round t, LinUCB chooses the action at = argmaxa∈[K]{x>t,aθt +

αt‖xt,a‖A−1
t
}, where θt is a point estimate of θ∗, At = λI +

∑t
i=1 xi,aix

>
i,ai

with some λ > 0

is a matrix defined based on the historical context-arm pairs, and αt > 0 is a tuning parameter that
controls the exploration rate in LinUCB.

2.2 DEEP NEURAL NETWORKS

In this paper, we use f(x) to denote a neural network with input data x ∈ Rd. Let L be the number
of hidden layers and Wl ∈ Rml×ml−1 be the weight matrices in the l-th layer, where l = 1, . . . , L,
m1 = . . . = mL−1 = m and m0 = mL = d. Then a L-hidden layer neural network is defined as

f(x) =
√
mθ∗>σL(WLσL−1(WL−1 · · ·σ1(W1x) · · · )), (2.3)
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where σl is an activation function and θ∗ ∈ Rd is the weight of the output layer. To simplify the
presentation, we will assume σ1 = σ2 = . . . = σL = σ is the ReLU activation function, i.e.,
σ(x) = max{0, x} for x ∈ R. We denote w = (vec(W1)>, . . . , vec(WL)>)>, which is the
concatenation of the vectorized weight parameters of all hidden layers of the neural network. We
also write f(x;θ∗,w) = f(x) in order to explicitly specify the weight parameters of neural network
f . It is easy to show that the dimension p of vector w satisfies p = (L− 2)m2 + 2md. To simplify
the notation, we define φ(x; w) as the output of the L-th hidden layer of neural network f .

φ(x; w) =
√
mσ(WLσ(WL−1 · · ·σ(W1x) · · · )). (2.4)

Note that φ(x; w) itself can also be viewed as a neural network with vector-valued outputs.

3 DEEP REPRESENTATION AND SHALLOW EXPLORATION

3.1 HIGH-LEVEL IDEA OF THE PROPOSED ALGORITHM

The linear parametric form in linear contextual bandits might produce biased estimates of the reward
due to the lack of representation power (Snoek et al., 2015; Riquelme et al., 2018). In contrast, it
is well known that deep neural networks are powerful enough to approximate an arbitrary function
(Cybenko, 1989). Therefore, a natural extension of linear contextual bandits is to use a deep neural
network to approximate the reward generating function r(·). Nonetheless, DNNs usually have a pro-
hibitively large dimension for weight parameters, which makes the exploration in neural networks
based UCB algorithm inefficient (Kveton et al., 2020; Zhou et al., 2020).

In this work, we study a neural contextual bandit algorithm, where the hidden layers of a deep neural
network are used to represent the features and the exploration is only performed in the last layer of
the neural network. In particular, for any arm feature vector x, we use 〈θ∗,φ(x; w)〉 to approximate
the unknown reward function r(x), where φ(x; w) defined as in (2.4) is a neural network with
weight w, and θ∗ is a unknown weight parameter. Note that we can also view 〈θ∗,φ(x; w)〉 as a
neural network with φ(x; w) being the output of the last hidden layer and θ∗ the weight parameter
of the last (linear) layer. Different from existing neural bandit algorithms, we only add a UCB bonus
term involving the last layer instead of all the weight parameter of this large neural network.

This decoupling of the representation and the exploration achieves the best of both worlds: efficient
exploration of shallow (linear) models and high expressive power of deep models. In what follows,
we will describe a neural contextual bandit algorithm that uses the output of the last hidden layer of
a neural network to transform the raw feature vectors (deep representation) and performs UCB-type
exploration in the last layer of the neural network (shallow exploration). Since the exploration is
performed only in the last linear layer, we call this procedure Neural-LinUCB, which is displayed
in Algorithm 1.

3.2 DETAILED IMPLEMENTATION OF DEEP REPRESENTATION AND SHALLOW EXPLORATION

Now we describe the details of Algorithm 1. In round t, the agent receives an action set with raw
features Xt = {xt,1, . . . ,xt,K}. Then the agent chooses an arm at that maximizes the following
upper confidence bound:

at = argmax
k∈[K]

{
〈φ(xt,k; wt−1),θt−1〉+ αt‖φ(xt,k; wt−1)‖A−1

t−1

}
, (3.1)

where θt−1 is a point estimate of the unknown weight in the last layer, φ(x; w) is defined as in (2.4),
wt−1 is an estimate of all the weight parameters in the hidden layers of the neural network, αt > 0
is the algorithmic parameter controlling the exploration, and At defined as follows.

At = λI +

t∑
i=1

φ(xi,ai ; wi−1)φ(xi,ai ; wi−1)>, (3.2)

and λ > 0. After pulling arm at, the agent will observe a noisy reward r̂t := r̂(xt,at) = r(xt,k)+ξt,
where ξt is an independent ν-subGaussian random noise for some ν > 0 and r(·) is an unknown
reward function. In this paper, we will interchangeably use notation r̂t to denote the reward received
at the t-th step and an equivalent notation r̂(x) to express its dependence on the feature vector x.
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Upon receiving the reward r̂t, the agent updates its estimate θt of the output layer weight by using
the same `2-regularized least-squares estimate in linear contextual bandits (Abbasi-Yadkori et al.,
2011). In particular, we have θt = A−1t bt, where bt =

∑t
i=1 r̂iφ(xi,ai ; wi−1).

To save the computation, the neural networkφ(·; wt) will be updated once everyH steps. Therefore,
we have w(q−1)H+1 = . . . = wqH for q = 1, 2, . . .. We call the time steps {(q−1)H+1, . . . , qH}
an epoch with length H . At time step t = Hq, we will retrain the neural network based on all the
historical data via Algorithm 2, which minimizes the following empirical loss function:

Lq(w) =

qH∑
i=1

(
θ>i φ(xi,ai ; w)− r̂i

)2
. (3.3)

In practice, one can further save computational cost by only feeding data {xi,ai , r̂i,θi}
qH
i=(q−1)H+1

from the q-th epoch into Algorithm 2 to update the parameter wt, which does not hurt the perfor-
mance since the historical information has been encoded into the estimate of θi. In this paper, we will
perform the following gradient descent step w

(s)
q = w

(s−1)
q − ηq∇wLq(w(s−1)), for s = 1, . . . , n,

where w
(0)
q = w(0) is chosen as the same random initialization point. We will discuss more about

the initial point w(0) in the next paragraph. Then Algorithm 2 outputs w
(n)
q and we set it as the

updated weight parameter wHq+1 in Algorithm 1. In the next round, the agent will receive another
action set Xt+1 with raw feature vectors and repeat the above steps to choose the sub-optimal arm
and update estimation for contextual parameters.

Initialization: Recall that w is the collection of all hidden layer weight parameters of the neural net-
work. We will follow the same initialization scheme as used in Zhou et al. (2020), where each entry
of the weight matrices follows some Gaussian distribution. Specifically, for any l ∈ {1, . . . , L− 1},

we set Wl =

[
W 0
0 W

]
, where each entry of W follows distributionN(0, 4/m) independently; for

WL, we set it as [V −V], where each entry of V follows distribution N(0, 2/m) independently.

Comparison with LinUCB and NeuralUCB: Compared with linear contextual bandits in Sec-
tion 2.1, Algorithm 1 has a distinct feature that it learns a deep neural network to obtain a deep
representation of the raw data vectors and then performs UCB exploration. This deep representa-
tion allows our algorithm to characterize more intrinsic and latent information about the raw data
{xt,k}t∈[T ],k∈[K] ⊂ Rd. However, the increased complexity of the feature mapping φ(·; w) also
introduces great hardness in training. For instance, a recent work by Zhou et al. (2020) also stud-
ied the neural contextual bandit problem, but different from (3.1), their algorithm (NeuralUCB)
performs the UCB exploration on the entire network parameter space, which is Rp̃+d, where
p̃ = m + md + (L − 1)m2. Note that in Zhou et al. (2020), they need to compute the inverse
of a matrix Zt ∈ R(p̃+d)×(p̃+d), which is defined in a similar way to the matrix At in our paper
except that Zt is defined based on the gradient of the network instead of the output of the last hidden
layer as in (3.2). In sharp contrast, At in our paper is only of size d × d and thus is much more
efficient and practical in implementation, which will be seen from our experiments in later sections.

We note that there is also a similar algorithm to our Neural-LinUCB presented in Deshmukh et al.
(2020), where they studied the self-supervised learning loss in contextual bandits with neural net-
work representation for computer vision problems. However, no regret analysis has been provided.
When the feature mapping φ(·; w) is an identity function, the problem reduces to linear contextual
bandits where we directly use xt as the feature vector. In this case, it is easy to see that Algorithm 1
reduces to LinUCB (Chu et al., 2011) since we do not need to learn the representation parameter w.

Comparison with Neural-Linear: The high-level idea of decoupling the representation and explo-
ration in our algorithm is also similar to that of the Neural-Linear algorithm (Riquelme et al., 2018;
Zahavy & Mannor, 2019), which trains a deep neural network to learn a representation of the raw
feature vectors, and then uses a Bayesian linear regression to estimate the uncertainty in the bandit
problem. However, these two algorithms are significantly different since Neural-Linear (Riquelme
et al., 2018) is a Thompson sampling based algorithm that uses posterior sampling to estimate the
weight parameter θ∗ via Bayesian linear regression, whereas Neural-LinUCB adopts upper confi-
dence bound based techniques to estimate the weight θ∗. Nevertheless, both algorithms share the
same idea of deep representation and shallow exploration, and we view our Neural-LinUCB algo-
rithm as one instantiation of the Neural-Linear scheme.
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Algorithm 1 Deep Representation and Shallow Exploration (Neural-LinUCB)
1: Input: regularization parameter λ > 0, number of total steps T , episode length H , exploration

parameters {αt > 0}t∈[T ]

2: Initialization: A0 = λI, b0 = 0; entries of θ0 follow N(0, 1/d), and w(0) is initialized as
described in Section 3; q = 1; w0 = w(0)

3: for t = 1, . . . , T do
4: receive feature vectors {xt,1, . . . ,xt,K}
5: choose arm at = argmaxk∈[K] θ

>
t−1φ(xt,k; wt−1) +αt‖φ(xt,k; wt−1)‖A−1

t−1
, and obtain

reward r̂t
6: update At and bt as follows:

At = At−1 + φ(xt,at ; wt−1)φ(xt,at ; wt−1)>, bt = bt−1 + r̂tφ(xt,at ; wt−1),

7: update θt = A−1t bt
8: if mod(t,H) = 0 then
9: wt ← output of Algorithm 2

10: q = q + 1
11: else
12: wt = wt−1
13: end if
14: end for
15: Output wT

Algorithm 2 Update Weight Parameters with Gradient Descent

1: Input: initial point w
(0)
q = w(0), maximum iteration number n, step size ηq , and loss function

defined in (3.3).
2: for s = 1, . . . , n do
3: w

(s)
q = w

(s−1)
q − ηq∇wLq(w(s−1)

q ).
4: end for
5: Output w

(n)
q

4 MAIN RESULTS

To analyze the regret bound of Algorithm 1, we first lay down some important assumptions on the
neural contextual bandit model.
Assumption 4.1. For all i ≥ 1 and k ∈ [K], we assume that ‖xi,k‖2 = 1 and its entries satisfy
[xi,k]j = [xi,k]j+d/2.

The assumption that ‖xi,k‖2 = 1 is not essential and is only imposed for simplicity, which is also
used in Zou & Gu (2019); Zhou et al. (2020). The condition on the entries of xi,k is also mild
since otherwise we could always construct x′i,k = [x>i,k,x

>
i,k]>/

√
2 to replace it. An implication of

Assumption 4.1 is that the initialization scheme in Algorithm 1 results in φ(xi,k; w(0)) = 0 for all
i ∈ [T ] and k ∈ [K].

We assume the following stability condition on the spectral norm of the neural network gradient:

Assumption 4.2. There is a constant `Lip > 0 such that it holds
∥∥ ∂φ
∂w (x; w0) − ∂φ

∂w (x′; w0)
∥∥
2
≤

`Lip‖x− x′‖2 for all x,x′ ∈ {xi,k}i∈[T ],k∈[K].

The inequality in Assumption 4.2 resembles the Lipschitz condition on the gradient of the neural
network. However, it is essentially different from the smoothness condition since here the gradient
is taken with respect to the neural network weights while the Lipschitz condition is imposed on the
feature parameter x. Similar conditions are widely made in nonconvex optimization (Wang et al.,
2014; Balakrishnan et al., 2017; Xu et al., 2017), in the name of first-order stability, which is essential
to derive the convergence of alternating optimization algorithms. Furthermore, Assumption 4.2 is
only required on the TK training data points and a specific weight parameter w0. Therefore, the
condition will hold if the raw feature data lie in a certain subspace of Rd. We provided some further
discussions in the supplementary material about this assumption for interested readers.
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In order to analyze the regret bound of Algorithm 1, we need to characterize the properties of the
deep neural network in (2.3) that is used to represent the feature vectors. Following a recent line of
research (Jacot et al., 2018; Cao & Gu, 2019a; Arora et al., 2019b; Zhou et al., 2020), we define the
covariance between two data point x,y ∈ Rd as follows.

Σ̃(0)(x,y) = Σ(0)(x,y) = x>y,

Λ(l)(x,y) =

[
Σl−1(x,x) Σl−1(x,y)
Σl−1(y,x) Σl−1(y,y)

]
,

Σ(l)(x,y) = 2E(u,v)∼N(0,Λ(l−1)(x,y))[σ(u)σ(v)],

Σ̃(l)(x,y) = 2Σ̃(l−1)(x,y)Eu,v[σ̇(u)σ̇(v)] + Σ(l)(x,y), (4.1)

where (u, v) ∼ N(0,Λ(l−1)(x,y)), and σ̇(·) is the derivative of activation function. We denote the
neural tangent kernel (NTK) matrix H ∈ RTK×TK based on all feature vectors {xt,k}t∈[T ],k∈[K].
Renumbering {xt,k}t∈[T ],k∈[K] as {xi}i=1,...,TK , then each entry Hij is defined as

Hij =
1

2

(
Σ̃(L)(xi,xj) + Σ(L)(xi,xj)

)
, (4.2)

for all i, j ∈ [TK]. Based on the above definition, we impose the following assumption on H.

Assumption 4.3. The neural tangent kernel defined in (4.2) is positive definite, i.e., λmin(H) ≥ λ0
for some constant λ0 > 0.

Assumption 4.3 essentially requires the neural tangent kernel matrix H to be non-singular, which is
a mild condition and also imposed in other related work (Du et al., 2019a; Arora et al., 2019b; Cao
& Gu, 2019a; Zhou et al., 2020). Moreover, it is shown that Assumption 4.3 can be easily derived
from Assumption 4.1 for two-layer ReLU networks (Oymak & Soltanolkotabi, 2020; Zou & Gu,
2019). Therefore, Assumption 4.3 is mild or even negligible given the non-degeneration assumption
on the feature vectors. Also note that matrix H is only defined based on layers l = 1, . . . , L of the
neural network, and does not depend on the output layer θ. It is easy to extend the definition of H
to the NTK matrix defined on all layers including the output layer θ, which would also be positive
definite by Assumption 4.3 and the recursion in (4.2).

Before we present the regret analysis of the neural contextual bandit, we need to modify the regret
defined in (2.2) to account for the randomness of the neural network initialization. For a fixed time
horizon T , we define the regret of Algorithm 1 as follows.

RT = E
[ T∑
t=1

(
r̂(xt,a∗t )− r̂(xt,at)

)
|w(0)

]
, (4.3)

where the expectation is taken over the randomness of the reward noise. Note that RT defined
in (4.3) is still a random variable since the initialization of Algorithm 2 is randomly generated.

Now we are going to present the regret bound of the proposed algorithm.

Theorem 4.4. Suppose Assumptions 4.1, 4.2 and 4.3 hold. Assume that ‖θ∗‖2 ≤ M for some
positive constant M > 0. For any δ ∈ (0, 1), let us choose αt in Neural-LinUCB as

αt = ν
√

2
(
d log(1 + t log(HK)/λ) + log(1/δ)

)
+ λ1/2M.

We choose the step size ηq of Algorithm 2 as ηq ≤ C0

(
d2mnT 5.5L6 log(TK/δ)

)−1
and the width

of the neural network satisfies m = poly(L, d, 1/δ,H, log(TK/δ)). With probability at least 1− δ
over the randomness of the initialization of the neural network, it holds that

RT ≤ C1αT

√
Td log

(
1 +

TG2

λd

)
+
C2`LipL

3d5/2T
√

logm log( 1
δ
) log(TK

δ
)‖r− r̃‖H−1

m1/6
,

where constants {Ci}i=0,1,2 are independent of the problem, r = (r(x1), r(x2), . . . , r(xTK))> ∈
RTK and r̃ = (f(x1;θ0,w0), . . . , f(xTK ;θT−1,wT−1))> ∈ RTK , and ‖r‖A =

√
r>Ar.
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Remark 4.5. Theorem 4.4 shows that the regret of Algorithm 1 can be bounded by two parts: the
first part is of order Õ(

√
T ), which resembles the regret bound of linear contextual bandits (Abbasi-

Yadkori et al., 2011); the second part is of order Õ(m−1/6T
√

(r− r̃)>H−1(r− r̃)), which de-
pends on the estimation error of the neural network f for the reward generating function r and the
neural tangent kernel H.

It is worth noting that our theoretical analysis depends on the reward structure assumption that
r(·) = 〈θ∗,ψ(·)〉. However, the linear structure between θ∗ and ψ(·) is not essential. As long as
the deep representation of the feature vector and the uncertainty weight parameter can be decoupled,
Algorithm 1 can be easily extended to settings with milder assumptions on the reward structure such
as generalized linear models (Sarkar, 1991; Filippi et al., 2010; Li et al., 2017; Kveton et al., 2020).
For more general bandit models where no assumption is imposed to the reward generating function,
it is still unclear whether the decoupled deep representation and shallow exploration would work
especially in cases a thorough exploration may be needed.

Based on the result in Theorem 4.4, we can easily verify the following conclusion:

Corollary 4.6. Under the same conditions of Theorem 4.4, if we choose a sufficiently overpa-
rameterized neural network mapping φ(·) such that m ≥ T 3, then the regret of Algorithm 1 is
RT = Õ(

√
T
√

(r− r̃)>H−1(r− r̃)).

Remark 4.7. For the ease of presentation, let us denote E := ‖r− r̃‖H−1 . If we have E = O(1), the
total regret in Theorem 4.4 becomes Õ(

√
T ) which matches the regret of linear contextual bandits

(Abbasi-Yadkori et al., 2011). We remark that there is a similar assumption in Zhou et al. (2020)
where they assume that r>H−1r can be upper bounded by a constant. They show that this term
can be bounded by the RKHS norm of r if it belongs to the RKHS induced by the neural tangent
kernel (Arora et al., 2019a;b; Lee et al., 2019). In addition, E here is the difference between the true
reward function and the neural network function, which can also be small if the deep neural network
function well approximates the reward generating function r(·).

5 EXPERIMENTS

In this section, we provide empirical evaluations of Neural-LinUCB on real-world datasets. As we
have discussed in Section 3, Neural-LinUCB could be viewed as an instantiation of the Neural-
Linear scheme studied in Riquelme et al. (2018) except that we use the UCB exploration instead
of the posterior sampling exploration therein. Note that there has been an extensive comparison
(Riquelme et al., 2018) of the Neural-Linear methods with many other baselines such as greedy
algorithms, Variational Inference, Expectation-Propagation, Bayesian Non-parametrics and so on.
Therefore, we do not seek a thorough empirical comparison of Neural-LinUCB with all existing
bandits algorithms. In this experiment, we only aim to validate the advantages of our algorithm over
the following baselines: (1) Neural-Linear (Riquelme et al., 2018); (2) LinUCB (Chu et al., 2011),
which does not have a deep representation of the feature vectors; (3) NeuralUCB (Zhou et al., 2020),
and (4) NeuralTS (Zhang et al., 2020) which perform UCB/TS exploration on all the parameters of
the neural network. All numerical experiments were run on a workstation with Intel(R) Xeon(R)
CPU E5-2637 v4 @ 3.50GHz.

Datasets: we evaluate the performances of all algorithms on bandit problems created from real-
world data. Specifically, following the experimental setting in Zhou et al. (2020),we use datasets
(Shuttle) Statlog, Magic and Covertype from UCI machine learning repository (Dua & Graff, 2017),
and the MINST dataset from LeCun et al. (1998). The details of these datasets are presented in Table
1. In Table 1, each instance represents a feature vector x ∈ Rd that is associated with one of the K
arms, and dimension d is the number of attributes in each instance.

Implementations: for LinUCB, we follow the setting in Li et al. (2010) to use disjoint models
for different arms. For neural network based algorithms, we use a ReLU neural network defined
as in (2.3) with L = 2 and m = 100 for the UCI datasets (Statlog, Magic, Covertype). Thus the
neural network weights are W1 ∈ Rm×d, W2 ∈ Rk×m, and θ ∈ Rk respectively, where k = 100,
m = 100, and d is the dimension of features in the corresponding task. Since the problem size of
the MNIST dataset is larger, inspired by Hinton & Salakhutdinov (2006), we use a deeper NN and
set L = 3, k = 100 and m = 100, with weights W1 ∈ Rm×d, W2 ∈ Rm×m, W3 ∈ Rk×m,
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Table 1: Specifications of datasets from the UCI machine learning repository and the MNIST dataset
used in this paper.

Statlog Magic Covertype MNIST

Number of attributes 9 11 54 784
Number of arms 7 2 7 10
Number of instances 58,000 19,020 581,012 60,000

0 3000 6000 9000 12000 15000
round

0

100

200

300

400

500

cu
m

ul
at

iv
e 

re
gr

et

LinUCB
NeuralTS
NeuralUCB
NeuralLinear
Neural-LinUCB

(a) Statlog

0 3000 6000 9000 12000 15000
round

0

1000

2000

3000

4000

cu
m

ul
at

iv
e 

re
gr

et

LinUCB
NeuralTS
NeuralUCB
NeuralLinear
Neural-LinUCB

(b) Magic

0 3000 6000 9000 12000 15000
round

0

1000

2000

3000

4000

5000

6000

7000

8000

cu
m

ul
at

iv
e 

re
gr

et

LinUCB
NeuralTS
NeuralUCB
NeuralLinear
Neural-LinUCB

(c) Covertype

0 3000 6000 9000 12000 15000
round

0

500

1000

1500

2000

2500

3000

cu
m

ul
at

iv
e 

re
gr

et

LinUCB
NeuralTS
NeuralUCB
NeuralLinear
Neural-LinUCB

(d) MNIST

Figure 1: The cumulative regrets of LinUCB, NeuralUCB, Neural-Linear and Neural-LinUCB over
15, 000 rounds. Experiments are averaged over 10 repetitions.

and θ ∈ Rk. We set the time horizon T = 15, 000, which is the total number of rounds for each
algorithm on each dataset. We use stochastic gradient decent to optimize the network weights, with
a step size ηq =1e-5 and maximum iteration number n = 1, 000. To speed up the training process,
the network parameter w is updated everyH = 100 rounds starting from round 2000. We also apply
early stopping when the loss difference of two consecutive iterations is smaller than a threshold of
1e-6. We set λ = 1 and αt = 0.02 for all algorithms, t ∈ [T ]. For NeuralUCB and NeuralTS, since
it is computationally unaffordable to perform the original UCB exploration as displayed in Zhou
et al. (2020), we follow their experimental setting to replace the matrix Zt ∈ R(d+p̃)×(d+p̃) in their
papers with its diagonal matrix.

Results: we plot the cumulative regret of all algorithms versus round in Figures 1(a), 1(b) and 1(c)
for UCI datasets and in Figure 1(d) for MNIST. The results are reported based on the average of 10
repetitions over different random shuffles of the datasets. It can be seen that algorithms based on
neural network representations (NeuralUCB, NeuralTS, Neural-Linear and Neural-LinUCB) consis-
tently outperform the linear contextual bandit method LinUCB, which shows that linear models may
lack representation power and find biased estimates for the underlying reward generating function.
Furthermore, our proposed Neural-LinUCB achieves a comparable regret with NeuralUCB in all ex-
periments despite the fact that our algorithm only explores in the output layer of the neural network,
which is more computationally efficient as we will show in the sequel.The results in our experiment
are well aligned with our theory that deep representation and shallow exploration are sufficient to
guarantee a good performance of neural contextual bandit algorithms, which is also consistent with
the findings in existing literature (Riquelme et al., 2018) that decoupling the representation learning
and uncertainty estimation improves the performance.

We also conducted experiments to study the effects of different widths of deep neural networks on
the regret performance and to show the computational efficiency of Neural-LinUCB compared with
existing neural bandit algorithms. Due to the space limit, we defer the results to Appendix A.

6 CONCLUSIONS

In this paper, we propose a new neural contextual bandit algorithm called Neural-LinUCB, which
uses the hidden layers of a ReLU neural network as a deep representation of the raw feature vectors
and performs UCB type exploration on the last layer of the neural network. By incorporating tech-
niques in liner contextual bandits and neural tangent kernels, we prove that the proposed algorithm
achieves a sublinear regret when the width of the network is sufficiently large. This is the first regret
analysis of neural contextual bandit algorithms with deep representation and shallow exploration,
which have been observed in practice to work well on many benchmark bandit problems (Riquelme
et al., 2018). We also conducted experiments on real-world datasets to demonstrate the advantage
of the proposed algorithm over LinUCB and existing neural contextual bandit algorithms.
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A ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide more experimental results that are omitted in Section 5 due to space limit.

A.1 COMPUTATIONAL EFFICIENCY OF NEURAL-LINUCB

Throughout the experiments, our Neural-LinUCB algorithm is much more computationally efficient
than NeuralUCB since we only perform the UCB exploration on the last layer of the neural network,
where the dimension is much lower. In specific, on the Statlog dataset, it takes on average 1.11
seconds for NeuralUCB to finish 100 rounds (one epoch in Algorithm 1) and achieve the regret in
Figure 1(a), while it only takes 0.58 seconds for Neural-LinUCB to finish 100 rounds and achieve
the comparable or even better regret in Figure 1(a). On the Magic dataset, the average runtimes
for 100 rounds of NeuralUCB and Neural-LinUCB are 1.32 seconds and 0.81 seconds respectively.
On the Covertype dataset, the runtimes of NeuralUCB and Neural-LinUCB are 1.02 seconds and
0.66 seconds respectively. And on the MNIST dataset, the average runtimes for 100 rounds of
NeuralUCB and Neural-LinUCB are 4.67 seconds and 1.29 seconds respectively. For practical
applications in the real-world with larger problem sizes, we believe that the improvement of our
algorithm in terms of the computational efficiency will be more pronounced.

As we discussed in Section 5 and in the above paragraph as well, the computational efficiency of
Neural-LinUCB mainly stems from the design of shallow exploration. This is because in UCB based
bandit algorithms we need to compute the inverse of matrix A at every time step for arm selection
(Line 5 of Algorithm 1). Due to the large width of the neural network used in practice, the arm
selection operation could be rather time consuming. However, the neural network weight can be
updated periodically (i.e., in our paper it is only updated every H steps). To validate our analysis
on computational efficiency, we further studied the time profiling of the experiments conducted on
MNIST to compared our proposed algorithm with NeuralUCB in more details.

Table 2: Profiling experiment on MNIST for running 100 rounds: runtime (seconds) for different
algorithms on arm selection and network weight update.

Operations NeuralUCB Neural-LinUCB
Arm selection (Line 5 in Algorithm 1) 3.60 0.28

Network weight update (Line 9 in Algorithm 1) 0.96 0.92

In particular, the setting is the same as that in Section 5 for MNIST experiments. We record the
time cost of the most expensive two subroutines: (1) the operation of arm selection (Line 5 in
Algorithm 1); and (2) the operation of updating the neural network weights (Line 9 in Algorithm
1), for H = 100 rounds. The time cost is presented in Table 2. For Neural-LinUCB, the arm
selection operation takes about 0.28 seconds (this is 21.71% of the total time cost by the algorithm
in these H = 100 rounds), among which the matrix inverse step only takes 0.17 seconds. For
NeuralUCB, the arm selection operation takes 3.60 seconds (this is 77.19% of the total time time
cost by NeuralUCB for H = 100 rounds). Therefore, the operation of arm selection in NeuralUCB
is much (almost 13 times) more time consuming than that in Neural-LinUCB. Moreover, since
the UCB matrix Zt in NeuralUCB is defined as ∇f(x; w)∇f(x; w)>, it needs to compute the
gradients via back-propagation (0.93 seconds) and compute the matrix inverse (1.54 seconds), while
our Neural-LinUCB algorithm only needs to compute the matrix inverse of a small matrix (0.17
seconds). To summarize, our method is much more computationally efficient.

A.2 IMPACT OF LARGE WIDTHS

Note that the requirement of width m in our Theorem 4.4 is extremely high. On one hand, our the-
ory may be too conservative since the current understanding of deep learning is still very limited in
the field. We believe our work is a good starting point towards understanding the behavior of deep
bandits algorithms. On the other hand, we would also like to investigate the impact of mild overpa-
rameterization on the regret performance of Neural-LinUCB in practice. Therefore, we conducted
additional experiments on the Statlog dataset with wider neural networks. In particular, the neural
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Figure 2: Performance of Neural-LinUCB with different widths on Statlog dataset.

network parameters are listed as follows

W1 ∈ Rm×d,W2 ∈ Rm×m, . . . ,WL ∈ Rk×m,θ ∈ Rk,
where L is the depth, k = 100, d is the feature dimensions, and m is the width. We conducted
experiments for the following settings: (1) L = 2, m = 100, and thus the hidden layer width is
(100); (2) L = 2, m = 1000, and thus the hidden layer width is (1000); (3) L = 2, m = 10000, and
thus the hidden layer width is (10000); (4) L = 2, and the hidden layer width is (50000); (5) L = 3,
m = 10000, and thus the hidden layer width is (10000, 10000); and (6)L = 4,m = 10000, and thus
the hidden layer width is (10000, 10000, 10000). The results are plotted in Figure A.2. We observe
that the performance of our Neural-LinUCB algorithm is not negatively impacted by the width of
the neural network. In fact, Figure A.2 shows improved performance of Neural-LinUCB when the
total number of hidden nodes increases. This is consistent to the observations in Zhang et al. (2017)
that an overparameterized neural network trained by gradient descent does not necessarily lead to
overfitting and also aligns with our Theorem 4.4 that the regret bound of Neural-LinUCB decreases
as the width m increases.

B MORE DISCUSSIONS ON ASSUMPTION 4.2

In this section, we are going to show that Assumption 4.2 could be satisfied as long as the feature
vectors {x} lie in a begin subspace of Rd. Let us start with the case that φ : Rd → Rm is a
two-layer ReLU neural network with vector output. In particular, we define φ(x; w) as follows
φ(x; w) = σ(W2σ(W1x)), where w = (vec(W1), vec(W2))>, W1 ∈ Rm×d, W2 ∈ Rd×m, and
σ is the ReLU activation function applied elementwise. We use u>i to denote the i-th row of W1 and
thus W1 = (u1, . . . ,um)>, where ui ∈ Rd, ∀i ∈ [m]. Similarly, we have W2 = (v1, . . . ,vd)

>,
where vj ∈ Rm is the j-th row of W2, ∀j ∈ [d]. Let us denote h as the vector σ(W1x). We thus
obtain

h =

1{u
>
1 x ≥ 0}u>1 x

...
1{u>mx ≥ 0}u>mx

 , φ(x; w) =

1{v
>
1 h ≥ 0}v>1 h

...
1{v>d h ≥ 0}v>d h

 .
We use φl(x; w) to denote the l-th entry of vector φ(x; w), for any l ∈ [d]. Then it holds that

∂φl(x; w)

∂vec(W1)
= 1{v>1 h ≥ 0}

[
v11 1{u>1 x ≥ 0}x>, . . . , vm1 1{u>mx ≥ 0}x>

]
,

for all l ∈ [d], where vi1 is the i-th element in v1, i ∈ [m]. This further implies that

∂φ(x; w)

∂vec(W1)
=

1{v
>
1 h ≥ 0}

(
v11 1{u>1 x ≥ 0}x>, . . . , vm1 1{u>mx ≥ 0}x>

)
...

1{v>d h ≥ 0}
(
v1d 1{u>1 x ≥ 0}x>, . . . , vmd 1{u>mx ≥ 0}x>

)
 ∈ Rd×md.
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Similarly, we can compute the gradient of φ(x; w) with respect to W2. In particular, we have

∂φ1(x; w)

∂vec(v1)
= 1{v>1 h ≥ 0}

[
1{u>1 x ≥ 0}u>1 x, . . . ,1{u>mx ≥ 0}u>mx

]
,

∂φ1(x; w)

∂vec(vj)
= [0, . . . , 0], j 6= 1.

Therefore, the gradient of φ(x; w) with respect to W2 is

∂φ(x; w)

∂vec(W2)
=


∂φ1(x;w)
∂vec(v1)

. . . 0>

. . .
0> . . . ∂φd(x;w)

∂vec(vd)

 ∈ Rd×md.

Lastly, we have

∂φ(x; w)

∂w
=
[
∂φ(x;w)
∂vec(W1)

∂φ(x;w)
∂vec(W2)

]
∈ Rd×(md+md).

Therefore, for any two feature vectors x and x′ from {xi,k}i∈[T ],k∈[K], if many nodes in the initial
neural network φ(x; w0) are activated or deactivated at the same time for both x and x′, then the
spectral norm of the matrix ∂φ(x;w0)

∂w − ∂φ(x′;w0)
∂w would satisfy the condition in Assumption 4.2. A

more thorough study of this stability condition is out of the scope of this paper, though it would be
an interesting open direction in the theory of deep neural networks.

C PROOF OF THE MAIN RESULTS

In this section, we provide the proof of the regret bound for Neural-LinUCB. Recall that in neural
contextual bandits, we do not assume a specific formulation of the underlying reward generating
function r(·). Instead, we use deep neural networks defined in Section 2.2 to approximate r(·). We
will first show that the reward generating function r(·) can be approximated by the local linearization
of the overparameterized neural network near the initialization weight w(0). In particular, we denote
the gradient of φ(x; w) with respect to w by g(x; w), namely,

g(x; w) = ∇wφ(x; w), (C.1)

which is a matrix in Rd×p. We define φj(x; w) to be the j-th entry of vector φ(x; w), for any
j ∈ [d]. Then, we can prove the following lemma.

Lemma C.1. Suppose Assumptions 4.3 hold. Then there exists w∗ ∈ Rp such that ‖w∗−w(0)‖2 ≤
1/
√
m
√

(r− r̃)>H−1(r− r̃) and it holds that

r(xt,k) = θ∗>φ(xt,k; wt−1) + θ>0 g(xt,k; w(0))
(
w∗ −w(0)

)
,

for all k ∈ [K] and t = 1, . . . , T .

Lemma C.1 implies that the reward generating function r(·) at points {xi,k}i∈[T ],k∈[K] can be ap-
proximated by a linear function around the initial point w(0). Note that a similar lemma is also
proved in Zhou et al. (2020) for NeuralUCB.

The next lemma shows the upper bounds of the output of the neural network φ and its gradient.
Lemma C.2. Suppose Assumptions 4.1 and 4.3 hold. For any round index t ∈ [T ], suppose it is
in the q-th epoch of Algorithm 2, i.e., t = (q − 1)H + i for some i ∈ [H]. If the step size ηq in
Algorithm 2 satisfies

η ≤ C0

d2mnT 5.5L6 log(TK/δ)
,

and the width of the neural network satisfies

m ≥ max{L log(TK/δ), dL2 log(m/δ), δ−6H18L16 log3(TK)}, (C.2)
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then, with probability at least 1− δ we have

‖wt −w(0)‖2 ≤
δ3/2

m1/2Tn9/2L6 log3(m)
,

‖g(xt,k; w(0))‖F ≤ C1

√
dLm,

‖φ(x; wt)‖2 ≤
√
d log(n) log(TK/δ),

for all t ∈ [T ], k ∈ [K], where the neural network φ is defined in (2.4) and its gradient is defined
in (C.1).

The next lemma shows that the neural network φ(x; w) is close to a linear function in terms of the
weight w parameter around a small neighborhood of the initialization point w(0).

Lemma C.3 (Theorems 5 in Cao & Gu (2019b)). Let w,w′ be in the neighborhood of w0, i.e.,
w,w′ ∈ B(w0, ω) for some ω > 0. Consider the neural network defined in (2.4), if the width m
and the radius ω of the neighborhood satisfy

m ≥ C0 max{dL2 log(m/δ), ω−4/3L−8/3 log(TK) log(m/(ωδ))},
ω ≤ C1L

−5(logm)−3/2,

then for all x ∈ {xt,k}t∈[T ],k∈[K], with probability at least 1− δ it holds that

|φj(x; w)− φ̂j(x; w)| ≤ C2ω
4/3L3d−1/2

√
m logm,

where φ̂j(x; w) is the linearization of φj(x; w) at w′ defined as follow:

φ̂j(x; w) = φj(x; w′) + 〈∇wφj(x; w′),w −w′〉. (C.3)

Similar results on the local linearization of an overparameterized neural network are also presented
in Allen-Zhu et al. (2019b); Cao & Gu (2019b).

For the output layer θ∗, we perform a UCB type exploration and thus we need to characterize the
uncertainty of the estimation. The next lemma shows the confidence bound of the estimate θt in
Algorithm 1.

Lemma C.4. Suppose Assumption and 4.3 hold. For any δ ∈ (0, 1), with probability at least 1− δ,
the distance between the estimated weight vector θt by Algorithm 1 and θ∗ can be bounded as
follows: ∥∥∥∥θt − θ∗ −A−1t

t∑
s=1

φ(xs,as ; ws−1)θ>0 g(xs,as ; w(0))(w∗ −w(0))

∥∥∥∥
At

≤ ν
√

2
(
d log(1 + t(logHK)/λ) + log 1/δ

)
+ λ1/2M,

for any t ∈ [T ].

Note that the confidence bound in Lemma C.4 is different from the standard result for linear con-
textual bandits in Abbasi-Yadkori et al. (2011). The additional term on the left hand side of the
confidence bound is due to the bias caused by the representation learning using a deep neural net-
work. To deal with this extra term, we need the following technical lemma.

Lemma C.5. Assume that At = λI +
∑t
s=1 φsφ

>
s , where φt ∈ Rd and ‖φt‖2 ≤ G for all t ≥ 1

and some constants λ,G > 0. Let {ζt}t=1,... be a real-value sequence such that |ζt| ≤ U for some
constant U > 0. Then we have∥∥∥∥A−1t t∑

s=1

φsζs

∥∥∥∥
2

≤ 2Ud, ∀t = 1, 2, . . .

The next lemma provides some standard bounds on the feature matrix At, which is a combination
of Lemma 10 and Lemma 11 in Abbasi-Yadkori et al. (2011).
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Lemma C.6. Let {xt}∞t=1 be a sequence in Rd and λ > 0. Suppose ‖xt‖2 ≤ G and λ ≥
max{1, G2} for some G > 0. Let At = λI +

∑t
s=1 xtx

>
t . Then we have

det(At) ≤ (λ+ tG2/d)d, and
T∑
t=1

‖xt‖2A−1
t−1

≤ 2 log
det(AT )

det(λI)
≤ 2d log(1 + TG2/(λd)).

Now we are ready to prove the regret bound of Algorithm 1.

Proof of Theorem 4.4. For a time horizon T , without loss of generality, we assume T = QH for
some epoch number Q. By the definition of regret in (4.3), we have

RT = E
[ T∑
t=1

(r̂(xt,a∗t )− r̂(xt,at))
]

= E
[ Q∑
q=1

H∑
i=1

(r̂(xqH+i,a∗qH+i
)− r̂(xqH+i,aqH+i

))

]
.

Note that for the simplicity of presentation, we omit the conditional expectation notation of w(0) in
the rest of the proof when the context is clear. In the second equation, we rewrite the time index
t = qH + i as the i-th iteration in the q-th epoch.

By the definition in (2.1), we have E[r̂(xt,k)|xt,k] = r(xt,k) for all t ∈ [T ] and k ∈ K. Based on the
linearization of reward generating function, we can decompose the instaneous regret into different
parts and upper bound them individually. In particular, by Lemma C.1, there exists a vector w∗ ∈ Rp
such that we can write the expectation of the reward generating function as a linear function. Then
it holds that

r(xt,a∗t )− r(xt,at) = θ>0
[
g
(
xt,a∗t ; w(0)

)
− g

(
xt,at ; w

(0)
)](

w∗ −w(0)
)

+ θ∗>
[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]
= θ>0

[
g
(
xt,a∗t ; w(0)

)
− g

(
xt,at ; w

(0)
)](

w∗ −w(0)
)

+ θ>t−1
[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]
− (θt−1 − θ∗)>

[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]
. (C.4)

The first term in (C.4) can be easily bounded using the first order stability in Assumption 4.2 and the
distance between w∗ and w(0) in Lemma C.1. The second term in (C.4) is related to the optimistic
rule of choosing arms in Line 5 of Algorithm 1, which can be bounded using the same technique for
LinUCB (Abbasi-Yadkori et al., 2011). For the last term in (C.4), we need to prove that the estimate
of weight parameter θt−1 lies in a confidence ball centered at θ∗. For the ease of notation, we define

Mt = A−1t

t∑
s=1

φ(xs,as ; ws−1)θ>0 g(xs,as ; w(0))(w∗ −w(0)). (C.5)

Then the second term in (C.4) can be bounded in the following way:

− (θt−1 − θ∗)>
[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]
= −

(
θt−1 − θ∗ −Mt−1

)>
φ
(
xt,a∗t ; wt−1

)
+
(
θt−1 − θ∗ −Mt−1

)>
φ
(
xt,at ; wt−1

)
−M>

t−1
[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]
≤ ‖θt−1 − θ∗ −Mt−1‖At−1

· ‖φ(xt,a∗t ; wt−1)‖A−1
t−1

+ ‖θt−1 − θ∗ −Mt−1‖At−1 · ‖φ(xt,at ; wt−1)‖A−1
t−1

+
∥∥M>

t−1
[
φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)]∥∥
2

≤ αt‖φ(xt,a∗t ; wt−1)‖A−1
t−1

+ αt‖φ(xt,at ; wt−1)‖A−1
t−1

+ ‖Mt−1‖2 · ‖φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)
‖2. (C.6)
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where the last inequality is due to Lemma C.4 and the choice of αt. Plugging (C.6) back into (C.4)
yields

r(xt,a∗t )− r(xt,at) ≤ αt‖φ(xt,at ; wt−1)‖A−1
t−1
− αt‖φ(xt,a∗t ; wt−1)‖A−1

t−1

+ αt‖φ(xt,a∗t ; wt−1)‖A−1
t−1

+ αt‖φ(xt,at ; wt−1)‖A−1
t−1

+ ‖Mt−1‖2 · ‖φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)
‖2

+ ‖θ0‖2 · ‖g(xt,a∗t ; w(0))− g(xt,at ; w
(0))‖F · ‖w∗ −w(0)‖2

≤ 2αt‖φ(xt,at ; wt−1)‖A−1
t−1

+ ‖Mt−1‖2 · ‖φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)
‖2

+ `Lip‖θ0‖2 · ‖xt,a∗t − xt,at‖2 · ‖w∗ −w(0)‖2, (C.7)

where in the first inequality we used the definition of upper confidence bound in Algorithm 1 and
the second inequality is due to Assumption 4.2. Recall the linearization of φj in Lemma C.3, we
have

φ̂(x; wt−1) = φ(x; w0) + g(x; w0)(wt−1 −w0).

Note that by the initialization, we have φ(x; w0) = 0 for any x ∈ Rd. Thus, it holds that

φ
(
xt,a∗t ; wt−1

)
− φ

(
xt,at ; wt−1

)
= φ

(
xt,a∗t ; wt−1

)
− φ

(
xt,a∗t ; w0

)
+ φ

(
xt,at ; w0

)
− φ

(
xt,at ; wt−1

)
= φ

(
xt,a∗t ; wt−1

)
− φ̂

(
xt,a∗t ; wt−1

)
+ g(xt,a∗t ; w0)(wt−1 −w0)

+ φ
(
xt,at ; wt−1

)
− φ̂

(
xt,at ; wt−1

)
− g(xt,at ; w0)(wt−1 −w0), (C.8)

which immediately implies that∥∥φ(xt,a∗t ; wt−1
)
− φ

(
xt,at ; wt−1

)∥∥
2

≤
∥∥φ(xt,a∗t ; wt−1

)
− φ̂

(
xt,a∗t ; wt−1

)∥∥
2

+
∥∥φ(xt,at ; wt−1

)
− φ̂

(
xt,at ; wt−1

)∥∥
2

+
∥∥(g(xt,a∗t ; w0)− g(xt,at ; w0)

)
(wt−1 −w0)

∥∥
2

≤ C0ω
4/3L3d1/2

√
m logm+ `Lip‖xt,a∗t − xt,at‖2‖wt−1 −w(0)‖2, (C.9)

where the second inequality is due to Lemma C.3 and Assumption 4.2. Therefore, the instaneous
regret can be further upper bounded as follows.

r(xt,a∗t )− r(xt,at)
≤ 2αt‖φ(xt,at ; wt−1)‖A−1

t−1
+ `Lip‖θ0‖2 · ‖xt,a∗t − xt,at‖2 · ‖w∗ −w(0)‖2

+ ‖Mt−1‖2 ·
(
C0ω

4/3L3d1/2
√
m logm+ `Lip‖xt,a∗t − xt,at‖2‖wt−1 −w(0)‖2

)
. (C.10)

By Assumption 4.1 we have ‖xt,a∗t − xt,at‖2 ≤ 2. By Lemma C.1 and Lemma C.2, we have

‖w∗ −w(0)‖2 ≤
√

1/m(r− r̃)>H−1(r− r̃),

‖wt −w(0)‖2 ≤
δ3/2

m1/2Tn9/2L6 log3(m)
.

(C.11)

In addition, since the entries of θ0 are i.i.d. generated from N(0, 1/d), we have ‖θ0‖2 ≤
2(2 +

√
d−1 log(1/δ)) with probability at least 1 − δ for any δ > 0. By Lemma C.2, we have

‖g(xt,at ; w
(0))‖F ≤ C1

√
dm. Therefore,∣∣θ>0 g(xs,as ; w(0))(w∗ −w(0))

∣∣ ≤ C2d
√

log(1/δ)(r− r̃)>H−1(r− r̃).

Then, by the definition of Mt in (C.5) and Lemma C.5, we have

‖Mt−1‖2 ≤ C3d
2
√

log(1/δ)(r− r̃)>H−1(r− r̃). (C.12)
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Substituting (C.12) and the above results on ‖xt,at − xt,a∗t ‖2, ‖θ0‖2, ‖w∗ −w(0)‖2 and ‖wt−1 −
w(0)‖2 back into (C.10) further yields

r(xt,a∗t )− r(xt,at)

≤ 2αt‖φ(xt,at ; wt−1)‖A−1
t−1

+ C4`Lipm
−1/2

√
log(1/δ)(r− r̃)>H−1(r− r̃)

+

(
C0ω

4/3L3d1/2
√
m logm+

2`Lipδ
3/2

m1/2Tn9/2L6 log3(m)

)
C3d

2
√

log(1/δ)(r− r̃)>H−1(r− r̃).

Note that we have ω = O(m−1/2‖r − r̃‖H−1) by Lemma C.1. Therefore, the regret of the
Neural-LinUCB is

RT ≤

√√√√QH max
t∈[T ]

α2
t

Q∑
q=1

H∑
i=1

‖φ(xi,ai ; wqH+i)‖2A−1
i

+ C4`Lipm
−1/2T

√
log(1/δ)‖r− r̃‖H−1

+

(
C0TL

3d1/2
√

logm‖r− r̃‖4/3H−1

m1/6
+

2`Lipδ
3/2

m1/2n9/2L6 log3(m)

)
C3d

2
√

log(1/δ)‖r− r̃‖H−1

≤ C5

√
Td log(1 + TG2/(λd))

(
ν
√
d log(1 + T (log TK)/λ) + log 1/δ + λ1/2M

)
+ C6`LipL

3d5/2m−1/6T
√

logm log(1/δ) log(TK/δ)‖r− r̃‖H−1 ,

where the first inequality is due to Cauchy’s inequality, the second inequality comes from the upper
bound ofαt in Lemma C.4 and Lemma C.6. {Cj}j=0,...,6 are absolute constants that are independent
of problem parameters.

Proof of Corollary 4.6. It directly follows the result in Theorem 4.4.

D PROOF OF TECHNICAL LEMMAS

In this section, we provide the proof of technical lemmas used in the regret analysis of Algorithm 1.

D.1 PROOF OF LEMMA C.1

Before we prove the lemma, we first present some notations and a supporting lemma for simplifica-
tion. Let β = (θ>,w>)> ∈ Rd+p be the concatenation of the exploration parameter and the hidden
layer parameter of the neural network f(x;β) = θ>φ(x; w). Note that for any input data vector
x ∈ Rd, we have

∂

∂β
f(x;β) =

(
φ(x; w)>,θ>

∂

∂w
φ(x; w)

)>
=
(
φ(x; w)>,θ>g(x; w)

)>
, (D.1)

where g(x; w) is the partial gradient of φ(x; w) with respect to w defined in (C.1), which is a
matrix in Rd×p. Similar to (4.2), we define HL+1 to be the neural tangent kernel matrix based on all
L+ 1 layers of the neural network f(x;β). Note that by the definition of H in (4.2), we must have
HL+1 = H + B for some positive definite matrix B ∈ RTK×TK . The following lemma shows that
the NTK matrix is close to the matrix defined based on the gradients of the neural network on TK
data points.
Lemma D.1 (Theorem 3.1 in Arora et al. (2019b)). Let ε > 0 and δ ∈ (0, 1). Suppose the activation
function in (2.3) is ReLU, i.e., σl(x) = max(0, x), and the width of the neural network satisfies

m ≥ Ω

(
L14

ε4
log

(
L

δ

))
. (D.2)

Then for any x,x′ ∈ Rd with ‖x‖2 = ‖x′‖2 = 1, with probability at least 1−δ over the randomness
of the initialization of the network weight w it holds that∣∣∣∣〈 1√

m

∂f(β,x)

∂β
,

1√
m

∂f(β,x′)

∂β

〉
−HL+1(x,x′)

∣∣∣∣ ≤ ε.
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Note that in the above lemma, there is a factor 1/
√
m before the gradient. This is due to the ad-

ditional
√
m factor in the definition of the neural network in (2.3), which ensures the value of the

neural network function evaluated at the initialization is of the order O(1).

Proof of Lemma C.1. Recall that we renumbered the feature vectors {xt,k}t∈[T ],k∈[K] for all arms
from round 1 to round T as {xi}i=1,...,TK . By concatenating the gradients at different inputs and
the gradient in (D.1), we define Ψ ∈ RTK×(d+p) as follows.

Ψ =
1√
m


∂
∂βθ

>φ(x1; w)
...

∂
∂βθ

>φ(xTK ; w)

 =
1√
m


φ(x1; w(0))> θ>0 g(x1; w(0))

...
...

φ(xi; w
(0))> θ>0 g(xi; w

(0))
...

...
φ(xTK ; w(0))> θ>0 g(xTK ; w(0))

 .

By Applying Lemma D.1, we know with probability at least 1− δ it holds that

|〈Ψj∗,Ψl∗〉 −HL+1(xj ,xl)| ≤ ε
for any ε > 0 as long as the width m satisfies the condition in (D.2). By applying union bound over
all data points {x1, . . . ,xt, . . . ,xTK}, we further have

‖ΨΨ> −HL+1‖F ≤ TKε.
Note that H is the neural tangent kernel (NTK) matrix defined in (4.2) and HL+1 is the NTK matrix
defined based on all L + 1 layers. By Assumption 4.3, H has a minimum eigenvalue λ0 > 0,
which is defined based on the first L layers of f . Furthermore, by the definition of NTK matrix
in (4.2), we know that HL+1 = H + B for some semi-positive definite matrix B. Therefore, the
NTK matrix HL+1 defined based on all L + 1 layers is also positive definite and its minimum
eigenvalue is lower bounded by λ0. Let ε = λ0/(2TK). By triangle equality we have ΨΨ> �
HL+1 − ‖ΨΨ> − HL+1‖2I � HL+1 − ‖ΨΨ> − HL+1‖F I � HL+1 − λ0/2I � 1/2HL+1,
which means that Ψ is semi-definite positive and thus rank(Ψ) = TK since m > TK.

We assume that Ψ can be decomposed as Ψ = PDQ>, where P ∈ RTK×TK is the eigenvectors
of ΨΨ> and thus PP> = ITK , D ∈ RTK×TK is a diagonal matrix with the square root of
eigenvalues of ΨΨ>, and Q> ∈ RTK×(d+p) is the eigenvectors of Ψ>Ψ and thus Q>Q = ITK .
We use Q1 ∈ Rd×TK and Q2 ∈ Rp×TK to denote the two blocks of Q such that Q> = [Q>1 ,Q

>
2 ].

By definition, we have

Q>Q = [Q>1 ,Q
>
2 ]

[
Q1

Q2

]
= Q>1 Q1 + Q>2 Q2 = ITK .

Note that the minimum singular value of Q1 ∈ Rd×TK is zero since d is a fixed number and
TK > d. Therefore, it must hold that rank(Q2) = TK and thus Q>2 Q2 is positive definite. Let
r = (r(x1), . . . , r(xi), . . . , r(xTK))> ∈ RTK denote the vector of all possible rewards. We further
define G ∈ RTKd×p and Φ ∈ RTKd as follows

G =
1√
m


g(x1; w(0))

...
g(xi; w

(0))
...

g(xTK ; w(0))

 , Φ =


φ(x1,1; w0)

...
φ(xt,k; wt−1)

...
φ(xT,K ; wT−1)

 . (D.3)

and Θ,Θ0 ∈ RTK×TKd as follows

Θ∗ =


θ∗>

. . .
θ∗>

. . .
θ∗>

 , Θ0 =


θ>0

. . .
θ>0

. . .
θ>0

 , (D.4)
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It can be verified that Ψ = PD[Q>1 ,Q
>
2 ] and PDQ>2 = Θ0G. Note that we have Q>2 Q2 is

positive definite by Assumption 4.3, which corresponds to the neural tangent kernel matrix defined
on the first L layers. Then we can define w∗ as follows

w∗ = w(0) + 1/
√
mQ2(Q>2 Q2)−1D−1P>(r−Θ∗Φ). (D.5)

We can verify that

Θ∗Φ +
√
mPDQ>2 (w∗ −w(0)) = r.

On the other hand, we have

‖w∗ −w(0)‖22 ≤ 1/m(r−Θ∗Φ)>PD−1(Q>2 Q2)−1D−1P>(r−Θ∗Φ)

≤ 1/m(r−Θ∗Φ)>H−1(r−Θ∗Φ),

which completes the proof.

D.2 PROOF OF LEMMA C.2

Note that we can view the output of the last hidden layer φ(x; w) defined in (2.4) as a vector-output
neural network with weight parameter w. The following lemma shows that the output of the neural
network φ is bounded at the initialization.
Lemma D.2 (Lemma 4.4 in Cao & Gu (2019b)). Let δ ∈ (0, 1), and the width of the neural
network satisfy m ≥ C0L log(TKL/δ). Then for all t ∈ [T ], k ∈ [K] and j ∈ [d], we have
|φj(xt,k; w(0))| ≤ C1

√
log(TK/δ) with probability at least 1 − δ, where w(0) is the initialization

of the neural network.

In addition, in a smaller neighborhood of the initialization, the gradient of the neural network φ is
uniformly bounded.
Lemma D.3 (Lemma B.3 in Cao & Gu (2019b)). Let ω ≤ C0L

−6(logm)−3 and w ∈ B(w0, ω).
Then for all t ∈ [T ], k ∈ [K] and j ∈ [d], the gradient of the neural network φ defined in (2.4)
satisfies ‖∇wφj(xt,k; w)‖2 ≤ C1

√
Lm with probability at least 1− TKL2 exp(−C2mω

2/3L).

The next lemma provides an upper bound on the gradient of the squared loss function defined in
(3.3). Note that our definition of the loss function is slightly different from that in Allen-Zhu et al.
(2019b) due to the output layer θi and thus there is an additional term on the upper bound of ‖θi‖2
for all i ∈ [T ].

Lemma D.4 (Theorem 3 in Allen-Zhu et al. (2019b)). Let ω ≤ C0δ
3/2/(T 9/2L6 log3m). For all

w ∈ B(w(0), ω), with probability at least 1 − exp(−C1mω
2/3L) over the randomness of w(0), it

holds that

‖∇L(w)‖22 ≤
C2TmL(w) supi=1,...,H ‖θi‖22

d
.

Proof of Lemma C.2. Fix the epoch number q and we omit it in the subscripts in the rest of the
proof when no confusion arises. Recall that w(s) is the s-th iterate in Algorithm 2. Let δ > 0 be any
constant. Let ω be defined as follows.

ω = δ3/2m−1/2T−9/2L−6 log−3(m). (D.6)

We will prove by induction that with probability at least 1− δ the following statement holds for all
s = 0, 1, . . . , n

φj(x; w(s)) ≤ C0

s∑
h=0

√
log(TK/δ)

h+ 1
, for ∀j ∈ [d]; and ‖w(s)

q −w(0)‖ ≤ ω. (D.7)

First note that (D.7) holds trivially when s = 0 due to Lemma D.2. Now we assume that (D.7) holds
for all j = 0, . . . , s. The loss function in (3.3) can be bounded as follows.

L(w(j)) =

qH∑
i=1

(θ>i φ(xi; w
(j))− r̂i)2 ≤

qH∑
i=1

2(‖θi‖22 · ‖φ(xi; w
(j))‖22 + 1).
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By the update rule of θt, we have

‖θt‖2 =

∥∥∥∥(λI +

t∑
i=1

φ(xi; wi−1)φ(xi; wi−1)>
)−1 t∑

i=1

φ(xi; wi−1)r̂

∥∥∥∥
2

≤ 2d, (D.8)

where the inequality is due to Lemma C.5, which combined with (D.7) immediately implies

L(w(j)) ≤ C1Td
3 log(TK/δ)

( j∑
h=0

1

h+ 1

)2

≤ C1Td
3 log(TK/δ) log2 n. (D.9)

Substituting (D.8) and (D.9) into the inequality in Lemma D.4, we also have∥∥∇L(w(j)
)∥∥

2
≤ C2

√
dTmL(w(j)) ≤ C3d

2T log(n)
√
m log(TK/δ). (D.10)

Now we consider w(s+1). By triangle inequality we have∥∥w(s+1) −w(0)
∥∥
2
≤

s∑
j=0

∥∥w(j+1) −w(j)
∥∥
2

=

s∑
j=0

η
∥∥∇L(w(j)

)∥∥
2

≤
s∑
j=0

ηd2T log(n)
√
m log(TK/δ), (D.11)

where the last inequality is due to (D.10). If we choose the step size ηq in the q-th epoch such that

η ≤ ω

d2Tn log(n)
√
m log(TK/δ)

, (D.12)

then we have ‖w(s+1)
q − w(0)‖2 ≤ ω. Note that the choice of m,ω satisfies the condition in

Lemma C.3. Thus we know φj(x; w) is almost linear in w, which leads to

|φj(x; w(s+1))| ≤ |φj(x; w(s)) + 〈∇φj(x; w(s)),w(s+1) −w(s)〉|+ C5ω
4/3L3d−1/2

√
m logm

≤
s∑

h=0

C
√

log(TK/δ)

h+ 1
+ η
√
dm‖∇L(w(s))‖2 + 2C5ω

4/3L3d−1/2
√
m logm

≤
s∑

h=0

C0

√
log(TK/δ)

h+ 1
+ C3η

√
dm
√
CT 2d4m log(TK/δ) log n

+ 2C5ω
4/3L3d−1/2

√
m logm

=

s∑
h=0

C0

√
log(TK/δ)

h+ 1
+
ω
√
dm

n
+ 2C5ω

4/3L3d−1/2
√
m logm, (D.13)

where in the second inequality we used the induction hypothesis (D.7), Cauchy-Schwarz inequality
and Lemma D.3, and the third inequality is due to (D.10). Note that the definition of ω in (D.6)
ensures that ω

√
dm < 1/2 and ω4/3L3d−1/2

√
m logm ≤ m−1/6T−6L−5d−1/2

√
logm ≤ 1/n as

long as m ≥ n6. Plugging these two upper bounds back into (D.13) finishes the proof of (D.7).

Note that for any t ∈ [T ], we have wt = w
(n)
q for some q = 1, 2, . . .. Since we have wt ∈ B(w, ω),

the gradient g(x; w(0)) can be directly bounded by Lemma D.3, which implies ‖g(x; w(0))‖F ≤
C6

√
dLm. Applying (D.7) with s = n, we have the following bound of the neural network function

φ(x; w
(n)
q ) = φ(x; wt) for all t in the q-th epoch

‖φ(x; wt)‖2 ≤ C0

√
d log(n) log(TK/δ),

which completes the proof. In this proof, {Cj > 0}j=0,...,6 are constants independent of problem
parameters.
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D.3 PROOF OF LEMMA C.4

The following lemma characterizes the concentration property of self-normalized martingales.
Lemma D.5 (Theorem 1 in Abbasi-Yadkori et al. (2011)). Let {ξ}∞t=1 be a real-valued stochastic
process and {xt}∞t=1 be a stochastic process in Rd. Let Ft = σ(x1, . . . ,xt+1, ξ − 1, . . . , ξt) be a
σ-algebra such that xt and ξt are Ft−1-measurable. Let At = λI +

∑t
s=1 xsx

>
s for some constant

λ > 0 and St =
∑t
s=1 ξsxi. If we assume ξt is ν-subGaussian conditional on Ft−1, then for any

η ∈ (0, 1), with probability at least 1− δ, we have

‖St‖2A−1
t
≤ 2ν2 log

(
det(At)

1/2 det(λI)−1/2

δ

)
.

Proof of Lemma C.4. Let Φt = [φ(x1,a1 ; w0), . . . ,φ(xt,at ; wt−1)] ∈ Rd×t be the collection of
feature vectors of the chosen arms up to time t and r̂t = (r̂1, . . . , r̂t)

> be the concatenation of all
received rewards. According to Algorithm 1, we have At = λI + ΦtΦ

>
t and thus

θt = A−1t bt = (λI + ΦtΦ
>
t )−1Φtr̂t.

By Lemma C.1, the underlying reward generating function rt = r(xt,at) = E[r̂(xt,at)|xt,at ] can be
rewritten as

rt = 〈θ∗,φ(xt,at ; wt−1)〉+ θ>0 g(xt,at ; w
(0))(w∗ −w(0)).

By the definition of the reward in (2.1) we have r̂t = rt + ξt. Therefore, it holds that

θt = A−1t ΦtΦ
>
t θ
∗ + A−1t

t∑
s=1

φ(xs,as ; ws−1)(θ>0 g(xs,as ; w(0))(w∗ −w(0)) + ξs)

= θ∗ − λA−1t θ
∗ + A−1t

t∑
s=1

φ(xs,as ; ws−1)(θ>0 g(xs,as ; w(0))(w∗ −w(0)) + ξs).

Note that At is positive definite as long as λ > 0. Therefore ‖ · ‖At
and ‖ · ‖At

are well defined
norms. Then for any δ ∈ (0, 1) by triangle inequality we have

‖θt − θ∗ −A−1t ΦtΘtGt(w
∗ −w(0))‖At ≤ λ‖θ∗‖A−1

t
+ ‖Φtξt‖A−1

t

≤ ν

√
2 log

(
det(At)1/2 det(λI)−1/2

δ

)
+ λ1/2M

holds with probability at least 1 − δ, where in the last inequality we used Lemma D.5 and the fact
that ‖θ∗‖A−1

t
≤ λ−1/2‖θ∗‖2 ≤ λ−1/2M by Lemma C.1. Plugging the definition of Φt,Θt and Gt

and apply Lemma C.6, we further have∥∥∥∥θt − θ∗ −A−1t

t∑
s=1

φ(xs,as ; ws−1)θ>0 g(xs,as ; w(0))(w∗ −w(0))

∥∥∥∥
At

≤ ν
√

2
(
d log(1 + t(logHK)/λ) + log 1/δ

)
+ λ1/2M,

where we used the fact that ‖φ(x; w)‖2 ≤ C
√
d logHK by Lemma C.2.

D.4 PROOF OF LEMMA C.5

We now prove the technical lemma that upper bounds ‖A−1t
∑t
s=1 φsζs‖2.

Proof of Lemma C.5. We first construct auxiliary vectors φ̃t ∈ Rd+1 and matrices Bt ∈
R(d+1)×(d+1) for all t = 1, . . . in the following way:

φ̃t =

[
G−1φt√

1−G−2‖φt‖22

]
, Bt =

[
A−1t 0d
0>d 0

]
, (D.14)
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where 0d ∈ Rd is an all-zero vector. Then by definition we immediately have∥∥∥∥A−1t t∑
s=1

φsζs

∥∥∥∥
2

=

∥∥∥∥Bt

t∑
s=1

φ̃sζs

∥∥∥∥
2

. (D.15)

For all s = 1, 2 . . ., let {βs,j}d+1
j=1 be the coefficients of the decomposition ofU−1ζsφ̃s on the natural

basis. Specifically, let {e1, . . . , ed+1} be the natural basis of Rd+1 such that the entries of ej are all
zero except the j-th entry which equals 1. Then we have

U−1ζsφ̃s =

d∑
j=1

βs,jej , ∀s = 1, 2, . . . (D.16)

We can conclude that |βs,j | ≤ 1 since |ζs| ≤ U and ‖φ̃s‖2 ≤ 1. Moreover, it is easy to verify that
‖φ̃t‖2 = 1 for all t ≥ 1. Therefore, we have∥∥∥∥Bt

t∑
s=1

φ̃sζs

∥∥∥∥
2

=

∥∥∥∥Bt

t∑
s=1

φ̃sφ̃
>
s φ̃sζs

∥∥∥∥
2

=

∥∥∥∥Bt

t∑
s=1

φ̃sφ̃
>
s U

d∑
j=1

βs,jej

∥∥∥∥
2

= U

∥∥∥∥ d∑
j=1

Bt

t∑
s=1

φ̃sφ̃
>
s βs,jej

∥∥∥∥
2

≤ U
d∑
j=1

∥∥∥∥Bt

t∑
s=1

φ̃sφ̃
>
s βs,j

∥∥∥∥
2

= U

d∑
j=1

∥∥∥∥A−1t t∑
s=1

φsφ
>
s βs,j

∥∥∥∥
2

, (D.17)

where the inequality is due to triangle inequality and the last equation is due to the definition of φ̃t
and Bt in (D.14). For each j = 1, . . . , d+ 1, we have∥∥∥∥A−1t t∑

s=1

φsφ
>
s βs,j

∥∥∥∥
2

=

∥∥∥∥A−1t ∑
s∈[t]:βs,j≥0

φsφ
>
s βs,j + A−1t

∑
s∈[t]:βs,j<0

φsφ
>
s βs,j

∥∥∥∥
2

≤
∥∥∥∥A−1t ∑

s∈[t]:βs,j≥0

φsφ
>
s βs,j

∥∥∥∥
2

+

∥∥∥∥A−1t ∑
s∈[t]:βs,j<0

φsφ
>
s (−βs,j)

∥∥∥∥
2

.

(D.18)
Since we have |βs,j | ≤ 1, it immediately implies

At = λI +

t∑
s=1

φsφ
>
s �

∑
s∈[t]:βs,j≥0

φsφ
>
s βs,j ,

At = λI +

t∑
s=1

φsφ
>
s �

∑
s∈[t]:βs,j<0

φsφ
>
s (−βs,j).

Further by the fact that ‖A−1B‖2 ≤ 1 for any A � B � 0, combining the above results with (D.18)
yields ∥∥∥∥A−1t t∑

s=1

φsφ
>
s βs,j

∥∥∥∥
2

≤ 2.

Finally, substituting the above results into (D.17) and (D.15) we have∥∥∥∥A−1t t∑
s=1

φsζs

∥∥∥∥
2

≤ 2Ud,

which completes the proof.
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