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Abstract

Three-dimensional magnetic resonance images (MRI) have emerged as a valu-1

able tool to diagnose and characterise Alzheimer’s Disease (AD). Most current2

MRI analysis pipelines for AD detection focus on a single plane, limiting their3

ability to capture subtle changes associated with different stages of the disease.4

This paper proposes a novel deep learning-based pipeline called CoMRIAD that5

combines the three MRI planes (coronal, axial and sagittal, and referred to as6

combiplane) for enhanced AD detection and classification. Transfer learning ar-7

chitectures like InceptionV3, InceptionResNetV2, Xception, DenseNet121, and8

CNN were separately trained and tested on individual planes as well as the com-9

biplane. Experimental results demonstrate that CoMRIAD outperforms single-10

plane MRI analysis, achieving a 6-8% increase in overall accuracy for two-way11

and four-way classification tasks. The heatmaps generated using GradCAM12

and Pearson’s correlation coefficient computed between the original MRI and13

heatmap show high affinity to the predicted class. The CoMRIAD enhances14

AD detection from 3D MRI, facilitating the monitoring of the disease and rele-15

vant interventions. The source code CoMRIAD implementation can be found at:16

https://github.com/brai-acslab/comriad.17

1 Introduction18

Alzheimer’s Disease (AD) is a progressive neurological disorder that affects memory, thinking, and19

behaviour. It has significant impacts on patients’ personal lives, social interactions, and the economy20

[23]. AD is ranked as the 7th leading cause of death worldwide [6]. Early detection of mild cognitive21

impairment (MCI), a precursor to AD, is crucial for implementing interventions to slow down or22

prevent its progression [31]. Structural Magnetic Resonance Imaging (sMRI) is commonly used for23

clinical diagnosis of AD, serving as a marker for disease progression [28]. However, the current24

identification process relies on manual assessment by specialists, which is time-consuming and25

expensive [24].26

Figure 1 shows the utilisation of Deep Learning (DL) methodologies and algorithms in the automated27

classification of diseases, using Positron Emission Tomography (PET), Functional Magnetic Reso-28

nance Imaging (fMRI), and MRI as imaging modalities. These algorithms can reveal subtle patterns29

that can aid in identifying individuals at risk of diseases before clinical symptoms manifest [15].30

Convolutional Neural Networks (CNN) applied to single-plane MRI scans can extract features like31

cortical thickness, hippocampal volume, and ventricle size. Recent advancements include utilising32

Siamese architecture and VGG16 model as a feature extractor using the triplet-loss function for33
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Figure 1: Alzheimer’s disease classification pipeline using different deep learning architectures. The
shadowed blocks map the proposed pipeline of combiplane MRI analysis for AD classification.

a 4-way classification of AD [8]. Hazarika et al. introduced a modified DenseNet architecture34

that outperformed other DL models in terms of speed and accuracy for AD classification using35

sagittal plane MRI datasets [9]. Additionally, a DL framework integrating multimodal data and an36

explainable model was employed for a 4-way classification of AD, establishing a mapping between37

computational predictions and pathological indicators of neurodegeneration [17]. These studies38

collectively demonstrate the potential of DL in the early detection and classification of AD using39

MRI scans.40

In automated AD classification, combiplane (term refers to the utilisation of multiplane MRI scans)41

analysis plays a crucial role by incorporating coronal, axial, and sagittal MRI planes. It enables a42

comprehensive evaluation of structural and pathological changes, enhancing accuracy and sensitivity43

in identifying disease-related areas and biomarkers.44

Many works have been attempted towards this end. Ryosuke et al. [19] compared the prediction45

accuracy of individual and combiplanes using pre-trained CNN architectures (AlexNet, VGG16,46

VGG19, ResNet50, and DenseNet121) on PET images. ResNet50 demonstrated the best performance47

for a 3-way classification (CN vs MCI vs AD).48

Cucun et al. [1] developed a multi-plane CNN for analysing MRI images. They compared the49

prediction accuracy of single-plane CNN models with multi-plane CNN models and results showed50

that multi-plane CNN models outperformed single-plane models. Authors further extended the51

use of multi-plane MRI images using machine learning models which demonstrated combiplane52

approach significantly enhances classification accuracy. Fei et al. [13] proposed a multi-plane and53

multi-scale feature fusion network model for AD prediction. The model comprises a feature encoder,54

attention layers to evaluate feature impact scores, and a feature similarity discriminator for enhancing55

discrimination of atrophy features by identifying minimally similar features. The study demonstrated56

improved interpretability, enhanced accuracy, and performance when tested with MRI data from the57

ADNI dataset.58

Jinseong et al. [11] proposed an approach for AD classification using a vision transformer(ViT). The59

authors demonstrate that the ViT can effectively capture attention relationships among multi-plane and60

multi-slice images, alongside CNN. The study compares the performance of the proposed model with61

traditional 3D CNNs. The hybrid model, which integrates all models including a ViT, achieves the62

best results. While deep learning techniques are known for their robustness in capturing subtle feature63

differences, Bansal et al.[2] argue that their effectiveness can be hindered by the scarcity of available64
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data and the domain-agnostic nature inherent to these methods. Their study introduces, Deep3DScan,65

an ensemble framework for lung cancer analysis. It uses 3D segmentation, deep features, handcrafted66

descriptors, and achieved segmentation accuracy of 0.927 (outperforming template matching) and67

detection accuracy of 0.883 (beating the previous state-of-the-art at 0.866) on the LUNA16 dataset.68

Despite promising results in the literature, the combiplane approach for AD classification is not widely69

explored. Furthermore, many current DL studies lack transparency, which hampers interpretability70

and explainability [29]. This lack of transparency makes it difficult to trust and validate the decisions71

made by these models, limiting their adoption and understanding of their reasoning. Consequently, it72

can result in biased or unfair outcomes.73

To address the aforementioned limitations, we propose a novel DL model that utilises combiplane74

sMRI images from coronal, axial, and sagittal planes. Our model aggregates classification results75

from each plane, effectively leveraging the complementary information across multiple planes to76

enhance accuracy and assist in early detection and diagnosis. We also employ the explainable77

Artificial Intelligence tool GradCAM [21] to validate results and provide visual explanations by78

highlighting the regions of input images contributing most to the model’s predictions.79

2 Proposed Pipeline80

This study improves the accuracy and efficiency of AD diagnosis using combiplane MRI images by81

utilising the CNN design and integrating convolutional and pooling layers. This section highlights82

three key components of the proposed pipeline: 1) training single-plane MRI using CNN architecture83

from scratch, 2) testing and prediction with combiplane images, and 3) the interpretation method84

employed. These components play crucial roles in achieving improved results.85

In this study, the utilisation of MRI is demonstrated as an illustration, with PET and fMRI being86

alternative options for consideration. The shadowed blocks of Figure 1 shows the implementation of87

the proposed approach, where a non-pre-trained CNN model is used to perform individual testing88

and prediction on MRI images from the axial, coronal, and sagittal planes. We trained the CNN89

model from scratch with the architecture 16C2− 16C2−MP2− 32C2− 32C2− 32C2−MP2−90

64C2− 16C1− Flatten− 4N .91

In the next step, the last convolutional layer output and predictions for each plane are obtained92

and interpreted. The prediction results are then fused to create an ensemble of combiplane MRI93

images. In the proposed approach, the ensemble is formed by a soft voting process using individual94

predictions from the three planes. The final prediction is based on the highest probability value95

among the summed predicted probabilities. For a test sample j, the soft voting approach yields the96

following probabilities:97

Ωj
c = (βcj

1 , βcj
2 , · · · , βcj

k ) (1)

Ωj
a = (βaj

1 , βaj
2 , · · · , βaj

k ) (2)

Ωj
s = (βsj

1 , βsj
2 , · · · , βsj

k ) (3)

where, Ωj
c, Ωj

a and Ωj
s indicate the probability obtained by sample j respectively in planes(p) coronal,98

axial and sagittal. The βpj
k (where k = 2 for binary classification and k = 4 for 4-way classification)99

indicates the probability assigned for each of the k classes in corresponding plane p. The final100

prediction label, denoted as lj , is achieved as follows:101

lj = argmax(
∑

βpj
1 ,

∑
βpj
2 , · · · ,

∑
βpj
k ) ∀p ∈ [c, a, s] (4)

In the final phase of the proposed work, the axial, coronal, and sagittal plane results from the final102

convolutional layer are analysed using the GradCAM technique. Using the gradient information103

from the last CNN layer, a heatmap is generated to highlight critical image regions and provide104

explanations for predictions. The heatmap is then overlaid onto the input image, clearly explaining105

the influential regions. In the equation,106

Lc
GradCAM = ReLU

(∑
k α

c
k · Ak

)
, Lc

GradCAM represents the GradCAM heatmap, αc
k denotes107

the weights calculated for each feature map Ak, and the summation aggregates the weighted feature108
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Figure 2: The preprocessing pipeline. Original MRI → Reorientation → Registration → Skull-
stripping → Image Enhancement. The reorientation process aligns the image with a standardised
anatomical reference frame which might not be perceivable visually.

maps for a target class c. The ReLU function is applied to ensure the heatmap contains only positive109

values.110

This equation summarises the key steps of the GradCAM technique, which identifies the significant111

regions in the input image that contribute to the predicted class.112

To correlate the heatmap with the original image, we explored using Pearson’s correlation coefficient113

(PCC) [27]. The images were resized and converted into 1D vectors represented by X and Y.114

Normalisation of X and Y was performed using Equations 5 and 6:115

X̂ =
X − µX

σX
(5)

116

Ŷ =
Y − µY

σY
(6)

where µX and µY is the mean and σX and σY is the standard deviation. The covariance of the117

normalised images X̂ and Ŷ are calculated as follows:118

cov =

∑n
i=1

(
(X̂ − X̄)(Ŷ − Ȳ )

)
n− 1

(7)

where n is the number of elements in the vector and X̄ and Ȳ are the means of X and Y , respectively.119

The standard deviations σX and σY of the normalised vectors X̂ and Ŷ are computed as in Equations120

8 and 9.121

σX =

√√√√√∑n
i=1

(
X̂i − X̄

)2

n− 1
(8)

122

σY =

√√√√√∑n
i=1

(
Ŷi − Ȳ

)2

n− 1
(9)

The Pearson’s Correlation Coefficient (PCC), defined by Equation-10, ranges between -1 and +1. A123

negative value indicates a negative correlation, zero represents no correlation, and a positive value124
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signifies a positive correlation.125

Pr =
cov

σX · σY
(10)

The results with Pearson’s correlation results are discussed in the experimental section.126

3 Results and Discussion127

The study utilised T1-weighted MRI data from the Alzheimer’s Disease Neuroimaging Initiative128

(ADNI) in axial, sagittal, and coronal planes [10]. The dataset included 1056 MRI images with 223129

AD, 475 EMCI, 262 LMCI, and 96 CN cases. The Synthetic Minority Over Sampling Technique130

(SMOTE) algorithm was applied, resulting in balanced datasets with approximately 13,822, 13,780,131

and 13,856 samples for coronal, axial, and sagittal planes, respectively. The data was split into 70%132

training and 30% testing sets. Furthermore, a low learning rate (0.0001) and Adam activation were133

used, with a batch size of 128. The number of epochs was determined using EarlyStopping callback134

of Keras platform. The model implementation and fine-tuning of pretrained models and subsequent135

evaluation were performed on a Windows system equipped with an NVIDIA RTX 3060 GPU and a136

3.2 GHz CPU, ensuring good computational support for the experiments. Model development and137

testing were carried out using the Keras API within TensorFlow, allowing for efficient and flexible138

experimentation.139

The MRI images underwent preprocessing using the popular FMRIB Software Library (FSL) toolkit,140

which offers various analytical tools for MRI data. Preprocessing involved three main steps: reori-141

entation, registration, and skull-stripping [20]. The skull-stripping was performed using the brain142

extraction tool (BET). This widely applied preprocessing pipeline ensures enhancing analytical143

accuracy and image interpretation. Figure 2 illustrates the intermediate outputs of these preprocessing144

steps. The code used in this preprocessing pipeline is sourced from the study by Vimbi et al. [30].145

Table 1: Performance metrics of Models on Individual planes

N Plane Acc Sp Se FNR FPR

1000

C 0.889 0.9633 0.8884 0.1115 0.0366
A 0.888 0.9628 0.8870 0.1129 0.0371
S 0.904 0.9679 0.9027 0.0972 0.0320
Co 0.979 0.9930 0.9786 0.0213 0.0069

2000

C 0.878 0.9593 0.8784 0.1215 0.0406
A 0.8885 0.9628 0.8890 0.1109 0.0371
S 0.9085 0.9695 0.9086 0.0913 0.0304
Co 0.978 0.9926 0.9782 0.0217 0.0073

4000

C 0.878 0.9592 0.8780 0.1219 0.0407
A 0.8942 0.9646 0.8940 0.1054 0.0353
S 0.9147 0.9715 0.9148 0.0851 0.0284
Co 0.9832 0.9944 0.9831 0.0168 0.0055

8000

C 0.8756 0.9583 0.8760 0.1239 0.0416
A 0.8942 0.9645 0.8940 0.1059 0.0354
S 0.9098 0.9698 0.9103 0.0896 0.0301
Co 0.9807 0.9935 0.9807 0.0192 0.0064

Legend– N: Number of training samples; C: Coronal; A: Axial; S: Sagittal; Co: combiplane; Acc:
Accuracy; Sp: Specificity; Se: Sensitivity; FNR: False negative rate; FPR: False positive rate.

The evaluation of the models was done using well-known performance metrics: Accuracy (Ac),146

Sensitivity (Se) or True Positive Rate (TPR), and Specificity (Sp) or True Negative Rate (TNR)147

[22]. The false positive rate (FPR) can be derived as 1− Sp. The false negative rate (FNR) can be148

calculated as 1− Se. All reported values were averaged using the one-vs-all strategy. In addition,149

paired t-tests were computed to compare the accuracy of the proposed combiplane method over the150

individual plane method.151

In the initial experiment, models were trained using the 70% training pool and testing was carried out152

by varying the number of test samples (N ) from the coronal, axial and sagittal planes with identical153

labels. We established test pools of varying numbers of N samples each from three planes with154
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Figure 4: Comparative Analysis of Diagnostic Performance Metrics: Accuracy (Acc), Specificity
(Spc), Sensitivity (Sen), False Negative Rate (FNR), and False Positive Rate (FPR) across Coronal,
Axial, Sagittal, and combiplanes in Binary Classification of AD.

the same patient ID and, therefore, sharing the same label. In addition to disease characterisation155

in different planes individually, this experiment also assessed the combiplane model’s capacity to156

analyse multiple MRI images concurrently. Table 1 reveals that the combiplane approach consistently157

outperformed the individual planes across different numbers of test samples. For instance, with 1000158

training samples, the combiplane achieved an accuracy of 0.979, a specificity of 0.993, a sensitivity159

of 0.9786, an FNR of 0.0213, and an FPR of 0.0069. This is an impressive improvement in accuracy,160

approximately 9.65%, compared to the average accuracy of the individual planes. These findings161
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demonstrate the effectiveness of combining information from multiple planes in enhancing disease162

characterisation accuracy, providing valuable insights for medical imaging analysis and diagnosis.163

It is important to note that the combiplane’s high accuracy was also accompanied by excellent164

performance in other metrics. The combiplane achieved high specificity (0.9944) with a low FPR165

(0.0055) and high sensitivity (0.9831) with a low FNR (0.0168), highlighting its effectiveness in166

correctly identifying positive cases. In summary, the experiment showcases the superiority of the167

proposed combiplane’s ability to identify and classify AD accurately.168

Figure 3 shows confusion matrices (N = 4000) obtained for individual and combiplane models. The169

combiplane model was accurate across all classes (CN, EMCI, LMCI, and AD). It identified CN170

and EMCI instances more accurately than models trained individually. The combiplane model also171

distinguished LMCI and AD better than individual plane models. This improved discrimination allows172

early dementia prediction and management, postponing AD development. Thus, the combiplane173

method provides superior diagnostic capabilities for MCI diagnosis.174

Table 2: Comparison of transfer learning models across individual and combiplane. C: Coronal, A:
Axial, S: Sagittal, Co: combiplane.

Architectures C A S Co p-value
InceptionV3 0.80 0.84 0.94 0.99 0.000138
IRV2 0.39 0.41 0.47 0.57 5.90E-07
Xception 0.73 0.78 0.85 0.93 8.64E-09
DenseNet121 0.73 0.84 0.90 0.95 0.000531
CNN 0.88 0.89 0.91 0.98 4.47E-07

We compared the combiplane technique to prominent transfer learning (TL) architectures to test175

its consistency. For this experiment, each architecture was trained separately on individual planes176

and considered 4000 random samples for testing and computed the accuracy on 5 separate runs.177

This resulted in 5 different accuracy values for planes C, A, S and Co planes. Table 2 shows that178

the combiplane outperforms the individual planes in all TL networks. The combiplane accuracy179

yielded an impressive 0.98 accuracy, showing that combining disease patterns from distinct planes180

improves performance. Among the TL architectures evaluated, InceptionV3 performs well in181

all image orientations. With accuracies of 0.80 for coronal, 0.84 for axial, and an impressive182

0.94 for sagittal orientations, InceptionV3 consistently demonstrates strong predictive capabilities.183

InceptionResNetV2 obtained worse accuracy than other architectures in this study. Yet the combiplane184

approach improves accuracy through the complimentary information from several planes. Xception185

and DenseNet121 achieve 0.73 to 0.90 accuracies across multiplanes. Their integration into the186

combiplane leads to notable accuracy boosts, further highlighting the effectiveness of the combiplane.187

To compare the significance of combiplane accuracy over individual planes, we computed paired188

t-tests to test the significance of the results. In the context of comparing the combiplane model to189

individual planes, the obtained p-values (see Table 2) imply high statistical significance confirming190

increased reproducibility of the method and reflecting a consistent pattern in the results rather than a191

random chance.192

For binary classification of different stages of AD (AD vs CN, EMCI vs LMCI, CN vs EMCI,193

and LMCI vs AD), we evaluated the efficacy of models considering both individual planes and the194

combiplane. The results, presented in Figure 4, demonstrated that the combiplane achieved superior195

accuracy (0.99325) compared to the individual planes. Additionally, the combiplane exhibited196

high specificity (0.99292572) and sensitivity (0.993567541), resulting in a low FNR of 0.00707428197

and FPR of 0.006432459. While the individual planes also demonstrated strong performance198

with accuracies of 0.95 (coronal), 0.955 (axial), and 0.947 (sagittal), the combiplane consistently199

outperformed them, highlighting its enhanced capability in distinguishing between the targeted stages200

of AD.201

The confusion matrices for all planes involved in the classifications are shown in Figure 5. The202

combiplane model demonstrates remarkable accuracy in correctly detecting various stages of AD,203

which is crucial for early disease detection. This underscores the invaluable role of the combiplane in204

enhancing diagnostic accuracy and enabling timely interventions.205

The non-pretrained CNN architecture was fine-tuned and used for prediction with preserved weights.206

The heatmap was generated using the predictions from the last convolutional layer to explain the207
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results. Figure 6 depicts the original MRI image, GradCAM heatmap, and class overlays (CN vs.208

AD) for axial, coronal, and sagittal planes. The ’red’ regions in the overlays signify a close affinity to209

the predicted class. The axial plane highlights regions associated with neurodegeneration, atrophy, or210

abnormal metabolic activity in AD. The coronal heatmap focuses on cortical areas like the temporal211

and parietal lobes, commonly affected in AD. The sagittal heatmap highlights vulnerable regions like212

the prefrontal cortex and posterior cingulate cortex. By examining all the heatmaps, clinicians can213

gain insights into the effects of AD-related changes in the brain.214

In this experiment, we employed PCC to measure the affinity between the original MRI image and215

the heatmap. The results demonstrate a high positive correlation in both CN and AD cases. As216

shown in Figure 6, the PCC values between the original image and its heatmap are high for both CN217

(0.98929, 0.99384, and 0.93824) and AD (0.98407, 0.98759, and 0.95060) for the three planes. The218

PCC measures how well the heatmap captures the features of MRI; hence, high values effectively219

highlight the relevant regions of interest for the predicted class.220

4 Limitations221

One limitation of this approach is the increase in computational cost associated with processing222

multiple planes to achieve enhanced accuracy. Each plane requires additional processing power,223

introduces more parameters to the model, leading to a cumulative increase in resource demand. In224

our experiments, which included 8,000 images, parallel processing proved manageable; however,225

scaling this approach to significantly larger datasets may strain resources, especially in real-time or226

large-scale applications. Consequently, the feasibility of deploying this method may be restricted by227

hardware constraints, particularly for real-time applications or large-scale datasets. Future work may228

explore optimization techniques to further reduce computational costs, making the approach more229

accessible and scalable across varied computational infrastructures.230

5 Conclusion231

Recent studies have shown that deep learning techniques with sMRI can effectively classify AD.232

Our research further improved the accuracy of AD detection by incorporating CNNs and multi-233

plane MRI images. We discovered that combining classification results from different imaging234

perspectives (combi-plane models) produced even better results. This novel approach of combining235

planes, followed by the application of a classification model, is compatible with any machine learning236

algorithm.237

To ensure explainability, we used GradCAM, which provided heatmaps highlighting the specific238

brain regions most relevant to the classification process. We also found a strong positive correlation239

between the original MRI and the heatmap using the PCC across the axial, coronal, and sagittal planes.240

Our future work could further leverage the potential of combi-plane approaches in AD classification241

addressing challenges related to interpretability and trust. Enhancing trust is paramount to ensuring a242

reliable integration of AI-driven diagnostic systems into clinical practice.243

In summary, utilising deep learning methods for AD classification with sMRI has shown to be highly244

effective and full of potential. Through ongoing research, we can anticipate substantial enhancements245

in AD identification and treatment, ushering in a new age of targeted medicine and improved patient246

care.247
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A.1 Code350

The code used in the study can be accessed from https://github.com/brai-acslab/comriad/.351

The code contains details about required packages, training details including hyperparameter values,352

train-test split, etc. This code repository has the following Python notebook files:353

1. ModelBuilding.ipynb: This code uses the dataset (as detailed in Appendix A.2) and354

builds a model that uses MRI planes for Axial, Coronal and Sagittal planes for the four-way355

classification of Alzheimer’s Disease.356

2. ModelTesting.ipynb: This code uses the dataset as mentioned in Section-3 to test the357

efficacy of proposed model for the four-way classification of Alzheimer’s Disease.358

3. ModelBuildingBinary.ipynb: This code uses the dataset (as detailed in Appendix A.2)359

and builds a model that uses MRI planes for Axial, Coronal and Sagittal planes for the360

two-way classification of Alzheimer’s Disease.361

4. ModelTestingBinary.ipynb: This code uses the dataset (as detailed in Appendix A.2)362

and builds a model that uses MRI planes for Axial, Coronal and Sagittal planes for the363

two-way classification of Alzheimer’s Disease.364

5. t-tesst.ipynb:365

A.2 Dataset366

A.2.1 Data Extraction367

The dataset utilized in this study is sourced from well-established databases such as the Alzheimer’s368

Disease Neuroimaging Initiative dataset (ADNI, https://adni.loni.usc.edu/). After the data369

access request was approved, the ADNI data was downloaded from the LONI Image and Data Archive370

(IDA). To download the appropriate subset of data from the IDA, the database was searched for371

T1-weighted structured MRI (sMRI) samples belonging to subjects in ADNI1, ADNI2 and ADNI-GO372

cohorts aged between 55 and 65 from the CN (Cognitively Normal) AD(Alzheimer’s Disease), MCI373

(Mild Cognitive Impairment), EMCI (Early MCI), and LMCI (Late MCI) categories.374

A.2.2 Preprocessing of Extracted MRI375

After extraction of the MRI samples, they were preprocessed to enhance image quality. From the376

quality assessment viewpoint, several preprocessing stages exist, namely, signal-to-noise ratio (SNR),377

contrast-to-noise ratio (CNR), Image Similarity Metrics (ISM), Fractional Anisotropy Analysis (FAA),378

Chi-squared Analysis (CA), and Mask Quality Analysis (MQA) [3]. Admidst several preprocessing379

tools, like, Free Surfer[18], Statistical Parametric Mapping (SPM)[12], Advanced Normalisation380

tools (ANT)[4], and AFNI software[5], the FSL (FMRIB) software library was used [25] which381

allows the evaluation of each preprocessing stage for data quality.382

Several preprocessing steps were used: reorientation, registration, skull stripping, and slicing (see383

Figure 7, path B).384

Reorientation of MRI Reorientation involves applying transformations to align MRIs with a385

standardized reference space. This is accomplished by aligning an individual’s orientation to a386

standardized anatomical plane by altering their position along certain axes [14]. This practice387

guarantees consistent orientation of images, facilitating the process of comparing and integrating data388
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from many participants or research. This process helps align the image with a universally accepted389

orientation. This alignment simplifies comparison and ensures compatibility across various analyses390

and software packages. Reorientation, therefore, aids in maintaining uniformity and enhancing the391

dependability of later studies and data integration.392

Image Registration Image registration refers to aligning several images in a shared coordinate393

space. The image undergoes a linear transformation encompassing translation, rotation, and scaling,394

which facilitates the alignment of one image with another [7]. The practice of aligning various395

modalities of imaging data or matching an individual’s data to a template or standard space is widely396

employed. Coherently, the registration algorithms align the spatial attributes of diverse images,397

thereby compensating for discrepancies in positioning or subject motion that may have occurred398

during the image acquisition process.399

Skull Stripping The MRI image acquired subsequent to the registration procedure comprises400

extraneous non-cerebral tissues that necessitate removal. Skull stripping refers to separating the brain401

region from surrounding non-brain tissues, such as the skull, scalp, and non-brain structures [26]. The402

act of separating brain structures aids in the process of concentrating on the analysis and visualization403

of those structures. The technique of skull stripping is an essential preprocessing procedure in various404

neuroimaging investigations, such as brain morphometry, functional connectivity, and diffusion tensor405

imaging. The skull-stripped images produced by tools such as the Brain Extraction Tool (BET), a406

technique developed by the Biomedical Engineering and Technology program, exhibit an aesthetically407

pleasing quality and enhanced interpretability. Consequently, these images are helpful in educational,408

research, and therapeutic contexts.409

Image Slicing The MRI that has been reoriented, registered, and skull-stripped is now available410

in a three-dimensional format comprising three planes known as axial, coronal, and sagittal. The411

generation of a two-dimensional representation of a specific plane from an input volume can be412

achieved through the utilization of the Slicer program [16]. Therefore, the objective is to divide 3D413

volumetric data into 2D slices for easier visualization and analysis.414

A.2.3 MRI Preprocessing with FSL: Setup FSL and Sample Pipeline Walkthrough with415

Shortcodes416

This section presents a guideline for FSL (FMRIB Software Library) setup on macOS-based machines.417

A comprehensive MRI scan preprocessing methodology is presented and encompasses reorientation,418

registration, skull stripping, and slicing. The preprocessing procedures were done on an Apple macOS419

system featuring an Apple M2 CPU, 8 GB of RAM, and a 10-core GPU.420

FSL Setup FSL, is a popular software package from the University of Oxford FMRIB Centre421

(https://www.win.ox.ac.uk/). The software offers comprehensive tools and strategies for pre-422

processing and analyzing neuroimaging data, including functional and structural MRI [26]. This study423

used FSL version 6.0.6.5, and this release improves the reliability and efficiency of our neuroimaging424

analysis workflow. FSL was chosen due to its popular use in neuroimaging and consistent research425

and support by the FMRIB Analysis Group.426

The study used FSL for key neuroimaging analyses such as reorientation, registration, skull stripping,427

and slicing. However, in this study we used the macOS terminal window to preprocess MRI using FSL428

command-line tools. Shortcodes used in the terminal window can be found in the following section.429

We also utilised the ’fsleyes’ program, a strong neuroimaging tool for examining FSL-processed MRI430

data. The FSL software setup for macOS is shown in Table 3. Installation guideline for WindowsOS431

users and further reading can be obtained from (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki).432

Preprocessing Pipeline with shortcodes In this study, we used FSL to perform tasks like image433

reorientation, registration, skull stripping, and slicing. To standardize and reorient neuroimaging data,434

we used the command line tool "fslreorient2std" within FSL. This process guarantees a consistent435

orientation of the images, facilitating comparing and integrating data from many participants or436

research. The syntax for reorientation in the command line is provided in the subsequent statement:437

fslreorient2std infname outfname438
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Table 3: FSL installation guideline

Installation Steps FSL Installation Instructions
Prerequisites Install XQuartz to run X Windows system

on macOS (https://www.xquartz.org/)
Downloader Register and download the installer (fslinstaller.py)

(https://fsl.fmrib.ox.ac.uk/fsldownloads_registration)
Running the installer At terminal window run installer with Python
on macOS $ python fslinstaller.py

Open a new terminal window to begin using FSL
Checking installation At new terminal use code below to display name of

installed FSL directory
$ echo $FSLDIR

Running GUI To start the main FSL GUI type
$ fsl

Figure 8: MRI after reorientation.

The input file name, "infname", refers to the original MRI image that needs reorientation. The output439

file name "outfname" indicates where the reoriented image will be stored. Figure 8 shows how ’fsleyes’440

is used to see the reoriented image. With this command, we aligned the image to a conventional441

orientation. Keeping data uniform and reliable improves later studies and data integration.442

In order to align images to a common coordinate space, also known as image registration, the443

command line tool within FSL, ’flirt’, was used. This tool is used for a linear transformation of the444

images, such as translation, rotation, and scaling. Figure 9 shows MRI images after registration, and445

Table shows the ’flirt’ command with specific parameters for image registration, the breakdown of446

the commands, and their options. The command line syntax for registration using the FSL tool is447

shown in the statement :448

flirt –in rofname –ref referencefname –out outfname –omat fname.mat –bins449

256 –cost corratio –searchrx 0 0 –searchry 0 0 –searchrz 0 0 –dof 12450

–interp spline451

The brain region is isolated by removing the skull, scalp, and other non-brain components. Skull-452

stripped images can be created using the FSL tool BET (Brain Extraction Tool) and are more453

aesthetically pleasing and simpler to understand. The following statement displays the command line454

syntax for skull stripping:455

bet infname outfname –R –f 0.5 –g 0456

In the command, ’infname’ refers to the input file name, and ’outfname’ is the output file name. The457

-f parameter in the BET command indicates the fractional intensity threshold that determines the458

algorithm’s sensitivity for extraction and can be adjusted to include more or less brain tissue. There459

are two other options to consider: ’-R’ for robust brain center estimation and ’-g 0’ to refine the skull460

stripping using local intensity gradients. A higher fractional intensity threshold includes more brain461

tissue, while a lower value removes more non-brain structures (refer Figure 10).462
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Figure 9: MRI after registration

Table 4: Parameters and its description for the flirt command line tool

Command Options
flirt This is the command to execute FLIRT
-in rofname Specifies the input image filename to be registered
-ref referencefname Specifies the reference image filename to which the

input image will be aligned
-out outfname Specifies the output image filename after registration
-omat fname.mat Specifies the output matrix filename that stores

the transformation matrix
-bins 256 Sets the number of histogram bins used for image

intensity matching
-cost corration Specifies the cost function to be used for registration,

and this case, correlation ratio
-searchrx 0 0 Sets the search range for registration in the x direction

which is set to 0 indicating no search
-searchry 0 0 Sets the search range for registration in the y direction

which is set to 0 indicating no search
-searchrz 0 0 Sets the search range for registration in the z direction

which is set to 0 indicating no search
-dof 12 Sets the degrees of freedom for the transformation model

and 12 indicates a full affine transformation.
-interp spline Specifies the interpolation method to be used during resampling.

Reoriented, registered, and skull-stripped MRIs are now available in 3D axial, coronal, and sagittal463

planes. A Slicer tool can transform an input volume into a 2D view of any plane. Slicer is an464

open-source medical image processing, research, and visualization application. Example slicing465

command line syntax:466

slicer infname -z -90 outfname467

The command line parameters are: ’infname’ is the name of the input volume file containing the468

MRI data; ’-z -90’ selects the slice at -90mm along the z-axis for an axial or transverse view; and469

’outfname’ is the output file name to be saved. The orientations -y and -x represent the coronal and470

Figure 10: MRI after skull stripping
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Figure 11: MRI after slicing

sagittal planes, respectively. This command loads the input volume and extracts the desired slice471

at the specified location. The 2D axial view image (refer Figure 11) can be processed, studied, or472

visualized for that slice of interest.473
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NeurIPS Paper Checklist474

1. Claims475

Question: Do the main claims made in the abstract and introduction accurately reflect the476

paper’s contributions and scope?477

Answer: [Yes]478

Justification: [TODO]The claims made in abstract is reflected in Introduction and Results479

section.480

Guidelines:481

• The answer NA means that the abstract and introduction do not include the claims482

made in the paper.483

• The abstract and/or introduction should clearly state the claims made, including the484

contributions made in the paper and important assumptions and limitations. A No or485

NA answer to this question will not be perceived well by the reviewers.486

• The claims made should match theoretical and experimental results, and reflect how487

much the results can be expected to generalize to other settings.488

• It is fine to include aspirational goals as motivation as long as it is clear that these goals489

are not attained by the paper.490

2. Limitations491

Question: Does the paper discuss the limitations of the work performed by the authors?492

Answer: [Yes]493

Justification: [TODO]There is a separate Limitations section provided in the paper.494

Guidelines:495

• The answer NA means that the paper has no limitation while the answer No means that496

the paper has limitations, but those are not discussed in the paper.497

• The authors are encouraged to create a separate "Limitations" section in their paper.498

• The paper should point out any strong assumptions and how robust the results are to499

violations of these assumptions (e.g., independence assumptions, noiseless settings,500

model well-specification, asymptotic approximations only holding locally). The authors501

should reflect on how these assumptions might be violated in practice and what the502

implications would be.503

• The authors should reflect on the scope of the claims made, e.g., if the approach was504

only tested on a few datasets or with a few runs. In general, empirical results often505

depend on implicit assumptions, which should be articulated.506

• The authors should reflect on the factors that influence the performance of the approach.507

For example, a facial recognition algorithm may perform poorly when image resolution508

is low or images are taken in low lighting. Or a speech-to-text system might not be509

used reliably to provide closed captions for online lectures because it fails to handle510

technical jargon.511

• The authors should discuss the computational efficiency of the proposed algorithms512

and how they scale with dataset size.513

• If applicable, the authors should discuss possible limitations of their approach to514

address problems of privacy and fairness.515

• While the authors might fear that complete honesty about limitations might be used by516

reviewers as grounds for rejection, a worse outcome might be that reviewers discover517

limitations that aren’t acknowledged in the paper. The authors should use their best518

judgment and recognize that individual actions in favor of transparency play an impor-519

tant role in developing norms that preserve the integrity of the community. Reviewers520

will be specifically instructed to not penalize honesty concerning limitations.521

3. Theory Assumptions and Proofs522

Question: For each theoretical result, does the paper provide the full set of assumptions and523

a complete (and correct) proof?524

Answer: [NA]525
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Justification: [TODO]Our paper focuses exclusively on an approach aimed at enhancing526

classification accuracy. Since the paper does not present new theoretical results no formal527

assumptions or proofs are required.528

Guidelines:529

• The answer NA means that the paper does not include theoretical results.530

• All the theorems, formulas, and proofs in the paper should be numbered and cross-531

referenced.532

• All assumptions should be clearly stated or referenced in the statement of any theorems.533

• The proofs can either appear in the main paper or the supplemental material, but if534

they appear in the supplemental material, the authors are encouraged to provide a short535

proof sketch to provide intuition.536

• Inversely, any informal proof provided in the core of the paper should be complemented537

by formal proofs provided in appendix or supplemental material.538

• Theorems and Lemmas that the proof relies upon should be properly referenced.539

4. Experimental Result Reproducibility540

Question: Does the paper fully disclose all the information needed to reproduce the main ex-541

perimental results of the paper to the extent that it affects the main claims and/or conclusions542

of the paper (regardless of whether the code and data are provided or not)?543

Answer: [Yes]544

Justification: [TODO]Section 2 describes the steps taken to reproduce the model. Abstract545

provides link to GitHub that has access to reproducible code to make results verifiable546

Guidelines:547

• The answer NA means that the paper does not include experiments.548

• If the paper includes experiments, a No answer to this question will not be perceived549

well by the reviewers: Making the paper reproducible is important, regardless of550

whether the code and data are provided or not.551

• If the contribution is a dataset and/or model, the authors should describe the steps taken552

to make their results reproducible or verifiable.553

• Depending on the contribution, reproducibility can be accomplished in various ways.554

For example, if the contribution is a novel architecture, describing the architecture fully555

might suffice, or if the contribution is a specific model and empirical evaluation, it may556

be necessary to either make it possible for others to replicate the model with the same557

dataset, or provide access to the model. In general. releasing code and data is often558

one good way to accomplish this, but reproducibility can also be provided via detailed559

instructions for how to replicate the results, access to a hosted model (e.g., in the case560

of a large language model), releasing of a model checkpoint, or other means that are561

appropriate to the research performed.562

• While NeurIPS does not require releasing code, the conference does require all submis-563

sions to provide some reasonable avenue for reproducibility, which may depend on the564

nature of the contribution. For example565

(a) If the contribution is primarily a new algorithm, the paper should make it clear how566

to reproduce that algorithm.567

(b) If the contribution is primarily a new model architecture, the paper should describe568

the architecture clearly and fully.569

(c) If the contribution is a new model (e.g., a large language model), then there should570

either be a way to access this model for reproducing the results or a way to reproduce571

the model (e.g., with an open-source dataset or instructions for how to construct572

the dataset).573

(d) We recognize that reproducibility may be tricky in some cases, in which case574

authors are welcome to describe the particular way they provide for reproducibility.575

In the case of closed-source models, it may be that access to the model is limited in576

some way (e.g., to registered users), but it should be possible for other researchers577

to have some path to reproducing or verifying the results.578

5. Open access to data and code579
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Question: Does the paper provide open access to the data and code, with sufficient instruc-580

tions to faithfully reproduce the main experimental results, as described in supplemental581

material?582

Answer: [Yes]583

Justification: [TODO]The authors have detailed the steps to access and preprocess the raw584

data. The preprocessing code used in this study is outlined in the supplementary section.585

The environment needed to run to reproduce the results is mentioned in the article.586

Guidelines:587

• The answer NA means that paper does not include experiments requiring code.588

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/589

public/guides/CodeSubmissionPolicy) for more details.590

• While we encourage the release of code and data, we understand that this might not be591

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not592

including code, unless this is central to the contribution (e.g., for a new open-source593

benchmark).594

• The instructions should contain the exact command and environment needed to run to595

reproduce the results. See the NeurIPS code and data submission guidelines (https:596

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.597

• The authors should provide instructions on data access and preparation, including how598

to access the raw data, preprocessed data, intermediate data, and generated data, etc.599

• The authors should provide scripts to reproduce all experimental results for the new600

proposed method and baselines. If only a subset of experiments are reproducible, they601

should state which ones are omitted from the script and why.602

• At submission time, to preserve anonymity, the authors should release anonymized603

versions (if applicable).604

• Providing as much information as possible in supplemental material (appended to the605

paper) is recommended, but including URLs to data and code is permitted.606

6. Experimental Setting/Details607

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-608

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the609

results?610

Answer: [Yes]611

Justification: [TODO]Section 3 provides complete details about all training and testing612

parameters. Supplementary material provides full details.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• The experimental setting should be presented in the core of the paper to a level of detail616

that is necessary to appreciate the results and make sense of them.617

• The full details can be provided either with the code, in appendix, or as supplemental618

material.619

7. Experiment Statistical Significance620

Question: Does the paper report error bars suitably and correctly defined or other appropriate621

information about the statistical significance of the experiments?622

Answer: [Yes]623

Justification: [TODO]Results are accompanied by error bars and statistical significance test624

in Section 3625

Guidelines:626

• The answer NA means that the paper does not include experiments.627

• The authors should answer "Yes" if the results are accompanied by error bars, confi-628

dence intervals, or statistical significance tests, at least for the experiments that support629

the main claims of the paper.630
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• The factors of variability that the error bars are capturing should be clearly stated (for631

example, train/test split, initialization, random drawing of some parameter, or overall632

run with given experimental conditions).633

• The method for calculating the error bars should be explained (closed form formula,634

call to a library function, bootstrap, etc.)635

• The assumptions made should be given (e.g., Normally distributed errors).636

• It should be clear whether the error bar is the standard deviation or the standard error637

of the mean.638

• It is OK to report 1-sigma error bars, but one should state it. The authors should639

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis640

of Normality of errors is not verified.641

• For asymmetric distributions, the authors should be careful not to show in tables or642

figures symmetric error bars that would yield results that are out of range (e.g. negative643

error rates).644

• If error bars are reported in tables or plots, The authors should explain in the text how645

they were calculated and reference the corresponding figures or tables in the text.646

8. Experiments Compute Resources647

Question: For each experiment, does the paper provide sufficient information on the com-648

puter resources (type of compute workers, memory, time of execution) needed to reproduce649

the experiments?650

Answer: [Yes]651

Justification: [TODO]Section 4 indicates the type of compute utilized in the paper with652

specific model details.653

Guidelines:654

• The answer NA means that the paper does not include experiments.655

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,656

or cloud provider, including relevant memory and storage.657

• The paper should provide the amount of compute required for each of the individual658

experimental runs as well as estimate the total compute.659

• The paper should disclose whether the full research project required more compute660

than the experiments reported in the paper (e.g., preliminary or failed experiments that661

didn’t make it into the paper).662

9. Code Of Ethics663

Question: Does the research conducted in the paper conform, in every respect, with the664

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?665

Answer: [Yes]666

Justification: [TODO]The MRI dataset used in the study does not reveal personally identifi-667

able information of subjects/patients668

Guidelines:669

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.670

• If the authors answer No, they should explain the special circumstances that require a671

deviation from the Code of Ethics.672

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-673

eration due to laws or regulations in their jurisdiction).674

10. Broader Impacts675

Question: Does the paper discuss both potential positive societal impacts and negative676

societal impacts of the work performed?677

Answer: [NA]678

Justification: [TODO]No direct path to negative impact679

Guidelines:680

• The answer NA means that there is no societal impact of the work performed.681
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• If the authors answer NA or No, they should explain why their work has no societal682

impact or why the paper does not address societal impact.683

• Examples of negative societal impacts include potential malicious or unintended uses684

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations685

(e.g., deployment of technologies that could make decisions that unfairly impact specific686

groups), privacy considerations, and security considerations.687

• The conference expects that many papers will be foundational research and not tied688

to particular applications, let alone deployments. However, if there is a direct path to689

any negative applications, the authors should point it out. For example, it is legitimate690

to point out that an improvement in the quality of generative models could be used to691

generate deepfakes for disinformation. On the other hand, it is not needed to point out692

that a generic algorithm for optimizing neural networks could enable people to train693

models that generate Deepfakes faster.694

• The authors should consider possible harms that could arise when the technology is695

being used as intended and functioning correctly, harms that could arise when the696

technology is being used as intended but gives incorrect results, and harms following697

from (intentional or unintentional) misuse of the technology.698

• If there are negative societal impacts, the authors could also discuss possible mitigation699

strategies (e.g., gated release of models, providing defenses in addition to attacks,700

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from701

feedback over time, improving the efficiency and accessibility of ML).702

11. Safeguards703

Question: Does the paper describe safeguards that have been put in place for responsible704

release of data or models that have a high risk for misuse (e.g., pretrained language models,705

image generators, or scraped datasets)?706

Answer: [NA]707

Justification: [TODO]The paper has no such risks.708

Guidelines:709

• The answer NA means that the paper poses no such risks.710

• Released models that have a high risk for misuse or dual-use should be released with711

necessary safeguards to allow for controlled use of the model, for example by requiring712

that users adhere to usage guidelines or restrictions to access the model or implementing713

safety filters.714

• Datasets that have been scraped from the Internet could pose safety risks. The authors715

should describe how they avoided releasing unsafe images.716

• We recognize that providing effective safeguards is challenging, and many papers do717

not require this, but we encourage authors to take this into account and make a best718

faith effort.719

12. Licenses for existing assets720

Question: Are the creators or original owners of assets (e.g., code, data, models), used in721

the paper, properly credited and are the license and terms of use explicitly mentioned and722

properly respected?723

Answer: [Yes]724

Justification: [TODO]The paper cites the original work that produced the ADNI datset used725

in the paper (Reference - [10])726

Guidelines:727

• The answer NA means that the paper does not use existing assets.728

• The authors should cite the original paper that produced the code package or dataset.729

• The authors should state which version of the asset is used and, if possible, include a730

URL.731

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.732

• For scraped data from a particular source (e.g., website), the copyright and terms of733

service of that source should be provided.734
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• If assets are released, the license, copyright information, and terms of use in the735

package should be provided. For popular datasets, paperswithcode.com/datasets736

has curated licenses for some datasets. Their licensing guide can help determine the737

license of a dataset.738

• For existing datasets that are re-packaged, both the original license and the license of739

the derived asset (if it has changed) should be provided.740

• If this information is not available online, the authors are encouraged to reach out to741

the asset’s creators.742

13. New Assets743

Question: Are new assets introduced in the paper well documented and is the documentation744

provided alongside the assets?745

Answer: [Yes]746

Justification: [TODO]The code has been made available through a public GitHub repository747

and the link of the same is provided in the abstract. The details of the dataset extraction748

process and preprocessing are provided in the supplementary material.749

Guidelines:750

• The answer NA means that the paper does not release new assets.751

• Researchers should communicate the details of the dataset/code/model as part of their752

submissions via structured templates. This includes details about training, license,753

limitations, etc.754

• The paper should discuss whether and how consent was obtained from people whose755

asset is used.756

• At submission time, remember to anonymize your assets (if applicable). You can either757

create an anonymized URL or include an anonymized zip file.758

14. Crowdsourcing and Research with Human Subjects759

Question: For crowdsourcing experiments and research with human subjects, does the paper760

include the full text of instructions given to participants and screenshots, if applicable, as761

well as details about compensation (if any)?762

Answer: [NA]763

Justification: [TODO]The paper does not involve crowdsourcing nor research with direct764

human subjects.765

Guidelines:766

• The answer NA means that the paper does not involve crowdsourcing nor research with767

human subjects.768

• Including this information in the supplemental material is fine, but if the main contribu-769

tion of the paper involves human subjects, then as much detail as possible should be770

included in the main paper.771

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,772

or other labor should be paid at least the minimum wage in the country of the data773

collector.774

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human775

Subjects776

Question: Does the paper describe potential risks incurred by study participants, whether777

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)778

approvals (or an equivalent approval/review based on the requirements of your country or779

institution) were obtained?780

Answer: [NA]781

Justification: [TODO]The paper does not involve crowdsourcing nor research with human782

subjects.783

Guidelines:784

• The answer NA means that the paper does not involve crowdsourcing nor research with785

human subjects.786
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• Depending on the country in which research is conducted, IRB approval (or equivalent)787

may be required for any human subjects research. If you obtained IRB approval, you788

should clearly state this in the paper.789

• We recognize that the procedures for this may vary significantly between institutions790

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the791

guidelines for their institution.792

• For initial submissions, do not include any information that would break anonymity (if793

applicable), such as the institution conducting the review.794
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