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Abstract

Three-dimensional magnetic resonance images (MRI) have emerged as a valu-
able tool to diagnose and characterise Alzheimer’s Disease (AD). Most current
MRI analysis pipelines for AD detection focus on a single plane, limiting their
ability to capture subtle changes associated with different stages of the disease.
This paper proposes a novel deep learning-based pipeline called CoMRIAD that
combines the three MRI planes (coronal, axial and sagittal, and referred to as
combiplane) for enhanced AD detection and classification. Transfer learning ar-
chitectures like InceptionV3, InceptionResNetV2, Xception, DenseNet121, and
CNN were separately trained and tested on individual planes as well as the com-
biplane. Experimental results demonstrate that CoMRIAD outperforms single-
plane MRI analysis, achieving a 6-8% increase in overall accuracy for two-way
and four-way classification tasks. The heatmaps generated using GradCAM
and Pearson’s correlation coefficient computed between the original MRI and
heatmap show high affinity to the predicted class. The CoMRIAD enhances
AD detection from 3D MRI, facilitating the monitoring of the disease and rele-
vant interventions. The source code CoMRIAD implementation can be found at:
https://github.com/brai-acslab/comriad.

1 Introduction

Alzheimer’s Disease (AD) is a progressive neurological disorder that affects memory, thinking, and
behaviour. It has significant impacts on patients’ personal lives, social interactions, and the economy
[23]. AD is ranked as the 7th leading cause of death worldwide [6]. Early detection of mild cognitive
impairment (MCI), a precursor to AD, is crucial for implementing interventions to slow down or
prevent its progression [31]. Structural Magnetic Resonance Imaging (sMRI) is commonly used for
clinical diagnosis of AD, serving as a marker for disease progression [28]. However, the current
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Figure 1: Alzheimer’s disease classification pipeline using different deep learning architectures. The
shadowed blocks map the proposed pipeline of combiplane MRI analysis for AD classification.

identification process relies on manual assessment by specialists, which is time-consuming and
expensive [24].

Figure 1 shows the utilisation of Deep Learning (DL) methodologies and algorithms in the automated
classification of diseases, using Positron Emission Tomography (PET), Functional Magnetic Reso-
nance Imaging (fMRI), and MRI as imaging modalities. These algorithms can reveal subtle patterns
that can aid in identifying individuals at risk of diseases before clinical symptoms manifest [15].
Convolutional Neural Networks (CNN) applied to single-plane MRI scans can extract features like
cortical thickness, hippocampal volume, and ventricle size. Recent advancements include utilising
Siamese architecture and VGG16 model as a feature extractor using the triplet-loss function for
a 4-way classification of AD [8]. Hazarika et al. introduced a modified DenseNet architecture
that outperformed other DL models in terms of speed and accuracy for AD classification using
sagittal plane MRI datasets [9]. Additionally, a DL framework integrating multimodal data and an
explainable model was employed for a 4-way classification of AD, establishing a mapping between
computational predictions and pathological indicators of neurodegeneration [17]. These studies
collectively demonstrate the potential of DL in the early detection and classification of AD using
MRI scans.

In automated AD classification, combiplane (term refers to the utilisation of multiplane MRI scans)
analysis plays a crucial role by incorporating coronal, axial, and sagittal MRI planes. It enables a
comprehensive evaluation of structural and pathological changes, enhancing accuracy and sensitivity
in identifying disease-related areas and biomarkers.

Many works have been attempted towards this end. Ryosuke et al. [19] compared the prediction
accuracy of individual and combiplanes using pre-trained CNN architectures (AlexNet, VGG16,
VGG19, ResNet50, and DenseNet121) on PET images. ResNet50 demonstrated the best performance
for a 3-way classification (CN vs MCI vs AD).

Cucun et al. [1] developed a multi-plane CNN for analysing MRI images. They compared the
prediction accuracy of single-plane CNN models with multi-plane CNN models and results showed
that multi-plane CNN models outperformed single-plane models. Authors further extended the
use of multi-plane MRI images using machine learning models which demonstrated combiplane
approach significantly enhances classification accuracy. Fei et al. [13] proposed a multi-plane and
multi-scale feature fusion network model for AD prediction. The model comprises a feature encoder,
attention layers to evaluate feature impact scores, and a feature similarity discriminator for enhancing
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discrimination of atrophy features by identifying minimally similar features. The study demonstrated
improved interpretability, enhanced accuracy, and performance when tested with MRI data from the
ADNI dataset.

Jinseong et al. [11] proposed an approach for AD classification using a vision transformer(ViT). The
authors demonstrate that the ViT can effectively capture attention relationships among multi-plane and
multi-slice images, alongside CNN. The study compares the performance of the proposed model with
traditional 3D CNNs. The hybrid model, which integrates all models including a ViT, achieves the
best results. While deep learning techniques are known for their robustness in capturing subtle feature
differences, Bansal et al.[2] argue that their effectiveness can be hindered by the scarcity of available
data and the domain-agnostic nature inherent to these methods. Their study introduces, Deep3DScan,
an ensemble framework for lung cancer analysis. It uses 3D segmentation, deep features, handcrafted
descriptors, and achieved segmentation accuracy of 0.927 (outperforming template matching) and
detection accuracy of 0.883 (beating the previous state-of-the-art at 0.866) on the LUNA16 dataset.

Despite promising results in the literature, the combiplane approach for AD classification is not widely
explored. Furthermore, many current DL studies lack transparency, which hampers interpretability
and explainability [29]. This lack of transparency makes it difficult to trust and validate the decisions
made by these models, limiting their adoption and understanding of their reasoning. Consequently, it
can result in biased or unfair outcomes.

To address the aforementioned limitations, we propose a novel DL model that utilises combiplane
sMRI images from coronal, axial, and sagittal planes. Our model aggregates classification results
from each plane, effectively leveraging the complementary information across multiple planes to
enhance accuracy and assist in early detection and diagnosis. We also employ the explainable
Artificial Intelligence tool GradCAM [21] to validate results and provide visual explanations by
highlighting the regions of input images contributing most to the model’s predictions.

2 Proposed Pipeline

This study improves the accuracy and efficiency of AD diagnosis using combiplane MRI images by
utilising the CNN design and integrating convolutional and pooling layers. This section highlights
three key components of the proposed pipeline: 1) training single-plane MRI using CNN architecture
from scratch, 2) testing and prediction with combiplane images, and 3) the interpretation method
employed. These components play crucial roles in achieving improved results.

In this study, the utilisation of MRI is demonstrated as an illustration, with PET and fMRI being
alternative options for consideration. The shadowed blocks of Figure 1 shows the implementation of
the proposed approach, where a non-pre-trained CNN model is used to perform individual testing
and prediction on MRI images from the axial, coronal, and sagittal planes. We trained the CNN
model from scratch with the architecture 16C2− 16C2−MP2− 32C2− 32C2− 32C2−MP2−
64C2− 16C1− Flatten− 4N .

In the next step, the last convolutional layer output and predictions for each plane are obtained
and interpreted. The prediction results are then fused to create an ensemble of combiplane MRI
images. In the proposed approach, the ensemble is formed by a soft voting process using individual
predictions from the three planes. The final prediction is based on the highest probability value
among the summed predicted probabilities. For a test sample j, the soft voting approach yields the
following probabilities:
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Ωj
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where, Ωj
c, Ωj

a and Ωj
s indicate the probability obtained by sample j respectively in planes(p) coronal,

axial and sagittal. The βpj
k (where k = 2 for binary classification and k = 4 for 4-way classification)

indicates the probability assigned for each of the k classes in corresponding plane p. The final
prediction label, denoted as lj , is achieved as follows:

lj = argmax(
∑

βpj
1 ,

∑
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∑
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k ) ∀p ∈ [c, a, s] (4)
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In the final phase of the proposed work, the axial, coronal, and sagittal plane results from the final
convolutional layer are analysed using the GradCAM technique. Using the gradient information
from the last CNN layer, a heatmap is generated to highlight critical image regions and provide
explanations for predictions. The heatmap is then overlaid onto the input image, clearly explaining
the influential regions. In the equation,

Lc
GradCAM = ReLU

(∑
k α

c
k · Ak

)
, Lc

GradCAM represents the GradCAM heatmap, αc
k denotes

the weights calculated for each feature map Ak, and the summation aggregates the weighted feature
maps for a target class c. The ReLU function is applied to ensure the heatmap contains only positive
values.

This equation summarises the key steps of the GradCAM technique, which identifies the significant
regions in the input image that contribute to the predicted class.

To correlate the heatmap with the original image, we explored using Pearson’s correlation coefficient
(PCC) [27]. The images were resized and converted into 1D vectors represented by X and Y.
Normalisation of X and Y was performed using Equations 5 and 6:

X̂ =
X − µX

σX
(5)

Ŷ =
Y − µY

σY
(6)

where µX and µY is the mean and σX and σY is the standard deviation. The covariance of the
normalised images X̂ and Ŷ are calculated as follows:

cov =

∑n
i=1

(
(X̂ − X̄)(Ŷ − Ȳ )

)
n− 1

(7)

where n is the number of elements in the vector and X̄ and Ȳ are the means of X and Y , respectively.
The standard deviations σX and σY of the normalised vectors X̂ and Ŷ are computed as in Equations
8 and 9.

σX =

√√√√√∑n
i=1

(
X̂i − X̄

)2

n− 1
(8)

σY =

√√√√√∑n
i=1

(
Ŷi − Ȳ

)2

n− 1
(9)

The Pearson’s Correlation Coefficient (PCC), defined by Equation-10, ranges between -1 and +1. A
negative value indicates a negative correlation, zero represents no correlation, and a positive value
signifies a positive correlation.

Pr =
cov

σX · σY
(10)

The results with Pearson’s correlation results are discussed in the experimental section.

3 Results and Discussion

The study utilised T1-weighted MRI data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) in axial, sagittal, and coronal planes [10]. The dataset included 1056 MRI images with 223
AD, 475 EMCI, 262 LMCI, and 96 CN cases. The Synthetic Minority Over Sampling Technique
(SMOTE) algorithm was applied, resulting in balanced datasets with approximately 13,822, 13,780,
and 13,856 samples for coronal, axial, and sagittal planes, respectively. The data was split into 70%
training and 30% testing sets. Furthermore, a low learning rate (0.0001) and Adam activation were
used, with a batch size of 128. The number of epochs was determined using EarlyStopping callback
of Keras platform. The model implementation and fine-tuning of pretrained models and subsequent
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Figure 2: The preprocessing pipeline. Original MRI → Reorientation → Registration → Skull-
stripping → Image Enhancement. The reorientation process aligns the image with a standardised
anatomical reference frame which might not be perceivable visually.

evaluation were performed on a Windows system equipped with an NVIDIA RTX 3060 GPU and a
3.2 GHz CPU, ensuring good computational support for the experiments. Model development and
testing were carried out using the Keras API within TensorFlow, allowing for efficient and flexible
experimentation.

The MRI images underwent preprocessing using the popular FMRIB Software Library (FSL) toolkit,
which offers various analytical tools for MRI data. Preprocessing involved three main steps: reori-
entation, registration, and skull-stripping [20]. The skull-stripping was performed using the brain
extraction tool (BET). This widely applied preprocessing pipeline ensures enhancing analytical
accuracy and image interpretation. Figure 2 illustrates the intermediate outputs of these preprocessing
steps. The code used in this preprocessing pipeline is sourced from the study by Vimbi et al. [30].

Table 1: Performance metrics of Models on Individual planes

N Plane Acc Sp Se FNR FPR

1000

C 0.889 0.9633 0.8884 0.1115 0.0366
A 0.888 0.9628 0.8870 0.1129 0.0371
S 0.904 0.9679 0.9027 0.0972 0.0320
Co 0.979 0.9930 0.9786 0.0213 0.0069

2000

C 0.878 0.9593 0.8784 0.1215 0.0406
A 0.8885 0.9628 0.8890 0.1109 0.0371
S 0.9085 0.9695 0.9086 0.0913 0.0304
Co 0.978 0.9926 0.9782 0.0217 0.0073

4000

C 0.878 0.9592 0.8780 0.1219 0.0407
A 0.8942 0.9646 0.8940 0.1054 0.0353
S 0.9147 0.9715 0.9148 0.0851 0.0284
Co 0.9832 0.9944 0.9831 0.0168 0.0055

8000

C 0.8756 0.9583 0.8760 0.1239 0.0416
A 0.8942 0.9645 0.8940 0.1059 0.0354
S 0.9098 0.9698 0.9103 0.0896 0.0301
Co 0.9807 0.9935 0.9807 0.0192 0.0064

Legend– N: Number of training samples; C: Coronal; A: Axial; S: Sagittal; Co: combiplane; Acc:
Accuracy; Sp: Specificity; Se: Sensitivity; FNR: False negative rate; FPR: False positive rate.
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Figure 4: Comparative Analysis of Diagnostic Performance Metrics: Accuracy (Acc), Specificity
(Spc), Sensitivity (Sen), False Negative Rate (FNR), and False Positive Rate (FPR) across Coronal,
Axial, Sagittal, and combiplanes in Binary Classification of AD.

The evaluation of the models was done using well-known performance metrics: Accuracy (Ac),
Sensitivity (Se) or True Positive Rate (TPR), and Specificity (Sp) or True Negative Rate (TNR)
[22]. The false positive rate (FPR) can be derived as 1− Sp. The false negative rate (FNR) can be
calculated as 1− Se. All reported values were averaged using the one-vs-all strategy. In addition,
paired t-tests were computed to compare the accuracy of the proposed combiplane method over the
individual plane method.
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In the initial experiment, models were trained using the 70% training pool and testing was carried out
by varying the number of test samples (N ) from the coronal, axial and sagittal planes with identical
labels. We established test pools of varying numbers of N samples each from three planes with
the same patient ID and, therefore, sharing the same label. In addition to disease characterisation
in different planes individually, this experiment also assessed the combiplane model’s capacity to
analyse multiple MRI images concurrently. Table 1 reveals that the combiplane approach consistently
outperformed the individual planes across different numbers of test samples. For instance, with 1000
training samples, the combiplane achieved an accuracy of 0.979, a specificity of 0.993, a sensitivity
of 0.9786, an FNR of 0.0213, and an FPR of 0.0069. This is an impressive improvement in accuracy,
approximately 9.65%, compared to the average accuracy of the individual planes. These findings
demonstrate the effectiveness of combining information from multiple planes in enhancing disease
characterisation accuracy, providing valuable insights for medical imaging analysis and diagnosis.
It is important to note that the combiplane’s high accuracy was also accompanied by excellent
performance in other metrics. The combiplane achieved high specificity (0.9944) with a low FPR
(0.0055) and high sensitivity (0.9831) with a low FNR (0.0168), highlighting its effectiveness in
correctly identifying positive cases. In summary, the experiment showcases the superiority of the
proposed combiplane’s ability to identify and classify AD accurately.

Figure 3 shows confusion matrices (N = 4000) obtained for individual and combiplane models. The
combiplane model was accurate across all classes (CN, EMCI, LMCI, and AD). It identified CN
and EMCI instances more accurately than models trained individually. The combiplane model also
distinguished LMCI and AD better than individual plane models. This improved discrimination allows
early dementia prediction and management, postponing AD development. Thus, the combiplane
method provides superior diagnostic capabilities for MCI diagnosis.

Table 2: Comparison of transfer learning models across individual and combiplane. C: Coronal, A:
Axial, S: Sagittal, Co: combiplane.

Architectures C A S Co p-value
InceptionV3 0.80 0.84 0.94 0.99 0.000138
IRV2 0.39 0.41 0.47 0.57 5.90E-07
Xception 0.73 0.78 0.85 0.93 8.64E-09
DenseNet121 0.73 0.84 0.90 0.95 0.000531
CNN 0.88 0.89 0.91 0.98 4.47E-07

We compared the combiplane technique to prominent transfer learning (TL) architectures to test
its consistency. For this experiment, each architecture was trained separately on individual planes
and considered 4000 random samples for testing and computed the accuracy on 5 separate runs.
This resulted in 5 different accuracy values for planes C, A, S and Co planes. Table 2 shows that
the combiplane outperforms the individual planes in all TL networks. The combiplane accuracy
yielded an impressive 0.98 accuracy, showing that combining disease patterns from distinct planes
improves performance. Among the TL architectures evaluated, InceptionV3 performs well in
all image orientations. With accuracies of 0.80 for coronal, 0.84 for axial, and an impressive
0.94 for sagittal orientations, InceptionV3 consistently demonstrates strong predictive capabilities.
InceptionResNetV2 obtained worse accuracy than other architectures in this study. Yet the combiplane
approach improves accuracy through the complimentary information from several planes. Xception
and DenseNet121 achieve 0.73 to 0.90 accuracies across multiplanes. Their integration into the
combiplane leads to notable accuracy boosts, further highlighting the effectiveness of the combiplane.
To compare the significance of combiplane accuracy over individual planes, we computed paired
t-tests to test the significance of the results. In the context of comparing the combiplane model to
individual planes, the obtained p-values (see Table 2) imply high statistical significance confirming
increased reproducibility of the method and reflecting a consistent pattern in the results rather than a
random chance.

For binary classification of different stages of AD (AD vs CN, EMCI vs LMCI, CN vs EMCI,
and LMCI vs AD), we evaluated the efficacy of models considering both individual planes and the
combiplane. The results, presented in Figure 4, demonstrated that the combiplane achieved superior
accuracy (0.99325) compared to the individual planes. Additionally, the combiplane exhibited
high specificity (0.99292572) and sensitivity (0.993567541), resulting in a low FNR of 0.00707428
and FPR of 0.006432459. While the individual planes also demonstrated strong performance
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with accuracies of 0.95 (coronal), 0.955 (axial), and 0.947 (sagittal), the combiplane consistently
outperformed them, highlighting its enhanced capability in distinguishing between the targeted stages
of AD.

The confusion matrices for all planes involved in the classifications are shown in Figure 5. The
combiplane model demonstrates remarkable accuracy in correctly detecting various stages of AD,
which is crucial for early disease detection. This underscores the invaluable role of the combiplane in
enhancing diagnostic accuracy and enabling timely interventions.

The non-pretrained CNN architecture was fine-tuned and used for prediction with preserved weights.
The heatmap was generated using the predictions from the last convolutional layer to explain the
results. Figure 6 depicts the original MRI image, GradCAM heatmap, and class overlays (CN vs.
AD) for axial, coronal, and sagittal planes. The ’red’ regions in the overlays signify a close affinity to
the predicted class. The axial plane highlights regions associated with neurodegeneration, atrophy, or
abnormal metabolic activity in AD. The coronal heatmap focuses on cortical areas like the temporal
and parietal lobes, commonly affected in AD. The sagittal heatmap highlights vulnerable regions like
the prefrontal cortex and posterior cingulate cortex. By examining all the heatmaps, clinicians can
gain insights into the effects of AD-related changes in the brain.

In this experiment, we employed PCC to measure the affinity between the original MRI image and
the heatmap. The results demonstrate a high positive correlation in both CN and AD cases. As
shown in Figure 6, the PCC values between the original image and its heatmap are high for both CN
(0.98929, 0.99384, and 0.93824) and AD (0.98407, 0.98759, and 0.95060) for the three planes. The
PCC measures how well the heatmap captures the features of MRI; hence, high values effectively
highlight the relevant regions of interest for the predicted class.

4 Limitations

One limitation of this approach is the increase in computational cost associated with processing
multiple planes to achieve enhanced accuracy. Each plane requires additional processing power,
introduces more parameters to the model, leading to a cumulative increase in resource demand. In
our experiments, which included 8,000 images, parallel processing proved manageable; however,
scaling this approach to significantly larger datasets may strain resources, especially in real-time or
large-scale applications. Consequently, the feasibility of deploying this method may be restricted by
hardware constraints, particularly for real-time applications or large-scale datasets. Future work may
explore optimization techniques to further reduce computational costs, making the approach more
accessible and scalable across varied computational infrastructures.

5 Conclusion

Recent studies have shown that deep learning techniques with sMRI can effectively classify AD.
Our research further improved the accuracy of AD detection by incorporating CNNs and multi-
plane MRI images. We discovered that combining classification results from different imaging
perspectives (combi-plane models) produced even better results. This novel approach of combining
planes, followed by the application of a classification model, is compatible with any machine learning
algorithm.

To ensure explainability, we used GradCAM, which provided heatmaps highlighting the specific
brain regions most relevant to the classification process. We also found a strong positive correlation
between the original MRI and the heatmap using the PCC across the axial, coronal, and sagittal planes.
Our future work could further leverage the potential of combi-plane approaches in AD classification
addressing challenges related to interpretability and trust. Enhancing trust is paramount to ensuring a
reliable integration of AI-driven diagnostic systems into clinical practice.

In summary, utilising deep learning methods for AD classification with sMRI has shown to be highly
effective and full of potential. Through ongoing research, we can anticipate substantial enhancements
in AD identification and treatment, ushering in a new age of targeted medicine and improved patient
care.
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A Appendix / supplemental material

The supplemental material contains details about code and dataset used in this study.

A.1 Code

The code used in the study can be accessed from https://github.com/brai-acslab/comriad/.
The code contains details about required packages, training details including hyperparameter values,
train-test split, etc. This code repository has the following Python notebook files:

1. ModelBuilding.ipynb: This code uses the dataset (as detailed in Appendix A.2) and
builds a model that uses MRI planes for Axial, Coronal and Sagittal planes for the four-way
classification of Alzheimer’s Disease.

2. ModelTesting.ipynb: This code uses the dataset as mentioned in Section-3 to test the
efficacy of proposed model for the four-way classification of Alzheimer’s Disease.

3. ModelBuildingBinary.ipynb: This code uses the dataset (as detailed in Appendix A.2)
and builds a model that uses MRI planes for Axial, Coronal and Sagittal planes for the
two-way classification of Alzheimer’s Disease.

4. ModelTestingBinary.ipynb: This code uses the dataset (as detailed in Appendix A.2)
and builds a model that uses MRI planes for Axial, Coronal and Sagittal planes for the
two-way classification of Alzheimer’s Disease.

5. t-tesst.ipynb:

A.2 Dataset

A.2.1 Data Extraction

The dataset utilized in this study is sourced from well-established databases such as the Alzheimer’s
Disease Neuroimaging Initiative dataset (ADNI, https://adni.loni.usc.edu/). After the data
access request was approved, the ADNI data was downloaded from the LONI Image and Data Archive
(IDA). To download the appropriate subset of data from the IDA, the database was searched for
T1-weighted structured MRI (sMRI) samples belonging to subjects in ADNI1, ADNI2 and ADNI-GO
cohorts aged between 55 and 65 from the CN (Cognitively Normal) AD(Alzheimer’s Disease), MCI
(Mild Cognitive Impairment), EMCI (Early MCI), and LMCI (Late MCI) categories.

A.2.2 Preprocessing of Extracted MRI

After extraction of the MRI samples, they were preprocessed to enhance image quality. From the
quality assessment viewpoint, several preprocessing stages exist, namely, signal-to-noise ratio (SNR),
contrast-to-noise ratio (CNR), Image Similarity Metrics (ISM), Fractional Anisotropy Analysis (FAA),
Chi-squared Analysis (CA), and Mask Quality Analysis (MQA) [3]. Admidst several preprocessing
tools, like, Free Surfer[18], Statistical Parametric Mapping (SPM)[12], Advanced Normalisation
tools (ANT)[4], and AFNI software[5], the FSL (FMRIB) software library was used [25] which
allows the evaluation of each preprocessing stage for data quality.

Several preprocessing steps were used: reorientation, registration, skull stripping, and slicing (see
Figure 7, path B).

Reorientation of MRI Reorientation involves applying transformations to align MRIs with a
standardized reference space. This is accomplished by aligning an individual’s orientation to a
standardized anatomical plane by altering their position along certain axes [14]. This practice
guarantees consistent orientation of images, facilitating the process of comparing and integrating data
from many participants or research. This process helps align the image with a universally accepted
orientation. This alignment simplifies comparison and ensures compatibility across various analyses
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and software packages. Reorientation, therefore, aids in maintaining uniformity and enhancing the
dependability of later studies and data integration.

Image Registration Image registration refers to aligning several images in a shared coordinate
space. The image undergoes a linear transformation encompassing translation, rotation, and scaling,
which facilitates the alignment of one image with another [7]. The practice of aligning various
modalities of imaging data or matching an individual’s data to a template or standard space is widely
employed. Coherently, the registration algorithms align the spatial attributes of diverse images,
thereby compensating for discrepancies in positioning or subject motion that may have occurred
during the image acquisition process.

Skull Stripping The MRI image acquired subsequent to the registration procedure comprises
extraneous non-cerebral tissues that necessitate removal. Skull stripping refers to separating the brain
region from surrounding non-brain tissues, such as the skull, scalp, and non-brain structures [26]. The
act of separating brain structures aids in the process of concentrating on the analysis and visualization
of those structures. The technique of skull stripping is an essential preprocessing procedure in various
neuroimaging investigations, such as brain morphometry, functional connectivity, and diffusion tensor
imaging. The skull-stripped images produced by tools such as the Brain Extraction Tool (BET), a
technique developed by the Biomedical Engineering and Technology program, exhibit an aesthetically
pleasing quality and enhanced interpretability. Consequently, these images are helpful in educational,
research, and therapeutic contexts.

Image Slicing The MRI that has been reoriented, registered, and skull-stripped is now available
in a three-dimensional format comprising three planes known as axial, coronal, and sagittal. The
generation of a two-dimensional representation of a specific plane from an input volume can be
achieved through the utilization of the Slicer program [16]. Therefore, the objective is to divide 3D
volumetric data into 2D slices for easier visualization and analysis.

A.2.3 MRI Preprocessing with FSL: Setup FSL and Sample Pipeline Walkthrough with
Shortcodes

This section presents a guideline for FSL (FMRIB Software Library) setup on macOS-based machines.
A comprehensive MRI scan preprocessing methodology is presented and encompasses reorientation,
registration, skull stripping, and slicing. The preprocessing procedures were done on an Apple macOS
system featuring an Apple M2 CPU, 8 GB of RAM, and a 10-core GPU.

FSL Setup FSL, is a popular software package from the University of Oxford FMRIB Centre
(https://www.win.ox.ac.uk/). The software offers comprehensive tools and strategies for pre-
processing and analyzing neuroimaging data, including functional and structural MRI [26]. This study
used FSL version 6.0.6.5, and this release improves the reliability and efficiency of our neuroimaging
analysis workflow. FSL was chosen due to its popular use in neuroimaging and consistent research
and support by the FMRIB Analysis Group.

The study used FSL for key neuroimaging analyses such as reorientation, registration, skull stripping,
and slicing. However, in this study we used the macOS terminal window to preprocess MRI using FSL
command-line tools. Shortcodes used in the terminal window can be found in the following section.
We also utilised the ’fsleyes’ program, a strong neuroimaging tool for examining FSL-processed MRI
data. The FSL software setup for macOS is shown in Table 3. Installation guideline for WindowsOS
users and further reading can be obtained from (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki).
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Table 3: FSL installation guideline

Installation Steps FSL Installation Instructions
Prerequisites Install XQuartz to run X Windows system

on macOS (https://www.xquartz.org/)
Downloader Register and download the installer (fslinstaller.py)

(https://fsl.fmrib.ox.ac.uk/fsldownloads_registration)
Running the installer At terminal window run installer with Python
on macOS $ python fslinstaller.py

Open a new terminal window to begin using FSL
Checking installation At new terminal use code below to display name of

installed FSL directory
$ echo $FSLDIR

Running GUI To start the main FSL GUI type
$ fsl

Figure 8: MRI after reorientation.

Preprocessing Pipeline with shortcodes In this study, we used FSL to perform tasks like image
reorientation, registration, skull stripping, and slicing. To standardize and reorient neuroimaging data,
we used the command line tool "fslreorient2std" within FSL. This process guarantees a consistent
orientation of the images, facilitating comparing and integrating data from many participants or
research. The syntax for reorientation in the command line is provided in the subsequent statement:

fslreorient2std infname outfname

The input file name, "infname", refers to the original MRI image that needs reorientation. The output
file name "outfname" indicates where the reoriented image will be stored. Figure 8 shows how ’fsleyes’
is used to see the reoriented image. With this command, we aligned the image to a conventional
orientation. Keeping data uniform and reliable improves later studies and data integration.

In order to align images to a common coordinate space, also known as image registration, the
command line tool within FSL, ’flirt’, was used. This tool is used for a linear transformation of the
images, such as translation, rotation, and scaling. Figure 9 shows MRI images after registration, and
Table shows the ’flirt’ command with specific parameters for image registration, the breakdown of
the commands, and their options. The command line syntax for registration using the FSL tool is
shown in the statement :

flirt –in rofname –ref referencefname –out outfname –omat fname.mat –bins
256 –cost corratio –searchrx 0 0 –searchry 0 0 –searchrz 0 0 –dof 12

–interp spline

The brain region is isolated by removing the skull, scalp, and other non-brain components. Skull-
stripped images can be created using the FSL tool BET (Brain Extraction Tool) and are more
aesthetically pleasing and simpler to understand. The following statement displays the command line
syntax for skull stripping:

bet infname outfname –R –f 0.5 –g 0
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Figure 9: MRI after registration

Table 4: Parameters and its description for the flirt command line tool

Command Options
flirt This is the command to execute FLIRT
-in rofname Specifies the input image filename to be registered
-ref referencefname Specifies the reference image filename to which the

input image will be aligned
-out outfname Specifies the output image filename after registration
-omat fname.mat Specifies the output matrix filename that stores

the transformation matrix
-bins 256 Sets the number of histogram bins used for image

intensity matching
-cost corration Specifies the cost function to be used for registration,

and this case, correlation ratio
-searchrx 0 0 Sets the search range for registration in the x direction

which is set to 0 indicating no search
-searchry 0 0 Sets the search range for registration in the y direction

which is set to 0 indicating no search
-searchrz 0 0 Sets the search range for registration in the z direction

which is set to 0 indicating no search
-dof 12 Sets the degrees of freedom for the transformation model

and 12 indicates a full affine transformation.
-interp spline Specifies the interpolation method to be used during resampling.

In the command, ’infname’ refers to the input file name, and ’outfname’ is the output file name. The
-f parameter in the BET command indicates the fractional intensity threshold that determines the
algorithm’s sensitivity for extraction and can be adjusted to include more or less brain tissue. There
are two other options to consider: ’-R’ for robust brain center estimation and ’-g 0’ to refine the skull
stripping using local intensity gradients. A higher fractional intensity threshold includes more brain
tissue, while a lower value removes more non-brain structures (refer Figure 10).

Reoriented, registered, and skull-stripped MRIs are now available in 3D axial, coronal, and sagittal
planes. A Slicer tool can transform an input volume into a 2D view of any plane. Slicer is an

Figure 10: MRI after skull stripping
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Figure 11: MRI after slicing

open-source medical image processing, research, and visualization application. Example slicing
command line syntax:

slicer infname -z -90 outfname

The command line parameters are: ’infname’ is the name of the input volume file containing the
MRI data; ’-z -90’ selects the slice at -90mm along the z-axis for an axial or transverse view; and
’outfname’ is the output file name to be saved. The orientations -y and -x represent the coronal and
sagittal planes, respectively. This command loads the input volume and extracts the desired slice
at the specified location. The 2D axial view image (refer Figure 11) can be processed, studied, or
visualized for that slice of interest.
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