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Abstract

In many real applications, such as climate,
finance and social media among others, we
are often interested in extreme events. An
important part of modeling extremes is dis-
covery of covariates on which the quantities
related to the extremes are dependent, as this
may lead to improved understanding and the
discovery of new causal drivers of extremes.
Despite developments in sparse covariate dis-
covery algorithms, adaptations to extremes
can fail because the tail attributes do not fol-
low a Gaussian distribution. In this paper,
we proposed a sparse Bayesian framework for
discovery of covariates that influences the fre-
quency of extremes based on the Poisson de-
scription of extremes frequency and hierar-
chical Bayesian description of a sparse re-
gression model. We developed an efficient
approximation algorithm based on the vari-
ational Bayes approach to estimate the dis-
tribution over regression coefficients that in-
dicate dependence of extremes on the corre-
sponding covariates. Experiments with syn-
thetic data demonstrate the ability of the ap-
proach to accurately characterize dependence
structures. Applications to rainfall extremes
suggest new insights relevant for improved
understanding of hydrological extremes un-
der climate variability and change.

Presented at the International Conference on Machine
Learning (ICML) workshop on Inferning: Interactions be-
tween Inference and Learning, Atlanta, Georgia, USA,
2013. Copyright 2013 by the author(s).

1. Introduction

Descriptive analysis and predictive modeling of ex-
treme values are growing in importance and urgency
across societal priorities, ranging from natural haz-
ards and climate change to security of physical and
cyber systems, as well as financial markets, telecom-
munication signals (Reiss & Thomas, 2007) and even
relatively newer fields like social media. Extremes are
particularly relevant for climate due to the connection
of consistent change in extreme weather patterns with
the warming climate, as identified by Intergovernmen-
tal Panel on Climate Change (IPCC) in their Special
Report on EXtremes (SREX) (Field et al., 2012).

Characterizing the dependence of extreme values on
multiple covariates is often a first step in develop-
ing causal insights involving physical and empirical
relations. Sparse regression techniques based on L1-
regularizers have gained prominence as a tool for find-
ing dependence structures between variables in many
application areas due to the development of efficient
algorithms (Tibshirani, 1994; Friedman et al., 2010)
that can handle millions of potential feature variables.
However, application of such methods for dependence
discovery of extremes is not straightforward since the
distribution of extreme values are not Gaussian. This
violates the basic assumption of Gaussianity inherent
to the sparse regression techniques. The statistical
approach developed to model extremes is the Extreme
Value Theory (EVT) (Coles, 2001) that provides a nat-
ural family of probability distributions for modeling of
extremes. Despite their importance, problems related
to extremes were rarely addressed in knowledge discov-
ery community. In (Lozano et al., 2009) a Group Elas-
tic Net method was described that discovers Granger
causality between a set of time-series which was used
for climate change attribution. However, it is still a
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method for analyzing dependence among Gaussian dis-
tributed variables. In (Liu et al., 2012) a latent space
model was used to obtain dependence between a set of
extremes time series which is a very different problem
from the one we are addressing. We propose a general
Bayesian framework to adapt the L1-regularized sparse
regression (LASSO) approach for dependence discov-
ery for frequency of extremes. We adopted a latent
space model of (Liu et al., 2012) and regarded the av-
erage rates of the extremes frequency as latent variable
and estimated their linear dependence on the covari-
ates using the Bayesian version of the L1-regularized
regression (Park & Casella, 2008). We derived a fully
Bayesian description of the joint distribution of ob-
served frequencies and all latent variables and devel-
oped an efficient variational approximation algorithm
to obtain the posterior distribution of the regression
coefficients. This enabled us to discover the relevant
features along with an estimate of uncertainty. The
proposed framework can be applied as a statistical
tool for dependence analysis of extremes in many other
fields where extremes are important.

The rest of the paper is organized as following. In
section 2, we describe the proposed Bayesian frame-
work for dependence discovery of extremes frequencies
along with some basics of extreme value modeling. In
section 3 we describe related work and in section 4
we presented and discussed the experimental results.
Finally in section 5 we conclude and propose future
work.

2. Methodology

2.1. Basics of Extreme Value Modeling

Extremes events are rare and their probabilities are
represented by the tail of distributions. As men-
tioned earlier, the statistical properties of extremes
are described by Extreme Value Theory (Coles, 2001;
Reiss & Thomas, 2007). Extreme events are gener-
ally characterized by their intensity, duration or fre-
quency. Intensity of extremes may be described by
either Generalized Extreme Value (GEV) distribu-
tion (Coles, 2001) or Generalized Pareto distribution
(GPD) (Coles, 2001) depending on whether samples
are obtained using block maxima (e.g. annual max-
ima) or peaks-over-threshold approach (Coles, 2001).
On the other hand, frequency and the inter-arrival
time of extremes are modeled by Poisson point pro-
cess approach where the number of extremes N within
a fixed period are described by Poisson distribution
(Coles, 2001), which is given by the following pdf.

Pois(N |λ) =
λNe−λ

N !
(1)

where λ is the average rate of arrival of extremes.

2.2. Sparse Regression for Extremes
Dependence Analysis

Let us denote the observed numbers of occurrences
(frequencies) of extremes by N1, N2, ..., Nn in n equal
period of time (e.g. 1 year). We also have n observa-
tions of p covariates that may or may not influence the
frequency of extremes. They are given by x1,x2, ...,xn
where xi is a p-dimensional vector. Now we assume
each of these frequencies are drawn from distinct Pois-
son distributions with fixed but unknown average rates
λ1, λ2, ..., λn. Given the above observations, our goal is
to find a sparse subset of covariates (we may use ”fea-
ture variables” alternately to mean covariates) that
influence the frequencies of extremes. In order to ob-
tain a robust and interpretable model, a natural choice
is a sparse linear model. However, directly modeling
the relation between observed frequencies and the fea-
ture variables using a linear model may not be appro-
priate since the the relation may well be non-linear.
So, we use a latent space model similar to (Liu et al.,
2012), where the average rate parameters of Poisson
distributions are regarded as latent variables that are
more stable than the actual observed frequencies and
can be described reasonably well by a linear model.
Therefore, instead of modeling the actual observations,
we model the relationship between the latent variables
and the feature variables using a sparse linear regres-
sion model. However, we model log(λi) instead of λi
in order to enforce positivity on λi (also, log(λi) is a
natural parameter for Poisson distribution). The final
linear model is given by

log(λi) = β>xi + ε, subject to ||β||11 ≤ t (2)

where ε ∼ N (µ, τ−1). Here β = [β1β2...βp] is the
vector of regression coefficients corresponding to p dif-
ferent features. Now we denote ψi = log(λi) and the
joint distribution of the frequencies Ni and average
rate parameters λi is given by

p(Ni, ψi|β, τ,X) =

n∏
i=1

p(Ni|eψi)p(ψi|β, τ,xi) (3)

The distribution p(Ni|eψi) can be modeled by a Pois-
son distribution and p(ψi|β, τ,xi) can be modeled by
the Gaussian given by N (β>xi, τ

−1). In order to im-
plement sparsity, we can use a Laplace prior over β
(Park & Casella, 2008). We can see that the depen-
dence structure between the average rates and the fea-
ture variables is captured by the values of β. A zero
value of any of the βj means the extremes frequen-
cies have no dependence on the corresponding feature
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whereas a non-zero value means otherwise. We can
find the parameters β by maximizing the log-marginal
p({Ni}|β, τ,X) with respect to the parameters. How-
ever, directly optimizing the above log-marginal will
not be feasible as it involves marginalization of the
joint distribution in (3) over the latent variables. We
propose to use a variational Bayesian (VB) approx-
imation algorithm (Beal, 2003) to find an approxi-
mate posterior distribution over each of the parameters
which is described in the following subsection.

2.3. VB Approximation for Bayesian Sparse
Regression

We denote the sets {ψi} and {Ni} by vectors Ψ and
N respectively. Let us also denote all the unknown
parameters by Θ and regard them as latent variables
as well. A set of latent variables is therefore given by
Z = {Ψ,Θ}. Moreover, from now on, we will ignore
observed feature variables X from the list of condition-
ing variables. From a Bayesian view-point, the joint
distribution p(N,Z) can be factorized in conditionals
by assuming priors over each of the parameters in a hi-
erarchical fashion. As mentioned earlier, sparsity over
β can be implemented by enforcing a Laplace prior on
components of β. We use following hierarchical form
of Laplace prior (Kabán, 2007) to make the inference
tractable.

p (β; τ, γ) =

p∏
j=1

√
γjτ

2
exp

(
−√γjτ |βj |

)
=

p∏
j=1

∫
N
(
βj ; 0, τ−1α−1j

)
InvGa

(
αj ; 1,

γj
2

)
dαj

where τ is the precision parameter of the additive
noise in (2), αj is the latent precision parameter for
the coefficient βj and InvGa(.) is the Inverse gamma
distribution. Moreover, Gamma priors are imposed
on τ and feature-specific individual parameters γj
(Park & Casella, 2008; Kabán, 2007). We assume
non-informative priors over hyper-parameters a0,
b0, c0, d0 and typically assign a0=b0=c0=d0=10−6.
The final joint distribution p(N,Z) is provided in
the Appendix ((A.1)) We assume a factorized form
approximation for the joint distribution and solve
for each component using Variational Bayes method
details of which is given in the Appendix. The final
update equations for variational inference are given
here. The moments of the posterior components are
given in Appendix.

(1) Distribution of Ψ:

qΨ(Ψ) =

n∏
i=1

qψ(ψi) =

n∏
i=1

1

Zi
e{Ñiψi−

〈τ〉
2 ψ2

i−e
ψi} (4)

with Ñi = Ni + 〈τ〉X>i 〈β〉 (5)

In order to make the inference tractable, we approxi-
mated qψ (ψi) by a Gaussian using Laplace approxima-
tion. The approximation method is briefly described
in the Appendix.
(2) Distribution of β:

qβ(β) = N (β;µ,Σ) (6)

with Σ =
(
〈τ〉X>X + 〈τ〉diag(〈α〉)

)−1
; (7)

and µ = Σ
(
X>〈Ψ〉

)
〈τ〉 (8)

Here diag(〈α〉 corresponds to the LASSO (Tibshirani,
1994) shrinkage.
(3) Distribution of α:

qα(α) =

p∏
j=1

qα(αj) =

p∏
j=1

InvGaussian (αj ; gj , hj)

(9)

with gj =

√
〈γj〉
〈τ〉〈β2

j 〉
; hj = 〈γj〉 (10)

(4) Distribution of γ:

qγ(γ) =

p∏
j=1

qγ(γj) =

p∏
j=1

Ga (γj ; aj , bj) (11)

with aj = a0 + 1; bj = b0 +
1

2
〈α−1j 〉 (12)

(5) Distribution of τ :

qτ (τ) = Ga (τ ; c, d) (13)

with c = c0 +
n+ p

2
; d = d0 +

I

2
+
J

2
(14)

where I =
∑n
i=1

(
〈ψ2
i 〉 − 2〈ψi〉x>i 〈β〉+ 〈β>xix

>
i β〉

)
;

and J =
∑p
j=1〈αj〉〈β2

j 〉.

The parameters of each of the distributions has depen-
dency on moments of one or more of the other vari-
ables. We can only find an optimum solution via itera-
tive updates, starting with random initial values of the
relevant moments no closed form solution exists. We
can compute the variational lower bound J by replac-
ing qΛ(Λ), qβ(β), qα(α), qγ(γ) and qτ (τ) in (A.3). In
each update iteration, we compute the lower bound J
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and continue the process as long as the bound keeps
increasing. Note that, once the approximate solution
is reached, we can compute the marginal distributions
over coefficients βi which is a Gaussian with mean µi
and variance Σii. We can thereby perform a t-test to
determine whether the corresponding covariate influ-
ences the extremes frequencies.

3. Related Work

We compared the results of our method with the fol-
lowing closely comparable alternatives.

3.0.1. Regular LASSO

We considered regular LASSO (Tibshirani, 1994) to
be a baseline since we are interested in obtaining a
sparse model. However, as mentioned earlier, LASSO
assumes Gaussianity on target variable which does not
hold in this case.

3.0.2. Transfer Entropy Method

Transfer entropy is an information-theoretic measure
of dependence between two variables which is given by
the decrease in entropy in one variable when the other
variable is observed. Once the pairwise transfer en-
tropies are computed for each feature with the target
variable, a feature selection algorithm such as IAMB
(Tsamardinos et al., 2003) can be used to obtain the
dependency structure of the target variables. How-
ever, the problems with this method are that it does
not utilize additional information specific to the dis-
tribution of extremes and the accuracy of the method
depends on the performance of the feature selection
algorithm chosen.

3.0.3. Copula Method

Copula method is used for dependency analysis (Liu
et al., 2009; Lafferty & Wasserman, 2012) between
random variables having non-Gaussian marginal dis-
tributions. In this approach, random variables hav-
ing non-Gaussian distributions are first transformed
into Gaussian copula domain using a transformation
Ui = Φ−1 (Fi (Xi)) where Fi is the marginal distribu-
tion over a non-Gaussian variable Xi. Now a graph
learning algorithm such as glasso (Friedman et al.,
2008) can be used on the transformed variables to find
the dependence graph among the variables, from which
we can select the edges that indicate dependence rela-
tionships between a target variable and the remaining
covariates. However the copula-based graph learning
methods is also generic and therefore does not use in-
formation specific to extremes. Moreover, it is nec-

essary to determine an optimal value of the penalty
parameter for the graph learning algorithm which is
not required in our Bayesian approach.

4. Experimental Results

In order to evaluate the performance of our algorithm
we have applied it on both synthetic datasets and a
climate dataset consisting of several observed and de-
rived climatological variables. We evaluated our algo-
rithm in terms of how accurately it recovers the true
dependence structure. However, to verify the accuracy
of our algorithm we need to have knowledge of the
true dependence structure. Therefore we tested our
algorithm on a number of different synthetic datasets
with varying complexity. On the other hand, results
on climate dataset is partially validated with existing
knowledge. Additionally, we presented some interest-
ing discoveries to demonstrate the value of using our
method on climate data.

4.1. Synthetic Data

We used 8 different β values having different sparsity
varying from 2 non-zero elements to 30 non-zero ele-
ments. The number of non-zero elements were incre-
mented by 4 and noise variance was fixed at 0.1. We
generated 500 samples of the features X (dimension-
ality p fixed at 40) from normal distributions N (0, 1)
and generated λi using equation (2), i.e. by exponenti-
ating the linear combination of features X in the right
hand side. We sampled the frequencies Ni from Pois-
son distributions having average parameters λi. In
our final dataset, we kept only those data-points for
which Ni is less than 20 and larger than 0 to simulate
natural scenarios where extremes are rare. We sam-
pled the features multiple times and reported the av-
erage F1-score for each experiment. F1 score measures
how accurately our method recovers the zero/non-zero
structure of the coefficients. It is given by F1 = 2PR

P+R
where P is the precision and R is the recall.

As mentioned before, we decided whether each βi is
zero or not based on a t-test that rejects the null hy-
pothesis (βi 6= 0) at 1% confidence level. Average and
standard deviations of F1-scores from 10 repetitions
of the above experiment are shown in Figure 1. We
can see that our method is far superior in terms of ac-
curately finding the dependence structure. When we
decrease sparsity, the F1-score of both VB approach
and LASSO increases monotonically with almost neg-
ligible variance. However, the F1-score of the Gaussian
copula based method decreases consistently with de-
creasing sparsity. Finally, the transfer entropy method
does not show any particular trend, although it’s ac-
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Figure 1. F1-score achieved by different methods with de-
creasing sparsity (noise variance fixed at 0.1)

curacy is very low.

We presented a few sample plots from individual ex-
periments in Figure 2 to show the true and estimated
coefficients for different methods. We can see that our
method (Figure 2a) very accurately captured the un-
derlying dependence structure between the frequency
and the feature variables. However, LASSO correctly
identifies the non-zero coefficients (Figure 2b), but not
the zero coefficients. Although, many estimated val-
ues of zero coefficients are close to zero, unlike VB
method, we do not have any additional information to
infer whether the coefficients are actually zero or not.
Therefore, decreasing sparsity or increasing number of
non-zero coefficients results in increasing accuracy for
LASSO. On the other hand, Copula-based methods
always ends up with a very sparse solution (Figure
2c), with most of the coefficients estimated to be zero.
Therefore it’s accuracy is high when the true solution
is very sparse, but the accuracy decreases when spar-
sity decreases.

4.2. Climate Application

Precipitation extremes are important owing to their
consequences for flood hazards and water resources.
Unfortunately, the processes leading to regional pre-
cipitation extremes are still poorly understood, but
are known to have mechanistic dependence both on
regional covariates as well as large-scale climate oscil-
lators (Aryal et al., 2009; Gregersen et al., in press).
An improved understanding of the dependence rela-
tionship between extremes and their drivers may po-
tentially help in better projection of extremes. We
applied our algorithm to estimate the dependence of
yearly occurrences of precipitation extremes on a num-
ber of potential local, regional and large-scale climate
variables for one climatologically homogeneous region
in US. Note that our method does not automatically
model the spatial and temporal dependence among
frequency of occurrence of extremes. However a rea-
sonable assumption is that by carefully choosing the
potential feature variables, we can account for spatial

and temporal correlations among extremes frequencies
(Aryal et al., 2009) if there is any.

4.2.1. Dataset

We chose only one climatologically homogeneous re-
gion out of 9 for our analysis - north-east US (A
map showing the regions can be found at www.nc
dc.noaa.gov/img/climate/research/1998/ann/usrgns
pg.gif). We obtained the daily precipitation, min-

imum and maximum temperature station data (not
gridded) from the repository of US Historical Clima-
tology Network (USHCN) (Easterling et al., 1996) for
states falling under the north-east region. As men-
tioned earlier, our target variable is yearly frequency
of precipitation extremes over stations within a region.
Extremes were defined as events exceeding a threshold
set at 99 percentile of all precipitation events at a par-
ticular location and we counted the number of such
events in each year.

We used a number of covariates for all regions and
let our algorithm find the covariates that influence the
precipitation extremes frequency. The covariates we
used falls in one of three broad categories - local, re-
gional or climate indices (global) (Gregersen et al.,
in press). Local covariates originate from each sta-
tion and exhibits both spatial and temporal variabil-
ity. Regional variables are spatially averaged local
variables over the entire region under consideration
that exhibits regional dynamics. Climate indices are
global variables that represent large-scale signals in
climate variables. Usually they are principal compo-
nents (although they are called Empirical Orthogonal
Function (EOF) in climate literature) of space-time
anomaly matrix of global climate variables like Sea
Surface Temperature (SST), Sea Level Pressure (SLP)
etc. Anomalies in climate variables are computed by
subtracting the seasonal mean from the daily values.
A list of covariates used of each category is given in
Table 1 in the Appendix. While all of the local and
regional features were derived from the station data
obtained from USHCN, the climate indices were ob-
tained from NOAA’s Climate Prediction Center data
repository (http://www.esrl.noaa.gov/psd/data/clim
ateindices/list/). We could use the covariates between
1950 to 2011 as most of the climate indices are avail-
able only for that period. Also, if more than 50% of
the daily observations out of a year are found to be
missing for any of variables at a specific location, we
simply discarded all variables for that year and for that
specific location. Global climate indices are available
monthly. We averaged monthly indices over a year if
at least 2 monthly values are available. Otherwise, we
discarded the corresponding year. Finally, there were
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Figure 2. Sample results with 6 non-zero coefficients in β and σ2 = 0.1 for a) VB method b) LASSO and c) Copula
method.

5888 data-points from 158 stations located in noth-
east region. We used 33 potential covariates which are
listed in Appendix (See Table 1).

4.2.2. Discussion of Results

We can see that for both North-east (Figure 3) region
of continental US, frequency of precipitation extremes
has statistically significant dependence on Mean An-
nual Precipitation (MAP) and Summer Mean Precip-
itation (SMP). This results may be interpreted in a
number of ways. First of all, MAP explains the spa-
tial variability of the extreme frequencies and one way
to interpret the results is that the spatial variability is
the strongest signal in the frequencies and once that
is explained, there is only little information within
the remaining covariates. A second and more inter-
esting interpretation is that variability of frequencies
of rainfall extremes depend both on the regional sum-
mer maximum temperature (SMTRegmax) anomaly and
global temperature anomaly (GMT). So, we can expect
to see more frequent extreme rainfall events as a re-

sult of regional warming and global warming, at least
for the region under consideration. Also note that, in
NE region, there is some dependence on a few climate
indices (Nino1+2,Nino3,TNA etc.). However, an im-
portant next step is the translation of the statistical
dependencies discovered using our method to causal
insights, which needs rigorous physical interpretation.

5. Conclusion and Future Work

In this paper, we presented a statistically rigorous
framework for finding covariates that influences the
extremes frequencies. We accommodated the Pois-
son process model for describing extremes occurrences
within the Bayesian hierarchical description of sparse
regression and came up with an efficient Variational
Bayes inference technique to estimate the probabil-
ity distribution over the regression parameters. Our
method shows a high level on accuracy on synthetic
dataset and outperforms competing methods by a
large margin. We have also shown the value of using
our method to find the dependence of precipitation ex-
tremes frequency on covariates of different spatial scale

Figure 3. a) Mean and standard deviation of posterior (Gaussian) distributions of coefficients corresponding to each of
the potential covariates for north-east region (only the potentially significant covariates are labeled) and b) Statistically
significant covariates after t-test for the same region
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notwithstanding the fact that these findings are only
recommendations awaiting physical interpretation to
be qualified as novel insights.

The dependence analysis performed in this paper is
mainly exploratory in nature. We plan to extend the
model to perform predictive analysis in future. We
also plan to develop similar sparse model for depen-
dence analysis of extremes intensity which is signifi-
cantly more challenging since it involves distributions
outside of exponential family. Finally, we plan to in-
corporate spatio-temporal autoregressive model within
our probabilistic framework to leverage the spatio-
temporal correlation inherent in climate and other
spatio-temporal datasets.
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Appendix

A. VB Approximation for Bayesian
Sparse Regression

The joint distribution P (N,Z) is given by

p (N,Ψ,β, τ,α,γ) =

n∏
i=1

Pois
(
Ni; e

ψi
)
N
(
ψi;β

Txi, τ
−1
)

×Ga (τ ; c0, d0)×
p∏
j=1

{
N
(
βj ; , 0, τ

−1α−1j
)

×InvGa
(
αj ; 1,

γj
2

)
Ga (γj ; a0, b0)

}
(A.1)

The assumed factorized form of the posterior is given
by:

q(Λ,β, τ,α,γ) = qΛ(Λ)qβ(β)qτ (τ)qα(α)qγ(γ)
(A.2)

Using Jensen’s inequality, it can be shown that the log-
marginal logp(N) has a lower bound which is given by

J =

∫
q(Λ,β, τ,α,γ)log

p (N,Λ,β, τ,α,γ)

q(Λ,β, τ,α,γ)
dΛdβdαdγdτ

(A.3)
Solving for each of the components in (A.2) by maxi-
mizing the lower bound J, we obtain the update equa-
tions provided in section 2

A.1. Moments of the components in the
posterior

(1) Distribution of Ψ: We approximate qψ(ψi) by a
Gaussian whose mean is same as the mode of qψ(ψi)

(i.e. the point ψ̂i that maximizes qψ(ψi)), or equiva-
lently

df(ψi)

dψi

∣∣∣∣
ψi=ψ̂i

= 0

where f(ψi) = e{Ñiψi−
〈τ〉
2 ψ2

i−e
ψi}. This gives ψ̂i =

Ñi/〈τ〉−W(exp(Ñi/〈τ〉))/〈τ〉. Now, making a second

order Taylor expansion of logf(ψi) around ψ̂i and then
exponentiating both sides, we get

f(ψi) ' f(ψ̂i)exp

{
−A

2

(
ψi − ψ̂i

)2}
where A = − d2

dψ2
i
lnf(ψi)

∣∣∣
ψi=ψ̂i

=(∣∣∣〈τ〉+ eψi

∣∣∣
ψi=ψ̂i

)−1
. So, the Gaussian approxima-

tion of qψ(ψi) in (4) is given by qψ(ψi) ≈ N (ψi;mi, σ
2
i )

where mi = Ñi/〈τ〉 − W(exp(Ñi/〈τ〉))/〈τ〉 and

σi = (|〈τ〉+ ez|z=mi)
−1

where W (.) is Lambert’s

W-function.
(2) Distribution of β: The moments are given by
〈β〉 = µ; and 〈β2

j 〉 = Σjj + µ2
j .

(3) Distribution of α: InvGaussian (αj ; gj , hj) denotes
inverse Gaussian distribution with mean gj and shape
parameter hj having the following density function.

InvGaussian (αj ; gj , hj) =

√
hj

2πα3
j

exp

(
−hj (αj − gj)2

2g2jαj

)

with αj > 0 The relevant moments are given by 〈αj〉 =
gj and 〈α−1j 〉 = g−1j + h−1j .
(4) Distribution of γ: Relevant moment 〈γj〉 = aj/bj .
(5) Distribution of τ : The moment is given by 〈τ〉 =
c/d.

B. List of Potential Covariates for
Climate Application

Table 1. Potential covariates used for dependency analysis
of frequecy of rainfall extremes

Local: Mean Annual Minimum Temperature (MATmin), Mean Annual

Maximum Temperature (MATmax), Mean Summer Minimum

Temperature (SMTmin), Mean Summer Maximum Temperature

(SMTmax), Mean Annual Precipitation (MAP),Mean Summer

Precipitation (SMP)

Regional: Regional Mean Annual Minimum Temperature

(MATRegmin), Regional Mean Annual Maximum Temperature

(MATRegmax), Regional Mean Summer Minimum Temperature

(SMTRegmin), Regional Mean Summer Maximum Temperature

(SMTRegmax), Regional Mean Annual Precipitation (MAPReg),

Regional Mean Summer Precipitation (SMPReg)

Climate Indices: North Atlantic Oscillation (NAO), East Atlantic

Pattern (EA), West Pacific Pattern (WP), East Pacific/North Pacific

Pattern (EPNP), Pacific/North American Pattern (PNA), East

Atlantic/West Russia Pattern (EAWR), Scandinavia Pattern (SCA),

Tropical/Northern Hemisphere Pattern (TNH), Polar/Eurasia Pattern

(POL), Pacific Transition Pattern (PT), Nino 1+2, Nino 3, Nino 3.4,

Nino 4, Southern Oscillation Index (SOI), Pacific Decadal Oscillation

(PDO), Northern Pacific Oscillation (NP), Tropical/Northern Atlantic

Index (TNA), Tropical/Southern Atlantic Index (TSA), Western

Hemisphere Warm Pool (WHWP), Global Mean Temperature Anomaly

(GlobalMeanTemp)


