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ABSTRACT

Accurate prediction of thermodynamic properties is essential in drug discovery
and materials science. Molecular dynamics (MD) simulations provide a principled
approach to this task, yet they typically rely on prohibitively long sequential sim-
ulations. Implicit Transfer Operator (ITO) Learning offers a promising approach
to address this limitation by enabling stable simulation with time steps orders of
magnitude larger than MD. However, to train ITOs, we need extensive, unbiased
MD data, limiting the scope of this framework. Here, we introduce Boltzmann
Priors for ITO (BoPITO) to enhance ITO learning in two ways. First, BoPITO
enables more efficient data generation, and second, it embeds inductive biases
for long-term dynamical behavior, simultaneously improving sample efficiency
by one order of magnitude and guaranteeing asymptotically unbiased equilibrium
statistics. Further, we showcase the use of BoPITO in a new tunable sampling pro-
tocol interpolating ITO models trained on off-equilibrium simulation data and an
unbiased equilibrium distribution to solve inverse problems in molecular science.

1 INTRODUCTION

Efficient molecular dynamics (MD) simulation on long time-scales is critical to a large number of
scientific and engineering applications. Stable simulations rely on solvers taking tiny integration
time-steps, making the simulation of most phenomena impractical with current methods. Since
these simulations are stochastic, a simulation step corresponds to drawing a sample from a tran-
sition probability density p(xt+τ | xt), where τ is a tiny time-step. Recently, deep generative
models have emerged as a promising strategy to potentially speed up these simulations by learning
transition probability densities where τ is much larger (Schreiner et al., 2023; Klein et al., 2023;
Hsu et al., 2024; Fu et al., 2023) and thereby allow efficient sampling at long time-scales. Implicit
Transfer Operator (ITO) learning (Schreiner et al., 2023) learns such surrogate models at multiple
time-resolutions. While ITO has shown promise in accelerating simulations, it relies on extensive
unbiased simulation data which may not always be available. In Markov state models, this limita-
tion can be mitigated by integrating off-equilibrium simulations and enhanced sampling simulations
(Trendelkamp-Schroer et al., 2015; Rosta & Hummer, 2014; Wu et al., 2014; 2016). However, such
estimators are so far unavailable for deep generative surrogates of the transition density.
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Figure 1: Boltzmann Priors for Implicit Transfer Operators (BoPITO) leverage pre-trained
Boltzmann Generators to enable data-efficient training of surrogate models of the transition den-
sity after N simulation steps. BoPITO is implemented using Score-Based Diffusion Models. The
score of the model, sθ, separates the contributions from the first eigenfunction of the transfer oper-
ator (equilibrium density), seq, from the rest, sdyn. BoPITO embeds inductive biases for long-term
dynamical behavior and enables interpolation between off-equilibrium and equilibrium models.
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Here, we introduce Boltzmann Priors for Implicit Transfer Operator (BoPITO) learning (Figure 1).
BoPITO leverages pre-trained Boltzmann Generators (BG) (Noé et al., 2019; Viguera Diez et al.,
2024; Klein & Noé, 2024; Köhler et al., 2023; Köhler et al., 2020; Midgley et al., 2024; 2023) as
priors to enable data-efficient training of ITO models, leading to one order of magnitude reduction
in the simulation data needed for training. As the BG encodes the invariant measure or Boltzmann
distribution of the dynamics encoded by the transition density, BoPITO, by construction, guarantees
asymptotically unbiased equilibrium statistics. In this way, BoPITO can combine off-equilibrium
data and biased data encoded into a BG prior to train ITO models that predict MD across multiple
time-scales. Using BoPITO we introduce a new sampling strategy to recover approximate dynamics
from biased off-equilibrium data, a BG prior, and unbiased time-correlation data, providing a new
method for inverse problems for molecular systems.

Our main contributions are

1. Boltzmann Priors for Implicit Transfer Operator Learning (BoPITO): We provide a
principled way to leverage Boltzmann Generators as priors for Implicit Transfer Opera-
tor Learning, boosting sample efficiency, ensuring the generation of uncorrelated data and
allowing asymptotically unbiased equilibrium statistics for τ → ∞.

2. BoPITO interpolators: A tunable sampling protocol facilitating interpolation of BoPITO
models trained on off-equilibrium simulation data to an unbiased equilibrium distribution.

3. We show that BoPITO interpolators can recover approximate dynamics from models
trained on biased simulations. We frame the optimization of interpolation parameters as
an inverse problem and select the interpolated ensemble that is most consistent with
unbiased observables.

2 BACKGROUND AND PRELIMINARIES

2.1 MOLECULAR DYNAMICS AND OBSERVABLES

Molecular dynamics (MD) is a widely used simulation method in chemistry, physics, and biology.
It combines a mathematical model of the dynamics — e.g. Langevin dynamics (Langevin, 1908) —
with a potential energy model, U(x) : Ω → R, of a system of interest, in turn providing detailed
mechanistic insights of molecular systems, through the time evolution of particles in configuration
space, x ∈ Ω. Practically, MD is solved by numerical integration, and time is discretized, with
step τ . Consequently, we can understand MD as a Markov process with a Normal transition density
p(xt+τ | xt), whose associated Markov operator has the Boltzmann distribution,

µ(x) = Z−1 exp(−βU(x)), with Z =

∫
dx exp(−βU(x)), (1)

as its invariant measure or stationary distribution, where β is the inverse temperature.

One important application of MD is to compute expectations or observables (Olsson, 2022):

1. Stationary observables:
Oa = Eµ [a(x)] . (2)

2. Dynamic observables / Time correlation functions:
Oa(t),b(t+Nτ) = Ext∼µ

[
Ext+Nτ∼pτ (xt+Nτ |xt) [a(xt) · b(xt+Nτ )]

]
, (3)

where pτ (xt+Nτ |xt) is the conditional probability density after N simulation steps with time-step
τ . The maps a and b : Ω → RL serve as observable functions or ‘forward models’ characterizing
microscopic observation processes, e.g. indicating whether a drug is bound or not, or an interatomic
distance, leading to observables such binding affinities and off-rates of a drug to a target protein.

Unfortunately, stable MD simulations rely on using time discretizations, τ , on the order of 10−15 s,
whereas properties such as protein folding or ligand unbinding occur on much longer time scales,
∼ 10−3 − 10−1 s. Due to the sequential nature of these simulations, an impractical number of
simulation steps are necessary to predict these properties in an unbiased fashion. As a result, most
MD data will be ‘off-equilibrium’, e.g. trajectories exploring one or a few of the modes of the
Boltzmann distribution µ(x). See Appendix A.1 for more precise definitions of configuration space,
off-equilibrium, unbiased and biased MD.
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2.2 BOLTZMANN GENERATORS

Boltzmann Generators (BG) (Noé et al., 2019) are a generative machine learning approach to draw
samples i.i.d. from the Boltzmann distribution, µ(x), of physical many-body systems (eq. 1). BGs
learn a diffeomorphic map, Fθ : RN → RN , from a latent space, equipped with a simple base
density p(z), to configurational space of a physical system, such that the push-forward density
p̂(x) = Fθ#p(z) closely approximates the Boltzmann distribution (eq. 1). In practice, Fθ is im-
plemented using an invertible neural network architecture with tractable Jacobian determinants to
enable efficient sampling and exact sample likelihood computation (Chen et al., 2018; Papamakarios
et al., 2021). BGs are trained either with approximately equilibrated simulation data or with biased
simulations, from i.e. enhanced sampling, by employing appropriate reweighting (Ferrenberg &
Swendsen, 1989; Shirts & Chodera, 2008). Unbiased samples can then be generated by importance
re-sampling (Nicoli et al., 2020). Similarly, unbiased expectations can be computed using the im-
portance weights w(x) = e−βU(x)/p̂(x). As such, BGs are surrogates of the target Boltzmann
distribution, but do not model time-correlation statistics.

2.3 TRANSFER OPERATORS

Transfer operators (Ruelle, 1978; Schütte et al., 2009) provide a framework to describe the evolution
of probability densities over time. Let p denote an initial probability density function on Ω, and ρ
its µ-weighted version, p = µρ. The Markov operator, TΩ, is defined using a transition density
p(xt+τ |xt),

[TΩ(τ) ◦ ρ](xt+τ ) ≡
1

µ(xt+τ )

∫
Ω

µ(xt)ρ(xt)p(xt+τ |xt) dxt. (4)

This operator describes the µ-weighted evolution of absolutely convergent probability density func-
tions on Ω by a discrete-time increment τ given by the dynamics encoded in a transition density
p(xt+τ |xt). In the context of molecular dynamics, TΩ is a µ-weighted equivalent to the Markov
operator discussed above (sec. 2.1). The spectral form of the transfer operator is expressed as

[TΩ(τ) ◦ ρ](xt+τ ) =

∞∑
i=1

λi(τ)⟨ρ|ϕi⟩ ψi(xt+τ ), (5)

where λi(τ) are the eigenvalues, ψi and ϕi are the corresponding right and left eigenfunctions,
respectively, and ⟨f |g⟩ =

∫
Ω
f(x)g(x) dx. The eigenvalues λi(τ) depend on the parameter τ and

are related to the characteristic relaxation rates κi by |λi(τ)| = exp(−τκi). The right and left
eigenfunctions are related by the stationary density, such that ϕi(x) = µ(x)ψi(x). In reversible
dynamics, all eigenvalues λi are real and lie within the interval −1 < λi ≤ 1. Notably, there is one
eigenvalue λ1 = 1, with corresponding eigenfunctions ψ1(x) = 1 and ϕ1(x) = µ(x).

2.4 DIFFUSION MODELS

Diffusion models (DMs) (Ho et al., 2020; Song et al., 2020) are a popular generative modeling
framework that approximates data densities p(x0) by learning to invert a noising process (‘forward
diffusion’). The forward diffusion process is pre-specified and incrementally transforms the data
distribution into a simple prior distribution, p(xT ), through simulation of a time-inhomogenous
Markov process represented by the SDE,

dxtdiff = f(xtdiff , tdiff) dtdiff + g(tdiff) dW, (6)

where (0 < tdiff < T ) is the diffusion time, f and g are chosen functions, and dW is a Wiener
process. To generate samples from the data distribution, p(x0), we can sample from p(xT ) and solve
the backward diffusion process (‘denoising process’) (Anderson, 1982),

dxtdiff =
[
f(xtdiff , tdiff)− g2(tdiff)∇xtdiff log p(x

tdiff |tdiff)
]
dtdiff + g(tdiff) dW. (7)

This backward process is approximated using a deep neural network ∇xtdiff log pθ(x
tdiff |tdiff) =

sθ(x
tdiff , tdiff). The learned backward SDE can be recast into a probability flow ODE (Maoutsa

et al., 2020; Song et al., 2021), which in turn can be interpreted as a continuous normalizing flow
(Chen et al., 2018) which facilitates efficient sampling and enables sample likelihood evaluation.
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2.5 IMPLICIT TRANSFER OPERATOR LEARNING

Implicit Transfer Operator (ITO) Learning (Schreiner et al., 2023) is a framework for learning sur-
rogate models of the transition density, p(xNτ |x0), from MD data, where N is an arbitrarily large
integer. ITO leverages that the transfer operator framework allows us to express the transition den-
sity as

p(xt+Nτ |xt) =

∞∑
i=1

λNi (τ)ψi(xt)ϕi(xt+Nτ ), (8)

where ψi and ϕi are independent of τ and N . See Appendix A.2 for a complete derivation.

This decomposition inspired a strategy to learn a conditional generative model xt+Nτ ∼
pθ(xt+Nτ |xt, N) by sampling tuples (xti ,xti+Niτ , Ni) and training a generative model to mimic
the empirical transition density at multiple time-horizons, Nτ . Here, we approximate ITO models
with a conditional denoising diffusion probabilistic model (cDDPM) of the form

p(x0
t+Nτ |xt, N) ≡

∫
p(x0:T

t+Nτ |xt, N) dx1:T , (9)

where x1:T are latent variables of the same dimension as our output, and follow a joint density
describing the backward diffusion process, eq. 7, and xT ∼ N (0, I). We denote diffusion time
in Diffusion Models using superscripts, while physical time is represented using subscripts. The
conditional sample likelihood is given by

ℓ(I;θ) ≡
∏
i∈I

pθ(x
0
ti+Niτ | xti , Ni) (10)

where I is a list of generated indices i specifying a time ti and a time-lag (τ ) integer multiple Ni,
associating two time-points in a MD trajectory of length Mτ , x = {x0,xτ , . . . ,x(M−1)τ}.

Training is performed by optimizing an approximation of the variational bound of the log-likelihood
(Ho et al., 2020),

L(θ) = Ei∼I,ϵ∼N (0,I),tdiff∼U(0,T )

[
∥ϵ− ϵ̂θ(x̃

tdiff
ti+Niτ

,xti , Ni, tdiff)∥2
]
, (11)

where x̃tdiff
t =

√
ᾱtdiffxt +

√
1− ᾱtdiff ϵ, with ᾱtdiff =

∏tdiff
j (1 − βj) and βj is the variance of

the forward diffusion process at diffusion time, j. ϵ̂θ(·) is one of the two architectures presented by
Schreiner et al. (2023). Following Arts et al. (2023) we express the score as

sθ(x
tdiff
t+Nτ ,xt, Ni, tdiff) = −

ϵ̂θ(x̃
tdiff
ti+Niτ

,xti , Ni, tdiff)√
1− ᾱtdiff

. (12)

See Appendix A.3 for more details and pseudo-code on training and sampling algorithms.

3 BOLTZMANN PRIORS FOR IMPLICIT TRANSFER OPERATOR LEARNING

ITO training requires extensive, unbiased MD simulations to capture the statistical distribution of
rare events. This data-intensive requirement can hinder ITO’s practical implementation. Further-
more, models trained on off-equilibrium simulations, which may exhibit non-representative statis-
tics, can lead to inaccurate predictions, compromising their utility in downstream applications. In
practice, however, both unbiased off-equilibrium simulations and information about the equilibrium
distribution from potentially biased simulations (Hénin et al., 2022) can be cheaply generated, and
both encode information about the dynamical behavior of molecular systems. We introduce Boltz-
mann Priors for Implicit Transfer Operator (BoPITO), as a learning paradigm for ITO models that
leverage available information about the equilibrium distribution.

BoPITO uses pre-trained models of the equilibrium distribution to improve ITO learning in four
ways. First, it helps ensure broad sampling of Ω proportional to the equilibrium distribution for
subsequent MD simulations yielding information about the transition density p(xτ | x0) from across
Ω. Second, we use it to fix the stationary part of the learned transition density, boosting the sample
efficiency when learning models of molecular dynamics. Third, it imposes an inductive bias of
long-time dynamical behavior allowing for recovery of unbiased Boltzmann distribution for long-
time horizons. Fourth, using BoPITO, we introduce a novel tunable sampling protocol interpolating
ITO models trained on off-equilibrium simulation data and an unbiased equilibrium distribution.
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3.1 EFFICIENT DATA GENERATION

Training data for ITO models consists of several independent unbiased MD simulations. Following
the adaptive sampling strategy (Bowman et al., 2010; Doerr & De Fabritiis, 2014; Viguera Diez et al.,
2024; Betz & Dror, 2019), used extensively in the molecular dynamics simulation community, we
use a pre-trained BG to generate initial conditions to simulations ensuring broad sampling across Ω
proportional to the Boltzmann distribution. As long as these trajectories reach a ‘local equilibrium’
we can in principle recover an unbiased model of the molecular dynamics (Nüske et al., 2017), albeit
without relying on running one or a few very long simulations to reach the global equilibrium.

3.2 LONG-TERM DYNAMICS INDUCTIVE BIAS FOR ITO

One important application of ITO is to allow for one-step sampling of long-time-scale dynamics.
However, real datasets often contain a limited number of effective samples for long time-scales,
leading to potential biases in models. To mitigate this issue, we propose separating the equilibrium
contribution from the time-dependent components:

p(xt+Nτ |xt) = µ(xt+Nτ ) +

∞∑
i=2

λNi (τ)ϕi(xt+Nτ )ψi(xt), (13)

where we have used that λ1 = 1 and its corresponding eigenfunctions are ϕ1 = µ and ψ1 = 1.
Additionally, we introduce a decay in the time-dependent component, creating an inductive bias that
asymptotically samples from an available equilibrium model for long-term dynamics. Using the
spectral decomposition of the transition density (eq. 13), we choose the score model as

s(xtdiff
t+Nτ ,xt, N, tdiff,θ) = seq(x

tdiff
t+Nτ , tdiff) + λ̂Nsdyn(x

tdiff
t+Nτ ,xt, N, tdiff,θ), (14)

where seq(xt
diff, tdiff) is the score of a pre-trained surrogate of the equilibrium distribution model,

0 < λ̂ < 1 is a hyper-parameter and sdyn(xtdiff
t+Nτ ,xt, N, tdiff,θ) accounts for the time-dependent

components. As N → ∞, seq dominates and the model samples from the equilibrium model, see
Appendix A.4 for an example. By interpreting the score field as a velocity field, we can reformu-
late the DM as a continuous normalizing flow which we can use for Metropolized sampling of the
unbiased equilibrium distribution (Klein et al., 2023). The proposed factorization is principled, cor-
responding to a separation of the score of the transition density into a stationary and dynamic part,
where the first part is considered known, see Appendix A.5 for details. In practice, we first train seq
(if not provided) using equilibrium data. Then we train sdyn with unbiased, possibly off-equilibrium,
MD data while keeping seq fixed. We discuss alternative formulations of the scooore in Appendix
A.6.

3.3 BOPITO INTERPOLATORS

A significant issue in MD simulations is the unbiased sampling of transitions over high free-energy
barriers, e.g. channels in µ(x) with very little probability mass, typically coinciding with mixing
on Ω. This difficulty leads to an inability to predict time-correlation statistics for large Nτ . With
BoPITO we can define an interpolation between models trained on off-equilibrium simulations and
the equilibrium distribution. In this manner, we can approximate dynamics not seen explicitly in
the data. For a time-dependent model, sdyn, trained on off-equilibrium simulations with maximum
training lag, Nmax, we define a BoPITO interpolator as a model with the following score function:

s(xtdiff ,xt, Nint, tdiff) = seq(x
tdiff , tdiff) + λ̂Nintsdyn(x

tdiff ,xt, Nmax, tdiff), (15)

with Nint ≥ Nmax. This defines an interpolator because Nint = Nmax generates samples from the
model distribution with maximum lag andNint → ∞ generates samples from the equilibrium model.

Inspired by methods in molecular biophysics (Kolloff & Olsson, 2023; Olsson et al., 2017; Bottaro
& Lindorff-Larsen, 2018; Salvi et al., 2016), we propose to choose the interpolation parameter, Nint,
as the most consistent with an unbiased dynamical observable, such as experimental data. That is,
for a lag N > Nmax and an unbiased dynamic observable O∗

N , we choose

Nint,N = argmin
Nint

|O∗
N −ONint |, (16)

where ONint is the dynamic observable estimated with samples from the BoPITO interpolator. This
way BoPITO can integrate off-equilibrium and equilibrium MD with experimental data. In practice,

5
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we find the interpolator to generate some high-energy states. However, we can alleviate the high-
energy structures by alternating long-lag interpolation steps with short-lag non-interpolation steps
for local relaxation. We discuss how BoPITO interpolators alleviate out-of-distribution issues in
Appendix A.7.

4 RESULTS

(a)

(b)

Figure 2: Absolute difference in corre-
lation with respect to long unbiased MD
simulations (lower is better) of mod-
els trained on trajectories initialized on
samples from a Boltzmann Generator
(BG) and a single structure (crystal, x =
0.75) for the Prinz Potential under direct
sampling. The former presents supe-
rior performance for different lag times
(number of trajectories = 50) (a) and
number of trajectories (b). The shaded
areas correspond to 95 % confidence in-
terval.

For detailed parameters of the experiments below, we re-
fer to Appendix A.8.

4.1 SYSTEMS

Prinz potential is a 1D potential commonly used for
benchmarking MD sampling methods (Prinz et al., 2011).
We set the observable functions, a and b, eq. 3, to be the
identity function for computing dynamic observables. For
details, see Appendix A.9.

Alanine Dipeptide is a small peptide with 22 atoms. We
use publicly available data from Dibak et al. (2022), con-
taining 1µs simulation time split in 20 trajectories. Simu-
lation is performed in an implicit solvent with 2 fs integra-
tion time-step, and data is saved every 1 ps. We choose,

a(x) = b(x) =

[
sinϕ(x)
cosϕ(x)

]
, (17)

where ϕ(x) is a torsion angle involved in the slowest tran-
sition in the system. For details, see Appendix A.10.

Chignolin (cln025) is a fast folding protein with 10
residues, 166 atoms and 93 heavy atoms. We use molecu-
lar dynamics data previously reported by Lindorff-Larsen
et al. (2011). The data is proprietary but available upon
request for research purposes. The simulations were per-
formed in explicit solvent with a 2.5 fs time-step and
the positions was saved at 200 ps intervals. We extract
all heavy atoms positions from the simulations and train
models on this data. We use the fraction of native contacts
Lindorff-Larsen et al. (2011) to define a dynamic observ-
able with,

a(x) = b(x) =

∑Nres
i=1

∑Ni

j>i
1

1+e
10(dij(x)−d∗

ij
−1)∑Nres

i=1Ni

, (18)

where the first sum in the numerator iterates over all Nres
residues in the protein, while the second sum considers
the Ni native contacts of residue i separated by at least
seven residues in the primary sequence. Here, dij(x) and
d∗ij represent the Cα − Cα distances of residues i and j in the structure x and the native struc-
ture, respectively. This observable quantifies the protein’s foldedness, with values ranging from 0
(unfolded) to 1 (folded). For a detailed explanation, refer to Appendix A.11.

4.2 BOLTZMANN PRIORS FOR TRAINING DATA GENERATION

Modeling the transition density over Ω requires observing transitions across the state space. In the
usual setting, only one or a few initial conditions are available when data collection starts. Here,
we explore the case where a BG is available before data collection and compare it against the base-
line, where only one initial condition is known. We use a BG trained on equilibrium data of the

6
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Prinz potential to sample the initial conditions of our training trajectories. We also generate trajec-
tories using a single starting point (crystal, x = 0.75) and compare their performance with long
simulations (Figure 2). We compare the two different data generation strategies using the metric,
|∆correlation|, which measures the absolute difference of the time-correlation function (dynamic
observable) compared to the MD ground truth (Appendix A.12). We find that the performance of
models using Boltzmann priors for data generation is superior for different lag times (Figure 2a)
and number of trajectories (Figure 2b). The gap between BG and the crystal baseline increases with
lag-time, and as expected decreases with the number of generated trajectories.

4.3 BOPITO EFFICIENTLY SAMPLES LONG-TERM DYNAMICS IN A LOW-DATA CONTEXT

Fixing the equilibrium contribution to the score field effectively reduces the
number of parameters that need to be estimated. To test whether this prior
information manifests as an improved sample efficiency we compared ITO
and BoPITO models against each other with varying sizes of training data.
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ITO BoPITO

Figure 3: Absolute difference in correlation with respect to long
unbiased MD simulations (lower is better, one-step sampling) of
ITO (left) and BoPITO (right) split into short, medium, and long
time-scales against the number of training trajectories for the
Prinz potential (top) and Alanine Dipeptide (middle) and Chigno-
lin (bottom). The shaded areas correspond to a 95 % confidence
interval.

We find that the BoPITO mod-
els achieve a higher accuracy
for long-term dynamics com-
pared to ITO models when data
is scarce, as the equilibrium dis-
tribution is known a priori and
does not need to be learned from
simulation data (Figure 3). The
inductive bias in BoPITO mod-
els enables them to learn long-
term dynamics, even in scenar-
ios where ITO models fail. For
the Prinz Potential, we find that
while ITO suffers from poor per-
formance modeling long-term
dynamics when data is scarce,
BoPITO models accurately cap-
ture long-term dynamics with-
out worsening the performance
on short and medium timescales.
The results for Alanine Dipep-
tide and Chignolin show favor-
able scaling with increasing sys-
tem size: we find that an order of
magnitude more data is needed
to train an ITO to the same accu-
racy as a BoPITO model trained
on the same data. Moreover, we
show in Appendix A.13 that the
energies of configurations sam-
pled from our prior Boltzmann
Generator used in our experi-
ments match closely the ener-
gies of MD samples.

4.4 INTERPOLATING BETWEEN MODELS TRAINED ON OFF-EQUILIBRIUM DATA AND THE
BOLTZMANN DISTRIBUTION WITH EXPERIMENTAL DATA

In practical settings, our MD data will be off-equilibrium, e.g. having sampled only one
or a few of the relevant modes in the Boltzmann distribution µ(x) in a given trajec-
tory. Consequently, unless extensive data across the domain Ω can be collected, models
based on such data will be biased. An alternative to collecting more simulation data is

7
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to use a multi-modal strategy where experimental data is used to fill the gaps left by sim-
ulation data and bridge to long time-scale dynamics (Salvi et al., 2016; Kolloff & Olsson,
2023). In this section we explore the potential of BoPITO interpolators to integrate dy-
namic observables with off-equilibrium simulation data to recover unbiased long-term dynamics.

1000 1300 2200

Figure 4: Fitting an interpolator of a biased BoPITO model.
Both the ITO and BoPITO models are trained on biased MD
simulations of Alanine Dipeptide. We fit a BoPITO interpo-
lator selecting the most consistent ensemble with the unbi-
ased correlation function specified in eq. 16. Numbers with
blue arrows specify the interpolation parameter, Nint.

We showcase BoPITO interpolators
on Alanine Dipeptide. By remov-
ing the transitions between the modes
of the Boltzmann distribution corre-
sponding to the slowest process in
the system, e.g. ϕ crossing 0 or 2,
we generate a biased simulation data,
resembling a realistic scenario. We
then train ITO and BoPITO models
using these biased trajectories. For
lags > 100, we sample the BoPITO
interpolator estimated by matching to
an unbiased dynamic observable de-
fined by eq. 25, allowing us to over-
come a systematic error in the cor-
relation function observed in the bi-
ased MD data and for an ITO model
trained on these data (Figure 4).

Beyond reproducing the provided dy-
namic observable, the interpolator
also demonstrates a remarkable abil-
ity to capture the underlying micro-
scopic dynamics (Figure 5). Even
with excellent agreement, the generated ensembles only slightly overestimates density in the transi-
tion state region. However, this effect could easily be alleviated by annealing a short MD simulation
to the interpolation as was recently shown (Viguera Diez et al., 2024).

5 RELATED WORK

Sampling the Boltzmann distribution Apart from Boltzmann Generator-based approaches, there
are a number of traditional ways to draw statistical samples from the Boltzmann distribution of
molecular systems. Prominent examples include, molecular dynamics or Markov Chain Monte
Carlo simulations coupled with enhanced sampling strategies (Hénin et al., 2022; Kamenik et al.,
2022), including replica-based approaches (Earl & Deem, 2005; Sidler et al., 2016; Pasarkar et al.,
2023), conformational flooding (Grubmüller, 1995), meta-dynamics (Laio & Parrinello, 2002), and
umbrella sampling (Torrie & Valleau, 1977), in particular when paired up with machine-learned col-
lective variables (Chen & Ferguson, 2018; Wang et al., 2019b; Herringer et al., 2023; M. Sultan &
Pande, 2017). The success of these approaches relies on choosing the right mechanism to enhance
sampling across high free energy barriers, or low probability regions, for any given case (Carter
et al., 1989). Finding such mechanisms typically involves substantial manual engineering of col-
lective variables and other hyper-parameters. Finally, there are transition path sampling approaches
(Dellago et al., 1998; Bolhuis et al., 2002), which are particularly powerful when combined with
reinforcement learning (Jung et al., 2023) or deep generative priors (Plainer et al., 2023).

Latent space simulators and Coarse graining Classical (fine-grained) molecular dynamics sim-
ulation can be coarse-grained beyond the Born-Oppenheimer approximation, such that atomic nuclei
are merged together into ‘beads.’(Noid, 2023) This strategy, in principle enables faster simulations
due to the smaller number of particles and the acceleration of kinetics caused by the coarse-graining
(CG) operation (Nüske et al., 2019). CG models can be estimated to closely approximate the ther-
modynamics of the corresponding fine-grained system through the optimization of two equivalent
variational bounds (Noid et al., 2008; Lyubartsev & Laaksonen, 1995; Ercolessi & Adams, 1994). A
relaxation of this bound was recently proposed to also allow for probabilistic reconstruction of fine-
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Figure 5: BoPITO can incorporate unbiased dynamic observables to correct a model trained on
biased data. Rows of increasing time-lag (from top to bottom). Contour plots correspond to a
BoPITO interpolator. The first column shows conditional transition densities projected onto the
torsion angles ϕ and ψ (inset). The black cross indicates the initial condition. The second and third
columns show marginal distributions of ϕ and ψ, respectively. MSM stands for a Markov State
Model of the unbiased MD data.

grained configurations (Chennakesavalu et al., 2023). These bounds have been used extensively to
build CG force-field models (Husic et al., 2020; Wang et al., 2019a; Majewski et al., 2023; Charron
et al., 2023) including implicit solvation models (Chen et al., 2021; Katzberger & Riniker, 2024),
using deep neural networks due to their ability to capture multibody terms (Wang et al., 2021) to
ultimately accelerate the prediction of equilibrium properties of molecular systems. Similarly, the
development of ‘latent space simulators’ where a learned, typically low-dimensional, latent space
equipped either with a propagator (Sidky et al., 2020; Chennakesavalu et al., 2023; Wang et al.,
2024), or not (Wang & Gómez-Bombarelli, 2019), is learned to enable efficient simulation. These
approaches, in general aim to accelerate molecular simulations akin to BoPITO, yet due to the CG
operation, the molecular dynamics (kinetics) will be accelerated, and detailed knowledge of the
unbiased dynamics are needed to correct this (Nüske et al., 2019; Crommelin & Vanden-Eijnden,
2011). Concurrent work, presents MDGen where conformational states are tokenized and in turn
used to generate multiple frames of a MD trajectory jointly (Jing et al., 2024).

Transfer Operator surrogates Analysis of MD data often involves building transfer operator
surrogates such as Markov state models (MSM) (Schütte et al., 1998; Prinz et al., 2011; Swope
et al., 2004; Husic & Pande, 2018), time-lagged independent components analysis (Molgedey &
Schuster, 1994; Ziehe & Müller, 1998; Pérez-Hernández et al., 2013), Markov field models or dy-
namic graphical models, (Olsson & Noé, 2019; Mardt et al., 2022; Hempel et al., 2022), VAMPnets

9
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(Mardt et al., 2018; Wu & Noé, 2019), or observable operator models (Wu et al., 2015). Markov
state models are time-space discrete approximations of the transfer operator and Deep Generative
MSM (Wu et al., 2019) and VAMPnets (Mardt et al., 2018) learn the space discretization through
deep neural networks. Dynamic graphical models or Markov field models (Hempel et al., 2022)
represent a time-space discrete approximation of the transfer operator injecting a (conditional) inde-
pendence assumption of molecular subsystems, when modeling the transition probability, leading to
better scaling for systems with poor time-scale separation (Olsson & Noé, 2019). Apart from ITO
(Schreiner et al., 2023) several other deep generative approaches for modeling the transition den-
sity of molecular dynamics have recently proposed. Timewarp where a normalizing flow is used to
encode the transition density (Klein et al., 2023) with limited transferability to enable metropolized
sampling of unbiased equilibrium distributions (Hastings, 1970). Score dynamics use a DDPM to
model the displacements of an initial configuration towards a time-lagged one, achieving picosecond
time-steps simulation and limited transferability (Hsu et al., 2024). However, unlike in the context
of MSMs (Trendelkamp-Schroer et al., 2015; Rosta & Hummer, 2014; Wu et al., 2014; 2016), there
are no deep generative transition density surrogates available leveraging available information about
the equilibrium distribution — BoPITO is one such method.

6 LIMITATIONS AND FUTURE WORK

Choice of hyper-parameter λ̂ The hyper-parameter λ̂, defines a global relaxation or mixing time-
scale of the dynamics after which the model is guaranteed to sample equilibrium. In Appendix A.14
we describe a protocol to determine a bound for this parameter. However, developing a similar
protocol for a transferable BoPITO model would likely require modifications to accommodate the
diversity of global relaxation time-scales across different systems.

No Chapman-Kolmogorov Guarantee When training on biased or off-equilibrium data where
we rely on establishing ergodicity through interpolation we cannot guarantee self-consistency of the
dynamics in the Chapman-Kolmogorov sense.

Surrogate model BoPITO inherits the current limitations of ITO, such as generalization over
chemical space and thermodynamic variables, and scaling. Furthermore, current models cannot
guarantee unbiased sampling dynamics for non-equilibrium ensembles, which would require closed-
form expressions for the target path probabilities.

7 CONCLUSION

We introduce Boltzmann Priors for Implicit transfer Operator Learning (BoPITO), a framework to
enhance ITO learning in three ways. First, a broad sampling of configuration space is used to ini-
tialize short off-equilibrium MD simulations. Second, we parameterize the transition density as an
interpolation towards a pre-trained Boltzmann Generator, improving sample efficiency by an order
of magnitude. BoPITO is a principled approach to embedding prior knowledge of the stationary dis-
tribution of Markovian dynamics as an inductive bias for long-term dynamical behavior. Third, our
approach enables interpolation between models trained on off-equilibrium data and the equilibrium
distribution, and we can recover accurate models of unseen dynamics when informed by unbiased
observables. Consequently, BoPITO is the first method to allow for the integration of multiple
sources of information into the generation of deep generative surrogates of molecular dynamics.

10
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Noé. Machine learning implicit solvation for molecular dynamics. The Journal of Chemical
Physics, 155(8):084101, August 2021. ISSN 1089-7690. doi: 10.1063/5.0059915. URL http:
//dx.doi.org/10.1063/5.0059915.

Shriram Chennakesavalu, David J. Toomer, and Grant M. Rotskoff. Ensuring thermodynamic
consistency with invertible coarse-graining. The Journal of Chemical Physics, 158(12), March
2023. ISSN 1089-7690. doi: 10.1063/5.0141888. URL http://dx.doi.org/10.1063/
5.0141888.

Daan Crommelin and Eric Vanden-Eijnden. Diffusion estimation from multiscale data by operator
eigenpairs. Multiscale Modeling &amp; Simulation, 9(4):1588–1623, October 2011. ISSN 1540-
3467. doi: 10.1137/100795917. URL http://dx.doi.org/10.1137/100795917.

11

http://dx.doi.org/10.1016/0304-4149(82)90051-5
http://dx.doi.org/10.1021/acs.jctc.3c00702
http://dx.doi.org/10.1021/acs.jctc.8b00913
http://dx.doi.org/10.1021/acs.jctc.8b00913
http://dx.doi.org/10.1146/annurev.physchem.53.082301.113146
http://dx.doi.org/10.1146/annurev.physchem.53.082301.113146
http://dx.doi.org/10.1126/science.aat4010
http://dx.doi.org/10.1021/ct900620b
http://dx.doi.org/10.1021/ct900620b
http://dx.doi.org/10.1016/S0009-2614(89)87314-2
http://dx.doi.org/10.1016/S0009-2614(89)87314-2
http://dx.doi.org/10.1002/jcc.25520
http://dx.doi.org/10.1063/5.0059915
http://dx.doi.org/10.1063/5.0059915
http://dx.doi.org/10.1063/5.0141888
http://dx.doi.org/10.1063/5.0141888
http://dx.doi.org/10.1137/100795917


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Christoph Dellago, Peter G. Bolhuis, and David Chandler. Efficient transition path sampling: Ap-
plication to lennard-jones cluster rearrangements. The Journal of Chemical Physics, 108(22):
9236–9245, June 1998. ISSN 1089-7690. doi: 10.1063/1.476378. URL http://dx.doi.
org/10.1063/1.476378.
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Jérôme Hénin, Tony Lelièvre, Michael R Shirts, Omar Valsson, and Lucie Delemotte. Enhanced
sampling methods for molecular dynamics simulations [article v1.0]. Living Journal of Com-
putational Molecular Science, 4(1), 2022. doi: 10.33011/livecoms.4.1.1583. URL https:
//doi.org/10.33011/livecoms.4.1.1583.

Nicholas S. M. Herringer, Siva Dasetty, Diya Gandhi, Junhee Lee, and Andrew L. Ferguson.
Permutationally invariant networks for enhanced sampling (pines): Discovery of multimolec-
ular and solvent-inclusive collective variables. Journal of Chemical Theory and Computa-
tion, 20(1):178–198, December 2023. ISSN 1549-9626. doi: 10.1021/acs.jctc.3c00923. URL
http://dx.doi.org/10.1021/acs.jctc.3c00923.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

Moritz Hoffmann, Martin Scherer, Tim Hempel, Andreas Mardt, Brian de Silva, Brooke E Husic,
Stefan Klus, Hao Wu, Nathan Kutz, Steven L Brunton, and Frank Noé. Deeptime: a python library
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A APPENDIX

A.1 DEFINITIONS

• Configuration space: Mathematical space in which all possible states or positions of a
physical system are represented. For example, in a classical MD simulation, the positions
of all the atoms in the simulation.

• Unbiased simulations: Simulations performed with standard MD, i.e. Langevin Dynam-
ics. They are unbiased because they generate samples from the underlying transition den-
sity. Particularly, for asymptotically large simulation times, unbiased simulations sample
the Boltzmann distribution µ(x). However, because of energy barriers in the potential
energy landscape, unbiased simulations may not explore some modes of the Boltzmann
distribution if the simulation time is not long enough. Therefore, generating samples with
unbiased MD often leads to off-equilibrium data.

• Off-equilibrium data: Simulation trajectories whose underlying statistics do not represent
well those of the equilibrium distribution. One example is lack of ergodicity: when the
simulation fails to explore some modes in the Boltzmann distribution. Even if having
explored the full state space, it is possible to have off-equilibrium trajectories because of
rare events, which require to be sampled “many” times to accurately represent equilibrium
statistics.

• Biased simulation: Simulations performed with modified versions of naive MD that speed
up the exploration of state space. These methods are a subset of enhanced sampling and
include meta-dynamics (Laio & Parrinello, 2002), replica exchange (Earl & Deem, 2005)
and others (Sidler et al., 2016; Pasarkar et al., 2023). Data generated with enhanced sam-
pling do not resemble the underlying transition density, but, often, can be re-weighted to
represent the equilibrium distribution.

A.2 EIGEN DECOMPOSITION OF THE TRANSFER OPERATOR AND TRANSITION DENSITY

The two-fold composition of the transfer operator, eq. 5, acting on an initial µ-weighted density, ρ,
is

[T 2
Ω(τ) ◦ ρ](xt+2τ ) =

∞∑
i=1

λi(τ)

〈 ∞∑
j=1

λj(τ)⟨ρ|ϕj⟩ ψj |ϕi

〉
ψi(xt+2τ )

=

∞∑
i=1

λi(τ)

 ∞∑
j=1

λj(τ)⟨ρ|ϕj⟩ ⟨ψj |ϕi⟩

 ψi(xt+2τ )

=

∞∑
i=1

λ2i (τ)⟨ρ|ϕi⟩ ψi(xt+2τ ),

where we have used the orthonormality of the eigenfunctions, that is ⟨ψj |ϕi⟩ = δij . Similarly,

[TN
Ω (τ) ◦ ρ](xt+Nτ ) =

∞∑
i=1

λNi (τ)⟨ρ|ϕi⟩ ψi(xt+Nτ ). (19)

The transition density can be re-written in terms of the spectral decomposition of the transfer op-
erator by choosing the initial density, p, as a Dirac delta function δxt

(x), that is ρ(x) =
δxt (x)

µ(x) .
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Then,

p(xt+Nτ |xt) = µ(xt+Nτ )

[
TN
Ω (τ) ◦ δxt

µ

]
(xt+Nτ )

= µ(xt+Nτ )

∞∑
i=1

λNi (τ)

〈
δxt

µ

∣∣∣∣ϕi〉 ψi(xt+Nτ )

=

∞∑
i=1

λNi (τ) ⟨ δxt
(x)|ψi⟩ ψi(xt+Nτ ) µ(xt+Nτ )

=

∞∑
i=1

λNi (τ)ψi(xt)ϕi(xt+Nτ ).

A.3 IMPLICIT TRANSFER OPERATOR DETAILS

Implicit Transfer Operator (ITO) Learning (Schreiner et al., 2023) is a framework for learning
surrogate models of the transition density, p(xNτ |x0). ITO models are trained sampling tuples
(xti ,xti+Niτ , Ni) and training a generative model to mimic the empirical transition density at mul-
tiple time-horizons, Nτ . Training is done following Algorithm 1.

Algorithm 1 Training. DisExp is defined in Algorithm 4

Input: n MD-trajectories; X = {xj
0, . . . ,x

j
tj}

n
j=0, ITO score-model; ϵ̂θ, max lag; Nmax

X ′ = Concatenate({xj
0, . . . ,x

j
tj−Nmax

}nj=0)

while not converged do
xt ∼ Choice(X ′)
N ∼ DisExp(Nmax)
tdiff ∼ Uniform(0, T )
Take gradient step on:
∇θ

[
∥ϵ− ϵ̂θ(x̃

tdiff

t+Nτ ,xt, N, tdiff)∥2
]

end while
return ϵ̂θ

Once a model is trained, it can be sampled by following Algorithm 2.

Algorithm 2 Sampling from p̂θ(x0, N)

Input: initial condition x0, lag; N , diffusion steps; Tdiff , ITO score-model; ϵ̂θ
xTdiff

N ∼ N (0,1)
for tdiff = Tdiff . . . 1 do

ϵ ∼ N (0,1)

xtdiff−1
N = 1√

αtdiff

(
xtdiff

N − 1−αtdiff√
1−ᾱtdiff

ϵ̂θ(x
tdiff
N ,x0, N, tdiff)

)
+

√
βtϵ

end for
return x0

N

Several sampling steps can be annealed to sample longer lag-times as depicted in Algorithm 3.
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Algorithm 3 Ancestral sampling. Sampling from pθ is defined in Algorithm 2

Input: initial condition x0, lag N , ancestral steps n.
Allocate T ∈ R(n+1)×dim(x0)

T [0] = x0

for i = 1 . . . n do
xi ∼ p̂θ(T [i− 1], N)
T [i] = xi

end for
return T

Algorithm 4 Sampling from DisExp

Nlog ∼ Uniform(0, log(Nmax))
Return: floor(exp(Nlog))

BoPITO uses Algorithm 1 for training and Algorithm 2 for sampling as well, but uses the score
mode in eq. 14.

A.4 DECAY OF TIME-DEPENDENT SCORE TERM

In Figure 6, we show the average time-dependent component of the score,

sN = Ei∼I,tdiff∼U(0,T )

[
λ̂Nsdyn(x

tdiff
ti+Nτ ,xti , N, tdiff,θ)

]
, (20)

of a trained BoPITO model of the Prinz Potential with λ̂ = 0.994. The expectation for I correspond-
ing to the sampling of tuples as during training (Alg. 1). The model remains flexible for small lags
but eventually decreases to 0, sampling from the equilibrium model.

Ti
m

e-
de

pe
nd

en
t s

co
re

Lag

Figure 6: Average time-dependent component of the score, eq. 20, of a trained model BoPITO
model of the Prinz Potential.
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A.5 THE SCORE OF THE TRANSITION PROBABILITY AND BOPITO

The score of the transition probability can be written as

∇xNτ
log p(xNτ |x0, N) =

∞∑
i

λi(τ)
N ψi(x0)

p(xNτ |x0, N)
∇xNτ

ϕi(xNτ )

=
∇xNτ

µ(xNτ )

p(xNτ |x0, N)
+

∞∑
i=2

λi(τ)
N ψi(x0)

p(xNτ |x0, N)
∇xNτ

ϕi(xNτ )

=
∇xNτ

µ(xNτ )

µ(xNτ )

µ(xNτ )

p(xNτ |x0, N)

+ λ̂N
∞∑
i=2

(
λi(τ)

λ̂

)N
ψi(x0)

p(xNτ |x0, N)
∇xNτ

ϕi(xNτ ).

∇xNτ
µ(xNτ )

µ(xNτ )
= ∇xNτ

logµ(xNτ ) is the score of the Boltzmann distribution and can be modeled

with the score of a Boltzmann Generator, seq(xtdiff , tdiff).
µ(xNτ )

p(xNτ |x0,N) → 1 as N → ∞ and can be

modeled with a scalar neural network 1 + λ̂Nfθ(x
tdiff
Nτ ,x0, N, tdiff). The last term can be modeled

with gθ(xtdiff
Nτ ,x0, N, tdiff). The corresponding score model is

sθ(x
tdiff
Nτ ,x0, N, tdiff) = seq(x

tdiff , tdiff)(1 + λ̂Nfθ(x
tdiff
Nτ ,x0, N, tdiff) + λ̂Ngθ(x

tdiff
Nτ ,x0, N, tdiff)

= seq(x
tdiff , tdiff) + λ̂N

(
seq(x

tdiff , tdiff)fθ(x
tdiff
Nτ ,x0, N, tdiff) + gθ(x

tdiff
Nτ ,x0, N, tdiff)

)︸ ︷︷ ︸
sdyn(x

tdiff
Nτ ,x0,N,tdiff)

.

We can aggregate f and g to a single neural network component, sdyn(xtdiff
Nτ ,x0, N, tdiff), to get

sθ(x
tdiff
Nτ ,x0, N, tdiff) = seq(x

tdiff , tdiff) + λ̂Nsdyn(x
tdiff
Nτ ,x0, N, tdiff). (21)

For simplicity, we incorporate the structure of the transition density into the diffusion model, not
only for tdiff = 0 (the learned data distribution), but for all tdiff > 0. We do not observe this choice
to limit model expressivity in our experiments.

A.6 ALTERNATIVE SCORE FORMULATIONS

The score in eq. 14 is principled and resembles the score of the transition density. However, in
practice, we found that this score can lead to suboptimal performance in learning short time-scales
if the dynamic component fails to dominate the equilibrium component for small N . We only
observed this for Chignolin. We relate this issue to numerical limitations due to very different scale
in neural network weights for different values of N . We remark that short timescales are the least
relevant since they can be easily sampled with MD. Still, to mitigate this effect we propose the
following alternative factorization,

sθ(x
tdiff
Nτ ,x0, N, tdiff) = f(N)seq(x

tdiff , tdiff) + λ̂Nsdyn(x
tdiff
Nτ ,x0, N, tdiff), (22)

where f(N) is an increasing function and tends to 1 for large N . One potential option that does not
introduce extra hyper-parameters is

sθ(x
tdiff
Nτ ,x0, N, tdiff) =

λ̂−N − λ̂N

λ̂−N + λ̂N
seq(x

tdiff , tdiff) + λ̂Nsdyn(x
tdiff
Nτ ,x0, N, tdiff). (23)

We use this version in the Chignolin experiments.

A.7 HOW BOPITO INTERPOLATORS MITIGATE OUT-OF-DISTRIBUTION EFFECTS

BoPITO interpolators mitigate out-of-distribution effects by, first, fixingN = Nmax as the argument
of sdyn. This choice ensures that none of our neural networks are evaluated outside of the training
domain. Second, we alter long-lag interpolation steps with short-lag non-interpolation steps for
local relaxation. Since we in practice see that that the long-lag steps occasionally generates ‘off data
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manifold’ states, e.g. structures with potential high energies, the local ‘relaxation’ steps projects
us back onto the data manifold. In practice, just one short-lag non-interpolation step is sufficient
to overcome this. Third, we use dynamic observables to fit the interpolation parameter. Without
any additional source of information we don’t know how to choose Nint. However, when we use
dynamic observables, we can select the interpolated ensemble which is the most consistent with
experimental observables. So this helps calibrate the time-scales to stay “in distribution”.

A.8 EXPERIMENTAL PARAMETERS

A.8.1 BOLTZMANN PRIORS FOR DATASET GENERATION

For different numbers of trajectories, n, we train 5000/n ITO models on n Prinz potential trajecto-
ries of length 150. Trajectories do not overlap among different trainings. The maximum model lag
is 100 steps.

A.8.2 BOPITO SAMPLES EFFICIENTLY LONG-TERM DYNAMICS IN DATA-SPARSE SCENARIOS

Prinz potential 10 models are trained on non-overlapping trajectory sets for different numbers
of trajectories. The trajectories length is 10, 000 and the maximum model lag is 1, 000. We con-
sider lags of 10, 25, and 50 as short, 100, 200, and 300 as medium, and 500, 750, and 10, 00 as long
time-scales in our experiments, see Figure 8 (b) for a visual reference. λ̂ is set 0.982 for BoPITO
experiments with 1, 5 and 10 trajectories and to 0.994 for the rest.

Alanine Dipeptide 10 models are trained on potentially overlapping random trajectory sets for
different numbers of trajectories. The trajectories length is 12, 500 and the maximum model
lag is 10, 000. We consider lags of 5, 10, and 50 as short, 100, 500, and 1000, as medium, and
2500, 7500, and 10000 as long time-scales in our experiments, see Figure 9 (b). λ̂ is set 0.9996 for
all BoPITO models.

Chignolin 4 models are trained on potentially overlapping random trajectory sets for differ-
ent numbers of trajectories. The trajectories length is 35, 000 and the maximum model lag is
30, 000. We consider lags of 10, 50, and 100 as short, 500, 1000, and 5000, as medium, and
10000, 20000, and 30000 as long time-scales in our experiments, see Figure 11 (b). λ̂ is set 0.99975
for all BoPITO models. BoPITO models are trained using the score 23.

A.8.3 INTERPOLATING BETWEEN MODELS TRAINED ON OFF EQUILIBRIUM DATA AND THE
BOLTZMANN DISTRIBUTION

We remove the transitions resembling the slowest process in the system, ϕ crossing 0 or 2, to gen-
erate biased simulation data. When a transition occurs, we remove one frame before and after the
transition and split the trajectory. We train both biased ITO and BoPITO models with a maximum
model lag of 100 on the resulting biased dataset. For lags> 100, we sample the BoPITO interpolator
fitted on the unbiased dynamic observable defined by eq. 25, see Figure 4. We perform interpolation
by sampling with the score model in eq. 15 followed by one round of non-interpolation sampling
with lag 100 steps for local relaxation.

A.8.4 ARCHITECTURAL AND TRAINING AND INFERENCE DETAILS

We use MB-ITO as the architecture of models for the Prinz potential, and SE3-ITO, an
SE(3)−equivariant neural network, for Alanine Dipeptide, both introduced in Schreiner et al.
(2023). We report architectural and training hyper-parameters in Table 1. Models are trained until
convergence in the log-log loss plot.

A.9 PRINZ POTENTIAL

The Prinz potential is a 1D potential commonly used for benchmarking MD sampling methods. The
potential is defined as

U(x) = 4
(
x8 + 0.8e−80x2

+ 0.2e−80(x−0.5)2 + 0.5e−40(x+0.5)2
)
. (24)
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Diffusion steps 500
Noise schedule Sigmoidal

Batch size 2, 097, 152
Learning rate 0.001

Layers 3
Embedding dimension 256

Net dimension 256
Optimizer Adam

Inference ODE steps 50

Diffusion steps 1, 000
Noise schedule Polynomial

Batch size 1, 024/32
Learning rate 0.001
Score layers 5

Embedding layers 2
n features 64
Optimizer Adam

Inference ODE steps 100 /50

Table 1: Architectural and training parameters of MB-ITO models (a) and SE3-ITO (b). Batch sizes
and inference ODE steps refer to Alanine Dipeptide and Chignolin experiments respectively.

Figure 7: Conditional density of a simulation of the Prinz potential starting at x = 0.75 for different
lags (steps). Long-term dynamics approaches the Boltzmann distribution.

We generate trajectories using an Euler-Maruyama integrator using the library Deeptime (Hoffmann
et al., 2021). We set the integrator time-step to 1 · 10−5, and the temperature, mass, and damping
factor to 1. In Figure 7 we show histograms of the position of a particle after N steps, starting from
0.75, and in Figure 8 (a) we report an implied time-scales plot. We use the identity function to define
a dynamic observable/correlation function of this system and show it in Figure 8 (b).

A.10 ALANINE DIPEPTIDE

Alanine Dipeptide is a small peptide with 22 atoms. We use publicly available data from Dibak et al.
(2022), containing a total of 1 µs simulation time split in 20 trajectories. Simulation is performed
in an implicit solvent with 2 fs integration time-step and data is saved every 1 ps. We choose,

a(x) = b(x) =

[
sinϕ
cosϕ

]
, (25)

to define a dynamic observable of this system. The torsion angle ϕ is involved in the slowest tran-
sition observed in the simulation, see Figure 10. We combine these vectors taking the inner product
for computing dynamic observables. We show this correlation function in Figure 9 (a), and implied
time-scales plot in Figure 9 (b) and a histogram of the torsions ϕ and ψ aggregating all simulation
data in Figure 10.
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(a) (b)

Figure 8: Implied time-scales (a) and dynamic observable under the identity function (b) for the
Prinz Potential. Errors in (b) are smaller than the dots. In (a), the implied time-scales of the 5
slowest processes in the system are computed for different lags. The color order, from longest to
shortest implied time-scale, is blue, orange, green, red, and purple.

(a) (b)

Figure 9: Implied time-scales for Alanine Dipeptide computed with a Markov State Model on tor-
sional angles ϕ and ψ (a) and dynamic observable in eq. 25 (b). In (a), the implied time-scales of
the 5 slowest processes in the system are computed for different lags. The color order, from longest
to shortest implied time-scale, is blue, orange, green, red, and purple.

ψϕ

Figure 10: Histogram of the torsional angles ϕ and ψ of Alanine Dipeptide (insert). Data is aggre-
gated among all trajectories in the dataset introduced in Dibak et al. (2022).
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Figure 11: Time evoluation of ‘foldedness’ in a subset of the reference MD simulation (a) and
dynamic observable in eq. 26 (b).

A.11 CHIGNOLIN

Chignolin (cln025) is a fast folding protein with 10 residues, 166 atoms and 93 heavy atoms. We
use molecular dynamics data previously reported by Lindorff-Larsen et al. (2011). The data is
proprietary but available upon request for research purposes. The simulations were performed in
explicit solvent with a 2.5 fs time-step and the positions was saved at 200 ps intervals. We extract
all heavy atoms positions from the simulations and train models on this data. We use the reaction
coordinate also proposed in Lindorff-Larsen et al. (2011) as to define a dynamic observable,

a(x) = b(x) =

∑Nres
i=1

∑Ni

j>i
1

1+e
10(dij(x)−d∗

ij
−1)∑Nres

i=1Ni

, (26)

where the first sum in the numerator iterates over all Nres residues in the protein, while the second
sum considers the Ni native contacts of residue i separated by at least seven residues in the primary
sequence. We define native contacts as residue pairs separated by at least seven residues in the
primary sequence and with Cα atoms closer than 10 Å in the native structure. Moreover, dij(x)
and d∗ij represent the distances between the Cα atoms of residues i and j in the structure x and
the native structure, respectively. This observable quantifies the protein’s foldedness, with values
ranging from 0 (unfolded) to 1 (folded). In Figure 11 (a) we show the evolution of eq. 26 on a
subset of the reference simulation data and we observe how the protein undergoes transformations
between the folded and unfolded states. In Figure 11 (b) we visualize the corresponding dynamic
observable.

A.12 METRICS

We evaluate models computing differences in the dynamic observables introduced in section 4.1
w.r.t. long MD simulations,

|∆correlation|N = |O∗
N −Omodel

N |, (27)

where O∗
N is the normalized observable predicted by MD for lag N and Omodel

N is the model’s
prediction. See Appendix A.15 for details on normalization. We report the average difference over
different training runs.

A.13 ENERGIES FOR ALANINE DIPEPTIDE

In Figure 12 we observe a remarkable agreement in energy densities of samples generated with our
Boltzmann Generator and MD. GBSAOBForce is the implicit solvent model energy.
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Figure 12: Energy and energy components of samples generated with a Boltzmann Generator (BG)
and MD.

A.14 FITTING λ̂

The hyperparameter λ̂ controls the time-scale at which the BoPITO model transitions to sampling
the equilibrium model. Ideally, λ̂ should be similar to the eigenvalue corresponding with the slowest
process in the system, λ2. However, its value is not generally available and requires extensive
unbiased simulation data to be accurately estimated. If λ̂ is too small, the model may prematurely
relax to equilibrium, limiting its ability to capture non-equilibrium dynamics. Conversely, if λ̂ is too
large, the benefits of the BoPITO framework could diminish. Therefore, careful tuning of λ̂ can be
crucial for optimal performance.

As illustrated in Figure A.14, grid-search hyperparameter tuning can select an appropriate λ̂ for a
single-system model. Too small values of λ̂ can hinder the model’s ability to capture long-time-scale
dynamics, leading to increased loss. We recommend choosing the smallest λ̂ that yields a plateau
in the λ̂-loss curve (elbow rule), as demonstrated in Figure A.14 (b). However, practitioners should
be cautious about sampling longer lags than the implied time-scale defined by λ̂ if they cannot
guarantee the system relaxes to equilibrium for those time-scales.

A.15 CORRELATION FUNCTION NORMALIZATION

We subtract the mean and divide by correlation at lag 0 to normalize our dynamic observables.
Subtracting the mean guarantees that the correlation function asymptotically decays to 0, and we
divide by the correlation at lag 0 so that correlation can be read as a fraction of correlation at time
0. The resulting normalized correlation function is

E[(f(xt)− E[f(xt)]) (g(xt+∆t)− E[g(xt+∆t)])]

E[(f(xt)− E[f(xt)]) (g(xt)− E[g(xt)])]
. (28)

When comparing different methods, we compute E[f(xt)], E[g(xt+∆t)] and
E[(f(xt)− E[f(xt)]) (g(xt)− E[g(xt)])] using long MD simulations and use these same
normalizing factors for all methods.
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(a) (b)

Figure 13: Average validation loss against training epochs for the Prinz potential for different values
of λ̂ (a) and average final loss versus λ̂ (b). Averages are taken w.r.t. 10 runs. Final losses are
computed as the average between epochs 190 and 200. The greatest eigenvalue of the system under
our simulation parameters is 0.994.
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