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ABSTRACT

Recently, to deal with the vulnerability to generate examples of CNNs, there are
many advanced algorithms that have been proposed. These algorithms focus on
modifying global pixels directly with small perturbations, and some work involves
modifying local pixels. However, the global attacks have the problem of pertur-
bations’ redundancy and the local attacks are not effective. To overcome this
challenge, we achieve a trade-off between the perturbation power and the number
of perturbed pixels in this paper. The key idea is to find the feature contribu-
tive regions (FCRs) of the images. Furthermore, in order to create an adversarial
example similar to the corresponding clean image as much as possible, we re-
define a loss function as the objective function of the optimization in this paper
and then using gradient descent optimization algorithm to find the efficient per-
turbations. Our comprehensive experiments demonstrate that FCRs attack shows
strong attack ability in both white-box and black-box settings for both CIFAR-10
and ILSVRC2012 datasets.

1 INTRODUCTION

The development of deep learning technology has promoted the successful application of deep
neural networks (DNNs) in various fields, such as image classification (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2014), computer vision (He et al., 2016; Taigman et al., 2014), natural
language processing (Devlin et al., 2018; Goldberg, 2017), etc. In particular, convolutional neu-
ral networks (CNNs), a typical DNNs, have shown excellent performance applied in image clas-
sification. However, many works have shown that CNNs are extremely vulnerable to adversarial
examples (Szegedy et al., 2013). The adversarial example is crafted from clean example added by
well-designed perturbations that are almost imperceptible to human vision, while can fool CNNs.
Scholars have proposed a variety of methods to craft adversarial samples, such as L-BFGS (Szegedy
et al., 2013), FGSM (Goodfellow et al., 2014), I-FGSM (Kurakin et al., 2016), PGD (Madry et al.,
2017) and C&W (Carlini & Wagner, 2017). These attack strategies can successfully mislead CNNs
to make incorrect predictions, restricting the application of CNNs in certain security-sensitive ar-
eas (such as autonomous driving, financial payments based on face recognition, etc.). Therefore,
learning how to generate adversarial examples is of great significance.

We can categorize these attacks into two categories, i.e., the global attacks and the local attacks,
according to the region added perturbations. The global attacks tempt to perturb all pixels of the
clean image, such as FGSM (Goodfellow et al., 2014), PGD (Madry et al., 2017) and C&W (Carlini
& Wagner, 2017); the local attacks only modify some pixels of the clean image, such as one-pixel
attacks (Su et al., 2019) and JSMA (Papernot et al., 2016b). At present, the global attacks perturb all
pixels on the whole image, which not only fail to destroy the feature contributive regions (the critical
semantics of an image), but they also increase the degree of image distortion. We explain in detail
in the experimental part. The local attacks seem to be able to solve this problem, but the current
proposed local attacks don’t well realize that focus on undermining the image feature contributive
regions. Papernot et al. (2016b) proposed a method of crafting adversarial example based on the
Jacobian Saliency Map by constraining the `0 norm of the perturbations, which means that only a
few pixels in the image are modified. However, this method has the disadvantage of over-modifying
the value of the pixels, making the added perturbations easily perceptible by the naked eye, and
its adversarial strength is weak (Akhtar & Mian, 2018). Su et al. (2019) proposed an extremely
adversarial attack—one-pixel attack. One-pixel attack can fool CNNs by changing 1 to 5 pixels, but
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Figure 1: We use Grad-CAM to get the heatmap of the image and the red frame area is the feature
contribution regions involved in this work.

this method is better for low-resolution images attack (such as CIFAR-10), and the attack success
rate for high-resolution images will be greatly reduced (such as ImageNet), and the cost is very large
`1 distortion (Xu et al., 2018).

In this paper, we propose a novel attack method to overcome the redundant perturbations of the
global attacks and the poor strength of the proposed local attacks. Inspired by the work of CAM
(Zhou et al., 2016) and Grad-CAM (Selvaraju et al., 2017), it is the most effective way to reduce
image distortion, high efficiency and reduce computational complexity by adding perturbations to
the critical semantics. As we all know, CNN is an end-to-end representation learning model, which
starts from simple low-level features and combines them into abstract high-level features layer by
layer. Thus, Grad-CAM (Selvaraju et al., 2017) uses the gradient information of the last convo-
lutional layer as the metric to understand the decision of each neuron for target classification, and
explains in a visual way that not all image pixels contribute to the model classification. Similarly,
as shown in Figure 1, the red area is the main contributive area. Therefore, perturbing the image
globally is not the most efficient strategy. We propose the FCRs attack strategy, which only adds
perturbations in Feature Contributive Regions (FCRs) with the aim of generating sparse and more
excellent perturbations. Especially, compared with existing local attacks, our proposed method per-
turbs continuous semantic regions rather than discrete pixels. In this work, we use Grad-CAM to
locate regions that have a greater impact on the classification decision of CNNs. To ensure the
similarity between the adversarial example and the corresponding clean image as much as possible,
the objective function we optimize is the sum of the two parts of the function: the `2 norm of the
perturbations and the loss function of the generated adversarial examples. We thus use the stochastic
gradient descent optimization algorithm to find efficient perturbations. In order to avoid the situation
where the perturbations do not update when the objective function tends to zero, we also introduce
inverse temperature T under the inspiration of Hinton et al. (2015).

Compared to previous work, the contributions of our work are summarized as follows:

• We propose an attack via feature contributive regions (FCRs) for achieving a trade-off
between the powerful attack and the small perturbations. More importantly, this work
implements an effective local attack algorithm by redefining an objective function.

• Specially, we novelly propose an inverse temperature T , which avoids the situation where
the loss function of the generated adversarial example tends to be zero when the stochastic
gradient descent optimization algorithm is used to find the perturbations.

• Comprehensive experiments demonstrate that FCRs attack consistently outperforms state-
of-the-art methods on the CIFAR-10 and ILSVRC-2012 datasets. In addition, we verify
the importance of FCRs by dividing the original clean image into two parts (i.e., FCRs and
Non-FCRs).

2 RELATED WORK

In many cases, the CNNs are vulnerable to adversarial attacks which have caused extensive research
in academia. Szegedy et al. (2013) used the constrained L-BFGS algorithm to craft adversarial ex-
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amples. L-BFGS attack has a high attack success rate, but the computational cost is also high (Nar-
odytska & Kasiviswanathan, 2017). Therefore, Goodfellow et al. (2014) proposed FGSM, which
can quickly generate adversarial examples but has a low attack success rate. Kurakin et al. (2016)
proposed the Iterative attack method (I-FGSM) on the basis of FGSM and Madry et al. (2017) pro-
posed PGD. Dong et al. (2018) proposed an iterative algorithm based on momentum (MI-FGSM)
to improve the transferability of adversarial samples. Xie et al. (2019) combined the input diversity
strategy with iterative attacks on I-FGSM and MI-FGSM to further improve the transferability of
adversarial examples. The aforementioned attacks belong to the gradient attack family, and they
destroy the semantic information of the whole image. Papernot et al. (2016b) proposed an attack
method based on the Jacobian Saliency Map by minimizing the `0 norm of adversarial perturba-
tions and used a greedy algorithm to find saliency pixels. However, this method has the problems
of over-modifying pixels too much and weak attack intensity. Su et al. (2019) proposed an adver-
sarial attack method based on the differential evolution algorithm. This method also focuses on the
number of pixels to be modified, but does not limit the power of a single change, thus leading to
very large `1 distortion (Xu et al., 2018). In this work, we expect to achieve a more effective attack
that can be as successful as existing attacks but achieves a trade-off between the perturbation power
and the number of perturbed pixels. We will show that the proposed FCRs attack is able to destroy
the feature contribution regions that make attacks successful, but without incurring extra pixel-level
perturbations.

Related to our work is Deng & Zeng (2019), who proposed a spatial transformed attack method
based on attention mechanism. This work expands the stadv (Xiao et al., 2018) to A-stadv. The
purpose of this work is to generate adversarial examples with less interference and less visible.
The author only conducts experiments on the ImageNet dataset, and does not discuss the black-box
attack effect of this method. But while verifying that many pixel-level perturbations are redundant,
our work proposes a new algorithm to craft perturbations, and demonstrates its white-box and black-
box attack effects on the CIFAR-10 and ILSVRC2012 datasets. In addition, Xu et al. (2019) used
CAM to explain adversarial perturbations but their target is not to generate adversarial examples, but
to understand and interpret adversarial examples. Zhang et al. (2020) proposed a target-free method
to generate adversarial examples via principal component analysis and made adversarial examples
relate to the data manifold, but their experiment showed that the performances of their method were
not always better than FGS and C&W. Here we pay more attention to the feature contribution regions
and finally, we achieve a trade-off between the powerful attack and the number of perturbed pixels.

3 METHODOLOGY

Inspired by “attention mechanism” (Zagoruyko & Komodakis, 2016), we believe the classifier’s
performance is greatly affected by some specific feature regions that is termed as feature contributive
regions (FCRs) in this paper. This intuition is also confirmed by Deng & Zeng (2019) proposed A-
stadv which is an attention based on spatial transformed adversarial example. Therefore, if we
find FCRs and add perturbations to them, it will be more effective to fool the classifier with fewer
perturbations than previous methods. Our idea is to divide an image into two semantic parts: FCRs
and Non-FCRs and then perturbs feature contributive regions. The result of fewer perturbations
ensures maximumly adversarial effects on local regions of clean images.

3.1 NOTIONS

Deep neural networks (DNNs): A DNN can be expressed as a high-dimensional approximation
function: f(X, θ) : Rm → Rn, whereX ∈ Rm is the input variable, Y ∈ Rn is the true class,X and
θ represents the model parameters. In this work, we focus on a specific DNN, convolutional neural
networks (CNNs) that are typically comprised of convolutional layers with some method of periodic
downsampling (either through pooling or strided convolutions). Here, we define the Logits layer.
The input before the softmax layer of the CNNs, namely the Logits layer (the penultimate layer):
Yj = wT

j A, j = 1, 2, . . . , C, where wT
j is the weight matrix and A is the input vector of the Logits

layer, which contains a mapping function X 7→ A. Then the softmax function can be expressed as
Sj = expYj/

∑c
i=1 expYi, and the final model can be expressed as f(X) = S

(
wT
j A
)
. Given an

input X , then the predicted class of X can be expressed as Ŷ = argmaxj=1,...,k f(X)j . The goal
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of model training is to minimize the cross-entropy loss function, which can be expressed as:

J = −
C∑
j=1

Yj logSj = − logSj (1)

where Y is a 1 × C vector and there are C values in it. Only one value is 1 (corresponding to the
true label), and the other C − 1 values are all 0. For N input-label pairs (Xi, Yi), the cross-entropy
loss function of the model can be expressed as:

J = − 1

N

N∑
i=1

C∑
j=1

Yj logSj = −
1

N

N∑
i=1

logSj (2)

Adversarial examples: An adversarial example can be represented as X ′ = X + δ, where
δ is the perturbation. Normally, the perturbation δ is constrained by the `0, `2 or `∞ norm,
that is ‖X ′ −X‖p ≤ ε. For untargeted attacks, we only need to search for an X ′ satisfying
Y ′ = argmaxj f (X

′)j , where Y ′ 6= Y and we also do not need to specify which class will be
misclassified; for targeted attacks, we specify a target class Y ∗ 6= Y , so that the target model not
only misclassifies the example, but also needs to classify them into the specified class. In general,
the targeted attacks are more difficult than untargeted attacks.

3.2 FEATURE CONTRIBUTIVE REGIONS (FCRS)

FCRs refer to the regions in an image that are critical for model prediction. We can utilize Grad-
CAM (Selvaraju et al., 2017), CAM (Zhou et al., 2016) and c-MWP (Zhang et al., 2018) to observe
FCRs. However, compared with CAM and c-MWP, Grad-CAM is not restricted by a specific CNNs
architecture. In addition, it can generate better quantitative and qualitative results with less compu-
tation. As a result, we use Grad-CAM to search for FCRs in our work.

Suppose the input image X is forward propagated through the CNNs, and the last layer of convo-
lutional layer outputs the high-level feature map A of the image, where Ak ∈ Rn×v represents the
activation of the k-th convolution kernel with the size of u × v. A outputs the score vector Y (also
called logits) of each class after passing through a fully connected layer FC, where Y C represents
the logits value of the C-th class. To this end, we compute the gradient of Y C toAk, i.e. ∂Y C/∂Ak
to measure the classification prediction importance of the k-th convolution kernel to the C-th class.
Furthermore, we adopt the global average pooling operation to calculate the weight λCk of the k-th
convolution kernel:

λCk =
1

Z

∑
i

∑
j

∂Y C

∂Akij
(3)

where Z = u×v,Akij is the activation at cell (i, j) of the k-th convolution kernel. We use the weight
λck to perform a weighted summation ofAk, and calculate a feature activation map

∑
k λ

C
k A

k for the
C-th class. Considering that only the positive value in

∑
k λ

C
k A

k will have a positive effect on the
final classification result, the final weighted result is reactivated by ReLU to remove the influence of
the negative value, and the activation map of the C-th class is obtained:

LX = ReLU

(∑
k

λCk A
k

)
(4)

We can visualize LX in the form of heatmap (e.g. Figure 1), in which the red area is the feature
contribution regions (FCRs) to the C-th class.

Since the FCRs are usually irregular, we introduce a masking mechanism to locate. Formally, the
mask is a 0-1 matrix with the same size of the input image. The element is 0 in maskX indicates
the corresponding pixel in the image is not in the FCRs. On the contrary, the element is 1 indicates
the corresponding pixel is in the FCRs. Thus, we can obtain the FCRs of the image by simply
Hadamard product applied between the mask and the image. For obtaining the mask, a simple
threshold mechanism can be utilized:

maskX =

{
1 [LX ] ≥ t
0 others (5)

where t is a threshold and LX indicates that the input image X is the C-th class activation map.
Our proposed method uses maskX to locate the location of the added perturbations δFCR.
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3.3 GENERATE PERTURBATIONS FOR FCRS

We now turn to our approach to generate adversarial perturbations. To begin, we rely on the initial
formulation of adversarial perturbations (Goodfellow et al., 2014) and formally define the problem
as follows:

min
δ

‖δ‖p (6)

s.t. f(X + δ) 6= y ,

X + δ ∈ [0, 1]m .

where ‖ · ‖p is the norm that constrains perturbations δ. The commonly used p-norm is `0, `2 or `∞.
X is fixed, and the goal is to find the minimal δ that can fool the CNNs.

Our method is different in that only perturbs FCRs, so we solve this problem by formulating it as
follows:

min
δFCR

‖δFCR‖p (7)

s.t. f(X + δFCR) 6= y ,

X + δFCR ∈ [0, 1]m .

However, the exact and direct computation of ‖δFCR‖p is difficult for existing algorithms, as the
constraint f(X + δ) 6= y is highly non-linear. Therefore, we approximate ‖δFCR‖p in a dif-
ferent form that is better suited for optimization. We define an objective function F satisfying
f(X + δFCR) 6= y. This objective function consists of two parts: (1) a loss function for generating
adversarial examples, and (2) an `2 regularization function to limit the perturbations. In theory, the
`0 and `∞ norms can also be considered as a regularization function. However, we notice that the
`0 norm is non-differentiable and cannot be adopted for the standard gradient descent algorithm. In
addition, the `∞ norm only focuses on the largest value in δFCR, it is easy to oscillate between the
two suboptimal solutions during the gradient descent process (Carlini & Wagner, 2017). Therefore,
we use the `2 norm of the perturbations δFCR as the distance metric. Thus we define the objective
function as follows:

F = β
1

‖δFCR‖2
+ J (fθ (X + δFCR) , Y ) (8)

where β is a hyper-parameter that controls the degree of distortion. For the clean image X , our
optimization goal is to find the δFCR that maximizes the objective function F when the model is
misclassified:

max
δFCR

F (9)

s.t. X + δFCR ∈ [0, 1]m .

Since maximizing F and minimizing 1/F are equivalent, we can get the following optimization
problem:

min
δFCR

1/F (10)

s.t. X + δFCR ∈ [0, 1]m .

Then we use the stochastic gradient descent (SGD) algorithm to solve the δFCR. The gradient of
1/F in δFCR is∇δFCR

(1/F ) and it is used to update δFCR iteratively:

δFCR = (δFCR −∇δFCR
(1/Loss)× LR)�maskX (11)

where LR is a hyper-parameter, which is equivalent to the learning rate.

Firstly, we generate a random perturbation δFCR, and get the initial adversarial example X ′ =
X + δFCR. From Eq. (1) we can know that when Sj → 1, Jadv → 0, we set P = β (1/ ‖δFCR‖2),
Jadv = J (fθ (X + δFCR) , Y ). At this time 1/F = 1/P , ∇δFCR

(1/F ) = ∇δFCR
(1/P ), then

continue to use the stochastic gradient descent (SGD) algorithm to update δFCR will not lead to
Jadv becoming bigger. In order to avoid this situation, we use the distillation idea to introduce the
hyper-parameter T (T ≤ 1). Applying T will make Jadv increase log T , then Eq. (1) becomes the
following form:

JTadv = − log (Sj/T ) (12)
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Thus our objective function is modified to:

F = β
1

‖δFCR‖2
+ JTadv (13)

Algorithm 1 Generate Adversarial Examples via FCRs
Input: A clean image X; the iterations N ; the learning rate LR; the degree of distortion β; the
threshold t; the inverse temperature T
Output: δFCR

1: initialize δFCR
// K is the number of feature maps in the last layer of convolution layers

2: λCk ← 1
Z

∑
p

∑
q
∂Y C

∂Ak
pq

, k = 1, . . . ,K

3: LX ← ReLU
(∑

k λ
C
k A

k
)

4: maskX =

{
1 [LX ] ≥ t
0 others // Get FCRs

5: for i = 1, . . . , N do
6: X ′ ← X + δFCR
7: 1/F ← 1/

(
P + JTadv

)
8: δFCR ← (δFCR −∇δFCR

(1/F )× LR)�maskX // Update δFCR
9: end for

4 EXPERIMENTS

We verify the proposed method in Section 3 by experiments: (1) FCRs is an important basis for
the final classification decision; (2) FCRs attack will produce less perturbations and reduce the
pixel search space; (3) In this section, we show the experimental results of white-box attack and
black-box attack, which shows that FCRs attack has powerful white-box attack capability and high
transferability.

4.1 EXPERIMENT SETUP

Datasets and Models: We validate our method on two benchmark datasets: CIFAR-10 (Krizhevsky
et al., 2009) and ILSVRC2012 (Russakovsky et al., 2015). The CIFAR-10 consists of 60,000 images
sized , including 10 categories, each with 6,000 images. There are 50,000 images for training
and 10,000 for testing. The ILSVRC2012 image classification dataset contains 1,200 thousand
images from 1,000 categories, and 50,000 images are used as the validation set. There is no point in
attacking images that have been misclassified, so the images we use to generate adversarial examples
are all images that are correctly classified by all models. We use VGG (Simonyan & Zisserman,
2014) and ResNet (He et al., 2016) series models on the two datasets.

Evaluation indicators: The evaluation indicators setting in this article are the attack success rate
(ASR), the image quality assessment index—peak signal-to-noise ratio (PSNR) (Hore & Ziou, 2010)
and the `2 distortion of perturbations. In an ideal situation, we need to conduct stronger attacks with
smaller perturbations, so that a higher PSNR and smaller `2 distortion can be guaranteed.

4.2 VALIDATE THE IMPORTANCE OF FCRS

This section uses VGG and ResNet model structure to conduct experiments on CIFAR-10 to further
illustrate that FCRs are the basis for model classification. We divide into FCRs and Non-FCRs by
using (Figure 2(a)). The accuracy rate of the input FCRs is up to 85% and above. However, the
accuracy rate of the input Non-FCRs is very low (Figure 2(b)). The experimental results show that
FCRs have the greatest semantics to model decision-making and are the areas that have a positive
contribution to model classification.

In order to show that global attacks will produce not powerful perturbations and FCRs adding per-
turbations is the most efficient way, we improve the FGSM algorithm and add different perturbations
to FCRs and Non-FCRs (Appendix A). We conduct experiments on the CIFAR-10. We add different
perturbations on FCRs and Non-FCRs for comparison and the results are summarized in Appendix
A. Obviously, the perturbations only in FCRs hardly reduce the attack success rate, that say, the
FCRs are the best areas to optimize perturbations in the optimization landscape.
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Figure 2: (a) The FCRs and Non-FCRs of an original image; (b) Accuracy of different model struc-
tures. For the maskX , we use the threshold t = 0.2.

Table 1: Third column: Accuracy of the clean images on different models; Fourth column: ASR
of FCRs attack to generate adversarial examples. (Hyper-parameter settings: t = 0.2, T = 0.03,
LR = 10, N = 20, β = 1 and t = 0.2, T = 0.05, LR = 20, N = 20, β = 1 on the two datasets,
respectively. The introduction of parameters is detailed in the Appendix B.)

Datasets Model Accuracy ASR

CIFAR-10 VGG-11 91.66% 99.70%
ResNet-18 92.19% 100.00%

ILSVRC2012 VGG-19 71.02% 100.00%
ResNet-34 72.17% 99.13%

4.3 FCRS ATTACK

We generate adversarial examples on two datasets under the white-box setting. The results in Table
1 show the classification accuracy of the clean test data and the ASR of the adversarial examples
generated by FCRs attack on different models. Figure 3 shows the perturbations and adversarial
examples generated by the global attacks and FCRs attack. These are randomly selected from the
examples that can be successfully attacked. It can be seen that the FCRs attack not only generates
perturbations in the FCRs but also the adversarial examples are very close to the corresponding im-
ages. However, the images of global attacks are distorted greatly. When we use the same constraint
of the `2 distortion, we observe that the ASR of PGD is 74.33% and 56.50% on the two datasets;
the ASR of C&W is 72.11% and 45.00%. In contrast, FCRs attack can still have powerful attack
performance when it only attacks the local semantics.

4.4 COMPARISON WITH OTHER METHODS

Table 2 reports the ASR, PSNR, and `2 distortion of different attack methods (it is pointed out here
that we are giving the average difference between the adversarial examples and the clean images).
We show that the FCRs attack not only generates small perturbations (smaller `2 distortion) but
also has powerful attack performance (higher ASR), and the crafted adversarial examples are more
similar to the original images (larger PSNR). Specifically, the distortion performance of C&W is
the worst, that `2 distortion is the largest on the two datasets, and the PSNR is also the smallest.
Given that JSMA and one-pixel attack are both local attacks, we do a comparative experiment with

Table 2: ASR, PSNR and `2 distortion for various attacks

Datasets Attack Methods ASR PSNR `2

CIFAR-10

PGD 93.18% 68.03 5.57
C&W 97.44% 57.09 21.01
JSMA 90.33% 60.12 19.53

One-pixel 80.77% 65.7 7.03
Ours 100.00% 79.26 1.56

ILSVRC2012

PGD 97.70% 49.69 373.95
C&W 99.33% 46.86 543.76
JSMA 90.00% 60.08 60.64

One-pixel 40.56% 80.74 9.55
Ours 100.00% 72.67 42.94
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Figure 3: Comparison of perturbations and adversarial examples crafted by PGD, C&W and FCRs
attack on the two datasets. Obviously, our proposed method only destroys critical semantics and
reduces image distortion. (Our constraint on the `2 norm of the three methods is 2 and 45.)

these two methods. On the CIFAR-10, the performance of JSMA is lower than the FCRs attack
(ASR: 90.33% vs 100.00%); and its `2 distortion is very large. On the ILSVRC2012, our method
outperforms it in all metrics. We choose to attack 5 pixels for the one-pixel attack. On the CIFAR-
10, one-pixel attack is not only large in `2 distortion, but also has poor attack performance. On the
ILSVRC2012, although the `2 distortion of the one-pixel attack is the smallest, its attack success
rate is only 40.56% and we observe that the one-pixel attack requires a lot of memory during the ex-
periments. Thus we observe that the reduction of attack semantics does not reduce the performance
of FCRs attack.

4.5 BLACK-BOX ATTACK

In this section, we explore a more challenging black-box scenario where the attacker first specifies
an alternative model of the black-box model, and then generates a set of adversarial examples that
can successfully attack the alternative model. Normally, this set of adversarial examples is consid-
ered to have strong transferability, that is, in the case of misleading alternative model, it will also
mislead the target model (Papernot et al., 2016a). The underlying assumption is that highly transfer-
able adversarial examples can achieve similar attack performance on many different target models
(Papernot et al., 2017). Therefore, we can expect that transferable adversarial samples will reduce
the accuracy of the alternative model and at the same time reduce the accuracy of the target model,
resulting in high black-box attack capabilities. In order to prove the black-box attack capability of
the FCRs attack, we conduct black-box attack experiments on different target models and datasets.
As shown in Table 4 and 5, the adversarial examples generated by FCRs attack is more transferable
in most cases.

5 CONCLUSIONS

This work explores the method of generating perturbations via the feature contribution regions. This
article provides evidence to prove that the attack on the local semanticsis is the most effective. As
our theory and experiments have shown, we have devised a more excellent attack method. We
conduct extensive experiments with the CIFAR-10 and ILSVRC2012 datasets. The results show
that FCRs attack are much stronger than existing global attacks (such as PGD and C&W) and local
attacks (such as JSMA and One-Pixel), and the attack based on feature contribution regions may
also provide a new perspective for future research on better defensive methods.
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A IMPROVING FGSM VIA FCRS

Here, we give the algorithm of combining FGSM and FCRs.

Algorithm 2 FGSM + maskX
Input: A clean image X; Perturbations ε1 of FCRs; Perturbations ε2 of Non-FCRs
Output: X ′

1: λCk ← 1
Z

∑
p

∑
q
∂Y C

∂Ak
pq

, k = 1, . . . ,K

// K is the number of feature maps in the last layer of convolution layers
2: LX ← ReLU

(∑
k λ

C
k A

k
)

3: maskX =

{
1 [LX ] ≥ t
0 others // Get FCRs

4: δ1 = ε1 × sign (∇XJ(θ,X, y)�maskX), δ2 = ε2 × sign
(
∇XJ(θ,X, y)�maskX

)
5: X ′ = X + δ1 + δ2
6: X ′ = clip (X ′,min,max)
7: end for

Table 3: The attack success rate of adding different perturbations to two different semantic parts.

Model ε1 (FCRs) ε1 (Non-FCRs) ASR

VGG-11

0.03 0.00 35.12%
0.03 0.01 36.43%
0.03 0.03 38.71%
0.03 0.05 40.34%
0.03 0.03 38.71%
0.05 0.03 48.65%
0.05 0.05 49.92%
0.08 0.05 59.62%

ResNet-18

0.03 0.00 33.47%
0.03 0.01 34.17%
0.03 0.03 35.24%
0.03 0.05 36.07%
0.03 0.00 33.47%
0.05 0.00 40.58%
0.05 0.03 42.23%
0.05 0.05 43.21%

B ANALYSIS OF HYPER-PARAMETERS

Iteration Times N and Inverse Temperature T : N and T are the dominant hyper-parameter in
the proposed algorithm, and here we explore them effects on ASR. We can observe that both N
and T have positive trends on the ASR (Figure 4(a) 4(b)). As N and T increase, the ASR also
tends to increase. When N = 30, the ASR of the FCRs attack can reach 100% on both datasets.
The ASR increases fastest when N = 1 to N = 5, and then it tends to grow slowly until 100%.
With the increase of the iteration times, our objective function can better find the global optimal
solution, thereby avoiding falling into the local optimal solution. The increase of T also obviously
leads to the high ASR because the increase of T can make JTadv and the regularization function P
become smaller, which makes our objective function 1/F continue to decrease and is better to find
the optimal solution when performing stochastic gradient descent. It needs to be explained here that
we find that the best situation can be achieved when T = 0.05, especially on the ILSVRC2012
dataset, but the attack effect may be reduced if T continues to increase.

Threshold t: The threshold t is also the dominant hyper-parameter which size directly determines
the size of the maskX , that is, the size of the range of adding perturbations. Specifically, we vary
t while keeping the other parameters fixing to observe the influence of t changes on the ASR and

11



Under review as a conference paper at ICLR 2021

the `0 norm of the perturbations. When t = 0, the ASR on both datasets reaches 100%. At the
same time `0 is 2903 and 198402, respectively. As the threshold t continues to increase, the range
of perturbations continue to decrease. The direct manifestation is that the norm decreases linearly.
When reaching 0.5, the norms drop to 1529 and 24026 on the two datasets, respectively, which are
1/2 and 1/10 of t = 0. However, the ASR does not drop dramatically, which is reduced by 0.7% on
the CIFAR-10 and 5.07% on the ILSVRC2012 (Figure 5(a) 5(b)). In the experiments of this paper,
we set the threshold t = 0.2 on both datasets.
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Figure 4: The effect of iteration times N and hyper-parameter T on the ASR. Using ResNet-18
network on the CIFAR-10 (t = 0.2, LR = 10, β = 1); using VGG-16 network on the ILSVRC2012
(t = 0.2, LR = 20, β = 1).
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Figure 5: The effect of iteration times N and hyper-parameter T on the ASR. Using ResNet-18
network on the CIFAR-10 dataset (t = 0.2, LR = 10, β = 1); using VGG-16 network on the
ILSVRC2012 dataset (t = 0.2, LR = 20, β = 1).
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C THE RESULTS OF BLACK-BOX ATTACK

Table 4: ASR of alternative model and target model under various attack methods on the CIFAR-10.
The diagonal blocks show the white-box attacks, while the off-diagonal blocks indicate black-box
attacks which are much more challenging: PGD ( iteration number: s = 20, ε-ball: ε = 16, step
size: α = 2), M-DI2-FGSM (s = 20, ε = 16, α = 2, the transformation probability: p = 0.5),
C&W (c = 1, lr = 0.01, iterations = 1000), Ours (t = 0.2, T = 0.03, LR = 10, N = 20,
β = 1).

Model Attack VGG-16 VGG-11 VGG-13 ResNet-18 ResNet-34

VGG-16

PGD 90.43% 56.57% 71.72% 58.59% 56.78%
M-DI2-FGSM 90.79% 66.78% 83.94% 70.84% 69.38%

C&W 96.97% 51.52% 52.53% 40.40% 48.48%
Ours 96.00% 81.88% 88.29% 75.00% 77.08%

VGG-11

PGD 63.46% 93.51% 65.17% 55.18% 58.15%
M-DI2-FGSM 90.11% 99.10% 90.69% 87.79% 85.09%

C&W 46.46% 93.94% 45.23% 39.70% 49.25%
Ours 86.97% 99.90% 91.00% 86.12% 85.69%

VGG-13

PGD 75.08% 61.33% 95.81% 61.36% 58.91%
M-DI2-FGSM 80.11% 74.47% 97.70% 79.78% 75.38%

C&W 64.11% 62.13% 95.72% 61.95% 61.98%
Ours 90.39% 79.78% 100.00% 80.38% 80.68%

ResNet-18

PGD 60.92% 60.70% 62.52% 93.18% 64.22%
M-DI2-FGSM 83.42% 72.83% 82.12% 94.60% 84.35%

C&W 54.88% 61.28% 55.97% 97.44% 56.24%
Ours 85.03% 85.09% 84.18% 100% 89.59%

ResNet-34

PGD 60.92% 60.28% 64.56% 68.47% 92.72%
M-DI2-FGSM 88.89% 78.08% 87.78% 91.39% 98.60%

C&W 46.00% 57.75% 47.40% 48.59% 90.34%
Ours 89.00% 84.95% 86.29% 90.95% 100%

Table 5: ASR of alternative model and target model under various attack methods on the
ILSVRC2012. Parameter settings are as follows: PGD ( iteration number: s = 20, ε-ball: ε = 16,
step size: α = 2), M-DI2-FGSM (s = 20, ε = 16, α = 2, the transformation probability: p = 0.5),
C&W (c = 1, lr = 0.01, iterations = 1000), Ours (t = 0.2, T = 0.05, LR = 20, N = 20,
β = 1).

Model Attack VGG-16 VGG-19 ResNet-34 ResNet-50 ResNet-101

VGG-16

PGD 99.40% 89.00% 71.70% 70.30% 62.70%
M-DI2-FGSM 99.80% 92.00% 70.90% 71.20% 63.30%

C&W 97.00% 85.90% 71.70% 70.70% 68.70%
Ours 100.00% 92.90% 75.80% 76.80% 72.20%

VGG-19

PGD 90.50% 99.00% 71.40% 67.80% 64.80%
M-DI2-FGSM 96.00% 99.00% 67.70% 72.60% 64.50%

C&W 83.80% 95.50% 70.90% 69.80% 67.80%
Ours 94.20% 99.20% 80.50% 75.60% 74.20%

ResNet-34

PGD 82.60% 82.60% 99.40% 76.20% 67.70%
M-DI2-FGSM 78.80% 81.40% 100.00% 86.60% 81.30%

C&W 81.50% 81.90% 94.50% 70.90% 67.80%
Ours 89.20% 86.20% 100.00% 90.00% 87.10%

ResNet-50

PGD 82.60% 78.80% 72.30% 99.60% 69.60%
M-DI2-FGSM 77.40% 77.90% 79.80% 99.50% 87.90%

C&W 81.80% 82.40% 71.90% 95.50% 67.30%
Ours 87.60% 84.60% 91.00% 99.80% 89.60%

ResNet-101

PGD 81.60% 77.40% 70.70% 75.70% 99.60%
M-DI2-FGSM 72.70% 69.30% 77.80% 88.90% 99.70%

C&W 83.90% 81.90% 72.70% 70.40% 95.50%
Ours 86.30% 84.90% 90.00% 92.50% 100.00%
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