
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EQM-MPD: EQUIVARIANT ON-MANIFOLD MOTION
PLANNING DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Fast, reliable and versatile motion planning algorithms are essential for robots
with many degrees of freedom in complex, dynamic environments. Diffusion
models have been proposed as a faster alternative to classical planners by provid-
ing informative priors on distributions of trajectories. However, they are currently
trained to overfit to environments with fixed object configurations and need to be
re-trained when these conditions change. This limits applicability in tasks like
robotic manipulation where environments change dynamically and initial config-
urations vary. We show that diffusion-guidance is not sufficient to adapt the model
to large changes that can happen during execution or even from different initial-
ization. Moreover, current approaches ignore the underlying topology of the state
space thus requiring heavy guidance that dominates planning time and reduces
efficiency dramatically. To address these, we propose a novel diffusion motion
planner, EqM-MPD that operates directly on the robot’s state space manifold and
produces an equivariant prior distribution on trajectories. Our approach elimi-
nates the need for retraining under rigid transformations. Moreover, our diffu-
sion on state space manifold converges faster during guidance. We show that our
approach achieves efficient, robust and generalizable planning that is especially
useful for manipulation advancing beyond prior limitations.

1 INTRODUCTION

Motion planning is a crucial component of autonomous systems. The goal is to find smooth, feasi-
ble trajectories between given states while avoiding obstacles and respecting kinematic constraints.
The problem is notoriously challenging for robots with many degrees of freedom in environments
with intricate geometries and dynamic obstacles. Classical methods like sampling-based (Kavraki
et al., 1996; Lavalle, 1998; Kuffner & LaValle, 2000; Gammell et al., 2014) and optimization-based
approaches (Ratliff et al., 2009; Toussaint, 2009; Kalakrishnan et al., 2011) face issues such as com-
putational intensity, non-smooth trajectories, and reliance on good initialization.

To overcome these limitations deep learning priors learned from previously successful plans have
been proposed (Ichter et al., 2018; Wang et al., 2020; Bency et al., 2019) guiding optimization
towards more promising regions and reducing planning time. Diffusion and score-based models
(Sohl-Dickstein et al., 2015; Song & Ermon, 2019) in particular have shown promise in accelerating
motion planning (Janner et al., 2022b; Carvalho et al., 2023a) by integrating efficient sampling from
the diffusion prior with motion optimization costs through guidance (Dhariwal & Nichol, 2021a).

However, such models are usually trained from expert data to overfit to fixed object configurations
rather than learning generalizable priors. This limits applicability in manipulation where the en-
vironment changes dynamically during execution or at initialization and full retraining is required.
Performing diffusion-guidance during inference is not enough to adapt the model to both local and
global changes. Moreover, current approaches largely ignore the topology of the state space which
leads to ineffective training and heavier guidance that dominates the computation cost and reduces
planning efficiency. To overcome these challenges, we propose a novel diffusion-based motion plan-
ning algorithm that operates directly on the state space manifold and produces equivariant trajectory
distributions. Our contributions are two-fold:

1. Diffusion Motion Planning on the State Space Manifold: Our model accounts for the complex
topology of the state space during all of the stages sampling, denoising and guidance by operating

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Cobs

pθ(τ
i−1|τ i)

q(τ i|τ i−1)

Cobs

Riemannian Diffusion

Riemannian Guidance

Cobs

−∇
τi−1J−∇
τi−1J−∇
τi−1J

−∇
τi−1J−∇
τi−1J−∇
τi−1J

−∇
τi−1J−∇
τi−1J−∇
τi−1J

Cobs Cobs

Figure 1: Riemannian Trajectory Diffusion Model. (Top Right to Left) Multi-scale Riemannian Dif-
fusion is applied at the trajectory-level to create noisy state-space trajectories. During training, the
network learns to predict this state-space noise. (Top Left to Right) During Riemannian Denoising
pθ(τ

i−1|τ i) random trajectories are sampled on the state-space manifold, inpainted to start and goal
states and provided to the network that iteratively predicts the noise on the state space until it creates
feasible trajectories (e.g. avoid C-space obstacle in the figure). (Bottom Left to Right) Moreover,
the denoising steps are interleaved with on-manifold guidance steps on user-defined costs J(τ) that
can encode e.g. proximity to newly added obstacles (dotted circle in the figure). The model adapts
the trajectories via Riemannian gradient descent (∇τ i−1J) while denoising. This way the model
can sample trajectories that are both kinematically-feasible (high prior) and cost-minimizing (high-
likelihood). The blue and orange distributions show alternative paths between start and goal states
for a continuous joint on which the diffusion model is trained. For a revolute joint, the branch that
goes through joint limits will be discarded (Bottom Right).

on the embedded hypertorus instead of the euclidean space. This leads to stable training and faster
inference with less guidance steps which was a bottleneck of previous methods. Diffusion on man-
ifolds (Bortoli et al., 2022) is a promising direction to constrain the learned distributions. In our
setting, diffusion operates at the trajectory-level so the representation has to account for continuity
between the states too which motivates our representation in an embedding space instead of the quo-
tient representation. We perform on-manifold guidance via Riemannian gradient descent which has
not been explored for diffusion models on non-flat spaces to our knowledge. The diffusion steps are
visualized in Fig. 1.

2. Equivariance via Positive-Negative Embedding: We propose a novel way to account for sym-
metry of the trajectories while handling symmetry-breaking effects which we term positive-negative
embedding. In our setting, joint limits break full symmetry e.g. when the environment and the
robot both rotate around the base. While the trajectories can be equivariant between joint limits,
i.e. they can be adapted by a simple transformation of the sequence of states when the environment
and start and goal states rotate, beyond the joint limits such a simple transformation of a feasible
trajectory would result in an infeasible one. However, in such cases, we can utilize an alternative
feasible trajectory that does not go through the joint limits to create an equivariant pair of trajecto-
ries. At most one of the two will be feasible for each environment/base angle. We properly query
the expert to provide such a pair in an imitation learning setting and then we encode both trajectories
into a common prior distribution in a learned canonicalized environment (Fig.2). After denoising
and decanonicalization, the infeasible branch of the trajectories due to joint limits is discarded, thus
breaking the symmetry. We perform experiments in cluttered environments and pick-and-place tasks
to demonstrate the effectiveness and efficiency of our planner.

2 RELATED WORK

Diffusion Models for Planning: In Janner et al. (2022a), diffusion models were combined with
motion optimization via guidance for long-horizon trajectory generation. The idea is to predict all
timesteps simultaneously by iteratively refining sampled trajectories. MPD (Carvalho et al., 2023a)
built on this idea introducing guidance costs for manipulation. Recent surveys categorize current

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

methods in motion planning (Ubukata et al., 2024) and beyond (Urain et al., 2024). MPD has been
used for long range composition tasks conditioned on visual and language input (Liang et al., 2024)
as well as in hierarchical control (Chen et al., 2024).
Diffusion models on Manifolds: Generalizating diffusion or score-based models on riemannian
manifolds (Bortoli et al., 2022; Huang et al., 2022; Lou et al., 2023) has spiked interest recently.
Jing et al. (2022) design a diffusion model in the intrinsic representation of the torus for conformal
molecule generation. Our diffusion model, on the other hand, operates on the embedded hypertorus
to account for trajectory continuity. (Leach et al., 2022) performs SO(3) denoising for rotational
alignment. Manifold preserving guidance for diffusion models is only discussed for linear subspaces
of the data distribution (He et al., 2024; Chang et al., 2023). We perform guidance on the state space
manifold via a Riemannian Gradient descent on the hypertorus.
Equivariance: Geometric deep learning (Bronstein et al., 2021) provides strong structural induc-
tive biases to deep neural networks via the design of constrained layers (Cohen & Welling, 2016),
or learned canonicalization (Kaba et al., 2022). In robotics, equivariant policy learning (Yang et al.,
2023; Wang et al., 2024), provides a solution to the problem of learning from few demonstrations.
Differently than our approach, the learned policies are in the gripper space and defer motion plan-
ning to a classical algorithm which needs to solve the hard problem of inverse kinematics while
avoiding obstacles. Equivariance has been particularly useful for finding grasp poses for manipu-
lation (Simeonov et al., 2022). Urain et al. (2023) uses equivariant diffusion models on SE(3) to
learn distributions over poses; motion planning is deferred to guidance. Reversely, we learn trajec-
tories on the state space and use the end-effector poses for guidance. Closer to our motivation EDGI
(Brehmer et al., 2023) proposes Euclidean diffusion motion planning for problems with SE(3) sym-
metry. Differently, we perform diffusion, denoising and guidance on the state space manifold and
instead of conditioning the model to high-dimensional raw observations we achieve equivariance via
a novel positive-negative embedding framework.

3 METHOD

In this section we introduce our method - Equivariant on-Manifold Motion Planning Diffusion
(EqMMPD). After formulating the problem we discuss how to perform diffusion, denoising and
guidance on the state space manifold and how to incorporate equivariance in the system.

Let E = {O1, · · · , OK} describe an environment with K collidable objects represented as 3d
point clouds i.e. Oi = {pi ∈ R3|i ∈ [Ki]}. Let C be the configuration space of the robot,
q := (θ1, · · · , θn) ∈ C a configuration consisting of n 1-DoF joints and S the state space of the
robot i.e. s := [q, q̇] ∈ S including the joint velocities q̇ ∈ TqC. Given two points from the
state space sstart, sgoal our goal is to find a smooth, collision-free trajectory represented as T or-
dered waypoints τ = (s1, s2, · · · , sT) with s1 = sstart, sT = sgoal respecting physical, kinematic
constraints and other user defined costs encoded in the functional J : ST → R+. We consider
kinematic motion planning on the state space (which can account for non-holonomic constraints)
and assume that a low-level controller will execute the state transition. Detailed preliminaries on
Diffusion Models for Motion Planning are provided in Appendix 5.2.

It is important to distinguish the group SO(2) = {Rθ ∈ R2×2|RT
θ Rθ = I, det(Rθ) =

1, θ ∈ [−π, π)} of 2d rotations from its parametrization θ ∈ [−π, π) ⊂ R and from the space
S1 = {(cos θ, sin θ)|θ ∈ [−π, π)} ⊂ R2. To simplify the notation we take directly the real
values as elements of the lie algebra, since so(2) ≃ R and overload the exponential map as

exp(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. If we limit the domain to [−π, π) its inverse is log : SO(2) →

so(2) with log(R) = atan2(R21, R11) with atan2(y, x) = 2arctan y√
x2+y2+x

∈ (−π, π) for

(x, y) ∈ S1 − {(−1, 0), (1, 0), (0,−1)} and (±1, 0) 7→ ±π/2, (0,−1) 7→ −π. We also define:
Exp : R → S1, Exp(θ) = (cos θ, sin θ) which restricted to [−π, π) has inverse Log : S1 → R,
Log(x, y) = atan2(y, x). Also, we define the operator mod2π to map real values to the inter-
val [−π, π) as θmod2π = θ − 2π⌊ θ+π

2π ⌋. We distinguish 1) the planning problem time t ∈ T ,
which we use as subscript and 2) the diffusion process time i ∈ N which we use as superscript i.e.
τ i = (sit)t∈T is the i-times diffused trajectory from τ = τ0; the denoised trajectory. We denote by
τq, τq̇ the configuration and velocity parts of the state space trajectory.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 STATE SPACE MANIFOLD MOTION PLANNING DIFFUSION

In this section we develop our method. To illustrate the advantages we focus on a state space of
n revolute joints, which is the case for many popular static manipulators. Our method extends
seamlessly to prismatic joints, but the state space has trivial topology thus reducing to standard
architectures. In our case, S ⊂ TTn ≃ Tn × Rn. One option to solve the wrap-around prob-
lem is to operate directly on the quotient space R/2πZ. However, this (mod) representation cre-
ates discontinuous target trajectories for the neural network that operates in Euclidean space and
makes the denoising particularly hard. To solve both the wrap-around and the trajectory conti-
nuity problem we propose a diffusion model that operates on the embedding of the state space.
While the hypertorus Tn can be embedded in many ways to some euclidean space we select to
embed each degree of freedom separately and work on the product manifold (S1)n ⊂ R2n so that
the representation remains disentangled. The states are represented in this embedding space as:
s̃ = {(cos θ1, sin θ1, · · · , cos θn, sin θn), (ω1, · · · , ωn)}, i.e. τ̃ ∈ R(2n+n)T . Since we still use the
intrinsic coordinates (θ’s) and not project to unit circles in R2, a description in SO(2)n is more natu-
ral due to the connection with the lie algebra so(2)n which we will use to discuss the three stages of
diffusion, denoising, guidance next. When appropriate we leverage the isomorphism SO(2) ≃ S1.
In S1 the variables are denoted as τ̃ , in SO(2) as Rτ and in the lie algebra as τ .
3.1.1 RIEMANNIAN DIFFUSION AND DENOISING
Inspired by Leach et al. (2022) who perform diffusion on SO(3) using the isotropic normal, we
design an SO(2) analogue, which gives rise to IGSO(2)(R, σ2). We can get exact samples from
the distribution using the lie algebra so(2) as: θ ∼ N (θ;µ, σ2), R = exp(θ). Then, we say
that R ∼ IGSO(2)(Rµ, σ

2). Our distribution is induced by pushforwarding the gaussian measure
through the exponential map i.e. µIGSO(2)

(A) := µN (µ,σ2)(logA), A ⊂ SO(2). Since our distri-
bution is contained in a 1d-submanifold of R2×2 it is not absolutely continuous w.r.t. the Lebesque
measure, thus it does not have a density. We can study a corresponding density of some intrin-
sic parametrization of SO(2), such as the lie algebra so(2) which reveals the connection with the
representation of Jing et al. (2022) at least in the diffusion stage. Proof is included in Appendix 5.1.

Lemma 3.1. If R ∼ IGSO(2)(Rµ, σ
2) then θ := log(R) ∼ WN (θ;µmod2π, σ2), where

WN (θ;µ, σ2) is the wrapped Gaussian with location,uncertainty parameters µ ∈ [−π, π), σ > 0

and density: WN (θ;µ, σ2) = 1√
2πσ2

∑∞
k=−∞ exp

(
− (θ−µ−2πk)2

2σ2

)
, θ ∈ [−π, π).

We remind that our values are still on SO(2) and not [−π, π). There are some qualitative differences
between WN (µ, σ2) and IGSO(2)(R, σ2). For example, while in [−π, π) the wrapped normal
does not necessarily have mean proportional to µ we can use the circular mean (Mardia & Jupp,
2009) E[cos θ + i sin θ] = e−σ2

(cosµ+ i sinµ) to prove that IGSO(2)(Rµ, σ
2) indeed has a mean

proportional to Rµ: ER∼IGSO(2)(Rµ,σ2)[R] = e−σ2

Rµ. Our representation has deep connections to
directional statistics (Mardia & Jupp, 2009).

Standard diffusion models perform efficient sampling of the forward process by performing mul-
tiscale diffusion in a single step. We can show that µIGSO(2)(R,σ2) is closed under (measure)
convolutions. It is known that ϕ1 ∼ WN (µ1, σ

2
1) and ϕ2 ∼ WN (µ2, σ

2
2) then ϕ = (ϕ1 +

ϕ2)mod2π ∼ WN ((µ1 + µ2)mod2π, σ2
1 + σ2

2) (Jammalamadaka et al., 2001). From this us-
ing the exponential map it is straightforward to show that if R1/2 ∼ IGSO(2)(Rµ,1/2, σ

2
1/2) then

R1R2 ∼ IGSO(2)(Rµ,1Rµ,2, σ
2
1 + σ2

2). For the n-fold product measure we overload the notation:
R ∼ IGSO(2)n(Rµ, σ), where now R,Rµ, σ are n-dimensional lists. Whenever an operation (like
multiplication) is between lists it is assumed to be pointwise.

Diffusion: Suppose the expert planner P (sstart, sgoal, T, E) is queried to provide trajectories of
successful plans τ0 = (s0t)t∈[T] with s0t ∈ [−π, π)n × Rn which we gather in a dataset D. Then,
let τ0 ∼ q(τ0|E). Using the closure under convolutions we can perform forward sampling in one
step. For i ∈ [N], Rϵi ∼ IGSO(2)nT (I, (1 − ᾱi)) then for the configuration part of the trajectory
τq we create the noisy trajectories as Rτ iq = Rϵ

i exp(
√
ᾱiτ

0
q). Then, τ̃ i ← (Rτ iq, τ

i
q̇) where we use

the isomorphism SO(2) ≃ S1 for the configuration space while for the angular velocities we use
standard Euclidean diffusion.

Denoising: We focus on the configuration space and follow Leach et al. (2022). Since SO(2) is
compact we sample uniformly (as θ ∈ U [−π, π), R = exp θ): RτNq ∼ USO(2)nT . We parametrize

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the inverse process as pw(Rτ i−1
q |Rτ i, i) = IGSO(2)nT (Rµ(

Rτ i, i;w), β̃i), where Rµ(
Rτ i, i;w) =

exp
(√

αi−1(1−ᾱi−1)

1−ᾱi
logRτ iq

)
exp

(√
ᾱi−1βi

1−ᾱi
logRµw(

Rτ i, i)
)

. We further reparametrize the sec-
ond term to predict the noise directly instead of the mean,

Rµw(
Rτ i, i) = exp

(
1√
ᾱi

logR τ i
)
exp

(
− 1√

1− ᾱi
Logϵqw(τ̃

i, i)

)
.

The network is ϵw : (S1)n × Rn × [N] → (S1)n × Rn and ϵqw, ϵ
q̇
w the configuration and velocity

parts. Here we leverage SO(2) ≃ S1 to provide as input to the network the state-space trajectories
in S1 without unnecessarily increasing the input size. The network predicts the noise on S1 which
is easier than predicting in SO(2) since the former only needs a normalization, while the later has
orthogonality and determinant constraints that need to be satisfied too. Note that, if we move be-
tween ϵ and (cos ϵ, sin ϵ) we do not actually need to normalize the output since this is done already
by arctan. Our representation imposes continuity in the input of the network for continuous trajec-
tories. A quotient representation that uses θmod2π to represent the input trajectories would not be
continuous since the operator is not continuous.
Training Loss: L(w) = E

[
d
(
Exp(1√

1−ᾱi
logRϵq), ϵqw(τ̃

i, i)
)
+ ∥ϵq̇ − ϵq̇w(τ̃

i, i)∥22
]

where the

expectation is over (i, ϵq̇, τ0) ∼ U(1, N)×N (0, I)× q(τ0|E) and ϵq|i ∼ IGSO(2)nT (I,
√
1− ᾱi).

τ̃ i is described in the diffusion step and d : Tn × Tn → R+ is the chordal distance on torus here.

Riemannian Guidance: We observe that the update step in MPD during posterior sampling can
be conceived as a two-stage process: 1. deterministic denoising: τ i−1 ← µw(τ

i, i) and 2. (noisy)
gradient descent (around J i−1): τ i−1 ← τ i−1 − ηi−1∇J i−1(τ i−1) + β̃iz, z ∼ N (0, I). Thus,
guidance tries to minimize the cost term J i−1 in a neighborhood around the denoised sample τ i.
However, this optimization uses gradient descent in the Euclidean space which requires clipping
or small gradient steps to converge which is inefficient. First we note that costs are expressed on
the trajectories which live on the state space manifold and not in the Euclidean space. Then, c(θ)
with θ ∈ [−π, π) can be written in SO(2) as c(θ) = c(log(Rθ)) = (c ◦ log)(Rθ). By operating
on the manifold we can also introduce more useful metrics that have been well studied on SO(2)
(Chirikjian & Kyatkin, 2016). For example, depending on the requirements we can either optimize
the cost that accounts for the longer arclength d(R1, R2) = ∥ logR1 − logR2∥2 as before, or costs
that minimize the geodesic distance d(R1, R2) = ∥ log(RT

1 R2)∥. To optimize J : SO(2)n → R+

we will perform Riemannian gradient descent (RGD) (Boumal, 2023) on SO(2)n. At iteration
k, given gradient step αk, RGD updates the current state as Rk+1 = Rk exp(−αkR

−1
k ∇J(Rk)),

where multiplication between lists is pointwise. We use the uniformity of tangent spaces on lie
groups to simplify to an expression amenable to automatic differentiation. The proof is included in
Appendix 5.1.

Lemma 3.2. The RGD update on SO(2)n can be written: Rk+1 =
Rk exp (−αk∇θJ(Rk exp(θ))|θ=0)

All trajectories are on the manifold after each guidance step. These are subsequently given as input
to the network for the next denoising step on the manifold. Reversely, denoising provides RGD with
a trajectory on the manifold to initialize the updates. We visualize all steps in Fig. 1. We use similar
costs as in Carvalho et al. (2023a) but reparametrized on the manifold as explained above.

3.2 EQUIVARIANT MOTION PLANNING BY POSITIVE-NEGATIVE EMBEDDING

In this section we adapt the planner to global changes in the environment. We propose to learn
a more generalizable prior using symmetries in the trajectories. In particular, we discuss SO(2)
symmetries when the environment and the base both rotate. Local changes such as addition of
new obstacles will still be handled by diffusion guidance, but when these local changes are com-
bined with global transformations our generalizable treatment plus the diffusion guidance will be
more effective. As in previous works Carvalho et al. (2023a) we avoid to condition the diffusion
model on the environment to keep it lightweight. However, in this case the model is only a func-
tion of start and goal states s, g so how can we make the model predict feasible trajectories for
a different environment E ′ and same s, g? We propose to learn an equivariant frame that aligns
the environment to the environment that the model has been trained on. Moreover, the frame has
to equivary smoothly with the rotations of the environment. For example, the PCA eigenvectors
on the point cloud E do not satisfy the smoothness requirement due to sign ambiguity that creates

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

+
-i

(Rns,Rng) (Rps,Rpg)

RnE E RpE

RT
n

RT
p

(s, g)τN

Rnτ
0 Rpτ

0

Cobs

Figure 2: Equivariant Diffusion: Given an environment (represented as point clouds), we first canon-
icalize it with an equivariant frame (Rn, Rp in the figure), together with the start and goal states. We
perform diffusion on the canonical triplet (E , s, g) and then decanonicalize the resulting trajectories
by applying the same frame reversely. Following the arrows one can see that this is the desired out-
put as if we applied the diffusion on one of {(RnE , Rns,Rng), (RpE , Rps,Rpg)} (depending on
whether the sampled trajectory is orange or blue). In the figure you can see the joint limits (at−π, π
for simplicity). Only one branch of trajectories is feasible for a specific rotation of the environment.
Both are encoded in the diffusion model which is trained on the canonical environment (middle) but
the one that goes through the joint limits will be discarded after de-rotation.

many possible frames for each rotation. They are also very susceptible to noise. Instead we use
a small SO(3)-equivariant network (Thomas et al., 2018) built using e3nn library (Geiger et al.,
2022). The network f does not output a 3d frame only a single 3d vector v⃗ = f(E), from which

we create Rv⃗ =

(
⃗̂vx −⃗̂vy 0
⃗̂vy

⃗̂vx 0
0 0 1

)T

, where ˆ⃗v = v⃗
∥(v⃗x,v⃗y)∥ . The canonical environment is then computed

as Ec = Rv⃗E where RE = (ROi)i∈[K]. It is easy to see that the canonical environment remains
invariant to SO(2)-rotations. For all R ∈ SO(2)z ⊂ SO(3) (SO(2)z is isomorphic to SO(2) but
lifted along z to act on 3d vectors), due to equivariance of f we have f(RE) = Rf(E) = Rv⃗. Then,
R̂v⃗ = R⃗̂v and RR⃗̂v = Rv⃗R

T from which we get (Rv⃗R
T)(RE) = Rv⃗E = Ec. Also the frame is

a smooth function of the environment by construction. We denote the action of the rotation on the
state space as Rv⃗s = ((log(Rv⃗ exp s

θ
1), ω1), s2, · · · , sn). An important intricacy arises due to joint

limits. If τ ∈ P (s, g, T, E) (here inclusion means that the trajectory is kinematically feasible for the
problem) then RT τ ∈ P (Rs,Rg, T,RE) only for some rotations R ∈ SO(2) as long as the result-
ing trajectory does not hit the joint limits. Any deterministic equivariant model (independently of
whether the environment is conditioning the model or not) is doomed to predict the rotated trajectory
even beyond joint limits thus overconstraining the problem.

However, if we assume feasibility between s, g i.e. that for a given environment, start and goal
there is a feasible trajectory contained between the start and goal then even if we cannot get a
feasible trajectory by decanonicalizing the predicted trajectory (call it positive) there is another (not
necessarily unique) trajectory (call it negative) that starts and ends at the corresponding states but is
feasible and the union of the ranges cover the whole SO(2). At most one of the two is feasible for
a given rotation of the environment (the ranges though depend on the trajectories). Thus, together
they form an equivariant pair Fig. 2. The negative trajectory might differ a lot from the original
depending on the environment. We cannot construct it as a transformation of the positive but we can
query the planner appropriately to provide one such negative (if it exists) as we show next. If the
joint limits are at −π ≤ θmin < θmax ≤ π then for a fixed environment E and (s, g) we query:

τp ∼ RT
θmin−s0P (Rθmin−s0s,Rθmin−s0g, T,Rθmin−s0E) (1a)

τn ∼ RT
θmax−s0P (Rθmax−s0s,Rθmax−s0g, T,Rθmax−s0E) (1b)

With these queries we guarantee that the planner will return the total equivariant pair for which
the union of the ranges cover SO(2) (if one exists) and not for example two positive trajectories,
since any feasible trajectory for the first equation necessarily crosses the joint limits in the second
equation. Thus, the expert planner has to select the opposite path that connects s, g in the circle if
one exists.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We will utilize the power of multimodality of diffusion models in order to embed both trajectories
(that are feasible for different environments) in the same start and goal position for the canonical
environment that the model is trained on thus creating an equivariant prior. I.e. (s, g) 7→ (Rv⃗s,Rv⃗g)
and (τp, τn) 7→ (Rv⃗τ

p, Rv⃗τ
n). We can have multiple positive (and negative) trajectories from the

same start and goal. Every query to a non deterministic expert (e.g. sampling-based) will give a
different one. We query them in pairs. The distribution on the trajectories given s, g does not need
to be uniform although having them balanced would help during generation. During training the
diffusion model ϵ(τ̃ i, i) will learn to denoise both τ̃p, τ̃n in the canonical environment. The model is
indifferent to joint limits. Moreover, we do not use the joint limit cost for guidance since we want the
diffusion model, which is ignorant to the actual rotation of the environment, to sample trajectories
for any rotated environment. In particular, it needs to sample trajectories that cross the joint limits for
the canonical environment but when the actual rotation is applied in the output, the final trajectory
does not cross joint limits anymore. So even if the adapted (s, g) fall into the joint limits, the
model can predict a path between them that will become feasible in some other rotated environment
after de-canonicalizing. During inference given (s, g, E) we canonicalize the environment and start
and goal and sample trajectories from (f(E)s, f(E)g) including both branches. The costs are also
canonicalized using f(E)J and since all costs are assumed to be scalar-fields for rotation (J(τ) ∈
R+), the particular action of SO(2) is: (f(E)J)(τ) = J(f(E)−1τ). Guidance will be performed
in both branches and the generated trajectories will be decanonicalized as f(E)T τ . The infeasible
branch will be discarded after simulating the trajectory from the original s, g by checking which of
the two crosses the joint limits. See Fig.2.

4 EXPERIMENTS

In this section, we verify our claims through simulation experiments, and answer the following
questions: (1) Is our on-manifold diffusion model more effective in achieving lower costs and
hence, better performance with fewer guidance steps? (2) Can we learn feasible plans that are also
generalizable to different transformations of the environment?
Environments and Tasks We evaluate our algorithm on the 7-dof Emika Franka Panda arm that is
deployed in two environments - the PandaSpheres in Isaac Gym, as described in Carvalho et al.
(2023a), and a custom environment shown below in CoppeliaSim integrated with RLBench.
The custom environment has spherical obstacles on the right, and a shelf in close vicinity on the
left while being restricted by the table from below. The task in PandaSpheres environment is to
generate feasible trajectories from random initial and final states, while minimizing an objective cost
function, thus, providing a venue for fair baseline comparison and planner assessment. Our custom
environment is more task-oriented, where the success criterion requires not only collision-free
navigation but also planning/replanning feasible trajectories from random-initialized positions,
picking up the cup, and placing it at a given position on the shelf while keeping it upright.
Algorithms and Baselines We compare our proposed algorithm’s performance against the RRT-
Connect + GPMP which is a sampling-based optimization planner, and MPD (Carvalho et al.,
2023a) in the canonical environment (MPD Canonical). The MPD Canonical model operates over
5 cycles where each cycle consists of 25 diffusion steps, followed by 5 guidance steps, whereas our
model executes the same 5-cycle process, but with only 2 guidance steps per cycle. Moreover, in
the rotation augmentation test, the trajectories are first obtained in the canonical environment and
then rotated back to the original environment. We also consider EQ-prior-guidance, which consists
of our Equivariant On-manifold diffusion-based planner as Equivariant priors that are denoised for
a total of 125 steps, followed by 10 guidance steps.
Metrics We chose 5 metrics to assess our performance with that of the baselines - (1) S denotes
the success rate of the trajectory i.e., for a given trial, the success rate is one if at least one of the
trajectories in the output batch is feasible. (2) Cs denotes the smoothness cost, which is a measure
of how smooth on average, the trajectories are in the batch. While the Gaussian process promotes
smoothness and thus, lowers Cs we compute it as the average of the sum of pairwise norm of the
velocities of the trajectories, as done in Carvalho et al. (2023a) to keep the comparison fair. (3) Cp
denotes the path length cost that is computed as the average of the sum of the pairwise norm of the
joint angles. (4) Cb denotes the best cost (least) (sum of path length and smoothness costs) that a
trajectory exhibited in the batch. (5) t - denotes the overall inference time that the planner took to
output a batch of 50 trajectories.
Discussion The results in the PandaSpheres Environment are summarized in Table 1. The first
three rows depict the performance of each of the algorithms in the canonical frame only, where
the results are averaged over 10 initial and final configurations, randomly chosen. The last three

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

S ↑ Cs ↓ Cp ↓ Cb ↓ t ↓
RRTC+GPMP 1.0 − 8.1± 1.1 − 226.14± 13.4

}
Eqi,qf [.]MPD Canonical 1.0± 0.0 7.6± 3.41 6.5± 2.74 11.54± 6.07 23.12± 1.1

EQ-MMPD 1.0± 0.0 8.7± 1.7 7± 1.45 12.6± 2.92 9.98± 0.9

MPD Canonical 0.43± 0.22 8.77± 2.82 4.65± 1.49 11.15± 3.68 − }
Eqi,qfEg[.]EQ-MMPD 0.97± 0.03 8.61± 1.57 7.01± 0.9 12.9± 2.31 −

EQ-Prior-Guidance 0.85± 0.17 9.3± 1.46 7.51± 1.83 13.96± 3.02 10.31± 1.85

Table 1: Metrics are reported as (µ ± σ) with ↑ indicate that higher values are better, and with ↓
indicate that lower values are better.

Figure 3: The left figure illustrates the canonical environment. The middle figure illustrates a random
rotation transformation of the environment. The right figure illustrates a random rotation of the
environment, while the spherical obstacles are slightly perturbed away from their usual positions
(global+local).

rows depict the performance of each of the algorithms with 10 randomly sampled initial and final
configurations, but each consisting of 72 rotation transformations i.e., 5◦ increments in the range of
[0− 360)

◦ of the environment. We can infer from the table that (1) EQ-MMPD compares similarly
to MPD in the canonical frame, albeit with lower variations and lower guidance steps. (2) EQ-
MMPD obtains an overall success rate of 98%, while the MPD canonical achieves about 43%, due
to the lack of the negative trajectory. Although our path length appears to be high, this is precisely
because our formulation can predict the negative trajectory in cases where MPD Canonical fails. We
do so with fewer guidance steps as compared to MPD canonical, thereby achieving a more efficient
planner with faster inference time. (3) Our performance across all metrics is better than the EQ-
Prior-Guidance model, even though the total number of denoising steps and guidance steps remains
the same. This empirically shows us that the optimization is more effective when interleaved with
smaller chunks of denoising steps over multiple loops.

RLBench experiments: Traditional motion planners often infer the configuration-space trajectory
based on the end-effector path by solving the inverse-kinematics problem at each stage, with some
suboptimal velocity profile like constant velocity. This may be particularly disadvantageous in a
cluttered environment. We base our custom environment in this regard by making the workspace
cluttered with spherical obstacles and following a task-based theme, that allows for replanning
between two waypoints. The arm configuration and the cup position (within the workspace in the
front) are randomly initialized in the beginning, and the goal is fixed on a shelf in close vicinity
to the arm. Fig. 3 describes the simulation environment, along with two variations. In all three
cases, we can see that the proposed EqMMPD succeeds in finding a feasible trajectory, and hence
completing the task by succeeding with an average of 8.2 out of 10 success rate, within an average
inference time of 9.12s. The inverse-kinematics motion planner in RLBench has an average of 4.6
out of 10 success rate, with an average inference time of 12.32s. Details on real-world experiments
are provided in the supplementary.
Conclusion: In this paper we proposed a novel diffusion motion planner that is topologically and
symmetry informed. It operates directly on the state space manifold during all stages of diffusion,
denoising and guidance. To achieve that we introduced a novel diffusion model operating on the em-
bedded hypertorus and guided via Riemannian gradient descent. Additionally, it encodes symmetric
trajectories in an equivariant prior that accounts for symmetry-breaking effects via a novel positive-
negative embedding. Our experimental results demonstrate that the proposed method outperforms
existing approaches in terms of planning efficiency and generalization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

REFERENCES

Mayur J. Bency, Ahmed Hussain Qureshi, and Michael C. Yip. Neural path planning: Fixed time,
near-optimal path generation via oracle imitation. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2019, Macau, SAR, China, November 3-8, 2019, pp.
3965–3972. IEEE, 2019. doi: 10.1109/IROS40897.2019.8968089. URL https://doi.org/
10.1109/IROS40897.2019.8968089.

Valentin De Bortoli, Emile Mathieu, Michael John Hutchinson, James Thornton, Yee Whye Teh,
and Arnaud Doucet. Riemannian score-based generative modelling. In Alice H. Oh, Alekh Agar-
wal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=oDRQGo8I7P.

Nicolas Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge University
Press, 2023.

Johann Brehmer, Joey Bose, Pim de Haan, and Taco S Cohen. Edgi: Equivariant diffusion for plan-
ning with embodied agents. In Advances in Neural Information Processing Systems, volume 36,
pp. 63818–63834. Curran Associates, Inc., 2023.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges. arXiv preprint arXiv:2104.13478, 2021.

J. Carvalho, A.T. Le, M. Baierl, D. Koert, and J. Peters. Motion planning diffusion: Learning
and planning of robot motions with diffusion models. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2023a.

João Carvalho, An T. Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion planning diffusion:
Learning and planning of robot motions with diffusion models. In IROS, pp. 1916–1923, 2023b.
doi: 10.1109/IROS55552.2023.10342382.

Junwoo Chang, Hyunwoo Ryu, Jiwoo Kim, Soochul Yoo, Joohwan Seo, Nikhil Prakash, Jongeun
Choi, and Roberto Horowitz. Denoising heat-inspired diffusion with insulators for collision free
motion planning. arXiv preprint arXiv:2310.12609, 2023.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
planning with diffusion, 2024.

G.S. Chirikjian and A.B. Kyatkin. Harmonic Analysis for Engineers and Applied Scientists: Up-
dated and Expanded Edition. Dover Books on Mathematics. Dover Publications, 2016. ISBN
9780486795645. URL https://books.google.com/books?id=EO1lDAAAQBAJ.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In Maria Florina Balcan
and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pp. 2990–2999, New York,
New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/
v48/cohenc16.html.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021a.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
NeurIPS, pp. 8780–8794, 2021b.

Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Informed rrt*: Optimal
sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA,
September 14-18, 2014, pp. 2997–3004. IEEE, 2014. doi: 10.1109/IROS.2014.6942976.

Mario Geiger, Tess Smidt, Alby M., Benjamin Kurt Miller, Wouter Boomsma, Bradley Dice, Kos-
tiantyn Lapchevskyi, Maurice Weiler, Michał Tyszkiewicz, Simon Batzner, Dylan Madisetti, Mar-
tin Uhrin, Jes Frellsen, Nuri Jung, Sophia Sanborn, Mingjian Wen, Josh Rackers, Marcel Rød, and
Michael Bailey. e3nn/e3nn: 2022-04-13, April 2022. URL https://doi.org/10.5281/
zenodo.6459381.

9

https://doi.org/10.1109/IROS40897.2019.8968089
https://doi.org/10.1109/IROS40897.2019.8968089
https://openreview.net/forum?id=oDRQGo8I7P
https://books.google.com/books?id=EO1lDAAAQBAJ
https://proceedings.mlr.press/v48/cohenc16.html
https://proceedings.mlr.press/v48/cohenc16.html
https://doi.org/10.5281/zenodo.6459381
https://doi.org/10.5281/zenodo.6459381

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei-
Hsiang Liao, Yuki Mitsufuji, J Zico Kolter, Ruslan Salakhutdinov, and Stefano Ermon. Manifold
preserving guided diffusion. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=o3BxOLoxm1.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS.
Curran Associates Inc., 2020. ISBN 9781713829546.

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron Courville. Rie-
mannian diffusion models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=ecevn9kPm4.

Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions for robot motion
planning. In IEEE ICRA, 2018.

S.R. Jammalamadaka, A. Sengupta, and A. Sengupta. Topics in Circular Statistics. Series on
multivariate analysis. World Scientific, 2001. ISBN 9789812779267. URL https://books.
google.com/books?id=sKqWMGqQXQkC.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In ICML, 2022a.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 9902–9915. PMLR,
17–23 Jul 2022b.

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Tor-
sional diffusion for molecular conformer generation. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems, volume 35, pp. 24240–24253. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/994545b2308bbbbc97e3e687ea9e464f-Paper-Conference.pdf.

Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravanbakhsh.
Equivariance with learned canonicalization functions. In NeurIPS 2022 Workshop on Symmetry
and Geometry in Neural Representations, 2022. URL https://openreview.net/forum?
id=pVD1k8ge25a.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp: Stochastic trajectory
optimization for motion planning. In IEEE International Conference on Robotics and Automation,
2011.

L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation,
1996. doi: 10.1109/70.508439.

J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach to single-query path planning. In
IEEE ICRA, 2000. doi: 10.1109/ROBOT.2000.844730.

Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning, 1998.

Adam Leach, Sebastian M Schmon, Matteo T. Degiacomi, and Chris G. Willcocks. Denoising
diffusion probabilistic models on SO(3) for rotational alignment. In ICLR 2022 Workshop on
Geometrical and Topological Representation Learning, 2022. URL https://openreview.
net/forum?id=BY88eBbkpe5.

Zhixuan Liang, Yao Mu, Hengbo Ma, Masayoshi Tomizuka, Mingyu Ding, and Ping Luo. Skilld-
iffuser: Interpretable hierarchical planning via skill abstractions in diffusion-based task execu-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 16467–16476, June 2024.

10

https://openreview.net/forum?id=o3BxOLoxm1
https://openreview.net/forum?id=ecevn9kPm4
https://openreview.net/forum?id=ecevn9kPm4
https://books.google.com/books?id=sKqWMGqQXQkC
https://books.google.com/books?id=sKqWMGqQXQkC
https://proceedings.neurips.cc/paper_files/paper/2022/file/994545b2308bbbbc97e3e687ea9e464f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/994545b2308bbbbc97e3e687ea9e464f-Paper-Conference.pdf
https://openreview.net/forum?id=pVD1k8ge25a
https://openreview.net/forum?id=pVD1k8ge25a
https://openreview.net/forum?id=BY88eBbkpe5
https://openreview.net/forum?id=BY88eBbkpe5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Aaron Lou, Minkai Xu, Adam Farris, and Stefano Ermon. Scaling riemannian diffusion models.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=FLTg8uA5xI.

K.V. Mardia and P.E. Jupp. Directional Statistics. Wiley Series in Probability and Statistics.
Wiley, 2009. ISBN 9780470317815. URL https://books.google.com/books?id=
PTNiCm4Q-M0C.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML. PMLR, 2021.

Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srinivasa. Chomp: Gradient opti-
mization techniques for efficient motion planning. In IEEE International Conference on Robotics
and Automation, 2009. doi: 10.1109/ROBOT.2009.5152817.

Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez,
Pulkit Agrawal, and Vincent Sitzmann. Neural descriptor fields: Se(3)-equivariant object rep-
resentations for manipulation. In 2022 International Conference on Robotics and Automa-
tion, ICRA 2022, Philadelphia, PA, USA, May 23-27, 2022, pp. 6394–6400. IEEE, 2022. doi:
10.1109/ICRA46639.2022.9812146. URL https://doi.org/10.1109/ICRA46639.
2022.9812146.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In ICML. JMLR.org, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, 2019.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point
clouds, 2018. URL https://arxiv.org/abs/1802.08219.

Marc Toussaint. Robot trajectory optimization using approximate inference. In ICML. Association
for Computing Machinery, 2009. ISBN 9781605585161. doi: 10.1145/1553374.1553508.

Toshihide Ubukata, Jialong Li, and Kenji Tei. Diffusion model for planning: A systematic literature
review, 2024. URL https://arxiv.org/abs/2408.10266.

Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se(3)-diffusionfields: Learning
smooth cost functions for joint grasp and motion optimization through diffusion. In IEEE ICRA,
2023.

Julen Urain, Ajay Mandlekar, Yilun Du, Mahi Shafiullah, Danfei Xu, Katerina Fragkiadaki, Georgia
Chalvatzaki, and Jan Peters. Deep generative models in robotics: A survey on learning from
multimodal demonstrations, 08 2024.

Dian Wang, Stephen Hart, David Surovik, Tarik Kelestemur, Haojie Huang, Haibo Zhao, Mark
Yeatman, Jiuguang Wang, Robin Walters, and Robert Platt. Equivariant diffusion policy. In 8th
Annual Conference on Robot Learning, 2024. URL https://openreview.net/forum?
id=wD2kUVLT1g.

Jiankun Wang, Wenzheng Chi, Chenming Li, Chaoqun Wang, and Max Q.-H. Meng. Neural rrt*:
Learning-based optimal path planning. IEEE T-ASE, 2020. doi: 10.1109/TASE.2020.2976560.

Cheng-Fu Yang, Haoyang Xu, Te-Lin Wu, Xiaofeng Gao, Kai-Wei Chang, and Feng Gao. Planning
as in-painting: A diffusion-based embodied task planning framework for environments under
uncertainty, 2023.

11

https://openreview.net/forum?id=FLTg8uA5xI
https://openreview.net/forum?id=FLTg8uA5xI
https://books.google.com/books?id=PTNiCm4Q-M0C
https://books.google.com/books?id=PTNiCm4Q-M0C
https://doi.org/10.1109/ICRA46639.2022.9812146
https://doi.org/10.1109/ICRA46639.2022.9812146
https://arxiv.org/abs/1802.08219
https://arxiv.org/abs/2408.10266
https://openreview.net/forum?id=wD2kUVLT1g
https://openreview.net/forum?id=wD2kUVLT1g

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

5 APPENDIX

5.1 LEMMAS AND PROOFS

Lemma 5.1. If R ∼ IGSO(2)(Rµ, σ
2) then θ := log(R) ∼ WN (θ;µmod2π, σ2), where

WN (θ;µ, σ2) is the wrapped Gaussian with location,uncertainty parameters µ ∈ [−π, π), σ > 0
and density:

WN (θ;µ, σ2) =
1√
2πσ2

∞∑
k=−∞

exp

(
− (θ − µ− 2πk)2

2σ2

)
, θ ∈ [−π, π)

Proof. Let ϕ ∼ N (µ, σ2) be the value such that Rϕ ∼ IGSO(2)(Rµ, σ
2). Then, θ = logRϕ =

log expϕ = ϕ mod 2π. For −π ≤ a < b < π,P[θ ∈ (a, b)] = P[ϕ ∈ ∪k∈Z(a + 2πk, b +

2πk)] =
∑

k∈Z P[ϕ ∈ (a+ 2πk, b+ 2πk)] =
∑

k∈Z
∫ b+2πk

a+2πk
N (ϕ;µ, σ2)dϕ =

∑
k∈Z

∫ b

a
N (ϕ;µ+

2πk, σ2)dϕ =
∫ b

a

∑
kN (ϕ;µ+ 2πk, σ2)dϕ. Set a, b = −π, x. Differentiation gives the result.

Lemma 5.2. The RGD update on SO(2)n can be written: Rk+1 =
Rk exp (−αk∇θJ(Rk exp(θ))|θ=0)

Proof. We need to compute the gradient ∇J(R) ∈ TRSO(2)n in a form that we can use automatic
differentiation. We note that TRSO(2)n = {RX|X ∈ so(2)n} i.e. for Lie groups all tangent
spaces can be computed by a left-action of the group on the lie algebra which is the tangent space
at identity. The gradient ∇J : SO(2)n → TSO(2)n is a vector field on the manifold. At R ∈
SO(2)n it is defined as the unique vector satisfying dJR(V) = gR(∇J(R), V),∀V ∈ TRSO(2)n,
where dJR : TRSO(2)n → R is the differential dJR(V) = d

dt

∣∣
t=0

J(R exp(tR−1V)) and gR :

TRSO(2)n × TRSO(2)n → R is a Riemannian metric which is our setting will be gR(U, V) =∑n
i=1

1
2Tr(U

T
i Vi), U, V ∈ TRSO(2)n which is the metric induced by the inner product in so(2)n

i.e., ⟨U, V ⟩ =
∑n

i=1
1
2Tr(U

T
i Vi), U, V ∈ so(2)n. Since ∇J(R) ∈ TRSO(2)n we set ∇J(R) =

RgradJ(R) where gradJ(R) ∈ so(2)n and by substituting dJR(RX) = ⟨gradJ(R), X⟩,∀X ∈
so(2)n. Thus, R−1∇J(R) = gradJ(R) and Rk+1 = Rk exp(−αkgradJ(R)). The problem is

simplified to computing gradJ(R). Since SO(2) has a single generator g =

(
0 −1
1 0

)
, SO(2)n

has n generators G = (G1, · · · , Gn) where Gi is the generator of SO(2) lifted to SO(2)n. Then
gradJ(R) =

∑n
i=1 β(R)iGi. Substituting Gi into the differential gives we get dJR(RGi) =

⟨gradJ(R), Gi⟩ = β(R)i, since G2
i = I . Then, β(R)i =

d
dθi

∣∣∣
θi=0

J(R exp(θiGi)).

Rk+1 = Rk exp

(
−αk

n∑
i=1

β(R)iGi

)

Rk+1 = Rk exp

(
−αk

n∑
i=1

(
d

dθi

∣∣∣∣
θi=0

J(Rk exp(θiGi))

)
Gi

)
Observe that every Gi embeds g to a different dimension, so we can also write gradJ(R) =
(β(R)1g, . . . , β(R)ng)

n
i=1. Now if we gather θ = (θ1, . . . , θn) we get:

Rk+1 = Rk exp (−αk∇θJ(Rk exp(θ))|θ=0) = Rk exp (−αk∇θ(J ◦ exp)(θk))

5.2 PRELIMINARIES ON DIFFUSION MODELS FOR MOTION PLANNING

Diffusion models transform a trajectory from the data distribution τ0 ∼ q(τ0|E) by iteratively apply-
ing a time-dependent Markov diffusion process (typically parameter-free e.g. Gaussian with fixed
variance). I.e. for all i ∈ [N], q(τ i|τ i−1, i) = N (τ i;

√
1− βiτ

i−1, βiI) where βi is the noise
schedule (Nichol & Dhariwal, 2021). If τ0 live in Euclidean space, the distribution at time step i is
again Gaussian and permits sampling in one step without running the forward diffusion process i.e.,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

q(τ i|τ0, i) = N (τ i;
√
ᾱiτ

0, (1−ᾱi)I), αi = 1−βi, ᾱi =
∏i

j=1 αj . Diffusion models approximate
the inverse (denoising) process, q(τ i−1|τ i, i), i ∈ [N], that transforms noisy trajectories back to the
data distribution with a parametrized Gaussian (usually with parameter-free variance for stability):
pw(τ

i−1|τ i, i) = N (τ i−1;µi = µw(τ
i, i),Σi = β̃iI), β̃i = βi(1 − ᾱi−1)/(1 − ᾱi), i ∈ [N].

The terminal condition is set to p(τN) = N (0, I). Since the posterior mean has a closed form for
this parametrization, DDPM (Ho et al., 2020) proposed to parametrize the noise term directly i.e.,
µw(τ

i, i) = 1√
αi

(
τ i − 1−αi√

1−ᾱi
ϵw(τ

i, i)
)

. During training we do not have access to q(τ0|E) but

only to an empirical distribution q̃(τ0|E) of samples. Typically, there is an expert planner P that
provides these samples as τ0 = P (sstart, sgoal, T, E). The parameters θ are optimized by inject-
ing noise of different scales to the original trajectory and predicting the noise level directly via the
loss: L(w) = E(i,ϵ,τ0)∼U(1,N)×N (0,I)×q̃(τ0|E)[∥ϵ − ϵw(τ

i =
√
ᾱiτ

0 +
√
1− ᾱiϵ, i)∥22] This loss

is an upper bound to the negative log likelihood of the data Eτ0∼q̃(τ0|E)[− log pw(τ
0)]. Planning-

as-inference poses motion planning as posterior sampling. If O is random variable describing our
task desiderata p(τ |O) ∝ p(O|τ)pw(τ) ∝ exp(−J (τ))pw(τ), where the likelihood depends on
user defined costs and constraints via J (τ) =

∑
j λjcj(τ) with λj > 0. These include smooth-

ness constraints, joint limits, end-effector costs etc. In principle the cost could also depend on the
diffusion step aka J i(τ), i ∈ [N]. Akin to classifier-based guidance (Dhariwal & Nichol, 2021b),
the authors in (Carvalho et al., 2023b) show that (under some assumptions) sampling this posterior
can be done directly during sampling the prior trajectory by modifying the denoised trajectory in the
diffusion model at each step i ∈ [N]. First the sample τN ∼ N (0, I) is drawn then N denoising
steps are applied sequentially where the diffusion neural network at each step predicts ϵw(τ i, i) and
the trajectory is updated as: τ i−1 = µw(τ

i, i)−
∑

j λj∇τ c
i−1
j (τ)|τ=µw(τ i,i) + β̃iz, z ∼ N (0, I).

Thus, by a simple modification to the prior sampling procedure, the generated trajectories have both
a high prior i.e. they are kinematically feasible and a high likelihood i.e. they are cost minimiz-
ing. To ensure that the final trajectory also starts and ends at the right states the authors inpaint as
τ i0 = sstart, τ

i
T = sgoal ∀i ∈ [N]. During planning many trajectories are sampled and the one

that minimizes the cost is selected. Guidance is the main computational bottleneck in this planning
process.

5.3 ABLATION - GUIDANCE STEPS

0 1 2 3 4 5
Guidance Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate vs Guidance Steps

EQ-MPD
MPD

0 1 2 3 4 5
Guidance Steps

0

5

10

15

20

Ti
m

e
(s

)

Inference Time vs Guidance Steps
EQ-MPD
MPD

The optimization-based guidance is crucial in guiding the denoised trajectories to low-cost regions
while being robust to small changes in the environment. The per-step cost is same between EQ-
MMPD and the MPD Canonical model, as depicted in the plot However, from the plot we see that
EqMMPD obtains the best results with 2 guidance steps, beyond which there is no improvement
while MPD needs 5 guidance steps to achieve the same success rate which more than doubles the
inference time. We chose to have 2 guidance steps throughout our experiments.

5.4 DATASET GENERATION AND TRAINING

The training data is obtained from apriori chosen canonical environment only. While MPD
is trained with 200 contexts (i.e., 200 different initial and final states), each consisting of 50
trajectories over 64 waypoints or horizon length, we train EQ-MMPD with 200 contexts, but with
only 25 trajectories for the positive and negatives. The trajectory generation happens by querying

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

the RRT-connect first, with the specified initial and final configurations (For Eq-MMPD, we do as
described in Eq. 1), and then smoothening out the sharp trajectories using the GPMP optimizer.
The optimizer ensures that the velocities are zero at the start and end configurations, and based
on the initial constant-velocity guess, generates smoothened velocities and hence, smoothened
trajectories.

5.5 REAL-WORLD EXPERIMENTS

Figure 4: Left figure depicts the canonical environment in the simulation (random SO(2) rotation
about the base by 148.6◦. The middle figure is a real-world replication, with a rotation of 17◦, with
the place goal being on top of the cabinet, with the drawer full. The figure on the right is the same
but with additional obstruction added from the top during test time, with the place goal being inside
the drawer (partially free). In all three environments, the pick goal is under the opened drawer.
To test our motion planner on real-world tasks, we consider a pick-place experiment in a relatively
cluttered environment, as shown in Fig. 4. The goal is to pick an object from underneath the
middle drawer of a cabinet and place it on top of the cabinet, or inside the drawer. The environment
is obstructed from the top during test time (right figure in Fig. 4, with reduced workspace. We
train the diffusion model on a simpler canonical environment with only the cabinet present, using
only 50 contexts with 25 trajectories each. The rotation for the canonical environment is randomly
chosen to be 148.6◦ about the base joint, while during testing, the rotation is randomly chosen to
be ∼ 17◦, with local changes to the cabinet itself with test-time obstructions from the top. The
Emika Franka Panda arm is run using the effort trajectory controller, to which we provide a
subsampled set of state waypoints. We find that our motion planner is able to generalize well to
these transformed versions of the environment, producing feasible (i.e., collision-free and smooth)
trajectories to successfully execute the task. The video recordings for the hardware experiments are
provided here1.

5.6 TRAINING DETAILS

Our model architecture is implemented in pytorch, and is based on a temporal UNet, consistent with
Carvalho et al. (2023a) and Janner et al. (2022a), but we lift the number of inputs to 21 instead of
14. (14-dim angle representation, with 7 joint velocities). Exact network architectural details can be
found in Appendix C of Janner et al. (2022a). We train the network with a learning rate α = 1e−4,
with a batch size of 32, and total training steps to be 500,000, using the Adanm optimizer.

5.7 NOTATION

It is important to distinguish the group SO(2) = {Rθ ∈ R2×2|RT
θ Rθ = I, det(Rθ) = 1, θ ∈

[−π, π)} of 2d rotations from its parametrization θ ∈ [−π, π) ⊂ R and from the space S1 =
{(cos θ, sin θ)|θ ∈ [−π, π)} ⊂ R2 that is the embedding of unit complex numbers in R2 and which
inherits the complex multiplication that makes it a group. In particular, S1 ≃ SO(2) as topological

groups by (x, y) 7→
(
x −y
y x

)
, R 7→ (R11, R21). SO(2) is a Lie group with Lie algebra so(2) :={(

0 −θ
θ 0

)
, θ ∈ R

}
≃ R. To simplify the notation we take directly the real values as elements

of the lie algebra unless otherwise defined. The group and algebra relate via the exponential map
1https://drive.google.com/drive/folders/1G-f2X0aSm14Q2knOqF3CGxvnb6AdUNQX?usp=sharing

14

https://drive.google.com/drive/folders/1G-f2X0aSm14Q2knOqF3CGxvnb6AdUNQX?usp=sharing

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

exp : so(2) → SO(2), which we overload to take real values exp(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. The

exponential map is surjective. It is also injective if we limit the domain to [−π, π) and the inverse is
log : SO(2) → so(2) with log(R) = atan2(R21, R11) with atan2(y, x) = 2arctan y√

x2+y2+x
∈

(−π, π) for (x, y) ∈ S1 − {(−1, 0), (1, 0), (0,−1)} and (±1, 0) 7→ ±π/2, (0,−1) 7→ −π. We
will find it useful to use the aforementioned isomorphisms to define: Exp : R → S1, Exp(θ) =
(cos θ, sin θ) which restricted to [−π, π) has inverse Log : S1 → R, Log(x, y) = atan2(y, x).
Also, we define the operator mod2π to map real values to the interval [−π, π) as θmod2π = θ −
2π⌊ θ+π

2π ⌋. We distinguish 1) the planning problem time t ∈ T , which we use as subscript and 2) the
diffusion process time i ∈ N which we use as superscript i.e. τ i = (sit)t∈T is the i-times diffused
trajectory from τ = τ0; the denoised trajectory. We denote by τq, τq̇ the configuration and velocity
parts of the state space trajectory.

15

	Introduction
	Related Work
	Method
	State Space Manifold Motion Planning Diffusion
	Riemannian Diffusion and Denoising

	Equivariant Motion Planning by Positive-Negative Embedding

	Experiments
	Appendix
	Lemmas and Proofs
	Preliminaries on Diffusion Models for Motion Planning
	Ablation - Guidance steps
	Dataset Generation and Training
	Real-world experiments
	Training details
	Notation

