Workshop track - ICLR 2016

CMA-ES FOR HYPERPARAMETER OPTIMIZATION OF
DEEP NEURAL NETWORKS

Ilya Loshchilov & Frank Hutter
Univesity of Freiburg

Freiburg, Germany,

{ilya, fh}@cs.uni-freiburg.de

ABSTRACT

Hyperparameters of deep neural networks are often optimized by grid search, ran-
dom search or Bayesian optimization. As an alternative, we propose to use the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which is known
for its state-of-the-art performance in derivative-free optimization. CMA-ES has
some useful invariance properties and is friendly to parallel evaluations of solu-
tions. We provide a toy usage example using CMA-ES to tune hyperparameters
of a convolutional neural network for the MNIST dataset on 30 GPUs in parallel.

Hyperparameters of deep neural networks (DNNs) are often optimized by grid search, random
search (Bergstra & Bengio, [2012) or Bayesian optimization (Snoek et al.l [2012a; 2015), with the
latter known as the most effective method. For the optimization of continuous hyperparameters,
Bayesian optimization based on Gaussian processes (Rasmussen & Williams},[2006)) is known as the
most effective method. While for joint structure search and hyperparameter optimization, tree-based
Bayesian optimization optimization methods (Hutter et al., 2011; |Bergstra et al.l [2011]) are known
to perform better (Bergstra et al.; Eggensperger et al.|[2013; [Domhan et al., 2015)), here we focus on
continuous optimization. We note that integer parameters with rather wide ranges (e.g., number of
filters) can, in practice, be considered to behave like continuous hyperparameters.

As the evaluation of a DNN hyperparameter setting requires fitting a model and evaluating its perfor-
mance on validation data, this process can be very expensive, which often renders sequential hyper-
parameter optimization on a single computing unit infeasible. Unfortunately, Bayesian optimization
is sequential by nature: while a certain level of parallelization is easy to achieve by conditioning
decisions on expectations over multiple hallucinated performance values for currently running hy-
perparameter evaluations (Snoek et al.l [2012a) or by evaluating the optima of multiple acquisition
functions concurrently (Hutter et al., [2012), perfect parallelization appears unattainable since the
decisions in each step depend on all data points gathered so far. Here, we study the use of a different
type of derivative-free continuous optimization method that allows for perfect parallelization.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES (Hansen & Ostermeier, 2001))
is a state-of-the-art optimizer for continuous black-box functions. While Bayesian optimization
methods often perform best for small function evaluation budgets (e.g., below 10 times the number
of hyperparameters being optimized), CMA-ES tends to perform best for larger function evaluation
budgets; for example, [Loshchilov et al.| (2013) showed that CMA-ES performed best among more
than 100 classic and modern optimizers on a wide range of blackbox functions. In a nutshell,
CMA-ES is an iterative algorithm, that, in each of its iterations, samples A\ candidate solutions
from a multivariate normal distribution, evaluates these and then adjusts the sampling distribution
used for the next iteration to give higher probability to good samples. Usual values for the so-called
population size A are around 10 to 20; in the study we report here, we used a larger size A = 30 to
take full benefit of 30 GeForce GTX TITAN Black GPUs we had available. Larger values of \ are
also known to be helpful for noisy and multi-modal problems. Since all variables are scaled to be
in [0,1], we set the initial sampling distribution to A'(0.5,0.22). We didn’t try to employ any noise
reduction techniques (Hansen et al., 2009) or surrogate models (Loshchilov et al., [2012)).

In the study we report here, we used AdaDelta (Zeiler, |2012) and Adam (Kingma & Bal [2014)
to train DNNs on the MNIST dataset (50k original training and 10k original validation examples).
The 19 hyperparameters describing the network structure and the learning algorithms are given in

Workshop track - ICLR 2016

Network training time: 5 minutes Network training time: 30 minutes

0.7 07— .
A ——— CMA-ES: AdaDelta + selection
0.65} 065F v v e CMA-ES: AdaDelta]
AL ——— CMA-ES: Adam + selection
o 06f x 06f P CMA-ES: Adam
£ 055) £ 055} [
S S
5 os5) 5 os5)
c c
O 045} O 0451
© ®
T 04f T 04f
© —— CMA-ES: AdaDelta + selection © .
> 035 == CMA-ES: AdaDelta > 035} =
= CMA-ES: Adam + selection
03 = . CMA-ES: Adam 03y
0.25 0 l1 lz 3 0.25 0 l1 l2 3
10 10 10 10 10 10 10 10
Number of function evaluations Number of function evaluations
Network training time: 5 minutes Network training time: 30 minutes
1.5 0.7 2 =
—— CMA-ES
14 noiseless PES | 0.65
13 . noiseless El
N : * noisy PES x 0.6
noisy El
€12 — € o551
=
S 11 2 05t
0] 1]
c
s - ' S 045}
=09 . . ®
@ . . o
i) 08\ UL e 2 04f | ——cwmA-ES
(>§ . \ . . . ceLt g 0.35| noiseless PES
0.7 . . z L —— ’ noiseless El
06 \ \—I—H—l- 0.3} noisy PES
: T noisy El
05 0.25 5 ;
10 20 30 40 50 10 10
Number of function evaluations Number of function evaluations

Figure 1: Top: Best validation errors found for AdaDelta and Adam with and without batch se-
lection when hyperparameters are optimized by CMA-ES with training time budgets of 5 and 30
minutes. Bottom: Validation errors for Adam with batch selection when solutions are evaluated
Bottom-Left: sequentially for 5 minutes each; Bottom-Right in parallel for 30 minutes each.

Table[T} the code is also available athttps://sites.google.com/site/cmaesfordnn/
(anonymous for the reviewers). We considered both the default (shuffling) and online loss-based
batch selection of training examples (Loshchilov & Hutter, 2015). The objective function is the
smallest validation error found in all epochs when the training time (including the time spent on
model building) is limited.

The baseline we compare CMA-ES to is GP-based Bayesian optimization, as implemented by
the widely known Spearmint system (Snoek et al. [2012a)) (available at https://github.
com/HIPS/Spearmint). In particular, we compared to Bayesian optimization with two dif-
ferent acquisition functions: (i) Expected Improvement (EI), as described by |Snoek et al.| (2012b)
and implemented in the main branch of Spearmint; and (ii) Predictive Entropy Search (PES),
as described by [Hernandez-Lobato et al|(2014) and implemented in a sub-branch of Spearmint
(available at https://github.com/HIPS/Spearmint/tree/PESC). Experiments by
Hernandez-Lobato et al. (2014) demonstrated that PES is superior to EI; our own (unpublished)
preliminary experiments on the black-box benchmarks used for the evaluation of CMA-ES by
Loshchilov et al.| (2013) also confirmed this. Both EI and PES have an option to notify the method
about whether the problem at hand is noisy or noiseless. To avoid a poor choice on our side, we
ran both algorithms in both regimes. Similarly to CMA-ES, to benefit from parallel evaluations in
EI&PES, we set the maximum number of concurrent jobs in Spearmint to 30.

Figure 1 (top) shows the results of running CMA-ES on 30 GPUs on eight different hyperparameter
optimization problems: all combinations of using (1) AdaDelta (Zeiler, 2012)) or Adam (Kingma &
Bal 2014); (2) standard shuffling batch selection or batch selection based on the latest known loss
(Loshchilov & Hutter,2015); and (3) allowing 5 minutes or 30 minutes of network training time. We

https://sites.google.com/site/cmaesfordnn/
https://github.com/HIPS/Spearmint
https://github.com/HIPS/Spearmint
https:// github.com/HIPS/Spearmint/tree/PESC

Workshop track - ICLR 2016

note that in all cases CMA-ES steadily improved the best validation error over time and in the best
case yielded validation errors below 0.3% in a network trained for only 30 minutes (and 0.42% for
a network trained for only 5 minutes). We also note that batch selection based on the latest known
loss performed better than shuffling batch selection and that the results of AdaDelta and Adam were
almost indistinguishable. Therefore, the rest of the figure shows only the case of Adam with batch
selection based on the latest known loss.

Figure 1 (bottom) compares the results of CMA-ES vs. Bayesian optimization with EI&PES. In this
figure, to illustrate the actual function evaluations, each evaluation within the range of the y-axis is
depicted by a dot. Figure 1 (bottom left) shows the results of all tested algorithms when solutions
are evaluated sequentially with a relatively small network training time of 5 minutes each. Note that
we use CMA-ES with A = 30 and thus the first 30 solutions are sampled from the prior isotropic
(not yet adapted) Gaussian with a mean of 0.5 and standard deviation of 0.2. Apparently, the results
of this sampling are as good as the ones produced by EI&PES. This might be because of a bias to-
wards the middle of the range, or because EI&PES do not work well on this noisy high-dimensional
problem, or because of both. Quite in line with the conclusion of Bergstra & Bengio| (2012, it
seems that the presence of noise and rather wide search ranges of hyperparameters make sequen-
tial optimization with small budgets rather inefficient, i.e., as efficient as random sampling. One
way to combat this would be to support prior distributions over good parameter ranges in GP-based
Bayesian optimization, but to date no system implements this.

Figure 1 (bottom right) shows the results of all tested algorithms when solutions are evaluated
in parallel on 30 GPUs. Each DNN now trains for 30 minutes, meaning that, for each optimizer,
running this experiment sequentially would take 30 000 minutes (or close to 21 days) on one GPU;
in parallel on 30 GPUs, it only required 17 hours. Compared to the sequential 5-minute setting, the
greater budget of the parallel setting allowed CMA-ES to improve results such that most of its latest
solutions had validation error below 0.4%. The internal cost of CMA-ES was virtually zero, but it
was a substantial factor for EI&PES due to the cubic complexity of standard GP-based Bayesian
optimization: after having evaluated 100 configurations, it took roughly 30 minutes to generate
30 new configurations to evaluate, and as a consequence 300 evaluations by EI&PES took more
wall-clock time than 1000 evaluations by CMA-ES. This problem could be addressed by using
approximate GPs Rasmussen & Williams| (2006) or another efficient multi-core implementation
of Bayesian Optimization, such as the one by |Snoek et al.| (2015). However, the performance of
EI&PES in terms of the validation error was also inferior to the one of CMA-ES. One reason might
be that this benchmark was too noisy and high-dimensional for EI&PES.

In conclusion, we propose to consider CMA-ES as one alternative in the mix of methods for hy-
perparameter optimization of DNNs. It is powerful, computationally cheap and natively supports
parallel evaluations. Our preliminary results suggest that CMA-ES can be competitive especially in
the regime of parallel evaluations. However, we still need to carry out a much broader and more
detailed comparison, involving more test problems and the tree-based Bayesian optimization algo-
rithms TPE (Bergstra et al.l 2011) and SMAC (Hutter et al.|[2011).

REFERENCES
Bergstra, J. and Bengio, Y. Random search for hyper-parameter optimization. JMLR, 13:281-305, 2012.

Bergstra, J., Yamins, D., and Cox, D. Making a science of model search: Hyperparameter optimization in
hundreds of dimensions for vision architectures. pp. 115-123.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algorithms for hyper-parameter optimization. In Proc. of
NIPS’11, pp. 2546-2554, 2011.

Dombhan, Tobias, Springenberg, Jost Tobias, and Hutter, Frank. Speeding up automatic hyperparameter opti-
mization of deep neural networks by extrapolation of learning curves. In Proc. of IJCAI’15, pp. 3460-3468,
2015.

Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., and Leyton-Brown, K. Towards
an empirical foundation for assessing Bayesian optimization of hyperparameters. In Proc. of BayesOpt’13,
2013.

Hansen, Nikolaus and Ostermeier, Andreas. Completely derandomized self-adaptation in evolution strategies.
Evolutionary computation, 9(2):159-195, 2001.

Workshop track - ICLR 2016

Table 1: Hyperparameters descriptions, pseudocode transformations and ranges

name description transformation range

1 selection pressure at eg 10~ 2107 [1072,10%)
T2 selection pressure at €end 1072+10%72 [1072,10%]
3 batch size at eg 4T3 [24, 28]

T4 batch size at ecpng gd+dza [24, 28]

Ts5 frequency of loss recomputation 7 fr.cq 2x5 [0,2]

T alpha for batch normalization 0.01 + 0.2z¢ [0.01,0.21]
x7 epsilon for batch normalization 1078 +5e7 [107%,1077)
zs dropout rate after the first Max-Pooling layer 0.8zs [0,0.8]

Tg dropout rate after the second Max-Pooling layer 0.8z9 [0,0.8]

T1o dropout rate before the output layer 0.8z10 [0,0.8]

11 number of filters in the first convolution layer 2315711 [23, 28]

Z12 number of filters in the second convolution layer ~ 2375%12 [23, 28]

T13 number of units in the fully-connected layer 94+5213 [24, 29}

T14 Adadelta: learning rate at eg 100572714 [107°,10%9)
T15 Adadelta: learning rate at ecpnq 100572715 10715,10%%]
16 Adadelta: p 0.840.199z16 [0.8,0.999]
x17 Adadelta: € 107376217 [107°,1079)
T1a Adam: learning rate at eg 10713714 [10_4, 10_1]
Z15 Adam: learning rate at €cnq 10733715 107%,1077]
T1i6 Adam: 3 0.84+0.199x16 [0.8,0.999]
r17 Adam: ¢ 10736217 [107°,1077)
Z1s Adam: 3, 1—107272%18 [0.99,0.9999)
T19 adaptation end epoch index eeynq 20 + 200x19 20, 220]

Hansen, Nikolaus, Niederberger, André SP, Guzzella, Lino, and Koumoutsakos, Petros. A method for handling
uncertainty in evolutionary optimization with an application to feedback control of combustion. Evolutionary
Computation, IEEE Transactions on, 13(1):180-197, 2009.

Hernandez-Lobato, José Miguel, Hoffman, Matthew W, and Ghahramani, Zoubin. Predictive entropy search
for efficient global optimization of black-box functions. In Proc. of NIPS’14, pp. 918-926, 2014.

Hutter, F., Hoos, H., and Leyton-Brown, K. Sequential model-based optimization for general algorithm config-
uration. In Proc. of LION’11, pp. 507-523, 2011.

Hutter, F., Hoos, H., and Leyton-Brown, K. Parallel algorithm configuration. In Proc. of LION’12, pp. 55-70,
2012.

Kingma, Diederik and Ba, Jimmy.
arXiv:1412.6980, 2014.

Adam: A method for stochastic optimization. arXiv preprint

Loshchilov, Ilya and Hutter, Frank. Online batch selection for faster training of neural networks. arXiv preprint
arXiv:1511.06343, 2015.

Loshchilov, Ilya, Schoenauer, Marc, and Sebag, Michele. Self-adaptive surrogate-assisted covariance matrix
adaptation evolution strategy. In Proc. of GECCO’12, pp. 321-328. ACM, 2012.

Loshchilov, Ilya, Schoenauer, Marc, and Sebag, Michele. Bi-population cma-es agorithms with surrogate
models and line searches. In Proc. of GECCO’13, pp. 1177-1184. ACM, 2013.

Rasmussen, C. and Williams, C. Gaussian Processes for Machine Learning. The MIT Press, 2006.

Snoek, J., Larochelle, H., and Adams, R. P. Practical Bayesian optimization of machine learning algorithms.
In Proc. of NIPS’12, pp. 2960-2968, 2012a.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. Practical bayesian optimization of machine learning
algorithms. In Advances in neural information processing systems, pp. 2951-2959, 2012b.

Snoek, Jasper, Rippel, Oren, Swersky, Kevin, Kiros, Ryan, Satish, Nadathur, Sundaram, Narayanan, Patwary,
Md, Ali, Mostofa, Adams, Ryan P, et al. Scalable bayesian optimization using deep neural networks. arXiv
preprint arXiv:1502.05700, 2015.

Zeiler, Matthew D. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

